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I. ABSTRACT 

Cows in modern dairy systems are at risk of comprised health and welfare, and monitoring changes 

in behaviour can help identify early-warning signs. This thesis uses a local positioning system to 

detect changes in group-level behaviour. The proximity interaction network structure and 

consistency of a herd housed in a closed barn on a commercial farm in Essex is explored. Next, 

the network structure, alongside group-level space-use patterns, on the commercial farm in Essex 

are compared to those of a second dairy cow herd housed in an open barn (RVC Research farm). 

In the subsequent chapters, the relationship between barn temperature and bunching behaviour, a 

potentially maladaptive response to warmer than average temperatures, was investigated in both 

herds, through various bunching metrics: range size, inter-cow distance and nearest neighbour 

distance. The herd on the commercial farm in Essex was highly connected and temporally unstable, 

with inter-individual variation in interactions in the non-feeding zone, and social differentiation 

across functional zones. No social assortment by parity, days in milk or lameness state was 

detected. The herd on the RVC Research farm were less connected than the herd on the commercial 

farm in Essex. Inter-individual variation in proximity interactions was found in the feeding zone 

of the RVC Research farm, alongside social differentiation across functional zones. Cows showed 

preferences for specific areas of the non-feeding zones, more so on the commercial farm in Essex 

than on the RVC Research farm. Cows increased their bunching behaviour ≥ 20°C in terms of all 

bunching metrics on the commercial farm in Essex. This pattern was observed for nearest 

neighbour distance on the RVC Research farm ≥ 15.91°C. This thesis demonstrates the use of 

precision livestock farming to monitor changes in group-level behaviour to improve the health and 

welfare of livestock. 
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1. CHAPTER 1: GENERAL INTRODUCTION   

1.1.  Introduction 

Dairy products are an important global commodity, with consumption predicted to further 

increase over the next decade, despite the growing interest in plant-based alternatives, largely 

due to rising consumption in developing countries (1). To meet this demand, world milk 

production alone is expected to continue growing by 1.6% per annum over the next decade (1). 

Stocking densities have increased, and cows are genetically selected for milk quantity (2).  

 

Although modern farming systems are efficient, dairy cows are susceptible to decreased health 

and welfare, with high-yielding cows particularly prone to production diseases (3). However, 

consumer and legislation demand for improved health and welfare of managed animals is 

increasing, and its importance is being recognised in the farming industry (2,4,5). 

Compromised health and welfare has in turn been shown to decrease overall productivity, so 

indicators are vital to maintain productivity and demonstrate the high welfare linked to products 

to gain premium prices from consumers (6). In this introductory chapter, I will outline 

prominent health and welfare concerns in the dairy industry. Next, I will provide an overview 

of the individual and social behaviour of cattle, then link this to indicators used to identify 

health and welfare concerns. The latter are reported through studies using traditional in-person 

observations, of which I highlight difficulties with, and more advanced methods using 

automated monitoring systems. I then identify knowledge gaps in the identification of 

prominent health and welfare concerns before setting out my research objectives to address 

these gaps. 
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1.2.  Health and Welfare 

This section defines animal health and welfare and addresses some of the main issues 

associated with disease, environmental factors, and grouping in the context of housed herds, 

and how they are typically diagnosed on-site. I focus on four of the most prevalent issues in 

the dairy industry, namely lameness, mastitis, heat stress and ketosis, which significantly 

impact the welfare of dairy livestock and the sustainability of the dairy industry. Mastitis is the 

most common production disease affecting dairy herds worldwide, with an estimated incidence 

rate of clinical mastitis in England and Wales ranging from 47% to 65% (7). Lameness, with 

an average farm prevalence of 32% across England and Wales, is the second most common 

production disease (8,9). Heat stress is already a significant issue impacting production, and 

climate change is expected to rapidly increase its prevalence and severity (10). Finally, ketosis 

is the most common metabolic disease in high-performance dairy cows during the transition 

period (11,12), with an average prevalence estimated across ten European countries of 22% 

(13). These issues are not extensive and nor are they mutually exclusive i.e., animals can suffer 

from co-occurrences of these conditions simultaneously. I later demonstrate how these 

complications can alternatively be identified through changes in behaviour, with a focus on 

social behaviour, in Sections 1.3 and 1.4.  

 

1.2.1. Defining animal health and welfare 

Animal health refers to an individual’s overall state of physical, mental, and social fitness, with 

better health involving the prevention and treatment of illness, as well as positive mental health 

(14). Welfare instead refers to well-being in any respect, incorporating the physical and mental 

state of an individual (15). An animal’s health is often considered a principal component of 

animal welfare, although measures of the former only more recently consider the latter (14). 

Indicators of welfare are varied, including hunger and thirst, physical and thermal discomfort, 
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pain, injury and disease, fear and stress and the ability to express normal behaviour (as outlined 

in The Five Freedoms) (16). It must be considered that negative experiences are vital for 

survival, so management should aim to reduce rather than eliminate these experiences (17). 

Moreover, the Five Freedoms focus primarily on preventing negative experiences rather than 

providing opportunities for positive ones, which are also important (17). By taking into account 

the three main concepts of animal welfare- that animals can lead natural lives through 

development and use of their natural adaptations and capabilities, be free from prolonged and 

intense fear, pain and negative states, and experience normal pleasures while functioning well 

biologically- we can further improve animal health and welfare (18). While these concepts are 

not mutually exclusive, different individuals and groups tend to place varying degrees of 

emphasis on each.  Assurance schemes are often used for monitoring animal health and welfare, 

involving on-farm assessment, advice and implementation (19).  

 

1.2.2. Lameness 

Lameness, a defect causing abnormalities in an animal’s gait due to injury or disease to the leg 

or foot, is a prominent global issue (20). It is considered the third greatest health concern in 

dairy cow herds, following reduced fertility and mastitis, and is one of the primary reasons for 

culling young sows (21,22). The extremity of the condition varies, from uneven strides to an 

inability to bear weight on the affected limb (23). Affected cows produce less milk, with an 

estimated mean loss of 360kg per cow’s lactation cycle, although the extent to which appears 

to be wound or lesion-dependent (24–27). Reproduction is also impacted; cows experience 

increased calving to conception intervals and a hindered ability to express oestrus and ovulate, 

and lame sows produce a smaller litter size than non-lame sows, and show delays in post-

weaning oestrus (28–30).  
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Measuring the welfare impacts of lameness is difficult, as we are unable to grasp the internal 

experience of individuals. Nevertheless, it is well established that it is a painful condition; the 

use of analgesics, medications used to treat pain, demonstrates that lame individuals have lower 

pain thresholds, the extent to which is lesion dependent (31–38). Physiological measures also 

reflect the stressful nature of the condition, with individuals experiencing increases in heart 

rate variability and blood cortisol when lame (39,40). Particularly in cases of severe lameness, 

additional discomfort and stress arises from corrective trimming, which may be partly triggered 

by separation from the herd for this procedure (40,41). Although the impacts of handling and 

restraint are hard to distinguish from the procedure itself, discomfort and stress caused in the 

process clearly impact individual welfare.  

 

Detecting an animal’s gait is primarily used to detect lameness. Typically, an individual is 

assigned a locomotion score indicating the presence or absence of specific behaviours and 

postures, for instance an arched back, during routine procedures such as herding or hoof 

trimming (42–45). Although useful, observer scoring is subjective, prone to error and abnormal 

behaviours may not be immediately obvious; studies find farmers underestimate the severity 

of several pathologies through locomotion scoring (46–49). The uses and disadvantages of 

locomotion scoring, and alternatives for diagnosing lameness, are discussed further in Section 

1.4.1.1. 

 

1.2.3. Heat stress 

As with lameness, heat stress, the failure to dissipate body heat to maintain homeostasis, 

hinders the reproductive success of mammals through an accumulation of effects, of particular 

concern in farm animals due to economic loss (50). Dairy cow conception rates are reduced in 

warmer months, particularly in high-yielding cows, further highlighting the need to address 
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this in the livestock industry (51–53). Under high temperatures, individuals increase their 

respiration rate to facilitate evaporative cooling, while also elevating their pulse rate to enhance 

blood flow to the skin’s surface, promoting heat loss (54,55). Both respiration rate and pulse 

rate are indicators of stress (54,55). An individual’s mental state and their ability to live a 

natural life may therefore be breached when animals lose the ability to maintain a comfortable 

body temperature.  

 

Heat stress is frequently detected using manual vaginal data loggers, but these can only be used 

for a limited number of consecutive days to maintain vaginal health, and data are not provided 

in real-time or require downloading (56,57). Other techniques for detecting heat stress include 

recording rumen temperature, but this is impacted by heat from fermentation and cooling 

through water intake (58). Although current strategies to target heat stress are useful e.g., the 

installation of cooling techniques, shade, ventilation, fans and sprinklers, these do not consider 

the individual or current weather conditions (59–61). There is a call for continuous monitoring 

and detection of heat stress at the individual level, particularly pressing given climate change 

and the high demand for milk production, with higher stocking rates used to accommodate for 

this which could heighten the impacts. 

 

1.2.4. Mastitis  

Mastitis, inflammation of the mammary gland or udder, is estimated to be the most prevalent 

disease in the dairy industry (62). Profit is lost through mortality, decreased milk production 

and quality, contamination of milk, and treatment costs (63–66). There is conflicting evidence 

of whether animals with mastitis suffer hyperalgesia, abnormally heightened sensitivity to pain, 

as studies find both increased and decreased thresholds to nociceptive pressure and temperature 
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(67–70). Nonetheless, other indicators such as changes in facial expression in sheep suggest 

mastitis is painful (71).  

Currently, mastitis is typically detected through somatic cell counts and culture-based methods, 

due to the low cost and ease of data collection (72–74). These techniques help identify the 

disease but lack sensitivity in determining the extent of the infection, so there is a need for 

more sensitive methods (72). Farm management routines such as milking and unhygienic 

environments can give rise to the condition, and the uptake of automated milking systems is 

reducing inspection time required to identify mastitic cows, further accentuating the need for 

more sophisticated, automated identification (75–77). Typically, animals are treated through 

antibiotics, but there is a demand for alternatives due to growing concerns of antibiotic 

resistance, and quicker identification could help with this (78).  

 

1.2.5. Ketosis 

Ketosis is a common metabolic disease characterised by high concentrations of ketone bodies 

in the bloodstream, urine, and milk due to a negative energy balance (79). Transition dairy 

cows, individuals undergoing physiological changes before and after calving to support milk 

production, often develop the disorder (80). Cows with ketosis experience decreased milk yield 

and impaired reproduction, plus increased susceptibility to lameness and mastitis, all of which 

are costly for farmers (81). Current diagnosis techniques focus on individuals which are already 

sick and involve identifying ketone bodies in bodily fluids e.g., milk, blood and urine (79,82). 

These methods have low in sensitivity and specificity; blood samples are the ‘gold standard’ 

as they provide a relatively accurate measure of ketone bodies, but this is invasive and time-

consuming (79,82).  
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1.2.6. Other conditions 

Other common dairy diseases include complications during and after calving. Dystocia, a 

difficult birth resulting from prolonged calving or severe assisted extraction of a calf at birth, 

is considered extremely painful and increases the risk of calf mortality (83–87). Scoring 

systems are used but these are subjective, and can vary so there is a need for standardisation to 

better understand the prevalence and extent of dystocia on farms (86–90). Another birthing 

complication is a retained placenta that increases the risk of metritis, inflammation of the 

uterus,  leading to reduced milk yield and reproductive problems (91–95). Metritis is typically 

identified through clinical examination of the uterus and discharge, but veterinary examination 

is relatively infrequent on most farms (96,97). Although antibiotics can be used to treat the 

condition, they increase selective pressure for the emergence of resistant bacteria (98–101). 

After calving, animals may also develop hypocalcaemia (milk fever), defined as low plasma 

calcium, which has been associated with impaired reproduction and milk production (102–

105). Definitive diagnosis requires an expensive blood test, and this typically requires sample 

processing. However, development of on-site diagnostic tests and procedures for cows are 

underway, including the use of portable blood analysers that detect ion concentrations in the 

blood through a small sensor (106). 

 

Another prominent issue impacting farm animals is the left displacement of the abomasum, 

whereby this stomach compartment is filled with gas and then trapped by the rumen to the left 

side of the abdominal cavity; in dairy cows, this mainly affects high yielding lactating 

individuals postpartum (107–109). The condition is traditionally diagnosed by detecting gas 

present in the abomasum through a high-pitched noise produced by simultaneous auscultation 

(listening) and percussion (tapping on a surface to determine underlying structures) (110). 

Treatments involve attempting to move the abomasum back into position non-surgically or 
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surgically but the former has variable success rates and the latter is invasive; detecting early 

warning signs is crucial for profitability and welfare (110,111). 

 

1.3.  An overview of the behaviours of dairy cows 

Behaviour can be defined as ‘the internally coordinated responses (actions or inactions) of 

whole living organisms (individuals or groups) to internal and/or external stimuli, excluding 

responses more easily understood as developmental changes’ (112). Here, an overview of both 

individual and social/ group behaviours is provided, the latter divided into affiliative (positive) 

and agonistic (negative). Differences between housed dairy cow behaviours and those of their 

wild counterparts are highlighted. 

 

1.3.1. Individual behaviour 

The main individual behaviours of cattle can be categorised into: walking, grazing/feeding, 

ruminating and resting, and the latter three can be further divided into lying and standing 

(113,114). Grazing is the most observed behaviour in pasture-based systems, enabling cattle to 

obtain enough nutrition for maintenance and production, whereas this is not needed in housed 

settings where cows are typically fed regularly (115,116). Instead, housed dairy cows spend 

most of their time lying rather than feeding, although the latter is still a frequent behaviour 

(114). Less observed behaviours include drinking, grooming, head shaking, scratching and 

urinating, which may be equally important; an increase or decrease in non-essential behaviours, 

which may be dependent on the behaviour, might indicate a stressed state (113).  

 

To detect abnormalities which are indicative of welfare concerns, cataloguing individual-

specific baseline behaviours is essential. Individual time budgets can be affected by the specific 
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housing system and management, so it is crucial to monitor deviations from known norms. 

Shifts in time budgets may be effective adaptations to a specific environment e.g., restricting 

access to food increases the time housed cows spend eating, in attempt to obtain a similar 

amount of feed (117). Alternatively, changes could have negative consequences. Inadequate 

access to space can inhibit essential behaviours, as shown by a reduction in lying time of up to 

one hour per day for cows housed at 1.5 cows per stall, compared to those housed at one cow 

per stall (118–122). A reduction in lying time should be monitored as it increases the risk of 

lameness in cows (123). However, lying time is also weather-dependent; housed cows spend 

more time lying in winter than in hotter seasons, to reduce heat loss (114). Behavioural time 

budgets may not only be environmentally dependent but attribute-dependent; higher yielding 

cows spend more time eating and less time lying than lower yielding cows (124). Moreover, a 

single trait is not fully representative of an individual’s state and so it is useful to consider 

repeatable groups of traits stable across time and contexts- or personality (125).  

 

To test the presence of personality, individual differences in behaviours must show temporal 

and contextual consistency (126). Indeed, individual cows show temporal consistency in lying 

duration and overall activity, with more active individuals showing higher daily variation in 

their behavioural activity (127,128). This could be linked to sociality; individuals show 

repeatability in behaviours and saliva cortisol in response to a social isolation test over time 

(129). Exploration and anxiety could contribute as well as sociality, in terms of underlying 

personality structures which may be important concerning animal welfare (129). These studies 

suggest both individual differences and temporal consistency- aspects of personality (126).  
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Furthermore, cows show intra-individual consistency in inactivity and inhibition behaviours 

across contexts, to various fear-eliciting situations: novel environments and objects, unfamiliar 

areas and surprise effects (130). Responses to fear are age-dependent; older individuals show 

a lower cortisol response when separated from their herd, potentially due to habituation to 

husbandry situations (129). Despite artificial selection of farm animals, distinct behavioural 

consistencies are present which could help us understand the ability of individuals to cope with 

husbandry conditions and predict stress responses, relevant from the perspectives of both 

animal welfare and production (130,131).  

 

1.3.2. Grouping  

Cattle are naturally gregarious, forming dominance-based hierarchies, in groups generally 

consisting of 20 individuals including females, calves, and transitory males (132). Group living 

provides numerous benefits, including reduced predation risk, facilitated learning for resource 

exploitation and mating opportunities (133,134). The advantages of group living tend to 

outweigh the costs e.g., increased competition for resources, and so it has evolved 

independently in a range of species (133). Wild Bovidae groups self-regulate, with group size 

and density subject to change based on current environmental conditions, predation risk and 

resource availability e.g., bison select foraging sites with wheat sedge less with increasing risk 

of wolf predation, and wildebeest favour grouping in open habitats under high predation risk 

(133,135–137).  

 

Although on most commercial farms cows are housed in groups, the herd social structure of 

dairy cows differs significantly from their wild counterparts; they are usually housed in 

exclusively female groups for efficiency, reducing time and labour, and to prevent uncontrolled 

breeding (135,138). Typically, non-lactating cows are separated from the milking herd and the 
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latter are separated by lactation stage and age, and calves are separated from dams shortly after 

birth (139,140). This differs from the mixed-sex herds found in the wild, where males protect 

the herd from predators (138). Dairy cows are also subject to regrouping events following 

changing status, exposing cows to new individuals often without considering social stress 

(141–143). Furthermore, domestic cows typically have access to restricted space allowance in 

the form of indoor housing or fenced grazing paddocks (135,139,140,142,144). High stocking 

densities increase competition for resources, hence aggression and social stress, which will be 

further explored in Section 1.3.2.1 (145). Ultimately, grouping of dairy herds is not led by 

animal choice but through farmer decisions, therefore the social structures of cattle in a 

domestic setting may not align with their evolutionary adaptations, so understanding the 

structure and dynamics of these networks may provide insights to optimise management 

(146,147).  

 

1.3.3. Social behaviour 

Social behaviours can be broadly categorised into agonistic and affiliative. Agonistic 

interactions are negative and include displacement, kicking, pushing and avoidance (148). 

Affiliative behaviour is positive, and includes allogrooming (social licking), sniffing and 

rubbing (149–151). Monitoring an individual’s negative and positive social interactions over 

time could help predict responses to management practices (152). The importance of 

considering the individual in social interactions will be discussed in more depth in the 

following sections of this review (Section 1.3.2- 1.3.3). 
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1.3.3.1. Agonistic  

Agonistic behaviours may involve direct contact, such as a butt, nudge, push or kick, and the 

aftermath of such interactions may be conspicuous via physical inspection of individuals e.g., 

bruising, cuts and scratches, bite marks, limping or lameness (148,153). Non-contact agonistic 

behaviours, such as threatening and displacements, may not have immediate observable effects 

but can result in stress. Responses can manifest as increased heart rate, raised cortisol levels, 

vocalisations, and stereotypic behaviour, which are indicative of an animal’s psychological 

state (154). Studies have shown that housed cows exhibit more agonistic behaviours than their 

wild counterparts, which suggests that they may experience greater levels of stress and 

compromised welfare (120,148,155). Agonistic interactions heighten after regrouping events 

and with increasing stocking density, of particular concern giving increasing herd sizes 

(120,148,156,157).  

 

High stocking densities lessen the chances of subordinates being able to avoid dominants e.g., 

whilst feeding, increasing social stress (135,158). It is therefore clearly important to consider 

the dominance hierarchy in herd groups, including how cows are ranked e.g., by age and 

weight, in relation to management (148,159). Dairy cow hierarchies have been assessed 

considering displacements, at feed barriers and cubicles, and such interactions do not always 

involve physical contact (144,159). Non-contact displacements of lower ranking cows may be 

significant, resulting in excessive stress and reduced feed intake and lying duration, shifting 

individual time budgets to become less favourable (158,160). Dominance hierarchies are 

largely stable but can change over time, according to resources and environmental conditions, 

particularly with frequent regrouping (135,152).  
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1.3.3.2. Affiliative  

Opportunities for positive interactions are essential for maintaining a good standard of welfare 

in managed herds (161). Allogrooming can serve not only as a hygienic practice, but also to 

promote social bonding, and can be particularly useful to monitor after the introduction of a 

new cow into a group (148,149,162,163). Allogrooming reduces social tension, and recent 

arrivals into a group are found to groom more herd members (162).  

 

Social support is further reflected in the responses of beef cattle to stressors, whereby 

individuals are more likely to seek social contact in isolation (164). Maintenance of closeness 

serves to provide social support and promote social bonding (165–167). Animals maintain 

closer proximity to more familiar individuals, observed across taxa from fish to primates (168–

171). The importance of closeness and familiarity is further demonstrated in studies showing 

behavioural stress responses of cows during social isolation, which are less extreme in the 

presence of a companion, particularly when individuals are familiar (129,141). The provision 

of sufficient space is therefore crucial to not only allow subordinates to avoid dominant 

individuals, but to also allow social bonds to form, of notable concern given increasing herd 

sizes (135). Indeed, poultry show increased tonic immobility with increasing group size, 

indicating higher levels of fear, and pigs housed in large groups show increased aggression; 

the stress imposed by the social environment may increase the risk of any individual sow 

becoming a biter (145,172,173). However, this is only above a given group size e.g., pigs and 

calves housed in pairs are more stressed than when housed in groups of four to eight, 

respectively (174,175). This number will differ between livestock and according to conditions. 

Maintenance of proximity is widely used to measure social interactions over time. It is used as 

a proxy for both affiliative contact and non-contact social interactions but does not indicate 

which animal in a dyad, if any, drives the spatial relationship, or whether relationships may 
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appear where none exist, such as when two individuals share the same diurnal pattern or micro-

climatic preferences. Nonetheless, maintenance of proximity has been found to be positively 

correlated with affiliative social interactions between cows (176) which is why it is adopted in 

this thesis to measure such interactions (Chapters 3 and 4) (165–167). 

 

1.4.  Recording behaviour to improve health and welfare 

As established in Section 1.2, dairy cows in modern farming systems are at risk for 

compromised health and welfare. Behavioural indicators are vital to maintain and improve the 

welfare of livestock, so stress and pain can be alleviated.  

 

1.4.1. Observational studies of behaviour 

Earlier observational studies demonstrate the use of behavioural indicators to assess the health 

and welfare of dairy cows. This section aims to provide a brief overview of these studies, whilst 

discussing their limitations in monitoring behaviour. 

 

1.4.1.1. Gait analysis 

As highlighted in Section 1.2.1.1, locomotion scoring is widely used to diagnose mobility 

issues, particularly lameness, providing convenient, immediate on-site assessment without the 

need for technical equipment (177). Main approaches are numerical rating scores (NRS) which 

use discrete units, and visual analogue scales (VAS) which measure on a less restrictive and 

continuous scale (178–180). Handling VAS data is more difficult though, and inter-observer 

agreement in cow lameness scores is lower than when using a NRS (178–180). Therefore, NRS 

is more commonly used (178–180). Nonetheless, both scoring methods are inherently 
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subjective; farmers are found to identify equivalent to, or less than, one in four hoof injuries or 

incidences of disease (46,181). Furthermore, inter-observer reliability in diagnosing lameness 

through both scoring methods is low e.g., only as high as 60% in horses (n = 20) scored 

between sixteen observers (182). Observer training and limiting the number of scoring 

categories improves repeatability but the latter could limit important information (183,184). 

Moreover, inter-observer repeatability increases with the severity of lameness, so animals with 

slight gait abnormalities are at greater risk of being classified as non-lame, as found with sheep 

and horses (180,185). With growing herd sizes to meet rising demand for dairy products, 

scoring is particularly prone to error. 

 

1.4.1.2. Individual time budgets and space-use 

Individuals may adjust the time they spend standing when in pain e.g., lame broilers are shown 

to decrease the time they spend standing compared to their non-lame counterparts (186). 

Additionally, individuals may alter the time they spend lying when lame, as demonstrated by 

lame cows that spent more time lying than non-lame cows (187). Shifts in resting times when 

ill may be dependent on the comfort of stalls; lame cows spend more time lying when housed 

with sand bedding than with rubber crumb-filled mattresses (188). A reduction in lying could 

therefore signal lameness, and the use of comfortable bedding could aid recovery (187–189). 

Similarly, cows with dystocia change between standing and lying positions more frequently, 

indicating discomfort (190). In contrast, cows undergoing heat stress limit the time they spend 

lying (189,191,192). Instead, cows spend more time standing under heat stress, to increase 

exposed body surface area for heat loss, but this may also maladaptively hinder blood 

circulation in the udders, so monitoring a change in standing behaviour could reduce 

discomfort from not only heat stress but also from further complications (191).  



16 
 

 
 

Shifts in behaviours other than lying and standing are observed in unhealthy individuals; cows 

with lameness and dystocia spend less time feeding, and this is also seen prior to the 

development of displacement of the abomasum and in cows undergoing heat stress 

(188,190,193,194), although patterns are inconsistent across herd groups (187,195–197). 

Limiting food intake under heat stress serves to decrease metabolic rate to reduce heat load 

(198–202). Under heat stress, cows also increase their water intake to cool down, as 

temperatures increase past a threshold (203). Similarly, goats are shown to spend less time 

eating and more time drinking under heat stress (204). The time dedicated to non-essential 

behaviours also decrease under heat stress, as shown with grooming in mastitic dairy cows 

(205), and with preening in lame broilers (186). Overall, a change in behavioural time budgets 

can indicate discomfort, and prompt detection of shifts can help address potentially associated 

health concerns. 

 

An alteration in individual space-use could further help identify health complications; non-

lame cows are found to spend more time in a cool alley of a study barn compared to lame cows 

(189). Under hot conditions, cows seek areas of shade with the aim to reduce body temperature 

(206), but the effectiveness of this likely depends on factors such as stocking density and shade 

availability. It is therefore useful to flag changes in livestock movement and understand where 

these may indicate discomfort to improve welfare. 

 

1.4.1.3. Social behaviour 

Observations show cows are displaced more often from feeding areas at high stocking 

densities, particularly subordinates (207). Lame cows are at higher risk of being displaced; the 

encounter itself and an inability to access equal feed is likely to induce stress (207). Cows may 
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also avoid aggressive interactions when ill, likely associated with areas holding resources such 

as food, as found with lame cows and matristic cows prior to calving (208,209). The order 

individuals enter the milking parlour can shed light on the health status of cows too, with 

observations showing lame cows position towards the rear of the herd upon entering, 

suggesting a lack of ability to compete for relief from milking (187). Moreover, the likelihood 

of developing health conditions might in itself be dependent on social rank, with observations 

showing low-ranking cows are more likely to develop soft tissue lesions and lameness (210). 

 

A modification in social behaviour could help identify heat stress; aggressive interactions 

between cows increase with temperature (211,212). This is observed in shaded areas, 

unsurprising given this resource becomes more important to relieve discomfort so cattle are 

more likely to compete for it (213). Installing more shaded areas can help, and is shown to 

reduce respiration rate, a sign of stress, but the amount of shade required is herd-specific and 

should consider housing conditions and group size (211).  

 

1.4.1.4. Limitations 

In-person observations and video recordings, alongside the measurement of daily feed intake, 

have shed light on behavioural changes in gait, time budgets and space-use when livestock are 

ill. There is, however, a need for more objective measures to detect illness. Observing and 

measuring cow footprints show promise in objectively detecting lameness but multiple 

trackway measurements are required due to the high inter-individual variability in tracks 

(214,215). Manual measurements are limited by time and resources. It is also difficult to 

identify conditions whilst maintaining a suitable distance, to reduce the potential behavioural 

influence of observers, a concern as animals are known to mask vulnerable behaviours (216). 
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Given time is pressing for farmers, especially with increasing herd sizes, there is a call for 

automated detection of illnesses such as lameness and heat stress. 

 

1.4.2. Using technology for automated detection of illness 

The recent adoption of Precision Livestock Farming (PLF), where farm management is aided 

through continuous automated real-time monitoring of animals or the environment (217–219) 

can help overcome limitations of traditional techniques. In this section, an overview of studies 

using various technologies to identify changes in livestock behaviour, indicative of the health 

and welfare issues covered in Section 1.2, are outlined. Limitations in these approaches are 

then identified, as well as gaps in our knowledge. 

 

1.4.2.1. Gait analysis 

The main technologies used to detect lameness through gait are force plates, pressure mats, 

imaging, and motion sensing. Changes in weight distribution can be measured using ground 

reaction forces via force plates; lame cows place more weight on healthy limbs and adopt 

longer stances compared to non-lame cows (220–222), and a deviation in front-to-hind leg 

weight distribution may be indicative of lameness in sows (223). The use of force plates is 

validated by the finding that the weight lame cows apply to injured legs increases after 

administration of local anaesthetic (224). Assessing aspects of gait through pressure mats, 

which measure vertical forces such as the speed and asymmetry of gait, can also be used to 

assess health, found to successfully identify lameness in cows up to a sensitivity of up to 90% 

(225). The use of pressure mats for gait analysis is further demonstrated in research comparing 

flooring types used by pigs, revealing major improvements in pressure relief through the use 

of rubber mats compared to bare sensors (226). Furthermore, a study has showed that by 

utilising pressure mats and imaging techniques to measure range of motion and release angle 
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of front hooves, there was an observed improvement in gait score in 83% of cows (227). 

However, the study also identified that 7% of the recordings were unusable due to difficulties 

in synchronising the pressure mat and the camera system (227). Furthermore, space may be an 

issue for pressure and force mat systems, although force mat length and sensor resolution can 

be compromised to a degree without influencing lameness detection (228).  

 

Other image analysis techniques have been used to detect lameness through posture, and such 

systems can capture at high frequencies; for example, a system monitoring a cow’s back 

posture shows promise, although this alone may not be an accurate indicator (55). A more 

comprehensive technique has been proposed, whereby the body movement pattern (BMP) 

analyses back posture in combination with head position using a side-view camera; 76% of 

lame cows were correctly classified (229). Furthermore, lameness can be detected through 

overlap in a cow’s consecutive steps, and comparing manually labelled hoof locations to those 

located using imaging analysis, to a mean correlation coefficient of 95% (230). 

 

The technologies explored above require animals to keep their legs in certain positions, or 

continuously move through specific measurement zones (222,225,227,229). The latter 

constraint has resulted in 12% of total cow gait recordings being unusable (227). Furthermore, 

imaging and weight analyses can be costly and rely on assessment with only a few steps per 

individual, and the technologies are prone to disruption from their surroundings. In imaging 

analysis, this is often due to changing shadows and dynamic backgrounds, which decreases 

detection accuracy (227,231,232). Interference can be minimised during set-up and through 

pre-processing but is impossible to eradicate completely (227). Top-view 3D cameras could 

help overcome these difficulties, outputting similar accuracies to side-view 2D cameras (233). 
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Alternatively, motion sensing for gait analysis can help overcome imaging interference issues 

(234). Lame cows show less symmetry in the acceleration of their hind legs than non-lame 

cows (235). Variance in acceleration between front and hind legs has also been found to 

indicate lameness in cows (236). However, it is important to consider inter-individual variation 

in gait and posture (237). A specific posture may indicate a healthy or a lame individual 

depending on the individual. A baseline for normal behaviour must be catalogued for each 

individual. This has been addressed previously, with lameness detected in cows using a 

supporting computer vision system with an accuracy of 96% (231). Furthermore, using 

accelerometers attached to cows’ hind legs, deviations from their normal walking patterns have 

been detected with an accuracy of 91% (234). This shows promising potential for identifying 

abnormalities that could be indicative of lameness (234).  

 

Overall, the technologies discussed in this section show promise in detecting lameness through 

changes in individual gait. Still, it must be considered that factors such as weather, milk load 

and lactation stage may influence gait, so this needs further exploration (220,225,238). 

 

1.4.2.2. Individual time budgets and space-use 

Monitoring individual behavioural budgets over time has the potential to indicate illness. To 

do this, it is vital to catalogue baseline behaviours, and this has been achieved for animals using 

accelerometers, including cows and sows (239,240). For instance, accelerometery data has 

been analysed using algorithms to detect cow behaviours, including lying, standing, and 

feeding, as well as transitions between standing and lying, with high sensitivities ranging from 

77% to 99% (239). Changes in quantified baseline behaviours can then detect illness; standing 

bouts and walking speed are lower in lame cows compared to non-lame cows, and a model 

incorporating both can predict lameness to a sensitivity of 90% (241). Cows are also found to 
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decrease their daily feeding duration when lame compared to when they are non-lame, found 

with the use of local positioning system (LPS) data in combination with accelerometery data, 

and more recently with accelerometery data alone (242,243). Similarly, cows with metritis 

reduce their feeding behaviour and spend less time at the feed alley during the transition period, 

and cows with dystocia reduce their feeding and drinking behaviour 24 hours before calving 

(208,244,245). Sows with neurocysticercosis, a parasitic disease of the nervous system, also 

reduce the time they spend at feeding troughs (246). Time spent feeding may not indicate 

consumption though; the use of electronic feeding systems shows that cows with subclinical 

hypercalcaemia visit feed and water troughs less often following calving but also increase their 

dry matter intake, perhaps to reduce the chance of competition and discomfort (247). 

 

When lame, housed dairy cows decrease the time they dedicate to standing and increase the 

time they spend lying (243,248). Changes in activity levels may depend on the lesion causing 

lameness, impacting the pain caused by standing (248,249). Similarly, cows with subclinical 

hypocalcaemia spend less time standing after calving and cows with dystocia transition 

between standing and lying more frequently, both indicating discomfort (244,247). As 

explained in Section 1.4.1., accelerometery recordings reveal cows instead decrease their lying 

duration under heat stress during the day, measured using Temperature Humidity Index (THI) 

as a proxy (243). Monitoring other behaviours can also be useful; walking time decreases with 

increasing temperature as shown with accelerometers to a sensitivity of ≥ 80% (243,250). 

Furthermore, cows with severe metritis change their rumination and activity patterns, but the 

algorithm used to detect this needs developing for less severe cases, as the overall sensitivity 

for detecting all cases of metritis is 59% (251). 
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Monitoring space-use can also help locate ill individuals; using LPS, housed cows have been 

shown to reduce their full range size when lame, and spend more time in resting areas compared 

to non-lame cows (252). The use of LPS is thus valuable to monitor housed cows. LPS errors 

may result from inference of metal structures, but the technology has been validated with dairy 

cows with mean errors typically around 2-3m, and 0.5m mean errors may be achievable (15,25–

28). LPS can be successfully set up indoors whereas GPS (Global Positioning System) has 

similar success in detecting behavioural changes indicative of lameness in pasture-based 

systems (116,253–256).  

 

Spatiotemporal positioning of individuals can also be monitored using proximity sensors, 

detecting the presence of an individual within a given distance from a feature or another 

individual. Proximity sensors have been used to detect ‘brushing events’, defined as when cows 

were within one metre underneath a rotating grooming brush for at least ten seconds (257,257). 

Lame cows are detected to use brushes located away from the feed bunk less than those 

installed next to it, to a validity of 75% (257,257). Similarly, cows equipped with proximity 

sensors detecting presence at a feeder reveal a change in short-term feeding behaviour during 

the onset of chronic lameness (258). As mentioned in Section 1.4.1.1., inter-individual 

differences in behaviours can occur due to a variety of factors, such as parity and days in milk, 

so it is crucial to consider potential changes in behaviour at an individual level (252). 

 

1.4.2.3. Social behaviour  

Cows are less likely to approach humans when ill compared to when healthy (259,260), and 

both cows and calves have been observed to alter their positioning in a herd when ill (261–

263). Lame cows may alter their time budgets due to a reduced ability to gain preferable 

positions and resources, and to reduce competition when their immune system is more 
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vulnerable, suggested through evidence that lame individuals spend less time feeding and are 

less aggressive than non-lame cows (209,242,252). Individuals may also isolate themselves 

when they are ill, as shown with matristic cows and sows with neurocysticercosis; this may 

serve to reduce competition and limit chances of secondary infection (246,264). Interestingly, 

lame cows appear to be licked by conspecifics more than non-lame cows; perhaps initiated by 

lame cows for comfort (209).  

 

Livestock such as cattle appear to show inter-individual variation in sociality; some individuals 

are more influential than others over the social structure, perhaps due to personality or 

dominance (167,265). Furthermore, relationships between individuals may differ according to 

the context. Housed cattle are shown to avoid interactions with dominant conspecifics whilst 

feeding, to reduce competition (158). This pattern may be altered if the resource is deemed 

more valuable, perhaps when food is limited (266). It is therefore useful to monitor social 

behaviour over time and across contexts, to consider deviations from normal behaviour 

indicative of illness. For example, competition between cows at an electronic water bin 

increases during times of heat stress, and less successful cows avoid the drinker at the hottest, 

most competitive times (267). Although social behaviour plays a crucial role in animal welfare, 

current technologies for monitoring animal behaviour mostly rely on location and movement 

patterns, which are not specifically designed to track social interactions. This limits our ability 

to understand and address social issues within animal groups.  

 

1.5.  Application of Precision Livestock Farming  

As discussed in the previous sections of this thesis, monitoring potential changes in behaviour 

can help farmers identify early-warning signs of compromised health and welfare to refine 

management techniques. Collaboration between researchers and the industry has led to 
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advancements in objective animal welfare assessment, and there is potential to further integrate 

automated monitoring into welfare protocols. This requires easy to install, low-cost systems, 

with user-interfaces accessible to farmers for data interpretation with minimal training. An 

example of a technology which is currently used in the dairy industry for managing cow health 

and welfare, is the accelerometer system by IceRobotics introduced in 2018 which allows 

farmers to detect lameness in cows using a traffic light colour system (268). In this system, the 

severity of lameness is determined based on the degree of deviation from a normal gait, and 

green indicates normal gait, amber indicates mild deviation from normal, and red indicates 

severe deviation from normal (268). This allows farmers to quickly and easily identify cows 

that may be experiencing lameness and take appropriate action (268). Another example of a 

system adopted in the dairy industry is CattleEye, a tool which uses visual imagery to identify 

body condition score to detect lameness (269) Although advancements in detecting 

compromised health and welfare issues through PLF in recent years have contributed to faster 

identification, there is demand for more accurate systems detecting concerns promptly, for the 

adoption of such technologies by farmers (270). 

 

1.6.  Gaps in our knowledge and thesis aims  

While automated PLF techniques have been successful in detecting patterns of individual 

behaviour, these have not been widely applied to monitor changes in social behaviour that 

could be associated with illness, such as lameness and heat stress. LPS is used throughout this 

thesis to better understand group-level behaviours, with a view to detect health and welfare 

issues. Firstly, I aim to monitor potential changes in the proximity interaction network structure 

and consistency of a dairy cow herd housed in a closed barn, on a commercial farm in Essex 

(Chapter 3), and I compare the network structure to that of a second dairy cow herd housed in 

an open barn (RVC Research farm) (Chapter 4). In Chapter 4, I also compare the space-use 
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patterns and time budgets of these two herds and explore reasons behind differences. In 

Chapters 5 and 6, I aim to understand the relationship between temperature and bunching 

behaviour in both dairy cow herds, a potentially maladaptive behaviour, with a view to improve 

management regimes.  
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2. CHAPTER 2: GENERAL METHODOLOGY 

In this thesis, data recorded from a local positioning system (LPS) will be analysed to 1) explore 

the social network structure of two dairy cow herds, the first housed in a closed barn on a 

commercial farm in Essex and the second housed in an open barn on a farm referred to as the 

RVC Research farm (Chapters 3 and 4), 2) compare the space-use patterns and time budgets 

of these two herds (Chapter 4) and 3) analyse the relationship between temperature and the 

bunching behaviour of both herds, a potentially maladaptive response (Chapters 5 and 6). 

 

2.1.  Animals and housing 

Two groups of high-yielding dairy cattle were monitored continuously for this study, both in 

southeast England. The first group were Holstein-Friesian cows, monitored from 1st August 

2014 to 30th November 2014 (n = 127, a minimum of 86 and a maximum of 111 cows present 

in each month; feed space = 4.80m2 to 6.20m2 per cow, lying space = 3.53m2 to 4.55m2 per 

cow; overall area = 2898.00m2 (63.00m x 46.00m), feeding zone = 391.28m2 (58.40m x 

6.70m), non-feeding zone = 553.13m2 (left and right cubicle area = 52.60m x 9.70m = 510.22m2 

excluding two unusable cubicles, each 2.71m2 (1.18m x 2.30m), = 504.80m2; lower cubicle 

area = (27.75m x 2.42m = 67.16m2 excluding seven unusable cubicles, each 2.69m2, = 

48.33m2; space between neighbouring cubicles: left and right cubicle blocks = 3.59m; right and 

lower cubicle blocks = 2.40m). The cows were housed in a free-stall barn, with 98 cubicles 

available, and central passageways allowing free movement to areas including the feeding 

passage. Due to the presence of cubicles and barriers, this barn is considered to have a ‘closed’ 

barn layout. The group were milked thrice daily (at approximately 5am, 1pm and 9pm). This 

first group are henceforth referred to as the herd on the commercial farm in Essex. The second 

group were approximately 90% Holstein-Friesian and approximately 10% Brown Swiss, 

monitored from 17th October 2015 to 7th December 2015 (n = 55, a minimum of 45 cows 
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present each month; stocking density of feed space = 4.04m2 to 4.93m2 per cow, lying space = 

7.28m2 to 8.90m2 per cow; overall area = 2469.60m2 (58.8m x 42m), feeding zone = 222.05m2 

(40.3m x 5.51m), non-feeding zone = 400.58m2 (40.30m x 9.94m)). The cows were housed in 

an ‘open barn’ (no cubicles) and milked twice daily (at approximately 8am and 5pm). This 

second group are henceforth referred to as the RVC Research farm herd. Both study groups 

were fed a total mixed ration during the first milking and feed was provided several times daily. 

Layouts of the two barns are shown in Figure 1A and 1B for the commercial farm in Essex and 

the RVC Research farm, respectively. 
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Figure 1. Barn layouts for (A) the commercial farm in Essex and (B) the RVC Research 

farm. Overall areas are 63m x 46m for the commercial farm in Essex and 58.8m x 42m for the 

RVC Research farm. Fixed Omnisense 500 sensors (‘Oms500’; part of the local positioning 

system) are represented with purple triangles, brushes are indicated with yellow circles labelled 

‘B’ and water troughs are represented as blue rectangles. For the commercial farm in Essex, 

cubicles are shown with small rectangles- referred to in this research as a ‘closed barn’ layout, 

whereas the RVC Research farm does not contain cubicles and is referred to as having an ‘open 

barn’ layout. Note that the location of the brush in the parlour exit of the RVC Research farm 

is approximate but could only be accessed during milking times. The areas shown in grey were 
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not used by the study groups. On the commercial farm in Essex, the grey area above the feeding 

zone housed a different high-stocked dairy cow herd during the study period. On the RVC 

Research farm, the grey area between the collecting yard/parlour and feeding zone housed a 

low-yield dairy cow herd, and the area shown in grey below the handling area where                       

x = ~ > 40m housed young stock during the study period. 

 

2.2.   Local positioning System 

Cows were deployed with mobile Oms500 devices (Omnisense Ltd, Cambridge, UK) which 

encompass both local positioning and accelerometer sensors. Orientation was fixed using a 

weighted neck collar. The sensors formed a localised wireless network, using triangulated radio 

signal communication to automatically calculate the relative local position of each cow 

throughout the study duration, at a temporal resolution of 0.1Hz. Strategically positioned 

sensors across the barn fixed the absolute spatial location of each sensor and optimised the 

sensor network performance by increasing coverage, improving signal strength, reducing 

interference, and enhancing triangulation. This specific sensor system was previously 

evaluated on the commercial farm in Essex reporting a 50% circular error of probability (CEP) 

measurement of 1.07m for a static sensor and 1.90m for a sensor deployed on a standing cow 

(i.e., 50% of all measurements lay within 1.07m of the mean location of static sensors and 

within 1.90m of the mean location of cow mounted sensors) (242). Mean distance errors of 

2.66m (static sensors) and 2.80m (sensors on standing cows) are reported in the same study 

(242). 
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2.3.  Pre-processing and Cleaning of Positional Data 

All data processing and analysis were conducted in R using Windows 3.6.3 64 bit, with 

RStudio.  

 

2.3.1. Data selection 

For the commercial farm in Essex, within the study period, 15 days (04/08/2014, 07/09/2014, 

13/09/2014, 16/09/2014, 17/09/2014, 22/09/2014, 24/09/2014, 09/10/2014, 27/10/2014, 

31/10/2014, 06/11/2014 and 22/11/2014 to 30/11/2014) were excluded from the analysis due 

to the system malfunctioning. Within the remaining days of the study period (days (d) = 99; 

August = 30d, September = 22d, October = 28d, November = 19d), the number of cows in the 

barn on a given day across the study period (not including removed days) varied from n = 86 

to 111. A total of 88,576,716 location data points were collected from these cows (Fig 2A).  

 

For the RVC Research farm, six days within the study period (20/10/2015, 27/10/2015, 

13/11/2015, 19/11/2015, 29/11/2015 and 30/11/2015) were excluded due to the system 

malfunctioning. Within the remaining (d = 46) days of the study period the number of cows in 

the barn on a given day varied from n = 22 to 50. From these cows, 22,743,650 location data 

points were collected (Fig 2B). 

 



31 
 

 
 

 

Figure 2. Overview of the data cleaning and processing steps for (A) the commercial farm 

in Essex and (B) the RVC Research farm. Step 1: filtering data points to those detected 

within the functional zones; step 2: automated check for stuck sensors (x and/or y coordinate(s) 

exactly the same for two or more consecutive time points); step 3: smoothing (simple moving 

average with a window of 15 time points); step 4: manual check for nonsensical data (cows 

seemingly restricted to an unrealistically small area for a full day).  
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2.3.2. Data cleaning and processing 

Data cleaning and processing consisted of four steps, resulting in a total data removal of 

25.35% for the commercial farm in Essex and 23.92% for the RVC Research farm (see flow 

charts in Fig 2).  

 

2.3.2.1. Step 1: Filtering to functional zones 

Data recorded outside of the defined functional zones, the feeding and non-feeding zones, 

including a 3m buffer region to allow for minor positional errors, were excluded from analysis. 

This included (correct) location data from the milking parlours and collecting yards when cows 

were constrained during milking periods, as well as erroneous data from non-milking periods 

where locations were (incorrectly) recorded more than 3m outside the barn area.  

 

Of the total data points collected, the data located outside of the barn areas, and therefore 

excluded during this first step, were 16.45% (14,7571,060 data points) for the commercial farm 

in Essex (Step 1, Fig 2A) and 16.41% (3,731,392 data points) for the RVC Research farm (Step 

1, Fig 2B).  

 

2.3.2.2. Step 2: Automated removal of ‘stuck’ sensor data 

An automated algorithm, created for the purposes of this study, was used to detect data where 

the sensor was located at exactly the same x and/or y coordinate(s) for two or more consecutive 

time points i.e., indicating an issue with the LPS (the commercial farm in Essex: 3.73% of data 

(3,304,084 data points); the RVC Research farm: 3.12% of data (711,036 data points); Step 2 
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in Fig 2A and Fig 2B respectively). This is the case when the system occasionally lost signal, 

and then its last known location is repeatedly reported. We can be certain that a functioning 

sensor would not report this, based on the typical known sensor error and noise, as well as the 

trajectories of the cows; minor variations in point location would be present. Figure 3 shows 

an illustrative example of working and sensors stuck at both x and y coordinates (A-B and C-

D, respectively).  

 

Figure 3. Examples of (A-B) sensical and (C-D) nonsensical cow trajectories recorded by 

a local positioning sensor on the commercial farm in Essex. (A) Coordinates of sensor ID 

0002f1 (cow ID 2352) on 08/10/2014 from 05:39:53 (time = 0s) to 05:40:43 (time = 50s); (B) 

the same coordinates plotted as a trajectory in a zoomed-in region of the barn (refer to Fig 1). 

(C, D) Coordinates and trajectory (single location point) of sensor ID 0000ee (cow ID 3233) at 

the same time, illustrating how this sensor was apparently ‘stuck’ and was recording incorrect 

location data. 

0 20 40

C
o
o
rd

in
a
te

 (
m

)

6

8

Time (s)

4

C

A

4

8

0

x y

B

D

x (m)

y
 (

m
)

50 60

0

10

10
0

0

5

5

Time

0s 50s



34 
 

 
 

2.3.2.3. Step 3: Smoothing 

A simple moving average (SMA, see Equation S1 below) was applied to the remaining data, 

with a two-sided window of 15 data points to smooth location outliers and to reduce 

instantaneous noise: 

𝑆𝑀𝐴15  =  
(𝑥, 𝑦)𝑡−7 +  (𝑥, 𝑦)𝑡−1 + ⋯ (𝑥, 𝑦)𝑡 + ⋯ (𝑥, 𝑦)𝑡+1 +  (𝑥, 𝑦)𝑡+7

15
   (𝐒𝟏) 

where (x, y) = position and t = time.  

To apply the SMA with this window size, it is necessary to remove seven data points from the 

start and end of the location time series for each sensor per day. In total this led to 0.22% of 

the data being removed for the commercial farm in Essex, and 0.04% for the RVC Research 

farm (Step 3 in Fig 2A and Fig 2B respectively).  

 

Figure 4A shows an illustrative example of the raw trajectories of three cows (cow IDs = 2478, 

2352 and 88), on the commercial farm in Essex, over a 5-minute period on 1/10/2014. Prior to 

smoothing, cow 1317 was detected to have interacted with cow 88 during this time, using a 

proximity threshold of 3m (Fig 4A), whereas after smoothing the cow was not detected to have 

interacted with any other cows during this time (Fig 4B). Cows 2352 and 88 were detected to 

have interacted both before and after smoothing (Fig 4A-B). 
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Figure 4.  (A) Raw and (B) smoothed trajectory data for three cows, demonstrating how 

smoothing the data may have impacted the classification of an interaction, using the 

protocol of 3m (and 60s). The data were smoothed using a simple moving average with a 

window size of 15 data points. Trajectories are coloured by cow identity: 2478 = purple, 2352 

= yellow and 88 = orange, on 01/10/2014 between 15:18:30 to 15:23:30 on the commercial 

farm in Essex. The radius required to define an interaction (3m) is shown for each cow in (B). 

Cow 2352 and 88 were classed as interacting, whereas cow 4 was not shown to have interacted 

with any other cows. 
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2.3.2.4. Step 4: Further nonsensical data 

Periods where the trajectory of a cow was restricted to a small area for an extended time 

duration (but not exactly the same coordinates as in Step 2) were detected using a semi-

automated algorithm created for the purposes of this study (Step 4 in Fig 2). These cases were 

then checked manually to determine whether the trajectory was biologically plausible, or if any 

farm interventions had taken place for that cow during the given time period; implausible data 

were removed. This resulted in the removal of 4.95% of data for the commercial farm in Essex, 

and 4.37% of data for the RVC Research farm (Step 4 in Fig 2A and Fig 2B respectively). 

 

Figure 5 shows an example, which was in fact the only instance found of this type in October 

on the commercial farm in Essex, with sensor ID 000284 on day 05/10/2014. Visualising the 

trajectory of the cow deployed with this sensor (cow ID = 2585) on this day implies the cow 

only briefly entered the non-feeding zone, when in fact it must have spent most of the day there 

and was not subject to any farm management actions this day (Fig 5). Upon closer inspection, 

only 1101 data points were recorded for this cow in the non-feeding zone on this day, and a 

total of 2187 data points throughout the day, whereas the average points collected across all 

cows in the non-feeding zone alone was 6273 in October (n = 91). The data for cow ID 2585 

on this day were therefore removed from the analysis (Fig 5).  
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Figure 5. Trajectory plot showing data removed during step 4 of data cleaning for the 

commercial farm in Essex, removal of nonsensical data based on visualisation of 

unrealistic movement. Sensor ID 000284 (cow ID 2585) on 05/10/2014 was only shown to 

move within a very small area throughout the entire day.  

 

2.4. Social network analysis 

2.4.1. Protocol for determining proximity interactions 

Using the smoothed and cleaned positional data, an interaction was defined between dyads 

(each pair of cows) using a protocol based on sustained proximity (radial metric distance) over 

a specified time period and was hence non-directed (if cow A is close to cow B, then B is close 

to A, and so on).  
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Positional data within the barn were filtered by coordinate into functional zones: the ‘feeding 

zone’ (defined as the feeding passage and nearest passageway; in the range of 10.5m ≤ y ≤ 

17.2m for the commercial farm in Essex and 0m ≤ y ≤ 9.94m for the RVC Research farm in 

Figure 1), the ‘non-feeding zone’ (cubicles and passageways; 1.62m ≤ y ≤ 10.5m, -1.6m ≤ x ≤ 

58.6m for the commercial farm in Essex and 0m ≤ y ≥ 9.94m for the RVC Research farm in 

Figure 1) and the ‘full barn’ (the combined feeding and non-feeding areas); a buffer of 3m was 

used around each zone. The proximity protocol defining an interaction described above was 

subsequently applied to the data for every given dyad located in each functional zone, 

outputting the total number of interactions over the course of each day. A non-directed matrix, 

weighted by the frequency of proximity interactions, for every given day (the commercial farm 

in Essex: d = 99, the RVC Research farm: d = 46) and functional zone was produced, holding 

the number of interactions recorded for every possible dyad (e.g., if the number of cows of a 

given day was 92, the matrix would have dimensions of 92 x 92). The matrices were therefore 

symmetrical, with ‘NA’ inputted along the diagonals of each.  

 

Below it is explained how and why a ‘strict’ protocol was selected for identifying proximity 

interactions.  
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2.4.1.1. Validation  

To validate the algorithm for identifying and classifying proximity interactions, an observer 

(HH) recorded (n = 35) verified instances of cows lying in adjacent cubicles within a localized 

area of the commercial farm in Essex barn (non-feeding zone) on five different dates during 

the main study period: 08/08/2014, 22/08/2014, 23/09/2014, 21/10/2014 and 18/11/2014. Each 

of these verified proximity interactions lasted on average ten minutes. A one-minute buffer was 

added around the start and end times of each observation (in case of any minor time-sync issues 

between observer and sensor clocks) before comparing them to proximity interactions detected 

from the sensor-collected location data using the automated algorithm.  

 

The algorithm uses a ‘strict’ protocol to identify proximity interactions based on pairs of 

individual cows being within a specified radius (spatial threshold, r) for all time points within 

a sustained time period (duration, t). To test the sensitivity of the algorithm to the (arbitrary) 

choice of parameters, the classification performance was considered over a range of spatial 

thresholds (r = 1-5m) and time durations (t = 20-160s; 2-16 time points at 0.1Hz). Each of the 

verified observed proximity interactions were either marked as a true positive (TP), where the 

algorithm reported a proximity interaction coinciding with an observation, or a false negative 

(FN) where the algorithm did not detect a proximity interaction when one had been observed. 

The sensitivity, or true positive rate (TPR), was then defined as TPR = TP / (TP + FN). Note 

that the nature of the observation process (identifying those cows lying in adjacent cubicles 

such that proximity interactions could be verified) meant that observations where cows were 

not interacting were not recorded; hence it was not possible to estimate the true negative (TN) 

or false positive (FP) rates, or the associated specificity (true negative rate, TNR).  
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Table 1 provides the sensitivity results for the proximity identification algorithm based on the 

‘strict’ protocol described above. As might be expected, using a higher spatial threshold, r, and 

a lower time duration, t, increased the sensitivity, up to 0.97 (5m and 20-100s), while using a 

very small spatial threshold (1m) and a longer time duration (160s) reduced sensitivity to as 

low as 0.03. Notably, according to Table 1, the sensitivity of detecting proximity interactions 

using a 3m threshold does not change significantly between a 60s and an 80s duration (both 

are at 83%). However, using an 80s duration may result in missing some social interactions 

that lasted between 60s and 80s. This could potentially lead to an underestimation of the 

frequency of interactions between cows, some of which may be of particular importance. 

 

The stringency of the algorithm can be reduced by identifying a proximity interaction when 

only a certain percentage of points within the time period, t, are within the specified spatial 

threshold, r. For example, classifying an interaction as when sensors are within a 3m proximity 

for at least 50% of the time points within an 80s window (eight time points) increased the 

sensitivity to 0.89 (from 0.83 with the strict protocol) (Table 1). However, reducing the 

stringency of the algorithm would have almost certainly increased the false positive rate, while 

offering only minimal increases in sensitivity, based on the validation results in Table 1.  
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Table 1. Sensitivity of proximity interaction algorithm based on verified observations on 

the commercial farm in Essex across five days in August-November 2014 (n = 35, average 

duration of ten minutes), using different combinations of spatial thresholds (r = 1-5m) 

and time durations (t = 20-160s). The sensitivity is calculated using the equation: true 

positives/ (true positives + false negatives)). In all these cases, a ‘strict’ identification protocol 

was used: the distance between cows must be less than the spatial threshold, r, for all points 

throughout the time period, t, in order for a proximity interaction to be identified. The protocol 

based on a spatial threshold of r = 3m and time duration of t = 60s (indicated in bold) was 

chosen for use in the algorithm based on acceptable sensitivity (true positive rate = 0.83), 

expected lower rate of false positives, and to fit with practical considerations such as the size 

of an individual cow, the sensor location error, and the typical minimum duration of important 

social interactions. 

Time (s) 

 20 40 60 80 100 120 140 160 

 

Radius 

(m) 

1 0.46 0.31 0.29 0.17 0.14 0.09 0.06 0.03 

2 0.71 0.66 0.63 0.63 0.49 0.46 0.37 0.23 

3 0.86 0.86 0.83 0.83 0.74 0.71 0.69 0.53 

4 0.91 0.91 0.89 0.86 0.86 0.80 0.77 0.74 

5 0.97 0.97 0.97 0.97 0.97 0.91 0.86 0.86 
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2.4.1.2. Parameter choice 

Ideally, the chosen parameters for the algorithm would have maximized both the sensitivity 

and specificity. However, as it was not possible to estimate specificity, parameters were 

selected based on several considerations. Basic logic dictates that using a larger spatial 

threshold or reducing the time duration would have increased false positives, where cows were 

a larger distance apart or only briefly passing each other are classified as interacting. 

Conversely, Table 1 illustrates how using a very small spatial threshold, or too long a time 

duration, significantly reduced the sensitivity of the algorithm. In addition, there are practical 

considerations to take into account: the location sensors have previously been reported to have 

a mean error distance of 2.66m in this barn environment (242,252); the typical body length of 

a dairy cow is 2.3-2.6m; the main interest was in sustained proximity interactions that were not 

simply incidental ‘passing’ interactions. Hence, to balance the validated sensitivity, 

expectations about how specificity would relate to parameter choice, and the practical 

considerations mentioned, a protocol was adopted based on a spatial threshold of r = 3m and a 

time duration of t = 60s. Longer time durations were counted as more than one proximity 

interaction i.e., 60s = one interaction, 80s = two interactions, 100s = three interactions and so 

forth. 

 

The choice of time duration compares to other recent studies on dairy cow social interactions 

that use thresholds ranging from 2s (271) to 10 minutes (272), and is similar to a study where 

a minimum of 6 time points within a window of 12 consecutive time points [0.1 Hz] was used 

(alongside a spatial threshold of two metres) (273). Previous studies have also used similar 

spatial thresholds to detect cattle interactions, ranging from r = 1.5 to 4m (176,271–273).  

 



43 
 

 
 

To further test the logic behind the choice of parameters, the algorithm was run over a range 

of spatial thresholds and time durations with the full herd (all dyad parings) for individual days, 

within the study period on the commercial farm in Essex. Fig 6A illustrates how using a short 

time duration dramatically increased the number of proximity interactions (92664 interactions 

at 20s, compared to 58499 interactions at 60s, or 37628 interactions at 160s). Fig 6B illustrates 

how increasing the spatial threshold resulted in an increased number of proximity interactions 

(214,813 interactions at 5m, compared to 76,330 interactions at 3m, and 5,393 interactions at 

1m). 

 

Figure 6. Interactions identified between all cow dyads (n = 4186) on the commercial farm 

in Essex on an example day, 01/10/2014, for different time durations and spatial threshold 

radii (B; r = 0-6m). Where t = 20s-180s, this corresponds to 2-18 time points recorded at 

0.1Hz, and results are shown in increments of 20s or two time points. Increments of one metre 

are used for the spatial threshold radii. Note that results are very similar for other days. 
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2.4.1.3. Additional results for different spatial thresholds 

To fully explore the effect of the spatial threshold radius, r, and time duration threshold, t,  

additional full network analyses were run, for the data collected on the commercial farm in 

Essex, using one, two, four and five metres for a fixed time duration of t = 60s, and using 40, 

80 and 100s for a fixed radius of r = 3m. Qualitatively similar results were obtained, 

demonstrating that the overall results and conclusions are robust to this parameter choice (see 

Chapter 4, Appendix 1, Tables A1 to A7). 

 

2.5. Network visualisation  

The interaction matrices for each day and each farm, for the full barn, and each functional zone, 

were converted into network graphs, using the package ‘igraph’ (274) in R (274–276), where 

nodes represent individuals, and edges represent interactions between dyads, with increasing 

weight (more interactions) indicated by increasing width of the edges. The Fruchterman-

Reingold layout algorithm was used to determine the node positions; connected nodes are 

pulled towards each other and unconnected vertices are repelled.  

 

2.6. Social Network Analysis 

The edge density, the proportion of direct ties in a network relative to the total ties possible, 

was calculated for the full barn and functional zones (feeding and non-feeding zone) on each 

farm. Cows periodically entered and left the feeding zones, so edge density was expected to be 

lower in these zones, in comparison to the non-feeding zones.  
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Permutations are used to test the normality of observed network data and are essentially a form 

of null model (277,278). A widely used method to account for the non-independence of dyads 

in SNA is by using a node-level permutation (277,278). Node identities are randomised, and 

the original test statistic is compared against permuted test statistics. Here node-level 

permutations are implemented to test the hypotheses by randomizing the identity of cows:  

 Equation 1.      p-value =
Σ(𝑡𝑝 ≥ 𝑡𝑜)

𝑞
  (𝟏) 

, where 𝑡𝑝 and 𝑡𝑜 are the permutated and original test statistics respectively, and q is the number 

of permutations (in this case, 10,000). 

 

The test statistic comparing a given measure, i.e., differences in daily interactions between 

lameness states etc., was calculated for each permutation (𝑡𝑝). If the proportion of permuted 

test statistics equal to or more than the original test statistic (𝑡𝑜), was ≥ 5% (p ≥ 0.05) (see 

Equation 1), then the null hypothesis was accepted i.e., there was no significant difference in 

the measure between the groups. A Bonferroni correction was applied to the p-value to account 

for multiple comparisons on the same dataset. As computing an exact p-value is not possible 

with a finite number of permutations, if the p-value was calculated to be zero a biased estimator 

was applied: one was added to both the numerator and denominator of Equation 1, following 

the suggestion in (279). 
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2.6.1. Social differentiation 

As the residual data on daily interactions were found to be not normally distributed (Shapiro-

Wilk normality test; the commercial farm in Essex: W = 1.00, 1.00, 0.98, p = 0.04, < 0.01 and 

< 0.001, for the full barn, feeding zone and non-feeding zone, respectively and the RVC 

Research farm: W = 0.99, 0.96, 0.94, p < 0.001, < 0.001 and p < 0.001, for the full barn, feeding 

zone and non-feeding zone, respectively), a Kruskal-Wallis Rank Sum test was conducted to 

assess whether there is a significant difference in the median daily interactions individuals had, 

with 10,000 node-level permutations to account for non-independence of dyads. 

 

The interactions between each dyad may be uniformly distributed across an interaction matrix 

for a given day, or specific dyads may interact more or less than other dyads. The structure of 

a network can be assessed by comparing the number of observed interactions between every 

given dyad with the number of expected interactions between every dyad. To assess whether 

associations between individuals were more heterogeneous than we would expect given a null 

hypothesis that all dyads associate uniformly, the following statistic for social differentiation 

(S) was calculated (see Equation 2) based on (280), Appendix 9.4, and following (176): 

Equation 2.      𝑺 =
∑𝒊

𝒏 ∑𝒋
𝒏(𝑶𝒊𝒋− 𝑬𝒊𝒋 )𝟐 

𝒏(𝒏 − 𝟏)
  (2) 

, where O and E are the observed and expected number of interactions, respectively, i and j are 

two given individuals, and n is the number of individuals. 

 

As shown in Equation 2, the difference between the observed number of interactions and the 

expected number of interactions was summed for each dyad, and then divided by the total 
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number of dyads, for each day (e.g., if the number of individuals was 92, n = 4186 [ = ((92 x 

91) /2)]). 

 

2.7. Bunching metrics 

There is no formal definition of ‘bunching’ behaviour in the context of PLF, although a range 

of different metrics are available to measure spatial aggregation, spatial clustering, or social 

proximity from positional data. Most previous papers have used observations or basic nearest 

neighbour aggregation indices to measure bunching, the latter of which would provide a 

distorted score if all cows are in pairs (281–284).  Here, a range of bunching metrics are used 

to obtain a better understanding of this behaviour. Hence, three complementary bunching 

metrics are considered, each measured on an hourly basis across the full herd: range size (core 

and full), mean inter-cow distance (ICD), and mean nearest-neighbour distance (NND). 

 

2.7.1. Range size 

Range was calculated by overlaying a virtual grid (1.5m by 1.5m) over the barn maps. For each 

herd, at each timestep, location data were used to assign each individual within the herd to a 

given cell (or rejected if it lay outside the main barn region, see step one of pre-processing in 

Section 2.4.2.1). The number of individuals assigned to each cell across the full herd and over 

a full hour (360-time steps at 0.1 Hz) was counted giving a final hourly total for each virtual 

cell within each barn. Following the standard methodology outlined in (75), the areas where 

the cows spent most time were identified by selecting the highest density cells that 

cumulatively add to either 50% or 95% of the total observed density. These high-density cells 

were then used to create an hourly utility distribution for each farm, showing the relative 

amount of space used by the herd over time. The utility distribution distinguishes between the 

‘core range’ (50%) and ‘full range’ (95%) of the herd’s spatial usage. The number of unique 
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cells included in each hourly core range and full range distribution are then defined as the range 

size (CR and FR respectively, measured in units of 1.5m x 1.5m cells).   

 

2.7.2. Inter-cow distance 

At a given time-step, the herd mean inter-cow distance is the mean distance between each of 

the possible dyad pairs, (𝑛2 − 𝑛)/2, across a herd with n individuals. An hourly value (defined 

as ICD, measured in metres) is then calculated as the arithmetic mean of all (360) values 

recorded over that hour. The equation for this is given below (Equation 3). 

Equation 3.   𝐼𝐶𝐷 =
1

360
∑ (

2

𝑛2−𝑛
∑ √(𝑥𝑖(𝑡) −  𝑥𝑗(𝑡))2 + (𝑦𝑖(𝑡) −  𝑦𝑗(𝑡))2

(𝑖,𝑗)∈𝑛 )360
𝑡=1 ,  

where (i ,j) is a given dyad pair and 𝑖 ≠ 𝑗, and n is the number of individuals. 

 

2.7.3. Nearest neighbour distance 

At a given time-step, the nearest neighbour distance for a given individual is simply the distance 

to its closest neighbour in the herd (i.e., the smallest inter-cow distance when considering all 

dyad pairs involving that individual). A mean value can then be determined across the full herd 

on an hourly basis (defined as NND, measured in metres). The equation for this is given below 

(Equation 4). 

Equation 4.   𝑁𝑁𝐷 =
1

360
∑ (

1

𝑛
∑ 𝑚𝑖𝑛𝑗≠𝑖 𝑖∈𝑛 √(𝑥𝑖(𝑡) −  𝑥𝑗(𝑡))2 + (𝑦𝑖(𝑡) −  𝑦𝑗(𝑡))2)360

𝑡=1 , (2) 

where j indexes all possible dyad pairs for i across the herd, and n is the number of 

individuals. 
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2.7.4. Justification for the use of various bunching metrics 

Although the three bunching metrics defined above measure different aspects of space-use and 

social proximity, they will all decrease as spatial clustering (‘bunching’) increases. Range size 

is entirely independent to ICD and NND, but as it is aggregated at an hourly level from the 

outset, it will not capture short-time variations in proximity between individuals. Nevertheless, 

a smaller (core or full) range size indicates that the herd as a whole are using less of the barn 

and are sharing a smaller space. NND and ICD are loosely dependent but capture different 

aspects of herd bunching. ICD measures distances across the full herd and hence can be skewed 

by individuals that are far apart or in separate subgroups (e.g., a herd split into two distinct and 

tightly bunched subgroups could still have a high ICD value, even though they would be 

considered to be bunching). Meanwhile, NND only accounts for the distance between animals 

nearest each other and hence may not capture bunching between multiple individuals (e.g., a 

herd split into spatially separated dyad pairs could have a very low NND, but would have high 

ICD, and would not usually be considered as herd-level bunching). By measuring the above 

three metrics, it is aimed to accurately capture a wide range of herd dynamics that may be 

indicative of bunching behaviour. 
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3. CHAPTER 3: PROXIMITY NETWORK STRUCTURE OF A HOUSED DAIRY 

HERD 

The work in this chapter has been published in a journal publication: (285). 

3.1. Introduction 

The herd social structure of cows on most commercial dairy farms differs significantly from 

their wild counterparts (138). Dairy cows are typically kept in exclusively female groups, 

separated by age and reproductive status, with access to a more restricted space allowance in 

the form of either indoor housing or fenced grazing paddocks and may be subject to frequent 

regrouping events (139,140,142,144). Understanding the structure and dynamics of housed 

dairy cattle networks may provide insights on preferential interactions and aid in optimising 

their management (146,147).  

 

The social structure of animal groups, including how associations and interactions between 

individuals change over time, can be assessed using social network analysis (SNA) (165). The 

approach is well established; SNA is used across multiple disciplines including sociology 

(286), computer science (287) and transport (287,288), and  has been developed to study animal 

social networks, particularly over the last decade (289,290). The simplest interaction networks 

can be developed by assuming interactions occur when two individuals are within a given 

proximity, usually based on metric distance, for a specified time duration (132,150,251,258). 

More advanced methods such as analysis based on topological distances, which take into 

account an individual’s neighbours and their neighbours (291), as well as more complex 

analyses of interactions considering social dominance are also possible (292). 
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SNA has been used to explore interactions in dairy cattle, revealing highly clustered herds 

(166,176,273). Cows appear to associate non-randomly based on attributes; studies show that 

cows tend to associate more frequently with other cows at similar lactation stages (166,176). 

Dairy cattle exhibit inter-individual variation in sociality, which may be influenced by 

dominance or personality traits, which are established as consistent from calf to adulthood 

(except during puberty) (293). Housed cattle are known to avoid interactions with dominant 

conspecifics whilst feeding to reduce competition (19), and the social positioning of individuals 

may also be altered where a resource is deemed more valuable (266). Individual attributes are 

thought to be important in disease transmission (147), as cows participate in contact behaviours 

based on age and sex. Dairy cows may groom conspecifics based on familiarity and dominance 

(162), although affiliative and agonistic interaction networks may not be correlated (294).  

 

Precision Livestock Farming (PLF) techniques provide opportunities to support rapid 

identification of lameness and other production diseases. Sick cows are less likely to approach 

humans (259,260), and both cows and calves have been observed to alter their positioning in a 

herd when ill (261–263). Evidence suggests cows with ketosis and mastitis displace 

conspecifics less frequently (295–297). Lame cows may alter their time budgets with lame 

individuals spending less time feeding than their healthy counterparts (242,252). Lame cows 

also appear to be licked by conspecifics more than non-lame cows (209). Despite this existing 

evidence, to my knowledge automated PLF techniques have not been applied to monitor 

changes in social behaviour in cattle that could be associated with disease.    

 

In this study, the structure and consistency of the proximity interaction network of the herd 

housed on a commercial farm in Essex is investigated, using positional data collected from an 
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automated local positioning system (LPS). The level of inter-individual variation in proximity 

interactions is determined across different functional zones of the barn (feeding, non-feeding) 

and it is assessed how these interactions vary during the month-long study period. The 

influence of health status (specifically lameness), parity, and days in milk (DIM), on the 

sociality and interactions of individuals within the herd are also considered. 

 

3.2. Methodology  

3.2.1. Animals and housing  

A Holstein-Friesian high-yielding dairy cow herd was monitored continuously in a closed free-

stall barn on a commercial farm in Essex, from 1st October 2014 to 31st October 2014. The 

study group consisted of 92 cows that were continuously present in the barn throughout the 

study duration. These cows formed part of a larger group (n = 100 to 111 on any given day in 

the month). Refer to Chapter 2 (Section 2.4) for further details on the herd and their 

management. 

 

3.2.2. Local positioning system and data pre-processing 

Each cow was equipped with a combined local positioning sensor and accelerometer, 

Omnisense 500 (298), mounted on a weighted neck collar. Refer to Chapter 2, Section 2.5 for 

further information on the sensor system. 

 

Data selection and pre-processing was conducted as outlined in Chapter 2, Section 2.4. For the 

main analysis, fixed interval periods when most cows were in the milking parlour or collecting 

yard were excluded (05:00-07:59, 12:00-14:59, 20:00-22:59), since their behaviour during 
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these time periods was constrained by farm staff. The sensor system reset at midnight each day 

and hence times between 23:00 and 00:59 were also excluded.   

 

3.2.3. Protocol for proximity interactions 

The protocol for determining proximity interactions, defined as when dyads within 3m for a 

minimum of 60s, with longer time durations counting as more than one interaction, is outlined 

in detail in Chapter 2, Section 2.4.  

 

While this parameter choice is consistent with previous studies e.g., (176,273), a range of other 

parameter values for r and t are also considered, as well as less stringent protocols (where only 

a certain percentage of points within the specified time period need to be within the radius for 

an interaction to be identified). Using observed data of (n = 35) known proximity interactions 

it was possible to validate the algorithm and determine the sensitivity (true positive rate) of this 

protocol (0.83); it was not possible to estimate the specificity using this observed data, but the 

r and t parameters were chosen to reduce the expected false positive rate, as well as taking into 

account practical and biological considerations, including the sensor mean error distance and 

the typical size of a dairy cow (see Chapter 2, Section 2.5). Also, qualitatively similar results 

were obtained when using t = 40, 80, 100s (for r = 3m) and r = 1, 2, 4 and 5m (for t = 60s), and 

hence the conclusions should be robust to this selected parameter values of r = 3m and t = 60s 

(see Appendix 1). 
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3.2.4. Social network analysis  

An explanation of how daily networks were visualised, for the full barn, the feeding zone (FZ) 

and the non-feeding zone (NFZ), is provided in Chapter 2 (Section 2.5.2).  

 

Edge density, the proportion of direct ties in a network relative to total ties possible, was 

calculated for the full barn and each of the functional zones (as outlined in Chapter 2, Section 

2.6). Permutations (q = 10,000) were used to account for the non-independence of dyads, and 

details of this are provided in Chapter 2, Section 2.6. 

 

3.2.4.1. Social differentiation 

Inter-individual variation in median daily interactions (the median number of proximity 

interactions an individual had per day) across the study duration was assessed through a 

Kruskal-Wallis Rank Sum test, using 10,000 node-level permutations to account for the non-

independence of dyads. Social differentiation was calculated daily for each functional zone (FZ 

and NFZ), by finding the difference between the observed number of interactions and the 

expected number of interactions, summing this for each dyad, and then dividing this by the 

total number of dyads (refer to Chapter 2.5.4 for details). 

 

3.2.4.2. Temporal variation in sociality 

A Kruskal-Wallis Rank Sum test was conducted to assess whether there was a significant 

difference in median daily interactions between days, for each functional zone, with 10,000 
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permutations. Pearson’s correlation was used to test if temporal variations in daily interactions 

were correlated across time in each functional zone, and then with mean daily temperature. 

 

To assess whether the network structure was stable or varied over time, seven interaction 

matrices were created, each holding the average number of interactions between dyads (n = 

4186) over four consecutive days. Each consecutive network was compared by conducting a 

Mantel Test (165,299). The ‘mantel’ function was used, from the ‘vegan’ package in R (300). 

The distribution of proximity interaction data within the daily network matrices were not 

normally distributed, shown through one-sample Kolmogorov-Smirnov tests. To investigate 

the degree of association between consecutive averaged matrices, a Mantel statistic Z was 

therefore calculated using a Spearman’s Rank Sum test, with 10,000 permutations and 

Bonferroni correction to account for multiple comparisons. A similar analysis using shorter- 

and longer-day partitions was also completed, and results were found to be qualitatively similar 

(Table 2). 

 

3.2.4.3. Impact of lameness status, parity, and days in milk on sociality 

3.2.4.3.1. Lameness state 

Cows were assigned a mobility score fortnightly as they exited the parlour (30/9/2014, 

13/10/2014, and 27/10/2014) using the AHDB mobility score (301). A mobility score of zero 

to three was assigned, where zero is good mobility, one is imperfect mobility, two is impaired 

mobility and three is severely impaired mobility. If a score was not recorded, ‘NS’ was noted. 

All cows in each session were scored by ZB who had scored approximately 70,000 cows over 

ten years before this study. The average observer reliability, score blind zero to three by ZB 
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using AHDB dairy standardized videos (301), was 80% for two sessions (19/05/2013 (n = 10) 

and 18/02/2015 (n = 10)).  

 

For this study, cows with scores two or three were considered as clinically lame (L) and cows 

with scores zero or one were considered non-lame (NL). Cows scored as non-lame for two 

successive scoring sessions (NL-NL-L or L-NL-NL) were classed as ‘dominant not lame’ 

(DNL), and cows scored as lame for most sessions (L-L-NL or NL-L-L) were classed as 

‘dominant lame’ (DL). Cows that apparently changed status twice within the study (NL-L-NL 

or L-NL-L), or those with missing data (no recordings in one or more of the sessions, typically 

due to the individual not being sighted) were not included in the lameness classification, see 

Table 1. 

 

Table 1. Classified lameness status of (n = 92) dairy cows within the study. 

Lameness status Frequency (number of cows) 

Non-lame (NL) 15 

Lame (L) 12 

Dominant non-lame (DNL) 11 

Dominant lame (DL) 10 

Multiple change of status 14 

No / missing data 30 

Total 92 
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The behaviour of cows in the L and DL groups were compared, as was the behaviour of the L 

and DL groups (using the chosen protocol to define an interaction, as when cows were within 

a 3m radius for at least 60s [recorded at 0.1Hz]) (as defined in Chapter 2, Section 2.4) to 

determine whether the groups could be reasonably combined.  

 

In the feeding zone, there were significant differences in mean daily interactions (the mean 

number of proximity interactions an individual had per day), between DNL and NL cows 

(Wilcox test statistic [hereafter W] = 89, after 10000 permutations, p < 0.001), and between 

DL and L cows (W = 69, after 10,000 permutations p < 0.001), see Figure 1A. In the non-

feeding zone, there were no significant differences in mean daily interactions, between DNL 

and NL cows (W = 89, after 10,000 permutations, p = 0.03) or between DL and L cows (W = 

51.5, after 10000 permutations, p = 0.73), see Figure 1B. 

 

In the feeding zone, there were no significant differences in the node-level measures mean 

degree (the average number of connections each cow in the network has) or mean clustering 

coefficient (a measure of the extent to which cows in the network tend to cluster) between NL 

cows and DNL cows (respectively W = 101.5, p = 0.20; W = 111, p = 0.10; 10,000 

permutations; Figure 1C and 1E), or between L and DL cows (respectively W = 59, p = 0.56; 

W = 61, p = 0.50; 10,000 permutations; Figure 1C and 1E). In the non-feeding zone, there were 

no significant differences in mean degree or clustering coefficient between NL and DNL cows 

(respectively W = 70.5, p = 0.77; W = 69, p = 0.79; 10,000 permutations; Figure 1D and 1F), 

or between L and DL cows (respectively W = 62, p = 0.46; W = 68, p = 0.32; 10,000 

permutations; Figure 1D and 1F).  
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Figure 1. (A) Mean daily interactions and (B-C) mean node-level measures (degree and 

clustering coefficient), compared between lameness states in each functional zone on the 

commercial farm in Essex. Lameness status is defined as either: non-lame (NL), lame (L), 

dominant non-lame (DNL), and dominant lame (DL) cows (n = 48). Plots corresponding to the 

feeding zone are (A, C, E) and for the non-feeding are (B, D, F).  
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As the results are qualitatively similar if the groups are not combined and the four separate 

classifications for lameness are kept, for the purposes of the main analysis presented in this 

chapter, ‘lame’ and ‘dominant lame’ cows are combined into a single group (‘lame’), and 

similarly ‘non-lame’ and ‘dominant non-lame’ cows are combined into a single group (‘non-

lame’). In total, 48 of the 92 cows within the study group were classified as either ‘lame’ (22 

cows) or ‘non-lame’ (26 cows) using this approach and were included in the part of the analysis 

focusing on lameness differences.   

 

The mean daily interactions between non-lame (n = 26) and lame (n = 22) cows were compared 

using a two-tailed Wilcoxon test, with 10,000 permutations. Node degree (the number of 

immediate neighbours each node in the network has) was also compared between non-lame 

and lame cows. As a cumulative measure, node degree is less prone to sampling error, such as 

temporal loss of signal of the sensor system, than other measures such as betweenness (the 

number of shortest paths that pass through a given node), which can change dramatically with 

removed or missing data (302), so mean node degree was compared between non-lame and 

lame cows. Local clustering coefficient, which measures the degree of clustering of nodes in a 

graph by calculating the ratio of a node’s connections with its neighbours to the maximum 

possible number of such connections (303), was calculated between non-lame and lame cows. 

The mean node-level measures, calculated for each individual over the full study period, were 

compared between lameness states using two-tailed Wilcoxon tests with 10,000 permutations 

(Shapiro-Wilk normality test, p < 0.01). 

 

A matrix was created, showing the absolute differences in lameness between all dyads (n = 

1128), as in (273) (e.g. if cow A was lame, a score of 1 was assigned, and cow B was not lame, 
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a score of 0 was assigned, and their absolute difference would be 1). The absolute difference 

matrix was compared to the original interaction matrix for every given day, using a Mantel test 

again with Spearman’s Rank Correlation Coefficient (as described in Section 2.6.3). 

Bonferroni correction was applied to account for multiple comparisons (n = 28). 

 

3.2.4.3.2. Parity and days in milk 

To assess whether parity and days in milk (DIM) affected social assortment, a matrix was 

created, showing the absolute differences in parity between all dyads (n = 4186), as in (273) 

(e.g. if cow A had a parity of 1, and cow B had a parity of 3, their absolute difference would 

be 2). An absolute difference matrix for days in milk (DIM) was also created. The absolute 

difference matrix for a given attribute was compared to the original matrix for every given day, 

using a Mantel test (as described in Section 2.6.3).  

 

3.3. Results 

3.3.1. Basic network measures and visualization 

Figure 2 compares visualisations of the original and mean node degree filtered networks (nodes 

with a degree less than or equal to the mean node degree were excluded) for the full barn, the 

FZ and the NFZ. The full barn network was more connected than the NFZ network (0.02 

difference in edge density) and the FZ network (0.63 difference in edge density; Figure 2; Table 

3). This is expected since the full barn network contains more interactions i.e., those occurring 

both in the FZ and NFZ. A key notable difference is that the NFZ network was more connected 

than the FZ network (0.31 difference in edge density) (Figure 2; Table 3).  
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Figure 2. Undirected original and filtered (by mean degree) networks on a randomly 

chosen day, 01/10/2014, in (A) the full barn, (B) feeding zone, and (C) non-feeding zone of 

the commercial farm in Essex, showing mean daily interactions between cows (n = 92 in 

original networks). Thicker edges indicate a higher number of daily interactions. The 

Fruchterman-Reingold layout algorithm was used to determine the node positions; 

unconnected vertices are repelled. The highlighted illustrative subset of cows corresponds 

respectively to the least (blue, cow ID = 3124 and 3317), median (green, cow ID = 3132 and 

635), and most (red, cow ID = 2273 and 2266) mean daily interactions, with squared nodes 

representing lame cows. A clearer network structure is shown after filtering (where nodes with 

a degree less than or equal to the mean node degree were excluded), with a more uniform 

distribution of interactions in the main barn and the non-feeding zone in comparison to the 

feeding zone. Created in RStudio using the ‘vegan’ package (275,276,300). 
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The full barn and NFZ networks remained as one component, whereas in the FZ network one 

to three individuals isolated from the main component on each day (Table 3).  

 

3.3.2. Inter-individual variation 

Throughout the following analysis and presentation of results, a subset of individuals at the 

middle and extreme ends of the data are highlighted to aid interpretation and to illustrate the 

extent of the observed data: two cows with the lowest mean daily interactions over the full 

study period (cow ID = 3324 and 3317 with mean daily interactions of 1955 and 1956, 

respectively), two cows with mean daily interactions closest to the median (cow ID = 2602 and 

3132, with mean daily interactions of 2084 and 2085, respectively), and two cows with the 

highest mean daily interactions (cow ID = 635 and 3361, with mean daily interactions of 2266 

and 2273, respectively); across the full herd the mean daily interactions were 2093 (median = 

2085, standard deviation = 76.63).  

 

There was significant inter-individual variation in daily interactions in the NFZ (Kruskal-

Wallis chi-squared [hereafter K-W] = 19.21, df = 91, after 10,000 permutations, p < 0.01), but 

not in the full barn (K-W = 26.53, df = 91, after 10,000 permutations, p < 0.001) or the FZ (K-

W = 851.71, df = 91, after 10,000 permutations, p = 1). 

 

Figure 3 illustrates the lack of inter-individual variation in daily interactions in the full barn 

and the FZ, and the greater inter-individual variation in daily interactions in the NFZ for the 

highlighted subset of individuals. 
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Figure 3. Daily interactions in (A) the full barn, (B) feeding zone, and (C) non-feeding 

zone of the commercial farm in Essex, for a highlighted illustrative subset of individuals. 

Individuals selected are two cows with the least mean daily interactions (blue, cow ID = 3124 

and 3317), two cows with mean daily interactions closest to the median value (green, cow ID 

= 2602 and 3132) and two cows with the highest mean daily interactions (red, cow ID = 635 

and 3361).   
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Social differentiation was observed across the full barn (> 92.96 % of dyads, p < 0.01 across 

days), the FZ (100 % of dyads, p < 0.01 across days), and the NFZ (92.96 % of dyads, p < 0.01 

across days), see Table 1. 

 

3.3.3. Temporal variation in sociality 

There was no significant difference in median daily interactions between days in the full barn 

(K-W chi-squared = 2252.30, df = 27, after 10,000 permutations, p = 1; Table 11), FZ (K-W = 

61.00, df = 27, after 10,000 permutations, p = 1; Table 1), nor in the NFZ (K-W = 2268.9, df 

= 27, respectively after 10,000 permutations, p = 1; Table 11). 

 

Figure 4 highlights the temporal instability in both the functional zone networks. Although 

there were no clear trends over time, where there were changes these are seen to be highly 

correlated across all individuals in the NFZ (n = 92; Pearson’s coefficient [hereafter ρ] = 0.55, 

p < 0.01) (Fig 4). Conversely, individual interactions in the FZ showed much more random 

variation than in the NFZ (ρ = 0.02, n = 92, p < 0.90), as demonstrated with the highlighted 

subset of individuals (Fig 4). There was a weak but non-significant relationship between mean 

temperature and mean daily interactions across days in both the FZ (ρ = -0.09, df = 26, p = 

0.66; Table 1; Fig 4) and NFZ (ρ = 0.04, df = 26, p = 0.82; Table 1; Figure 9). 
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Figure 4. Mean daily interactions across time (01/10/2014 to 31/10/2014 with days 

excluded from the study omitted) in (A) feeding zone, and (B) non-feeding zone of the 

commercial farm in Essex. An illustrative subset of individuals is highlighted: two cows with 

the least mean daily interactions (blue, cow ID = 3124 and 3317), two cows with mean daily 

interactions closest to the median value (green, cow ID = 2602 and 3132) and two cows with 

the highest mean daily interactions (red, cow ID = 635 and 3361). Data for each individual cow 

are indicated with a grey line. Mean daily temperature is shown with the dashed black line.  
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In the FZ, there were significant weak positive correlations between all the four-day block 

averaged- consecutive networks (n = 7, comparisons = 6) (range of Spearman’s coefficient 

[hereafter Rs] across days = 0.20 to 0.31, after 10,000 permutations and Bonferroni correction, 

p < 0.001 for all comparisons; Table 3; Fig 5). In the full barn there were also weak correlations 

between the four-day averaged consecutive networks (range of Rs = 0.03 to 0.23, after 10,000 

permutations and Bonferroni correction, p ≤ 0.001 for three comparisons (day blocks 1-2, 2-3, 

5-6); range of Rs = -0.04 to -0.001, after 10,000 permutations and Bonferroni correction, p > 

0.23 for three comparisons (day blocks 3-4, 4-5, 6-7) (Table 3; Fig 5). In the NFZ, there were 

inconsistent (significant or non-significant) weak correlations between consecutive networks 

(range of Rs = 0.05 to 0.24, after 10,000 permutations and Bonferroni correction, p < 0.01 for 

four comparisons (day blocks 1-2, 2-3, 5-6, 6-7); range of Rs = -0.04 to 0.01, after 10,000 

permutations and Bonferroni correction, p = 1 for two comparisons (day blocks 3-4, 4-5); Table 

3; Fig 5). 
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Figure 5. Interaction networks, filtered by mean node degree, over time for (A) feeding zone, and (B) non-feeding zone of the commercial 

farm in Essex.  An illustrative subset of individuals is shown: two cows with the least mean daily interactions (blue, cow ID = 3124 and 3317), 

two cows with mean daily interactions closest to the median (green, cow ID = 2602 and 3132) and two cows with the highest mean daily interactions 

(red, cow ID = 635 and 3361). It should be noted that some individuals may not appear in the FZ networks due to their interactions not exceeding 

the mean node degree (as nodes with a degree less than or equal to the mean node degree were excluded). The Fruchterman-Reingold layout 
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algorithm determined the node positions; unconnected vertices are repelled. Created in RStudio using the ‘vegan’ package (275,276,300). Days 9 

and 27 were excluded due to nonsensical recordings (See Chapter 2, Section 2.4). 
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For completeness, each of the original daily networks (n = 28) are compared, as well as two-, 

seven-, and 14-day blocks. The results were qualitatively similar, showing weak correlations 

between all consecutive networks (Table 2). 

 

Table 2. Results from temporal variation analysis of the interaction network by 

segmenting and averaging the networks (feeding and non-feeding zone), derived from 

data recorded on the commercial farm in Essex, into one, two, seven and 14 day-blocks. 

A proximity interaction was defined where cows (n = 92) were within a three-metre radius for 

more than 60 seconds. To calculate the p-value, 10,000 permutations were used, and p-values 

are after Bonferroni correction; significant results (p < 0.05) are in bold. 

Non-parametric statistical test and reported p-value 

Segmented 

components 

(days) 

Feeding zone  Non-feeding zone Summary 

28 (1 day) Range of Rs = 0.09 to 0.18 

(p ≤ 0.01) for 25 

comparisons;  

range of Rs = 0.02 to 0.04 

(p = 1) for two comparisons 

(days 21-22, 26-27) 

Range of Rs = -0.30 to 0.37 

(p ≤ 0.05) for seven 

comparisons (days 3-4, 7-8, 

13-14, 17-18, 18-19, 25-26, 

27-28); 

 

range of Rs = -0.28 to 0.03  

(p ≥ 0.42) for 20 comparisons 

 

 

 

 

 

 

 

 

 

 

14 (2 days) Range of Rs = 0.10 to 0.26 

(p ≤ 0.01) 

Range of Rs = 0.06 to 0.29 

(p < 0.01 for six comparisons 

(day blocks 2-3, 6-7, 10-11, 

11-12, 12-13, 13-14); 



70 
 

 
 

 

 

 

 

range of Rs = -0.22 to 0.19 

(p = 1) for seven comparisons 

 

Weak 

correlation 

between all 

consecutive 

networks. 
7 (4 days) Range of Rs = 0.20 to 0.31 

(p < 0.001) 

Range of Rs = 0.05 to 0.24 

(p < 0.01) for four comparisons 

(day blocks 1-2, 2-3, 5-6, 6-7); 

 

range of Rs = -0.04 to 0.01  

(p = 1) for two comparisons 

(day blocks 3-4, 4-5) 

4 (7 days) Range of Rs = 0.14 to 0.41 

(p < 0.01) 

Rs = 0.28 

(p < 0.001) for one 

comparison (day block 3-4);  

Rs = 0.004 

(p = 1) for one comparison 

(day block 1-2); 

Rs = -0.16 

(p = 1) for one comparison  

(day block 2-3) 

2 (14 days) Rs = 0.41 

(p < 0.001) 

Rs = -0.07 

(p = 1) 
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3.3.4. Impact of health status, parity, and days in milk on sociality 

3.3.4.1. Lameness 

Lame cows (n = 22) did not have significantly more mean daily interactions than non-lame 

cows (n = 26) in the FZ (Wilcoxon test statistic [hereafter W] = 342, p = 0.86 after 10,000 

permutations; Table 3; Figure 6) nor in the NFZ (W = 276, p = 0.40 after 10,000 permutations; 

Table 3; Figure 6). 

 

In the FZ, lame cows did not show a significantly different mean clustering coefficient or 

degree than non-lame cows (W = 284 and 321.5 respectively, after 10,000 permutations, p = 

0.53 and 0.25, respectively; Table 3; Figure 6). Similarly, in the NFZ, mean clustering 

coefficient or degree did not differ between the lameness states (W = 398 and 241.5, after 

10,000 permutations, p = 0.99 and 0.17 respectively; Table 3; Figure 6). 

 

There was no significant social assortment by lameness in the FZ (range of across days Rs = -

0.06 to 0.04), nor the NFZ (range of across days Rs = -0.07 to 0.06) where, after Bonferroni 

Correction and 10,000 permutations, p > 0.80 in all cases for all days (n = 28; Table 3). In other 

words, cows with the same lameness state did not associate more than cows of different 

lameness states. 
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Figure 6. (A, B) Comparison of Mean Daily Interactions and node-level measures (C, D) degree 

and (E, F) clustering coefficient, between lameness states in the (A, C, E) feeding zone and (B, 

D, F) non-feeding zone of the commercial farm in Essex. Cows were classified as either non-

lame (NL) (n = 26) or lame (L) (n = 22). The horizontal line in each boxplot represents the 

median value. The mean [standard deviation] values for NL and L cows are given respectively 

by: (A) 74 [35] and 90 [44]; (B) 2015 [70] and 2006 [45]; (C) 27.92 [8.53] and 30.14 [9.37]; 

(D) 85.85 [0.45] and 85.68 [0.26]; (E) 0.44 [0.09] and 0.46 [0.02]; (F) 0.94 [0.001] and 0.94 

[0.001]. Each individual cow is indicated with a small circle. 
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3.3.4.2. Parity and days in milk 

There was no significant social assortment by parity in the FZ (range of across days Rs = -0.05 

to 0.03, after 10,000 permutations and Bonferroni Correction, p = 1 for all days; Table 3) or in 

the NFZ network (range of Rs across days = -0.02 to 0.03, after 10,000 permutations and 

Bonferroni Correction, p = 1 for all days; Table 3). 

 

There was also no significant social assortment by DIM in the FZ (range of across days Rs = -

0.03 to 0.04, after 10,000 permutations and Bonferroni Correction p = 1 for all days) or the 

NFZ (range of Rs across days = -0.3 to 0.03, after 10,000 permutations and Bonferroni 

Correction, p ≥ 0.44 for all days; Table 3). 

 

The results for social assortment by lameness, parity and DIM in the full barn network were 

similar to those of the NFZ (results in Table 3).  
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Table 3. Overview of results, basic network measures, inter-individual variation, temporal variation in sociality and social assortment by 

lameness, parity, and days in milk, for the full barn (FB) and each functional zone of the commercial barn in Essex. A spatial threshold 

radius of r = 3m and time duration of t = 60s was used define an interaction. The functional zones shown are the feeding zone (FZ) and non-

feeding zone (NFZ). (Median) daily interactions are denoted with (M)DI. Significant results (p < 0.05) are in bold.  

 Measure Test value (p-value) Summary 

Full barn Feeding zone Non-feeding zone 

 

Basic network 

measures 

Mean edge density (d = 

28) 

0.96 0.33 

 

0.94 

 

The networks are highly dense, more 

so the NFZ than the FZ.  

Components  

(by day) (d = 28) 

1 

 

2-6 1 The networks typically consist of one 

component. 

 

 

Inter-

individual 

variation 

Inter-individual 

differences in median 

DI (n = 92) 

K-W = 26.53 

(p < 0.001) 

K-W = 851.71 

(p = 1) 

K-W = 19.21 

(p < 0.001) 

Inter-individual variation in DI in 

the NFZ but not in the FZ or the FB. 

Social differentiation 

(SD) (n = 92) 

SD between ≤ 92.96 

%  

of dyads 

(p < 0.01) 

SD between 100 %  

of dyads 

 (p < 0.01) 

SD between 92.96 % 

of dyads  

(p < 0.01) 

Social differentiation present in all 

networks. 

 

 

 

 

 

 

Difference in median 

DI between days (n = 

92, d = 28) 

K-W = 2252.30 

(p = 1) 

K-W = 61.00 

(p = 1) 

K-W = 2268.9 

(p = 1) 

No difference in DI between days in 

all networks. 

Relationship between 

MDI and days (n = 92, 

d = 28) 

Pearson correlation,  

 = 0.03 

(p = 0.88) 

Pearson correlation,  

 = 0.55 

(p < 0.01) 

Pearson correlation, 

 = 0.02 

(p = 0.90) 

MDI correlated over time in the 

feeding zone but not in the non-

feeding zone.  
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Temporal 

variation in 

sociality 

Relationship between 

MDI and temperature 

(n = 92, d = 28) 

Pearson correlation,  

 = 0.04 

(p = 0.83) 

Pearson correlation,  

 = -0.09 

(p = 0.66) 

Pearson correlation,  

 = 0.04 

(p = 0.82) 

Weak non-significant correlation 

between MDI and temperature in both 

functional zones. 

Relationship between 

four-day block 

consecutive networks 

(six networks, n = 92 

per network) 

Mantel test,  

range of Rs = 0.03 to 

0.23  

(p ≤ 0.001) for three 

comparisons (day 

blocks 1-2, 2-3, 5-6); 

range of Rs = -0.04 to 

-0.001 (p > 0.23) for 

three comparisons 

(day blocks 3-4, 4-5, 

6-7) 

 

Mantel test,  

range of Rs = 0.20 to 

0.31 

(p < 0.001) 

Mantel test,  

range of Rs = 0.05 to 0.24 

(p < 0.01) for four 

comparisons (day blocks 1-

2, 2-3, 5-6, 6-7); 

range of Rs = -0.04 to 0.01 

(p = 1) for two comparisons 

(day blocks 3-4, 4-5) 

Weak or no correlation between all 

consecutive networks. 

 

 

 

 

 

 

 

Individual 

characteristics 

Difference in mean DI 

between non-lame (n = 

26) and lame cows (n = 

22) 

Wilcoxon test,  

W = 297 

(p = 0.56) 

Wilcoxon test,  

W = 342 

(p = 0.86) 

Wilcoxon test, 

W = 276 

(p = 0.40) 

No difference in DI between non-

lame and lame cows in both functional 

zones. 

Difference in mean 

clustering coefficient 

between non-lame (n = 

26) and lame cows (n = 

22) 

Wilcoxon test,  

W = 392 

(p = 0.98) 

Wilcoxon test,  

W = 284 

(p = 0.53) 

Wilcoxon test,  

W = 398 

(p = 0.99) 

No difference in clustering coefficient 

between non-lame and lame cows in 

either functional zone. 

Difference in mean 

node degree between 

non-lame (n = 26) and 

lame cows (n = 22) 

Wilcoxon test,  

W = 304.5 

(p = 0.63) 

Wilcoxon test,  

W = 321.5 

(p = 0.25) 

Wilcoxon test,  

W = 241.5 

(p = 0.17) 

No difference in node degree between 

non-lame and lame cows in either 

functional zone. 
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Social assortment by 

lameness status by day, 

n = 48) 

Mantel test, 

Rs = 0.11 

(p < 0.01) for day 16;   

range of Rs = -0.07 to 

0.05 

(p = 1) for remaining 

27 days 

 

Mantel test,  

range of Rs = -0.06 to 

0.04    

(p = 1 for all days) 

Mantel test,  

range of Rs = -0.07 to 0.06 

(p > 0.80) 

 

 

 

 

Cows did not socially assort 

according to their lameness status, 

parity, or DIM in either functional 

zone. 

 Social assortment by 

parity (by day, n = 92) 

Mantel test, 

range of Rs = -0.02 to 

0.03  

(p = 1 for all days) 

Mantel test, 

range of Rs = -0.05 to 

0.03 

(p = 1 for all days) 

Mantel test,  

range of Rs = -0.02 to 0.03  

(p = 1 for all days) 

Social assortment by 

DIM (by day, n = 92) 

Mantel test,  

range of Rs = -0.03 to 

0.03 

(p = 0.80 for all days) 

Mantel test,  

range of Rs = -0.03 to 

0.04  

(p = 1 for all days) 

Mantel test,  

range of Rs = -0.03 to 0.03 

(p > 0.44 for all days) 
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3.4.  Discussion 

Within this chapter, the interaction network of the dairy herd housed on a commercial farm in Essex 

was found to be highly connected with significant social differentiation. Interactions between cows 

were more heterogenous than expected by chance, but the network structure was temporally unstable. 

There was no evidence of preferential social assortment, showing cows did not associate more than 

expected by chance according to lameness state, parity, or days in milk (DIM).  

 

Visualisation of the full barn interaction network illustrates that the herd was highly connected, as 

confirmed by the mean edge density (96%). This indicates that each cow was likely to have had 

interactions with most other cows in the herd each day. It is not clear from this study whether these 

cows actively seek out and connect with their conspecifics, perhaps to maintain social structure in the 

group, or whether this high connectivity is a function of the building layout and high stocking density. 

It must be acknowledged that, due to building works on the farm, the stocking rates were high during 

the study period (feed space = 0.48m per cow, lying space = 0.72 cubicles per cow). This may have 

reduced the ability of the cows to actively choose with whom to be in close proximity with. In 

agreement with this study, high connectivity was also reported for cows housed in loose straw yards 

with concrete loafing areas with moderate to high stocking rates of 9.50m2 per cow to 7.66m2 per cow 

from sensor derived proximity measurements (166,176). Lower edge densities have been reported in a 

grazing system, in (147), but in their study an interaction was based on the occurrence of specific 

behaviours considered to increase the risk of disease transmission rather than social proximity. Lower 

edge density and a sparse structure was also reported for cows housed in cubicles at a moderate stocking 

rate (1.03 cubicles per cow), but the group in their study only comprised of 36 cows and interactions 

were only recorded during two 15-minute time slots per day, therefore not capturing changes in location 
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and near neighbours throughout the day (304). Further investigations of dairy cows in a range of 

housing types and stocking rates are needed to determine if cows are naturally highly connected or 

whether aspects of the commercial dairy result in cows spending time in proximity to a greater number 

of conspecifics. 

 

Analysis on the interaction networks revealed significant inter-individual variation in daily interactions 

in the non-feeding zone (NFZ), but not across the feeding zone (FZ) or when considering the full barn.  

The FZ is likely to be a more dynamic location than the loafing and resting areas. Feed bouts are shorter 

than lying bouts and cows will begin and end their eating bouts at different times, leading to a greater 

turnaround of contacts at the feed face than other areas of the barn. It is possible however, that cows 

have greater control over the individual interactions they have in the non-feeding zone and therefore a 

greater degree of individuality is observed. Researchers have demonstrated that inter-individual 

variation in sociality is an individual trait in dairy cows (272) influenced by dominance status and 

personality traits. This may affect an individual’s ability to gain resources, such as cubicles, impacting 

their proximity interactions in the non-feeding zone (162,293), as also speculated by (176), although it 

is not possible to distinguish between these potential factors in this study.  

 

The structure of the interaction network was weakly correlated over time, and individuals periodically 

isolated from the main network component of the feeding zone. These individuals were not the same 

each day, and they were not of the same lameness status, suggesting their isolation was due to them 

choosing not to feed at the same time, or being unable to compete due to the lack of space. The overall 

herd was subject to changes throughout the study period, with the addition and removal of cows outside 

of the study group (n = 92, whole herd = 100 to 111 cows on a given day), which could have affected 
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the social structure of the herd. In a previous study, while introductions of new cows to a stable group 

did not affect the sociality of individual cows, it did weaken the overall social network (272).  

Researchers similarly reported weak to moderate correlations in structure between consecutive one-

week networks in a  highly connected network also subject to changing group composition (176). 

Further analysis on the temporal stability of dairy cow networks whilst removing specific individuals 

could aid management.  

 

There were no significant correlations between daily interactions and temperature in this study. 

However, the study period was selected based on there being a relatively stable temperature throughout 

with temperature low enough not to induce heat stress. Cows have been shown to modify their 

collective behaviour, in terms of clustering for example, or individual behaviours in extreme heat 

conditions, or show long-term signs of heat stress due to high stocking densities (191,305–307).  

Therefore, environmental temperature and even individual cow temperature should be considered 

when monitoring the herd social structure over longer study periods. Furthermore, the social network 

may have been more dynamic than initially envisioned due to factors not accounted for, such as farm 

management actions or treatment interventions (308). 

 

Considering the known social withdrawal response of unhealthy cows (309), it might be predicted that 

lame cows would be less willing to compete for preferred food or access to cubicles, but no differences 

in the sociality or positioning were found between lame and non-lame cows. At a particularly high 

stocking rate in intensive cubicle housing, there may have been little opportunity for the 22 ‘lame’ 

cows identified in this study to self-isolate. Lame cows have been shown to modify their space-use in 

this barn, but this was with access to an additional loafing area at the end of the cubicle shed which 
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would make social distancing easier than in this study (252). Furthermore, lame cows are found to 

receive approximately twice as much allogrooming as cows that are non-lame (310), and this 

explanation would also support the finding in this study of no individual-level social assortment by 

lameness state i.e. cows of the same lameness state did not associate more or less than expected (310). 

When interpreting the result above it should be considered that use of a visual locomotion score is not 

without the potential for classification errors, especially when scoring large groups of cows at the 

parlour exit as was the case in this study. It has been reported that mild claw lesions are not always 

accompanied with a corresponding increase in locomotion score, indicating that locomotion scoring 

even by trained observers may not be sensitive enough to detect all lameness cases (311). Indeed in a 

previous study a predictive statistical model correctly classified two cows that were incorrectly 

classified by observer locomotion scoring (252). Cows with dominant lameness status were also 

discretely grouped as either ‘non-lame’ or ‘lame’ during analysis (312,313), and these cows may have 

behaved differently during various time periods of the study. Nonetheless, this study demonstrates a 

potential way to assess the influence of health status on social interactions within a typical herd. 

Quantitative measures of individual social interactions and network position may be useful indicators 

to use within automated monitoring approaches in PLF.  

 

Social differentiation was present in both functional zones (Table 1); some dyads interacted more than 

others, as similarly shown in (166,314). A number of previous studies have indicated social 

differentiation can occur with age, as cows of a similar age would have had greater opportunity to 

develop social ties with one another (314,315), particularly if they calved at similar times. In addition, 

stronger bonds may form between calves born at similar times, who remain together throughout rearing 

before joining the milking herd; cows have been shown to invest more time and energy into 

relationships with herd members sharing long-term experiences (168). This study does not find that 
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cows differentiate by parity, a proxy for age. While parity may give an indication as to a cow’s 

experience in the herd and may contribute to her personality traits, this measure is probably too coarse 

to identify cows with historical associations, such as shared calf cohorts, which has been suggested to 

result in stronger bonds. In this study a recent shared transition period, as indicated by similar DIM, 

was not sufficient to result in differentiation on this basis. This is in line with previous findings, where 

recent familiarity with cows had no effect on lying down behaviours of cows transitioning to the herd 

but early familiarity led to greater synchrony of lying behaviours (316). Greater detail of the cohorts 

of cows kept from birth through to the milking herd, unmeasured in this study, may explain the social 

differentiation observed. It is possible that the high temporal variation of the network structure, and 

insufficient space within the barn may have impeded the ability to identify these structures. 

Alternatively, non-random associations may have been the result of cows of similar dominance rank 

positioning closely, with subordinates displaced from favourable feeding positions by dominant cows 

(266), particularly as feed space was limited to < 0.60 m/cow. Interactions may be more likely to 

develop between cows with similar energy requirements and motivation, and hence similar activity 

time budgets. For example,  cows that spend more time eating may spend a lot of time near the feed 

face and hence position closely to similar cows (166,314,315). Stage of lactation affects the time an 

individual allocates to feeding, given that energy requirements vary with milk yield; for instance, dry 

matter intake is typically highest during mid-lactation (317). 

 

When interpreting the results, it is important to consider potential limitations of the relatively novel 

technology and SNA techniques used in this study (308,318). Although the proximity used to define 

an interaction was also tested for other radii and time durations, and qualitatively similar results were 

obtained, any interactions detected were limited by the accuracy of the LPS system (2.66m mean error 

for a static sensor). Additionally, a fundamental problem with this type of automated approach to 
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identify proximity interactions is that we are unable to distinguish between which proximity 

interactions were true social interactions (e.g. allogrooming) and which were non-deliberate or non-

social proximity events (e.g. due to the positioning of neighbouring cows at the feed face (140,308) or 

in cubicles (140). The results are likely to contain both genuine sustained social interactions, as well 

as proximity events which were not directly social.  Distinguishing between genuine social interactions 

and indirect or non-social proximity interactions is an open research question that requires further 

investigation. The chosen proximity identification protocol was tested and validated using 

observational data and was found to have a sensitivity of 83% (r = 3m and t = 60s), but a direct estimate 

of the rate of false positives and hence the specificity is not possible. Using a time duration of 60s is 

likely to reduce the rate of false positives (compared to using a shorter time duration) but will also 

potentially exclude genuine social interactions of short duration. Multiple shorter interactions may be 

as socially relevant as longer sustained interactions. The analysis was based on a comparison of daily-

level network statistics and comparison of these over time or between individuals with different 

lameness status, parity, and DIM. It is quite plausible that, although the daily level behaviour may be 

similar across the network, there could be significant individual variability in social interactions on a 

finer timescale (e.g., hourly, or less), particularly around key events such as feeding and milking, and 

this variability in social behaviour may be linked to social status or health. A further limitation is that, 

although most cows that were present in the herd throughout the study period (n = 92) were included, 

there were cows that entered and left the group throughout this period, and hence some potential 

interactions involving these cows would not have been recorded. The effect of missing individuals on 

the conclusions drawn from a social network analysis are not well understood and this remains an open 

research question (308,318). Despite the drawbacks to using proximity to detect potential social 

interactions, this approach based on using a local positioning system is useful for quickly accumulating 

the large datasets needed for SNA in an automated way (308). 
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3.5.  Conclusions 

Automated spatial positioning technology was used to monitor a large herd group of permanently 

housed dairy cows on a commercial farm in Essex at high temporal resolution for a full month. 

Proximity interactions were identified by sustained periods of closeness between dyads. The proximity 

interaction network structure of the herd was highly connected, with significant differentiation in 

interactions between dyads, and high temporal variability. Lameness, parity, and days in milk were not 

found to directly influence social interactions or network position. This chapter demonstrates how 

automated sensor technology could be used to monitor the social structure of a large commercially 

relevant group of livestock, and how individual differences in social interactions and network measures 

could be used to potentially identify health differences between animals. Future work should aim to 

better distinguish social interactions from indirect non-social interactions and consider how 

interactions within a larger group may differ in different housing environments and at different stocking 

densities. 

 

The main results of this chapter are outlined below: 

• The structure and consistency of a proximity interaction network of a dairy herd, housed on a 

commercial farm in Essex, was assessed using local positioning system data over a month-long 

duration. 

• Cow dyads were considered to have interacted if they were continuously within three meters 

for ≥ 60s, and from the resulting proximity interaction network, social differentiation, temporal 

stability, and social assortment were derived. 

• The network was highly connected but temporally unstable, with social differentiation and 

inter-individual variation in daily proximity interactions in the non-feeding zone. 

• Cows were not found to assort by lameness, parity, or days in milk. 
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3.6.  Appendix 1. Results from different spatial thresholds and radii 

To fully explore the effect of the spatial threshold radius, r, additional full network analyses were run 

using one, two, four and five meters for a fixed time duration of t = 60s. In all cases, qualitatively 

similar results were obtained, including significant social differentiation, high temporal variation in the 

network structure, and no social assortment by lameness, parity, or DIM (Tables A1 to A4), 

demonstrating that the overall results and conclusions are robust to this parameter choice.  

 

To fully explore the effect of the time duration threshold, t, additional full network analyses were run 

using 40, 80 and 100s for a fixed radius of r = 3m. In all cases, qualitatively similar results were 

obtained, including significant social differentiation, high temporal variation in the network structure, 

and no social assortment by lameness, parity, or DIM (Tables A5 to A7), demonstrating that the overall 

results and conclusions are robust to this parameter choice. 
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Table A1. Overview of results using a spatial threshold radius of r = 1m and time duration of t = 60s to define an interaction on the 

commercial farm in Essex for the full barn and the functional zones: feeding zone and non-feeding zone. Basic network measures 

(original and filtered by mean degree), inter-individual variation, temporal variation in sociality, lameness status, and parity and days in milk, 

where (M)DI = (median) daily interactions, are shown Significant results (p < 0.05) are in bold.  

 Measure Test value (p-value) Summary 

Full barn Feeding zone Non-feeding zone 

 

Basic network 

measures 

Mean edge density 

(d = 28) 

0.46 0.04 0.43 The networks are highly dense, more 

so the NFZ than the FZ.  

Components  

(by day) (d = 28) 

1 

 

6-19 1 The full barn and the NFZ consisted 

of one component, but the FZ 

consisted of numerous. 

 

 

Inter-

individual 

variation 

Inter-individual 

differences in median 

DI (n = 92) 

K-W = 36.06 

(p = 1) 

K-W = 701.83 

(p =1) 

K-W = 31.24 

(p < 0.001) 

Inter-individual variation in DI in 

the NFZ but not in the full barn or the 

FZ. 

Social differentiation 

(SD) (n = 92) 

SD between >100%  

of dyads 

(p < 0.01) 

SD between 100%  

of dyads 

(p < 0.01) 

SD between 100% 

of dyads 

(p < 0.01) 

Social differentiation present in all 

networks. 

 

 

 

 

 

 

Temporal 

variation in 

sociality 

Difference in median 

DI between days (n = 

92, d = 28) 

K-W =2154.40 

(p = 1) 

K-W = 43.65 

(p = 0.98) 

K-W = 2162.90 

(p = 1) 

No difference in DI between days in 

all networks. 

Relationship 

between MDI and 

days (n = 92, d = 28) 

Pearson correlation,  

 = -0.01 

(p = 0.97) 

Pearson correlation,  

= 0.28 

(p = 0.15) 

Pearson correlation, 

 = -0.01 

(p = 0.96) 

MDI weakly correlated over time in 

both functional zones. 

Relationship 

between MDI and 

Pearson correlation,  

 = -0.04 

(p = 0.84) 

Pearson correlation,  

 = -0.23 

(p = 0.24) 

Pearson correlation,  

 = -0.04 

(p = 0.85) 

Weak negative correlation between 

MDI and temperature in both 

functional zones. 
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temperature (n = 92, 

d = 28) 

Relationship 

between four-day 

block consecutive 

networks (six 

networks, n = 92 per 

network) 

Mantel test,  

range of Rs = 0.05to 

0.34 

(p< 0.01) for five 

comparisons (day 

blocks 1-2, 2-3, 3-4, 4-

5, 5-6); 

Rs = -0.14 

(p = 1) for one 

comparison (day block 

6-7) 

 

Mantel test,  

range of Rs = 0.05 to 

0.14 

(p ≤ 0.01) for five 

comparisons (1-2, 2-

3, 3-4; 4-5, 6-7); 

Rs = = 0.02 

(p = 0.54) for one 

comparison (day 

block 5-6) 

Mantel test,  

range of Rs = 0.05 to 0.35 

(p < 0.01) for five 

comparisons (day blocks 1-

2, 2-3, 3-4, 4-5, 5-6); 

Rs= -0.15 

(p = 1) for one comparison 

(day block 6-7) 

Weak correlation between all 

consecutive networks. 

 

 

 

 

 

 

 

Individual 

characteristics 

Difference in mean 

DI between non-lame 

(n = 26) and lame 

cows (n = 22) 

Wilcoxon test,  

W = 255 

(p = 0.25) 

Wilcoxon test,  

W = 317 

(p = 0.72) 

Wilcoxon test, 

W = 237 

(p = 0.15) 

No difference in DI between non-lame 

and lame cows in both functional 

zones. 

Difference in mean 

clustering coefficient 

between non-lame (n 

= 26) and lame cows 

(n = 22) 

Wilcoxon test,  

W = 419 

(p = 1) 

Wilcoxon test,  

W = 262.50 

(p = 0.30) 

Wilcoxon test,  

W = 417 

(p = 1) 

No difference in clustering coefficient 

between non-lame and lame cows in 

either functional zone. 

Difference in mean 

node degree between 

non-lame (n = 26) 

and lame cows (n = 

22) 

Wilcoxon test,  

W = 261.50 

(p = 0.29) 

Wilcoxon test,  

W = 305.50 

(p = 0.64) 

Wilcoxon test,  

W = 210 

(p = 0.05) 

No difference in node degree between 

non-lame and lame cows in either 

functional zone. 
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Social assortment by 

lameness status by 

day, n = 48) 

Mantel test,  

range of Rs= -0.07 to 

0.07 

(p > 0.34 for all days) 

Mantel test,   

range of Rs = -0.06 

to0.06 

(p > 0.70 for all days) 

Mantel test,  

range of Rs = -0.07 to 0.07 

(p ≥ 0.35) 

 

 

 

 

Cows did not socially assort according 

to their lameness status, parity, or 

DIM in either functional zone. 

 

Social assortment by 

parity (by day, n = 

92) 

Mantel test,  

range of Rs = -0.03 to 

0.02 

(p = 1 for all days) 

Mantel test, 

range of Rs = -0.04 to 

0.02 

(p = 1 for all days) 

Mantel test,  

range of Rs= -0.02 to 0.03 

(p = 1 for all days) 

Social assortment by 

DIM (by day, n = 92) 

Mantel test,  

range of Rs = -0.02 to 

0.02 

(p = 1 for all days) 

Mantel test,  

range of Rs = -0.04 to 

0.03 

(p = 1 for all days) 

Mantel test,  

range of Rs = -0.02 to 0.03 

(p = 1 for all days) 
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Table A2. Overview of results using a spatial threshold radius of r = 2m and time duration of t = 60s to define an interaction on the 

commercial farm in Essex for the full barn and the functional zones: feeding zone  and non-feeding zone. Basic network measures 

(original and filtered by mean degree), inter-individual variation, temporal variation in sociality, lameness status, and parity and days in milk, 

where (M)DI = (median) daily interactions, are shown Significant results (p < 0.05) are in bold. 

 Measure Test value (p-value) Summary 

Full barn Feeding zone Non-feeding zone 

 

Basic network 

measures 

Mean edge density 

(d = 28) 

0.84 0.19 0.80 The networks are highly dense, more 

so the NFZ than the FZ.  

Components  

(by day) (d = 28) 

1 

 

1-4 1 

 

The networks typically consist of one 

component. 

 

 

Inter-

individual 

variation 

Inter-individual 

differences in median 

DI (n = 92) 

K-W = 29.22 

(p < 0.001) 

K-W = 928.39 

(p = 1) 

K-W = 21.57 

(p < 0.001) 

Inter-individual variation in DI in 

the NFZ but not in the FZ. 

Social differentiation 

(SD) (n = 92) 

SD between > 96.43%  

of dyads 

(p < 0.01) 

SD between 100%  

of dyads 

(p < 0.01) 

SD between 96.46% 

of dyads 

(p < 0.01) 

Social differentiation present in all 

networks. 

 

 

 

 

 

 

Temporal 

variation in 

sociality 

Difference in median 

DI between days (n = 

92, d = 28) 

K-W = 2282.10 

(p = 1) 

K-W = 49.47 

(p = 0.99) 

K-W = 2303.00 

(p = 1) 

No difference in DI between days in 

all networks. 

Relationship 

between MDI and 

days (n = 92, d = 28) 

Pearson correlation,  

 = -0.03 

(p = 0.87) 

Pearson correlation,  

 = 0.32 

(p = 0.09) 

Pearson correlation, 

 = -0.04 

(p = 0.86) 

MDI weakly correlated over time in 

both functional zones. 

Relationship 

between MDI and 

temperature (n = 92, 

d = 28) 

Pearson correlation,  

 = -0.04 

(p = 0.83) 

Pearson correlation,  

 = -0.19 

(p = 0.34) 

Pearson correlation,  

 = -0.04 

(p = 0.83) 

Weak negative correlation between 

MDI and temperature in both 

functional zones. 
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Relationship 

between four-day 

block consecutive 

networks (six 

networks, n = 92 per 

network) 

Mantel test,  

range of Rs = 0.04to 

0.26 

(p ≤ 0.01) for five 

comparisons (day 

blocks 2-3, 3-4, 4-5, 5-

6, 6-7); 

Rs = -0.10 (p = 1) for 

one comparison (day 

block 1-2) 

 

Mantel test,  

range of Rs = 0.10to 

0.25 

(p < 0.001) 

Mantel test,  

range of Rs = 0.05 to 0.28 

(p ≤ 0.10) for five 

comparisons (day blocks 

2-3, 3-4, 4-5, 5-6, 6-7); 

Rs = -0.10 (p= 1) for one 

comparison (day block 1-

2) 

Weak correlation between all 

consecutive networks. 

 

 

 

 

 

 

 

Individual 

characteristics 

Difference in mean 

DI between non-lame 

(n = 26) and lame 

cows (n = 22) 

Wilcoxon test,  

W = 272.00 

(p = 0.37) 

Wilcoxon test,  

W = 311.50 

 (p = 0.68) 

Wilcoxon test, 

W = 236.50 

(p = 0.14) 

No difference in DI between non-lame 

and lame cows in both functional 

zones. 

Difference in mean 

clustering coefficient 

between non-lame (n 

= 26) and lame cows 

(n = 22) 

Wilcoxon test,  

W = 397.00 

(p = 0.99) 

Wilcoxon test,  

W = 290.00 

(p = 0.51) 

Wilcoxon test,  

W = 412.00 

(p = 0.99) 

No difference in clustering coefficient 

between non-lame and lame cows in 

either functional zone. 

Difference in mean 

node degree between 

non-lame (n = 26) 

and lame cows (n = 

22) 

Wilcoxon test,  

W = 306.50 

(p = 0.65) 

Wilcoxon test,  

W = 299 

(p = 0.59) 

Wilcoxon test,  

W = 250.50 

(p = 0.22) 

No difference in node degree between 

non-lame and lame cows in either 

functional zone. 

Social assortment by 

lameness status by 

day, n = 48) 

Mantel test,  

Rs= -0.06 to 0.09 

(p ≥ 0.06) for all days 

 

Mantel test,   

range of Rs = -0.04 to 

0.06 

(p ≥ 0.46 for all days) 

Mantel test,  

range of Rs = -0.07 to 0.07 

(p > 0.38) 
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Social assortment by 

parity (by day, n = 

92) 

Mantel test,  

range of Rs = -0.03 to 

0.02 

(p = 1 for all days) 

Mantel test, 

range of Rs = -0.05 to 

0.04 

(p =1 for all days) 

Mantel test,  

range of Rs = -0.02 to 0.03 

(p = 1 for all days) 

Cows did not socially assort according 

to their lameness status, parity, or 

DIM in either functional zone. 

 

Social assortment by 

DIM (by day, n = 92) 

Mantel test,  

range of Rs = -0.03 to 

0.02 

(p = 1 all days) 

Mantel test,  

range of Rs = -0.04 to 

0.02 

(p = 1 for all days) 

Mantel test,  

range of Rs = -0.03 to 0.03 

(p ≥ 0.87 for all days) 
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Table A3. Overview of results using a spatial threshold radius of r = 4m and time duration of t = 60s to define an interaction on the 

commercial farm in Essex for the full barn and the functional zones: feeding zone and non-feeding zone. Basic network measures 

(original and filtered by mean degree), inter-individual variation, temporal variation in sociality, lameness status, and parity and days in milk, 

where (M)DI = (median) daily interactions, are shown Significant results (p < 0.05) are in bold. 

 Measure Test value (p-value) Summary 

Full barn Feeding zone Non-feeding zone 

 

Basic network 

measures 

Mean edge density (d 

= 28) 

0.99 0.49 0.99 The networks are highly dense, more 

so the NFZ than the FZ.  

Components  

(by day) (d = 28) 

1 1-3 1 

 

The networks typically consist of one 

component. 

 

 

Inter-

individual 

variation 

Inter-individual 

differences in median 

DI (n = 92) 

K-W = 18.49 

(p =1) 

K-W = 1001.70 

(p = 1) 

K-W = 9.76 

(p < 0.001) 

Inter-individual variation in DI in 

the NFZ but not in the NFZ. 

Social differentiation 

(SD) (n = 92) 

SD between ≥ 78.76 %  

of dyads 

(p < 0.01) 

SD between ≥ 99.95 

% of dyads 

(p < 0.01) 

SD between ≥78.76 % 

of dyads 

(p < 0.01) 

Social differentiation present in all 

networks. 

 

 

 

 

 

 

Temporal 

variation in 

sociality 

Difference in median 

DI between days (n = 

92, d = 28) 

K-W =2353.70 

(p = 1) 

K-W = 63.41 

(p = 1) 

K-W = 2376.40 

(p = 1) 

No difference in DI between days in 

all networks. 

Relationship 

between MDI and 

days (n = 92, d = 28) 

Pearson correlation,  

 = -0.05 

(p = 0.81) 

Pearson correlation,  

 = 0.34 

(p = 0.07) 

Pearson correlation, 

 = -0.11 

(p = 0.28) 

MDI weakly correlated over time in 

both functional zones. 

Relationship 

between MDI and 

temperature (n = 92, 

d = 28) 

Pearson correlation,  

 = -0.11 

(p = 0.59) 

Pearson correlation,  

 = -0.10 

(p = 0.62) 

Pearson correlation,  

 = -0.55 

(p = 0.79) 

Weak negative correlation between 

MDI and temperature in both 

functional zones. 
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Relationship 

between four-day 

block consecutive 

networks (six 

networks, n = 92 per 

network) 

Mantel test,  

range of Rs = 0.09to 

0.25 

(p < 0.001) for four 

comparisons (day 

blocks 3-4, 4-5, 5-6, 6-

7); 

range of Rs = -0.26 to 

0.03 

(p ≥ 0.09) for two 

comparisons (day 

blocks 1-2, 2-3) 

 

Mantel test,  

range of Rs = 0.21 to 

0.44 

(p < 0.001) 

Mantel test,  

range of Rs = 0.07 to 0.25 

(p < 0.001) for four 

comparisons (day blocks 3-

4, 4-5, 5-6, 6-7); 

range of Rs = -0.34 to -

0.003 

(p= 1) for two comparisons 

(day blocks 1-2, 2-3) 

Weak correlation between all 

consecutive networks. 

 

 

 

 

 

 

 

Individual 

characteristics 

Difference in mean 

DI between non-lame 

(n = 26) and lame 

cows (n = 22) 

Wilcoxon test,  

W = 286.00 

(p = 0.49) 

Wilcoxon test,  

W = 315.50 

 (p = 0.71) 

Wilcoxon test, 

W = 271.00 

(p = 0.35) 

No difference in DI between non-lame 

and lame cows in both functional 

zones. 

Difference in mean 

clustering coefficient 

between non-lame (n 

= 26) and lame cows 

(n = 22) 

Wilcoxon test,  

W = 325.00 

(p = 0.79) 

Wilcoxon test,  

W = 301.00 

(p = 0.61) 

Wilcoxon test,  

W = 374.00 

(p = 0.96) 

No difference in clustering coefficient 

between non-lame and lame cows in 

either functional zone. 

Difference in mean 

node degree between 

non-lame (n = 26) 

and lame cows (n = 

22) 

Wilcoxon test,  

W = 321.50 

(p = 0.75) 

Wilcoxon test,  

W = 295.50 

(p = 0.56) 

Wilcoxon test,  

W = 245.50 

(p = 0.18) 

No difference in node degree between 

non-lame and lame cows in either 

functional zone. 

Social assortment by 

lameness status by 

day, n = 48) 

Mantel test,  

Rs = 0.10 

(p = 0.01) for day 26; 

Mantel test,   

range of Rs = -0.07 to 

0.06 

Mantel test,  

range of Rs = -0.07 to 0.07 

(p ≥ 0.39) 
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range of Rs= -0.06 to 

0.06  

(p ≥ 0.89) for 27 days 

(p ≥ 0.37 for all days)  

Cows did not socially assort according 

to their lameness status, parity, or 

DIM in either functional zone. 

 

Social assortment by 

parity (by day, n = 

92) 

Mantel test,  

range of Rs = -0.02 to 

0.03 

(p = 1 for all days) 

Mantel test, 

 range of Rs = -0.04 to 

0.03 

(p = 1 for all days) 

Mantel test,  

range of Rs = -0.02 to 0.03 

(p ≥ 0.84 for all days) 

Social assortment by 

DIM (by day, n = 92) 

Mantel test,  

range of Rs = -0.03 to 

0.03 

(p = 1 for all days) 

Mantel test,  

range of Rs = -0.04 to 

0.03 

(p = 1 for all days) 

Mantel test,  

range of Rs = 0.02 to 0.04 

(p ≥ 0.45 for all days) 
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Table A4. Overview of results using a spatial threshold radius of r = 5m and time duration of t = 60s to define an interaction on the 

commercial farm in Essex for the full barn and the functional zones: feeding zone and non-feeding zone. Basic network measures 

(original and filtered by mean degree), inter-individual variation, temporal variation in sociality, lameness status, and parity and days in milk, 

where (M)DI = (median) daily interactions, are shown Significant results (p < 0.05) are in bold. 

 Measure Test value (p-value) Summary 

Full barn Feeding zone Non-feeding zone 

 

Basic network 

measures 

Mean edge density (d 

= 28) 

1  0.59 1.00 The networks are highly dense, more 

so the NFZ than the FZ.  

Components  

(by day) (d = 28) 

1  1-3 1 The networks typically consist of one 

component. 

 

 

Inter-

individual 

variation 

Inter-individual 

differences in median 

DI (n = 92) 

K-W = 21.78 

(p =1) 

K-W = 1018.60 

(p = 1) 

K-W = 11.98 

(p < 0.001) 

Inter-individual variation in DI in 

the NFZ but not in the NFZ. 

Social differentiation 

(SD) (n = 92) 

SD between ≥ 70.91 %  

of dyads 

(p < 0.01) 

SD between ≥ 99.95 

%  

of dyads 

(p < 0.01) 

SD between ≥ 70.60 % 

of dyads 

(p < 0.01) 

Social differentiation present in all 

networks. 

 

 

 

 

 

 

Temporal 

variation in 

sociality 

Difference in median 

DI between days (n = 

92, d = 28) 

K-W =2370.70 

(p = 1) 

K-W = 65.58 

(p = 1) 

K-W = 2394.40 

(p = 1) 

No difference in DI between days in 

all networks. 

Relationship 

between MDI and 

days (n = 92, d = 28) 

Pearson correlation,  

 = -0.06 

(p = 0.76) 

Pearson correlation,  

 = 0.33 

(p = 0.08) 

Pearson correlation, 

 = -0.06 

(p = 0.74) 

MDI weakly correlated over time in 

both functional zones. 

Relationship 

between MDI and 

Pearson correlation,  

 = -0.15 

(p = 0.44) 

Pearson correlation,  

 = -0.07 

(p = 0.73) 

Pearson correlation,  

 = -0.15 

(p = 0.44) 

Weak negative correlation between 

MDI and temperature in both 

functional zones. 
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temperature (n = 92, 

d = 28) 

Relationship 

between four-day 

block consecutive 

networks (six 

networks, n = 92 per 

network) 

Mantel test,  

range of Rs = 0.04 to 

0.24 

(p ≤ 0.02) for five 

comparisons (day 

blocks 2-3, 3-4, 4-5, 5-

6, 6-7);  

Rs = -0.26  

(p = 1) for one 

comparison (day block 

1-2) 

 

Mantel test,  

range of Rs = 0.23 to 

0.50 

(p < 0.001) 

Mantel test,  

range of Rs = 0.19 to 0.25 

(p < 0.001) for four 

comparisons; (day blocks 

2-3, 4-5, 5-6, 5-7); 

range of Rs = -0.33 to 0.01 

(p = 1) for two comparisons 

(day blocks 1-2, 3-4) 

Weak correlation between all 

consecutive networks. 

 

 

 

 

 

 

 

Individual 

characteristics 

Difference in mean 

DI between non-lame 

(n = 26) and lame 

cows (n = 22) 

Wilcoxon test,  

W = 292.00 

(p = 0.52) 

Wilcoxon test,  

W = 312.50 

 (p = 0.69) 

Wilcoxon test, 

W = 277 

(p = 0.40) 

No difference in DI between non-lame 

and lame cows in both functional 

zones. 

Difference in mean 

clustering coefficient 

between non-lame (n 

= 26) and lame cows 

(n = 22) 

Wilcoxon test,  

W = 266.00 

(p = 0.33) 

Wilcoxon test,  

W = 297 

(p = 0.56) 

Wilcoxon test,  

W = 343.00 

(p = 0.87) 

No difference in clustering coefficient 

between non-lame and lame cows in 

either functional zone. 

Difference in mean 

node degree between 

non-lame (n = 26) 

and lame cows (n = 

22) 

Wilcoxon test,  

W = 337.50 

(p = 0.85) 

Wilcoxon test,  

W = 303.50 

(p = 0.62) 

Wilcoxon test,  

W = 267.50 

(p = 0.34) 

No difference in node degree between 

non-lame and lame cows in either 

functional zone. 
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Social assortment by 

lameness status by 

day, n = 48) 

Mantel test,  

Rs = 0.10 

(p= 0.02) for day 26; 

range of Rs= -0.06 to 

0.06 

(p ≥ 0.58) for 27 days 

Mantel test,   

range of Rs = -0.06 to 

0.06  

(p ≥ 0.48 for all days) 

Mantel test,  

range of Rs = -0.06 to 0.08 

(p ≥ 0.17) 

 

 

 

 

Cows did not socially assort according 

to their lameness status, parity, or 

DIM in either functional zone. 

 

Social assortment by 

parity (by day, n = 

92) 

Mantel test,  

range of Rs = -0.02 to 

0.03 

(p =1 for all days) 

Mantel test, 

 range of Rs = -0.05 to 

0.04  

(p = 1 for all days) 

Mantel test,  

range of Rs = -0.01 to 0.03 

(p = 1 for all days) 

Social assortment by 

DIM (by day, n = 92) 

Mantel test,  

range of Rs = -0.03 to 

0.03 

(p = 1 for all days) 

Mantel test,  

range of Rs = -0.04 to 

0.03 

(p = 1 for all days) 

Mantel test,  

range of Rs= -0.03 to 0.03 

(p ≥ 0.59 for all days) 
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Table A5. Overview of results using a spatial threshold radius of r = 3m and time duration of t = 40s to define an interaction on the 

commercial farm in Essex for the full barn and the functional zones: feeding zone and non-feeding zone. Basic network measures 

(original and filtered by mean degree), inter-individual variation, temporal variation in sociality, lameness status, and parity and days in milk, 

where (M)DI = (median) daily interactions, are shown Significant results (p < 0.05) are in bold. 

 Measure Test value (p-value) Summary 

Full barn Feeding zone Non-feeding zone 

 

Basic network 

measures 

Mean edge density (d 

= 28) 

 0.99  0.52  0.98 The networks are highly dense, more 

so the NFZ than the FZ.  

Components  

(by day) (d = 28) 

1 1-3 1 The networks typically consist of one 

component. 

 

 

Inter-

individual 

variation 

Inter-individual 

differences in median 

DI (n = 92) 

K-W = 20.90 

(p < 0.001) 

K-W = 1001.30 

(p = 1) 

K-W = 12.94 

(p < 0.001) 

Inter-individual variation in DI in 

the NFZ but not in the NFZ. 

Social differentiation 

(SD) (n = 92) 

SD between ≥ 82.30 %  

of dyads 

(p < 0.01) 

SD between 100 %  

of dyads 

(p < 0.01) 

SD between ≥ 83.30 % 

of dyads 

(p < 0.01) 

Social differentiation present in all 

networks. 

 

 

 

 

 

 

Temporal 

variation in 

sociality 

Difference in median 

DI between days (n = 

92, d = 28) 

K-W =2340.10 

(p = 1) 

K-W = 57.27 

(p = 1) 

K-W = 2358.10 

(p = 1) 

No difference in DI between days in 

all networks. 

Relationship 

between MDI and 

days (n = 92, d = 28) 

Pearson correlation,  

 = -0.06 

(p = 0.74) 

Pearson correlation,  

 = 0.27 

(p = 0.16) 

Pearson correlation, 

 = -0.07 

(p =0.73) 

MDI weakly correlated over time in 

both functional zones. 

Relationship 

between MDI and 

temperature (n = 92, 

d = 28) 

Pearson correlation,  

 = -0.06 

(p = 0.76) 

Pearson correlation,  

 = -0.13 

(p = 0.52) 

Pearson correlation,  

 = -0.06 

(p = 0.77) 

Weak negative correlation between 

MDI and temperature in both 

functional zones. 
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Relationship 

between four-day 

block consecutive 

networks (six 

networks, n = 92 per 

network) 

Mantel test,  

range of Rs = 0.05 to 

0.29 

(p < 0.01) for five 

comparisons (day 

blocks 2-3, 3-4, 4-5, 5-

6, 6-7);  

Rs= -0.25 (p = 1 for one 

comparison (day block 

1-2) 

 

Mantel test,  

range of Rs= 0.18 to 

0.41 

(p < 0.001) 

Mantel test,  

range of Rs = -0.28 to 0.29 

(p < 0.001) for five 

comparisons (day blocks 2-

3, 3-4, 4-5, 5-6, 6-7); 

Rs= -0.28  

(p = 1) for one comparison 

(day block 1-2) 

 

Weak correlation between all 

consecutive networks. 

 

 

 

 

 

 

 

Individual 

characteristics 

Difference in mean 

DI between non-lame 

(n = 26) and lame 

cows (n = 22) 

Wilcoxon test,  

W = 280.00 

(p = 0.42) 

Wilcoxon test,  

W = 305.50 

(p = 0.63) 

Wilcoxon test, 

W = 236.00 

(p = 0.14) 

No difference in DI between non-lame 

and lame cows in both functional 

zones. 

Difference in mean 

clustering coefficient 

between non-lame (n 

= 26) and lame cows 

(n = 22) 

Wilcoxon test,  

W = 338.00 

(p = 0.85) 

Wilcoxon test,  

W = 270.00 

(p = 0.35) 

Wilcoxon test,  

W = 375.00 

(p = 0.96) 

No difference in clustering coefficient 

between non-lame and lame cows in 

either functional zone. 

Difference in mean 

node degree between 

non-lame (n = 26) 

and lame cows (n = 

22) 

Wilcoxon test,  

W = 331.50 

(p = 0.81) 

Wilcoxon test,  

W = 293.00 

(p = 0.54) 

Wilcoxon test,  

W = 251.00 

(p = 0.22) 

No difference in node degree between 

non-lame and lame cows in either 

functional zone. 

Social assortment by 

lameness status by 

day, n = 48) 

Mantel test,  

Rs = 0.09  

(p = 0.03) for day 26; 

range of Rs =-0.07 to 

0.06  

Mantel test,   

range of Rs = -0.06 to 

0.05  

(p ≥ 0.76 for all days) 

Mantel test,  

range of Rs = -0.07 to 0.07 

(p ≥ 0.24) 
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(p ≥ 0.84) for 27 days Cows did not socially assort according 

to their lameness status, parity, or 

DIM in either functional zone. 

 

Social assortment by 

parity (by day, n = 

92) 

Mantel test,  

range of Rs = -0.02 to 

0.02 

(p = 1 for all days) 

Mantel test, 

range of Rs= -0.05 to 

0.02  

(p = 1 for all days) 

Mantel test,  

range of Rs = -0.02 to 0.03 

(p ≥ 0.97 for all days) 

Social assortment by 

DIM (by day, n = 92) 

Mantel test,  

range of Rs = -0.02 to 

0.03 

(p ≥ 0.74 for all days) 

Mantel test,  

range of Rs = -0.05 to 

0.02 

(p = 1 for all days) 

Mantel test,  

range of Rs = -0.02 to 0.03 

(p ≥ 0.42 for all days) 

  



100 
 

 
 

Table A6. Overview of results using a spatial threshold radius of r = 3m and time duration of t = 80s to define an interaction on the 

commercial farm in Essex for the full barn and the functional zones: feeding zone and non-feeding zone. Basic network measures (original 

and filtered by mean degree), inter-individual variation, temporal variation in sociality, lameness status, and parity and days in milk, where (M)DI 

= (median) daily interactions, are shown Significant results (p < 0.05) are in bold. 

 Measure Test value (p-value) Summary 

Full barn Feeding zone Non-feeding zone 

 

Basic network 

measures 

Mean edge density (d = 

28) 

0.93 0.23 

 

0.91 

 

The networks are highly dense, more 

so the NFZ than the FZ.  

Components  

(by day) (d = 28) 

1 1-4 1  The networks typically consist of one 

component. 

 

 

Inter-

individual 

variation 

Inter-individual 

differences in median 

DI (n = 92) 

K-W = 18.92  

(p < 0.001) 

K-W = 953.09 

(p =1) 

K-W = 13.94 

(p < 0.001) 

Inter-individual variation in DI in 

the NFZ but not in the FZ. 

Social differentiation 

(SD) (n = 92) 

SD between > 100 %  

of dyads 

(p < 0.01) 

SD between 99.98 %  

of dyads 

(p < 0.01) 

SD between 82.30 % 

of dyads 

(p < 0.01) 

Social differentiation present in all 

networks. 

 

 

 

 

 

 

Difference in median 

DI between days (n = 

92, d = 28) 

K-W = 2327.80 

(p = 1) 

K-W = 57.29 

(p = 1) 

K-W = 2338.4 

(p = 1) 

No difference in DI between days in 

all networks. 

Relationship between 

MDI and days (n = 92, 

d = 28) 

Pearson correlation,  

 = -0.05 

(p = 0.79) 

Pearson correlation,  

 = 0.28 

(p = 0.15) 

Pearson correlation, 

 = -0.06 

(p = 0.80) 

MDI not correlated over time in either 

functional zone. 
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Temporal 

variation in 

sociality 

Relationship between 

MDI and temperature 

(n = 92, d = 28) 

Pearson correlation,  

 = -0.04 

(p = 0.86) 

Pearson correlation,  

 = -0.17 

(p = 0.39) 

Pearson correlation,  

 = -0.04 

(p = 0.86) 

Weak correlation between MDI  

and temperature in both functional 

zones. 

Relationship between 

four-day block 

consecutive networks 

(six networks, n = 92 

per network) 

Mantel test,  

range of Rs = 0.03 to 

0.31 

(p ≤ 0.001) for four 

comparisons (day 

blocks 3-4, 4-5, 5-6, 

6-7);  

range of Rs = -0.25 to 

0.03 

(p ≥ 0.18) for two 

comparisons (day 

blocks 1-2, 2-3) 

 

Mantel test,  

range of Rs = 0.12 to 

0.30 

(p < 0.001) 

Mantel test,  

range of Rs = -0.08 to 0.31  

(p < 0.001) for four 

comparisons (day blocks 3-

4, 4-5, 5-6, 6-7); range of 

Rs = -0.28 to 0.02 

(p ≥ 0.58) for two 

comparisons (day blocks 1-

2, 2-3) 

Weak correlation between all 

consecutive networks. 

 

 

 

 

 

 

 

Individual 

characteristics 

Difference in mean DI 

between non-lame (n = 

26) and lame cows (n = 

22) 

Wilcoxon test,  

W = 274.50 

(p = 0.39) 

Wilcoxon test,  

W = 317 

(p = 0.73) 

Wilcoxon test, 

W = 235.00 

(p = 0.14) 

No difference in DI between non-lame 

and lame cows in both functional 

zones. 

Difference in mean 

clustering coefficient 

between non-lame (n = 

26) and lame cows (n = 

22) 

Wilcoxon test,  

W = 429.00 

(p = 1) 

Wilcoxon test,  

W = 284.00 

(p = 0.46) 

Wilcoxon test,  

W = 441 

(p = 1) 

No difference in clustering coefficient 

between non-lame and lame cows in 

either functional zone. 

Difference in mean 

node degree between 

Wilcoxon test,  

W = 308.00 

(p = 0.66) 

Wilcoxon test,  

W = 267.00 

(p = 0.33) 

Wilcoxon test,  

W = 274.50 

(p = 0.39) 

No difference in node degree between 

non-lame and lame cows in either 

functional zone. 
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non-lame (n = 26) and 

lame cows (n = 22) 

Social assortment by 

lameness status by day, 

n = 48) 

Mantel test, 

range of Rs= -0.07 to 

0.08 

(p ≥ 0.14) 

Mantel tests,  

range of Rs = -0.04 to 

0.08 

(p ≥ 0.07 for all days) 

Mantel test,  

range of Rs= -0.07 to 0.07 

(p ≥ 0.32) 

 

 

 

 

Cows did not socially assort according 

to their lameness status, parity, or 

DIM in either functional zone. 

 

Social assortment by 

parity (by day, n = 92) 

Mantel test, 

range of Rs = -0.02 to 

0.03 

(p = 1 for all days) 

Mantel test, 

range of Rs = -0.04 to 

0.04 

(p = 1 for all days) 

Mantel test,  

range of Rs = -0.02 to 0.03 

(p =1 for all days) 

Social assortment by 

DIM (by day, n = 92) 

Mantel test,  

range of Rs = -0.02 to 

0.03    

(p = 0.78 for all days) 

Mantel test,  

range of Rs = -0.04 to 

0.03 

(p = 1 for all days) 

Mantel test,  

range of Rs = -0.02 to 0.03 

(p ≥ 0.41 for all days) 
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Table A7. Overview of results using a spatial threshold radius of r = 3m and time duration of t = 100s to define an interaction on the 

commercial farm in Essex for the full barn and the functional zones: feeding zone and non-feeding zone. Basic network measures (original 

and filtered by mean degree), inter-individual variation, temporal variation in sociality, lameness status, and parity and days in milk, where (M)DI 

= (median) daily interactions, are shown Significant results (p < 0.05) are in bold. 

 Measure Test value (p-value) Summary 

Full barn Feeding zone Non-feeding zone 

 

Basic network 

measures 

Mean edge density (d 

= 28) 

0.89 0.15 0.87 The networks are highly dense, more 

so the NFZ than the FZ.  

Components  

(by day) (d = 28) 

1 

 

1-5 1 

 

The networks typically consist of one 

component. 

 

 

Inter-

individual 

variation 

Inter-individual 

differences in median 

DI (n = 92) 

K-W = 16.79 

(p < 0.001) 

K-W = 937.39 

(p = 1) 

K-W = 13.95 

(p < 0.001) 

Inter-individual variation in DI in 

the NFZ but not in the NFZ. 

Social differentiation 

(SD) (n = 92) 

SD between ≥ 85.63 % 

of dyads 

(p < 0.01) 

SD between 100 %  

of dyads 

 (p < 0.01) 

SD between 99.98 %  

of dyads 

(p < 0.01) 

Social differentiation present in all 

networks. 

 

 

 

 

 

 

Difference in median 

DI between days (n = 

92, d = 28) 

K-W =2327.10 

(p = 1) 

K-W = 50.69 

(p = 1) 

K-W = 2332.50 

(p = 1) 

No difference in DI between days in 

all networks. 

Relationship 

between MDI and 

days (n = 92, d = 28) 

Pearson correlation,  

 = -0.05 

(p = 0.79) 

Pearson correlation,  

 = 0.28 

(p = 0.14) 

Pearson correlation, 

 = -0.05 

(p = 0.79) 

MDI weakly correlated over time in 

both functional zones. 
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Temporal 

variation in 

sociality 

Relationship 

between MDI and 

temperature (n = 92, 

d = 28) 

Pearson correlation,  

 = -0.03 

(p = 0.88) 

Pearson correlation,  

 = -0.16 

(p = 0.42) 

Pearson correlation,  

 = -0.03 

(p = 0.88) 

Weak negative correlation between 

MDI and temperature in both 

functional zones. 

Relationship 

between four-day 

block consecutive 

networks (six 

networks, n = 92 per 

network) 

Mantel test,  

range of Rs = 0.06 to 

0.31  

(p ≤ 0.001) for five 

comparisons (day block 

2-3, 3-4, 4-5, 5-6, 6-7);  

Rs = -0.24(p = 1) for 

one comparison (day 

block 1-2) 

 

Mantel test,   

range of Rs = 0.12 to 

0.28 

(p ≤ 0.001 for all 

days) 

Mantel test,  

range of Rs= 0.07 to 0.30 

(p < 0.001) for five 

comparisons (day blocks 2-

3, 3-4, 4-5, 5-6, 6-7); 

Rs = -0.25 

(p = 1) for one comparison 

(day block 1-2) 

Weak correlation between all 

consecutive networks. 

 

 

 

 

 

 

 

Individual 

characteristics 

Difference in mean 

DI between non-lame 

(n = 26) and lame 

cows (n = 22) 

Wilcoxon test,  

W = 263.50 

(p = 0.30) 

Wilcoxon test,  

W = 315.00 

(p = 0.71) 

Wilcoxon test, 

W = 236.00 

(p = 0.14) 

No difference in DI between non-lame 

and lame cows in both functional 

zones. 

Difference in mean 

clustering coefficient 

between non-lame (n 

= 26) and lame cows 

(n = 22) 

Wilcoxon test,  

W = 420.00 

(p = 1) 

Wilcoxon test,  

W = 236.00 

(p = 0.15) 

Wilcoxon test,  

W = 436.00 

(p = 1) 

No difference in clustering coefficient 

between non-lame and lame cows in 

either functional zone. 

Difference in mean 

node degree between 

non-lame (n = 26) 

and lame cows (n = 

22) 

Wilcoxon test,  

W = 317.50 

(p = 0.73) 

Wilcoxon test,  

W = 315.00 

(p = 0.71) 

Wilcoxon test,  

W = 309.00 

(p = 0.66) 

No difference in node degree between 

non-lame and lame cows in either 

functional zone. 
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Social assortment by 

lameness status by 

day, n = 48) 

Mantel test,  

range of Rs = -0.06 to 

0.08 

(p ≥ 0.17 for all days) 

Mantel test,   

range of Rs = -0.04 to 

0.06 

(p ≥ 0.60 for all days) 

Mantel test,  

range of Rs= -0.07 to 0.07 

(p ≥ 0.32) 

 

 

 

 

Cows did not socially assort according 

to their lameness status, parity, or 

DIM in either functional zone. 

 

Social assortment by 

parity (by day, n = 

92) 

Mantel test,  

range of Rs = -0.02 to 

0.03 

(p = 1 for all days) 

Mantel test, 

range of Rs = -0.03 to 

0.05  

(p ≥ 0.96 for all days) 

Mantel test,  

range of Rs = -0.02 to 0.03 

(p =1 for all days) 

Social assortment by 

DIM (by day, n = 92) 

Mantel test,  

range of Rs = -0.02 to 

0.03 

(p = 1 for all days) 

Mantel test,  

range of Rs = -0.03 to 

0.03 

(p = 1 for all days) 

Mantel test,  

range of Rs = -0.02 to 0.04 

(p ≥ 0.35 for all days) 
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3.7.  Appendix 2: Additional results for different temporal segmentation of study period 

In the main results, the temporal stability of the proximity interaction networks (feeding and 

non-feeding zone) are assessed by segmenting the 28-day study period into seven averaged 

four-day consecutive blocks, showing weak or non-significant, between networks in both 

functional zones. For completeness, each of the original daily networks (n = 28), as well as 

two-, seven-, and 14-day blocks are also compared. The results are qualitatively similar, 

showing weak correlations between all consecutive networks (Table A1). 
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Table A1. Temporal variation of the interaction network (interaction defined when cows (n = 

92) were within a three-metre radius for more than 60 seconds), by segmenting and averaging 

the networks (feeding and non-feeding zone) into one, two, seven and 14 day-blocks. To 

calculate the p-value, 10,000 permutations were used, and p-values are after Bonferroni 

correction; significant results (p < 0.05) are in bold. 

Test value (p-value) 

Segmented 

components (days) 

Feeding zone Non-feeding zone Summary 

28 (1 day) Range of Rs = 0.09 to 0.18 

(p ≤ 0.01) for 25 comparisons; 

 

range of Rs = 0.02 to 0.04 

(p =1) for two comparisons 

(days 21-22, 26-27) 

Range of Rs= -0.30 to 0.37 

(p ≤ 0.05) for seven comparisons 

(days 3-4, 7-8, 13-14, 17-18, 18-19, 

25-26, 27-28); 

 

range of Rs = -0.28 to 0.03 

(p ≥ 0.42) for20 comparisons 

 

 

 

 

 

 

 

 

 

 

 

Weak 

correlation 

between all 

consecutive 

networks. 

14 (2 days) Range of Rs = 0.10 to 0.26 

(p ≤ 0.01) 

Range of Rs = 0.06 to 0.29 

(p < 0.01 for six comparisons 

(day blocks 2-3, 6-7, 10-11, 11-12, 

12-13, 13-14); 

 

range of Rs = -0.22 to 0.19 

(p = 1) for seven comparisons 

7 (4 days) Range of Rs= 0.20 to 0.31 

(p < 0.001) 

Mantel test,  

range of Rs = 0.05 to 0.24 

(p < 0.01) for four comparisons (day 

blocks 1-2, 2-3, 5-6, 6-7); 

 

range of Rs= -0.04 to 0.01  

(p = 1) for two comparisons 

(day blocks 3-4, 4-5) 

4 (7 days) Range of Rs= 0.14 to 0.41 

(p < 0.01) 

Rs = 0.28 

(p < 0.001) for one comparison 

(day block 3-4); 

Rs = 0.004 

(p = 1) for one comparison 

(day block 1-2); 

Rs = -0.16 

(p = 1) for one comparison  

(day block 2-3) 

2 (14 days) Rs = 0.41 

(p < 0.001) 

Rs= -0.07 

(p = 1) 
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4. CHAPTER 4: ANALYSING THE SOCIAL NETWORK STRUCTURE OF A 

DAIRY HERD GROUP SUBJECT TO FREQUENT REGROUPING 

4.1. Introduction 

Animal health and welfare varies amongst housed livestock herds for multiple reasons, partly 

due to their housing and management (319–321). Housing systems e.g., the physical 

infrastructure, size and shape of buildings, stocking density, group size, and management 

practices e.g., milking times, regrouping events, are typically chosen based on available funds 

and the farmer’s perceived needs of the herd. These factors have the potential to impact 

interactions within the herd, which is important for dairy cows given they have social 

preferences, as demonstrated in Chapter 3 of this thesis, and considering social bonds provide 

support under stressful conditions and help with recovery from diseases (132,176,272,322).  

 

High stocking densities are common in the dairy industry, which may inhibit the ability of cows 

to interact with preferred conspecifics, potentially explaining why assortment by attributes such 

as parity is found in some herds but not others; the latter is the case in Chapter 3 (176,273,315). 

This may be dependent on the area of the barn, if there are varying space allowances, as in 

Chapter 3. With limited space, aggressive encounters may increase, such as dominant cows 

displacing subordinates more often for resources, particularly when these are limited and 

without the presence of barriers (207,323–326). Moreover, subordinates may be unable to 

avoid dominants, leading to an increase in social stress of the former (135,158). It may that 

subordinate behaviour is temporary and related to illness, which would be useful to identify.  

 

It is well established that removing a cow from a herd is stressful for the individual, but 

regrouping can also impact the remaining herd’s interactions (144,327–329). After introducing 
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a new individual into a herd, cows within the group have been found to reduce allogrooming, 

and overall agonistic interactions in the group increase e.g., displacements from feeding areas 

(144,157). Individual factors can influence social interactions; younger and smaller individuals 

may be more vulnerable to aggression and social exclusion, particularly following regrouping. 

Calves, in particular, may be less physically competitive and less dominant in social 

interactions compared to larger and older individuals, making them more susceptible to 

negative outcomes (330). To reduce agonistic behaviours among adults, consistent group 

composition is likely to be important, as it allows individuals to become familiar with each 

other and establish a clear dominance hierarchy. However, with younger animals like calves, a 

clear dominance hierarchy may not establish, making their social interactions less predictable 

and more aggressive (132,168,331,332).  

 

Although social network analysis (SNA) has been recognised for use with farm animals, it is 

yet to be applied widely for management purposes, despite its use in understanding animal 

interactions, networks, and behaviour in productivity and disease outcomes (147,333–336). 

Understanding factors impacting group dynamics and space-use could help refine management 

regimes to optimise animal welfare whilst maximising productivity. A first step is finding 

whether there are differences between groups under various management systems. 

 

In this chapter, SNA is used to analyse and compare the social network structure and space-use 

patterns of two dairy cow herds, the first housed on a commercial farm in Essex and a second 

referred to as the ‘RVC Research farm’, using local positioning data (see Chapter 2 for details). 

These groups were subject to different management practices in terms of their housing, group 

sizes, stocking density and frequency of regrouping, all of which may affect the social network 

structure and space-use. So, the main aim of this chapter is to determine whether social 
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networks derived from local positioning data can capture differences in behaviour between two 

dairy herds, most likely attributed to their housing in two different animal productions systems. 

 

4.2. Methods 

4.2.1. Animals and housing 

As detailed in the General Methodology (Chapter 2, Section 2.4), two dairy cow herds were 

monitored for this study: the first on a commercial farm in Essex (monitored from 1st August 

2014 to 30th November 2014), and the second is referred to as the RVC Research farm 

(monitored from 17th October 2015 to 7th December 2015). The main design and area 

differences in the production systems focussed on are that the cows on the commercial farm in 

Essex were housed in a barn with cubicles, henceforth referred to as a ‘closed barn’, at a high 

stocking density (n = 127; minimum of 86 unique cows each month and a maximum of 111 

unique cows per month; feed space = 4.80m2 to 6.20 m2 per cow, lying space = 3.53m2 to 

4.55m2 per cow; overall area = 2898m2 (63m x 46m), feeding zone (FZ) = 391.28m2 (58.40m 

x 6.7m), non-feeding zone (NFZ) = 553.13m2 (left and right cubicle area = 52.60m x 9.7m = 

510.22m2 excluding two unusable cubicles, each 2.71m2 (1.18m x 2.30m), = 504.80m2; lower 

cubicle area = (27.75m x 2.42m = 67.16m2 excluding seven unusable cubicles, each 2.69m2, = 

48.33m2; space between neighbouring cubicles: left and right cubicle blocks = 3.59m; right and 

lower cubicle blocks =  2.4m), whereas the herd on the RVC Research farm were housed in a 

barn without cubicles, henceforth referred to as an ‘open barn’, at a moderate stocking density  

(n = 55, a minimum of 45 cows each month; stocking density of feed space = 4.04m2 to 4.93m2 

per cow, lying space = 7.28m2 to 8.90m2 per cow; overall area = 2469.60m2 (58.8m x 42m), 

feeding zone (FZ) = 222.05m2 (40.3m x 5.51m), non-feeding zone (NFZ) = 400.58m2 (40.30m 

x 9.94m)). For further details on the herds and visualisations of the barn layouts, please refer 

to Chapter 2, Section 2.4.  
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4.2.2. Local positioning system  

Each cow was equipped with a combined local positioning sensor and accelerometer, 

Omnisense 500 (298), mounted on a weighted neck collar. Further information on the sensor 

system is provided in Chapter 2, Section 2.5. 

 

Data selection and pre-processing were conducted as outlined in Chapter 2, Section 2.4. For 

the main analysis, hours when most cows were in the milking parlour or collecting yard were 

excluded (for the commercial farm in Essex: 05:00 to 07:59, 12:00 to14:59 and 20:00 to 22:59 

and for the RVC Research farm: 05:00 to 07:59 and 14:00 to 16:59), as well as periods during 

which the sensor reset (approximately 23:00 to 00:59 on both farms), since their behaviour 

during these time periods was constrained by farm staff.  

 

4.2.3. Protocol for determining proximity interactions 

The protocol for determining proximity interactions was defined as when dyads were within 

3m for a minimum of 60s, with longer time durations counting as more than one interaction, 

as outlined in detail in Chapter 2, Section 2.4. While these parameter values are consistent with 

previous studies e.g., (176,273), a range of other values for r and t are also considered, as well 

as less stringent protocols (where only a certain percentage of points within the specified time 

period need to be within the specified radius for an interaction to be identified). Using observed 

data of (n = 35) known proximity interactions it was possible to validate the algorithm and 

determine the sensitivity (true positive rate) of this protocol (0.83); it was not possible to 

estimate the specificity using this observed data, but the r and t parameters were chosen to 

reduce the expected false positive rate, as well as taking into account practical and biological 

considerations, including the sensor mean error distance and the typical size of a dairy cow 

(see Chapter 2, Section 2.4.1.). Also, qualitatively similar results were obtained for the 
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commercial farm in Essex herd when using t = 40, 80, 100 s (for r = 3m) and r = 1, 2, 4 and 

5m (for t = 60 s), and hence the conclusions should be robust to this parameter choice (see 

Chapter 3, Appendix 1). 

 

4.2.4. Social network analysis 

An explanation of how daily networks were visualised, for the full barn, the feeding zone (FZ) 

and the non-feeding zone (NFZ), is provided in Chapter 2 (Section 2.5.2).  

 

Edge density, the proportion of direct ties in a network relative to total ties possible, was 

calculated for the full barn and each of the functional zones (as outlined in Chapter 2, Section 

2.6). Permutations (q = 10,000) were used to account for the non-independence of dyads, and 

details of this are provided in Chapter 2, Section 2.6. 

 

 

Direct comparison between the barns using graph measures such as edge density and social 

differentiation without bias is not possible, given these are influenced by the number of nodes 

and edges (165,278,337,338), and considering the herd sizes are different (maximum n = 127 

and n = 55 for the commercial farm in Essex and the RVC Research farm, respectively). A 

network with more nodes leads to more possible edges, but a smaller network (fewer nodes) is 

likely to be more connected i.e., a higher edge density. Attempts have been made to compare 

social networks across group sizes with some success through the triadic census method, which 

counts the frequency of different types of triads (groups of three nodes) and their connections 

(165,337). These methods are limited, however, with triadic census explained by simple node-

based measures, and so there is ongoing attempt to compare networks which is beyond the 
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scope of the work in this chapter (165,337). This chapter therefore does not set out to draw 

direct quantitative comparisons between the social network structure and space-use of the herd 

groups, but broad patterns within each group are detected and compared.  

 

Although direct comparisons cannot be drawn between the farms, a crude comparison of edge 

density is used to understand the extent to which each network is connected, for the full barns 

and each of the functional zones (NFZ and FZ). Moreover, if the open, lower stocked barn of 

the RVC Research farm is found to be less connected than the closed, higher stocked barn 

network of the commercial farm in Essex, this would support a hypothesis of the RVC Research 

farm having reduced connectivity compared to the commercial farm in Essex. This is given a 

network with less nodes is more, not less, likely to be highly connected compared to a network 

with more nodes.  

 

Inter-individual variation in median daily interactions (the mean number of proximity 

interactions an individual had per day) across each of the study durations was assessed through 

a Kruskal-Wallis Rank Sum test, using 10,000 node-level permutations to account for the non-

independence of dyads. Social differentiation was calculated daily for each functional zone (FZ 

and NFZ), by finding the difference between the observed number of interactions and the 

expected number of interactions, summing this for each dyad, and then dividing this by the 

total number of dyads (refer to Chapter 2.5.4 for details). Again, the numerical outputs for these 

measures of social differentiation are not directly compared; instead, broad patterns are 

compared as an initial step to understand potential differences.  
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4.2.5. Space-use patterns 

As outlined in Chapter 2 (Section 2.6.1), space-use heatmaps were created by overlaying virtual 

grids (1.5m by 1.5m) over the barn layouts and counting the number of points lying in each 

cell. The highest density cells cumulatively adding to 50% or 95% of the total observed density 

were defined as the core and full range size. Patterns in space-use and activity patterns were 

then investigated e.g., clear gaps in specific areas of the barn, using core and full range size, as 

well as range size ratio (core range divided by full range). Comparisons were drawn between 

the findings from each herd. 

 

To demonstrate the efficacy of the range size metrics, time-dependent effects were explored. 

The data were split into periods between milking times: interval one (I1; the commercial farm 

in Essex: 01:00 to 04:00; the RVC Research farm: 08:00 to 13:00), interval two (I2; the 

commercial farm in Essex: 08:00 to 11:00; the RVC Research farm: 19:00 to 22:00 and 01:00 

to 04:00) and interval three (I3; the commercial farm in Essex: 15:00-19:00). Range size ratios 

were calculated for each interval and compared between the two herds. 

 

Finally, the space-use metrics were confirmed as sensible by comparing core range and full 

range sizes calculated for hours during and between milking periods. The range sizes were 

expected to decrease during milking periods, as areas outside of the functional zones were not 

taken into account to calculate range size (and hence range size ratio) i.e., only a small number 

of cows were expected to remain in the functional zones during milking times which would 

reduce the calculated values. 
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4.3.  Results 

4.3.1. Basic network measures and visualization 

Figure 1 compares visualisations of the original networks, for the full barn and each functional 

zone on the RVC Research farm (similar to Fig 2 in Chapter 3, Section 3.3.1 for the commercial 

farm in Essex).  

 

As expected, on both farms, the full barns are more connected than the non-feeding zones 

(NFZ) (0.02 and 0.16 difference in edge density for the commercial farm in Essex and the RVC 

Research farm respectively) and feeding zones (FZ) (0.63 and 0.09 difference in edge density 

for the commercial farm in Essex and the RVC Research farm respectively) (Fig 1; Table 1). 

On the commercial farm in Essex, the FZ is less connected than the NFZ zone (0.61 difference 

in edge density) whereas on the RVC Research farm the FZ is more connected than the NFZ 

(0.07 difference in edge density) (Fig 1; Table 1). 
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Figure 1. Undirected networks on a randomly chosen day, 17/10/2015, in (A) the full barn, 

(B) feeding zone, and (C) non-feeding zone of the RVC Research farm herd, showing 

interactions between individual cows. Thicker edges indicate a higher number of daily 

interactions. The Fruchterman-Reingold layout algorithm was used to determine the node 

positions; unconnected vertices are repelled. A subset of individuals at the middle and extreme 

ends of the dataset for this example day are highlighted to illustrate the extent of the observed 

data: two cows with the lowest daily interactions (DI) during the example day (cow ID = 765 

and 530 both with DI of 3 and 5, respectively), two cows with DI closest to the median (cow 

ID = 785 and 652 both with DI of 11 and 10 respectively), and two cows with the most DI (cow 

ID = 576 and 702 with DI of 19 and 18, respectively). Across the full herd, the mean DI were 

15 (median = 14, standard deviation = 2.64). The graphs were created in RStudio using the 

‘vegan’ package (68,69,75). 

Daily Interactions

Least

Median

Most

A

B

C
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4.3.2. Social differentiation  

There is evidence of significant inter-individual variation in daily interactions in the full barn 

on the RVC Research farm (Table 1; Kruskal-Wallis chi-squared [hereafter K-W] = 69.29, df 

= 53, after 10,000 permutations p = 0.001) and in the FZ (Table 1; K=W = 109.36, df = 53, 

after 10,000 permutations, p < 0.001), but not in the NFZ (Table 1; K-W = 69.29, df = 53, after 

10,000 permutations, p = 0.06). 

 

Social differentiation is present across the full barn on the RVC Research farm (Table 1; ≥ 

99.98% of dyads, p < 0.01 across days), the FZ (Table 1; 100% of dyads, p < 0.01 across days), 

and the NFZ (Table 1; 100% of dyads, p < 0.01 across days) on the RVC Research farm.  
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Table 1. Overview of the social network analysis results for the herd on the commercial 

farm in Essex and the herd on the RVC Research farm, for the full barns, the feeding 

zones (FZ) and the non-feeding zones (NFZ): basic network measures and inter-

individual variation. A spatial threshold radius of 3m and time duration of t = 60s was used 

to define an interaction, where (M)DI = (median) daily interactions. Significant results (p < 

0.05) are in bold.  

 Test results with p-values Summary 

Metric Farm Full barn Feeding zone Non-feeding 

zone 

 

Mean edge 

density 

 

Commercial 

farm in Essex 

(d = 28) 

0.96 0.33 0.94 Highly dense networks, 

more so the NFZ than the 

FZ. 

RVC 

Research farm 

(d = 47) 

0.28 0.19 

 

0.12 

 

Weakly connected 

networks, more so the 

NFZ than the FZ. 

Inter-

individual 

differences in 

median DI  

 

Commercial 

farm in Essex 

K-W = 

26.53 

(p < 0.001) 

K-W = 851.71 

(p = 1) 

K-W = 19.21 

 (p < 0.001) 

Inter-individual variation 

in DI the NFZ but not the 

FZ on the commercial 

farm in Essex whereas 

inter-individual variation 

in the FZ but not the NFZ 

on the RVC Research 

farm.  

RVC 

Research farm 

K-W = 

149.10 

(p < 0.001) 

K-W = 109.36 

(p < 0.001) 

K-W = 69.29  

(p = 0.06) 

Social 

differentiation 

(SD) 

 

Commercial 

farm in Essex 

SD between 

> 92.96 % 

of dyads 

(p < 0.01) 

SD between 

100% 

of dyads 

(p < 0.01) 

SD between 

92.96% 

of dyads 

(p < 0.01) 

Strong social 

differentiation present in all 

networks. 

RVC 

Research farm 

SD between 

≥ 99.98% 

(p < 0.01) 

SD between 100% of dyads 

(p < 0.01) 
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4.3.3. Space-use comparison between farms 

4.3.3.1. General space-use 

There are clear gaps between cubicles in the NFZ (y ≤ 10.5) on the commercial farm in Essex 

where passageways are present, across the study duration (Fig 2). For example, there is a space 

between the set of left and right cubicles at approximately x = 20, and these grid cells are not 

incorporated into the highest density cells comprising the core range, whereas the areas 

corresponding to cubicles are (Fig 2). Despite a decline in use from left to right, the core range 

on the RVC Research farm remains unsegmented across the y-axis in Figure 2, with no 

noticeable gaps in the NFZ (y ≤ 10; boundary rounded to nearest 0.5).  

 

The mean range size ratio on the commercial farm in Essex is higher than on the RVC Research 

farm (mean = 0.279, SD = 0.011 and mean = 0.268, SD = 0.006 respectively; t = 3.37, df = 

17.82, p = 0.003, excluding milking hours) (Fig 2; Table 2). The higher range size ratio on the 

commercial farm in Essex suggests a more equitable use of the space i.e., less use of specific 

areas, compared to on the RVC Research farm. This is further supported when comparing the 

time that individuals spend in the passages of the NFZ (16.67%) to the cubicles of the NFZ 

(83.33%) on the commercial farm in Essex, which can interpretated using visualisations 

provided in Figure 2, although this does not consider sensor error or that the cubicles covered 

a greater area in this zone in comparison to passageways (Table 2). 
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4.3.3.2. Time-dependent space-use 

On the commercial farm in Essex, as expected, the cows appear to be more active during the 

day (I2: 08:00 to 11:00 and I3: 15:00 to 19:00) particularly during the morning (I2), compared 

to during the night (I1: 01:00-04:00; Table 2; Fig 3). This is also the case on the RVC Research 

farm, with cows more active during I1 (08:00 to 13:00) than I2 (19:00 to 22:00 and 01:00 to 

04:00) (Table 2; Fig 3). Cows appear to be spending more time in fewer cells during the night 

(mean hourly range size ratios on the commercial farm in Essex during I1 = 0.262 to 0.274 and 

the RVC Research farm during I2 = 0.263 to 0.279, compared to during the day when they are 

more likely to be active (range size ratio on the commercial farm in Essex during I2 = 0.276 to 

0.287 and I3 = 0.274 to 0.296, and on the RVC Research farm during I1 = 0.256 to 0.268 (Table 

2; Fig 3).  

 

Supporting this, on both farms, cows show greater use of the FZ during the day, indicated 

through the higher mean hourly y coordinate during the day (the commercial farm in Essex: I2 

= 6.26 to 7.98, I3 = 5.38 to 6.30, compared to I1 = 4.46 to 5.38; the RVC Research farm: I1 = 

8.49 to 9.39 compared to I2 = 4.81 to 6.63) (Table 2; Fig 4). This is further shown in the raw 

data (the commercial farm in Essex: 64.67% and 71.14% of y ≤ 10.5 (most likely in NFZ) 

during I2 and I3 respectively whereas 84.48% of y ≤ 10.5 during I1; the RVC Research farm: 

54.79% of y ≤ 10 (most likely in NFZ) during I1 whereas 79.56% of y ≤ 10 during I2) (Table 

2). 
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Table 2. Summary of descriptive statistics showing the time that herds on the commercial 

farm in Essex and on the RVC Research farm spent in the feeding zone (FZ) and non-

feeding zone (NFZ) during different time intervals, divided as hours between milking, 

across the study period. The feeding zone is defined as where y ≤ 10.5 and y ≤ 10 for the 

commercial farm in Essex and the RVC Research farm respectively, and the non-feeding zone 

as where y ≥ 10.5 and y ≥ 10 for the commercial farm in Essex and the RVC Research farm 

respectively. Time intervals shown are interval one (I1; the commercial farm in Essex: 01:00 

to 04:00; the RVC Research farm: 08:00 to 13:00), interval two (I2; the commercial farm in 

Essex: 08:00-11:00; the RVC Research farm: 19:00 to 22:00 and 01:00 to 04:00) and interval 

three (I3; the commercial farm in Essex: 15:00 to 19:00). The mean hourly range size ratio is 

also shown for each time interval, defined as the core range (50%) divided by the full range 

(95%); this is given as a range from the lowest mean hourly size ratio e.g., 0.262 at 04:00 for 

the commercial farm in Essex, I1 to the highest mean hourly range size ratio e.g., 0.274 at 

01:00 for the commercial farm in Essex, I1. 

Time 

interval 

Farm Time Range of 

mean hourly 

y (m) 

Time in 

NFZ  

(relative to 

time in 

NFZ or 

FZ; %) 

Range of 

mean hourly 

range size 

ratios 

(CR/FR) 

Summary 

I1  

Commercial 

farm in 

Essex 

01:00 to 04:00 4.46 to 5.38 84.48 0.262 to 

0.274 

More time 

spent in 

the FZ 

during the 

day 

I2 08:00 to 11:00 6.26 to 7.98 64.67 0.276 to 

0.287 

I3 15:00 to 19:00 5.38 to 6.30 71.14 0.274 to 

0.296 

I1 RVC 

Research 

farm 

08:00 to 13:00 8.49 to 9.39 54.79 0.256 to 

0.268 

I2 19:00 to 22:00 

& 

01:00 to 04:00 

4.81 to 6.63 79.56 0.263 to 

0.279 
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4.3.3.3. Preferences for specific areas of the barns 

More specifically, visualisation of the heatmaps over time suggests that cows on the 

commercial farm in Essex prefer to position in the right-hand cubicles over the left-hand and 

lower cubicles in the NFZ, and the left over the lower (Fig 2). This is supported with basic 

summing of the data; cows spent 51.71% in the right cubicles (26.90m ≤ x ≥ 52.85m and 0.80m 

≤ y ≥ 10.50m), 29.93% in the left cubicles (2.55m ≤ x ≥ 23.10m and 0.80m ≤ y ≥ 10.50m), and 

18.36% in the lower cubicles (25.10m ≤ x ≥ 52.85m and -1.62m ≤ y ≥ 0.80m) in the NFZ, 

although this doesn’t consider sensor error (Table 3; Fig 2). Preferences for certain areas in the 

NFZ are shown to a lesser extent in the RVC Research farm, with cows dedicating 41.10% of 

their time to the left of the NFZ (x ≤ 13.43m), 33.01% to the middle (13.43m ≤ x ≥ 26.87m) 

and least to the right at 25.89% (x ≥ 26.87m) (Table 3; Fig 2). 
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Table 3. Descriptive statistics showing the time (as %) herds on the commercial farm in 

Essex and on the RVC Research farm spent in areas of the non-feeding zone. Areas are 

defined on the commercial farm in Essex as: left = 2.55 ≤ x ≤ 23.10 and 0.80 ≤ y ≤ 10.50; lower 

= 25.10 ≤ x ≤ 52.85 and -1.62 ≤ y ≤ 0.80 and right = 26.90 ≤ x ≤ 52.85 and 0.80 ≤ y ≤ 10.50, 

and on the RVC Research farm as: left = x ≤ 13.43; middle = 13.43 ≤ x ≤ 26.87; right = x ≥ 

26.87).  

Farm Cubicles/area Coordinates (m) Time in 

area (%) 

Summary 

 

Commercial 

farm in Essex 

Left 2.55 ≤ x ≤ 23.10 and 

0.80 ≤ y ≤ 10.50 

29.93 Cows show 

preferences for 

specific areas of 

the NFZ on both 

farms, especially 

on the commercial 

farm in Essex. 

Lower 25.10 ≤ x ≤ 52.85 

and -1.62 ≤ y ≤ 0.80 

18.36 

Right 26.90 ≤ x ≤ 52.85 

and 0.80 ≤ y ≤ 10.50 

51.71 

RVC 

Research farm 

Left x ≤ 13.43 41.10 

Middle 13.43 ≤ x ≤ 26.87 33.01 

Right x ≥ 26.87 25.89 
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Figure 2. Example heatmaps showing herd-level space-use on the (A) commercial farm 

in Essex and (B) the RVC Research farm over the full study durations in the non-feeding 

zone and the feeding zone. The non-feeding zone is defined as where y ≤ 10.5 for the 

commercial farm in Essex and y ≤ 10 for the RVC Research farm, and the feeding zone is 

defined as where y ≥ 10.5 for both farms. The lighter shades of blue indicate areas of low 

density or space-use, whereas the darker shades of blue indicate areas of high density. A black 

line is marked to show the division between the zones.  

x ( m )

y
 (

m
)

0 14 28 42

0 20 40 60

-10

0

20

10

Feeding zone

Non-feeding zone

B. RVC Research Farm

A. Commercial farm in Essex

Milking parlour Collecting yard

Feeding zone

Non-feeding zone

-2

7

16



125 
 

 
 

 

Figure 3. Example heatmaps comparing herd-level space-use (core range and full range) 

between the non-feeding zones (NFZ) and the feeding zones (FZ) at different time 

intervals, on the commercial farm in Essex (A-C) and the RVC Research farm (D-E). The 

solid grey lines represent the core range (50%) while the dashed grey lines represent the full 

range (95%). The NFZ is defined as where y ≤ 10.5 for the commercial farm in Essex and y ≤ 

10 for the RVC Research farm, and the FZ is defined as where y ≥ 10.5 for both farms. Hours 

are divided into periods between milking as interval one (I1; the commercial farm in Essex: 

01:00-04:00; the RVC Research farm: 08:00 to 13:00), interval two (I2; the commercial farm 

in Essex: 08:00-11:00; the RVC Research farm: 19:00 to 22:00 and 01:00 to 04:00) and interval 

three (I3; the commercial farm in Essex: 15:00-19:00). Examples show 01/10/2014 at 04:00 

(I1), 08:00 (I2) and 18:00 (I3) for the commercial farm in Essex, and 01/11/2015 at 12:00 (I1) 

and 03:00 (I2) for the RVC Research farm. The lighter shades of blue indicate areas of low 

density or space-use, whereas the darker shades of blue indicate areas of high density. Black 

x  ( m )

y
(m

)
-1

0

I3

I2

I1

1
0

-1
0

1
0

-1
0

1
0

0 20 40 60

-2
7

1
6

0 14 28 42

-2
7

1
6

RVC Research FarmCommercial farm in Essex
A

B

C

D

E

Feeding zone

Non-feeding zone

Feeding zone

Non-feeding zone

Feeding zone

Non-feeding zone

Feeding zone

Non-feeding zone

Feeding zone

Non-feeding zone



126 
 

 
 

lines mark the divisions between the zones. For these example hours, the usage of the FZ on 

the commercial farm in Essex is shown to be lower during I1 (range size ratio (core range 

divided by full range) = 0.283) compared to I2 (range size ratio = 0.277) and I3 (range size 

ratio = 0.302). The usage of the FZ on the RVC Research farm is shown to be lower during I2 

(range size ratio = 0.267) compared to I1 (range size ratio = 0.290). 

 

4.3.3.4. Metric confirmation: space-use differences during and between milking periods 

The range sizes on both farms fluctuate between milking (on the commercial farm in Essex: 

05:00 to 07:00 and 12:00 to 14:00; the RVC Research farm: 05:00 to 07:00 and 14:00 to 16:00) 

and periods between milking, with mean CR as low as 50.28 and 23.76 on the commercial farm 

in Essex and the RVC Research farm respectively during the milking, and highest CR at 55.22 

and 40.12 respectively between milking on the commercial farm in Essex and the RVC 

Research farm respectively (Fig 4). A similar pattern is observed for FR on the RVC Research 

farm, with mean FR as low as 101.53 during milking and as high as 148.31 between milking 

(Fig 4). On the commercial farm in Essex, the pattern for FR occasionally deviates from that 

of CR during the last hour of milking due to a few cows moving back into the FZ and NFZ, 

which is considered in the FR but not the CR e.g., from 06:00 (mid-milking) to 07:00 (last hour 

of milking), the mean CR drops from 23.86 to 23.76 whereas the mean FR increases from 

101.53 to 118.65 (Fig 4).  

 

The range size ratio decreases during milking on both farms, e.g., mean range size ratio during 

milking = 0.210 to 0.294 and 0.200 to 0.268 on the commercial farm in Essex and on the RVC 

Research farm respectively whereas mean range size ratio = 0.262 to 0.295 and 0.256 to 0.278 
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between milking on the commercial farm in Essex and on the RVC Research farm respectively, 

which is expected given cows are spending most of their time in fewer cells (of the FZ and 

NFZ) during milking (Fig 4).  

 

 

Figure 4. (A-B) Mean core range (50%, CR) and full range (95%, FR) and (C-D) range 

size ratio (CR/FR) per hour, across the study durations for the commercial farm in Essex 

and the RVC research farm. Hours divided into periods between milking as interval one (I1; 

commercial farm in Essex: 01:00 to 04:00; RVC research farm: 08:00 to 13:00), interval two 

(I2; commercial farm in Essex: 08:00 to 11:00; RVC research farm: 19:00 to 22:00 and 01:00 

to 04:00) and interval three (I3; commercial farm in Essex: 15:00 to 19:00). 

1612840 20

A

C

H o u r

0
5

0
1

0
0

R
an

ge
 s

iz
e 

ra
ti

o
 (

C
R

/F
R

)
R

a
n

g
e

 
s

i
z

e

1
5

0
2

0
0

2
5

0

Milking

I2
I1

Sensor reset

I3

2015105

Commercial farm in Essex RVC Research farm

0
.2

4
0

.2
8

0
.2

0

D

B

1612840 20

C
o

re
 (

5
0

%
)

C
o

re
 (

5
0

%
)

Fu
ll 

(9
5

%
)

Fu
ll 

(9
5

%
)



128 
 

 
 

4.4. Discussion 

This section reveals moderately to highly connected networks on the commercial farm in Essex 

in comparison to weakly connected networks on the RVC Research farm. The NFZ is more 

strongly connected than the FZ of the RVC Research farm, as found on the commercial farm 

in Essex. On the commercial farm in Essex, significant inter-individual variation was found in 

the NFZ but not in the FZ whereas on the RVC Research farm significant inter-individual 

variation was found in the FZ but not in the NFZ. Daily social differentiation was found in both 

functional zones across the farms. Exploration into space-use patterns show both the herd on 

the commercial farm in Essex and the herd on the RVC Research farm use a greater area of the 

barn during the day compared to the night. Interestingly, cows appear to show preferences for 

certain areas in the NFZ on both farms, especially on the commercial farm. 

 

Individuals with the least daily proximity interactions were clearly shown to be on the 

periphery of, or disconnected from, the weakly connected networks on the RVC Research farm. 

This herd group was subject to frequent changes in group composition, with an average of 12 

individuals being added or removed daily. These frequent changes could have weakened social 

ties within the herd. In contrast, the group composition on the commercial farm in Essex was 

more stable over time, with an average of one individual being added or removed daily, and 

the network was found to be highly connected. In addition, the herd on the RVC Research farm 

saw a complete turnover of individuals during the study period (where n = 22 to 52 daily), 

whereas the 91 cows studied on the commercial farm in Essex were present throughout the 

study period (where n = 100 to 110 daily). Therefore, the cows studied on the commercial farm 

in Essex may have had stronger connections due to their greater familiarity with each other. 

The introduction of new individuals into a dairy herd can weaken the network, due to a lack of 

interactions between new and resident cows, and weakened links between resident cows (272). 
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Although networks may strengthen over time following a regrouping event, as dominance 

hierarchies are thought to be established after a couple of weeks, this may not be possible with 

frequent regrouping (132,157,272). The differences in network connectivity may also be a 

result of the differences in space allowances. Stocking density in the NFZ, where cows spent 

most of their time, was lower on the RVC Research farm (stocking density of lying space = 

7.28m2 to 8.90m2 per cow) than on the commercial farm in Essex (lying space = 3.53m2 to 

4.55m2 per cow), and the former were housed in an open barn whereas the latter were housed 

in a closed barn. The greater space allowance on the RVC Research farm could have enabled 

individuals to choose whom to distance from to a greater degree, unlike on the commercial 

farm in Essex where individuals may have been forced to maintain less differentiation in 

closeness.  

 

Despite the high connectivity of the commercial farm in Essex network, on both farms highly 

social individuals continued to be highly social over time, as found in previous studies on cattle 

(249,251). The stronger individual differences in sociality in the FZ, compared to the NFZ, on 

the RVC Research farm may have been due to a high demand for preferable feeding spots, with 

subordinate cows not gaining optimal areas. Differences in individual sociality may have been 

masked in the NFZ on the RVC Research farm due to a lower demand for specific areas given 

the lack of cubicles and greater space allowance allowing distancing. However, on the 

commercial farm in Essex there may have been a high demand for preferable cubicles in the 

NFZ, revealing individual differences in proximity interactions. Patterns in the FZ may have 

been masked on the commercial farm in Essex due a greater turnover of individuals at the feed 

face, with cows starting and ending eating at various times due to limited space. 
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Not only are individual differences in proximity interactions in the FZ revealed, but preferences 

for interactions between specific dyads across zones are shown. This is despite the daily 

changes in group composition both herds were subject to throughout the study durations, 

particularly on the RVC Research farm. This could be as cows removed from the herd were 

often added back later, and social bonds may have remained despite temporary separation, 

given long-term familiarity has a stronger impact on social relationships than recently shared 

experiences (168). However, as found on the commercial farm in Essex with the lack of 

temporal stability across averaged four-day networks (Chapter 3), herds housed at high 

stocking rates, may form associations, and maintain preferences over a short time i.e., daily but 

not in the longer term, which could not be assessed on the RVC Research farm due to a high 

number of daily changes in group composition. Still, cows with similar energy requirements or 

routines may position together throughout the day, and while these may change over time, this 

could result in the appearance of associations where they don’t exist.  

 

Investigation of the potential impact of familiarity on social preferences was considered in this 

chapter, by assessing social differentiation against the number of changes to the group over 

time, but this was not possible due to little fluctuation in the high daily social differentiation 

values. Familiarity has indeed been found to impact the social relations of cows, through 

proxies for familiarity such as parity (176), although this is not always found to be the case 

e.g., Chapter 3, which may be attributed to these proxies being too coarse to model familiarity. 

Considering which cows were kept together from birth through to joining their milking herd, 

which was unmeasured in this study, may explain the daily social differentiation observed. 

Direct measures of familiarity i.e., time spent together, shows that individuals across taxa, from 

fish to primates, favour interactions with familiar individuals over those with unfamiliar 

individuals (166,339–343). Directly after regrouping, and to some extent a week later, familiar 
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cows are preferred over unfamiliar ones as grooming partners and feeding neighbours (339). 

Assessing whether familiar individuals are favoured throughout frequent regrouping e.g., daily 

as in this study, could help us further understand the impact of removing individuals from a 

herd on the social network.  

 

Both herds displayed preferences for space-use, as well as proximity interactions. The study 

group on the commercial farm in Essex were housed in a closed barn, which appears to have 

led to cows spend more time in specific areas. In contrast, the open barn on the RVC Research 

farm resulted in the cows being less likely to occupy specific areas. Visualisation of space-use 

suggest that the herd on the commercial farm in Essex spent more time in the cubicles than the 

passageways. Although the mean range size ratio differed significantly between the farms, 

suggesting that the herd on the commercial farm in Essex used a more restricted area of the 

barn, this difference is small (mean difference of 0.011) and may not be biologically 

meaningful. The preference for the left of the NFZ on the RVC Research farm, as well as the 

preference for the right-hand cubicles on the commercial farm in Essex, could partly explain 

this. Preferences for specific areas of barns has also been found in other studies (197,344). For 

each farm, the preferred areas were closer to the passageways to the collecting yards. 

Positioning in these areas would have given cows a greater chance of relieving a high milk 

yield sooner than cows positioned elsewhere. Indeed, studies show that cows at the beginning 

of the milking order have a higher milk yield (345,346). Evidence for higher parity cows 

positioning in areas closer to milking areas has been found previously, supporting this theory 

(252,347). Other factors are likely to contribute as well; older, more experienced cows with a 

high milk yield may be more likely to gain a position in preferred cubicles as opposed to a 

younger cow with a high milk yield (252). To further this, the most dominant cow is first in 

line to be milked, and ill cows enter later than when they are healthy, further highlighting 
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advantages of positioning close to the collecting yard (348,349). The demand for specific areas 

may also change over time. If the number of cubicles closer to feeding areas is restricted, the 

demand for those closer to a feed alley may increase, especially prior to scheduled feeding 

times (197,347). Alternatively, the physical space restrictions may have restricted rest in certain 

locations of the NFZ, more so on the commercial farm in Essex due to the fixed cubicles and 

higher stocking density. 

 

The finding that cows were more active during the day than during the night is well known but 

demonstrates the efficacy of the LPS and confirms the use of the range size metrics used; cattle 

are diurnal e.g., they consume the majority of their feed intake between dawn and dusk, 

assuming housing conditions allow this as the study farms did (350). Moreover, comparison of 

the range size metrics between and during milking times revealed patterns which were 

expected. Specifically, a lower core range size was calculated during milking periods, sensical 

given most cows were positioned in areas associated with milking. The range size ratio was 

found to be lower during than between milking periods, also expected given a few cows 

remained in the functional zones during milking periods.  

 

 

Space-use patterns between the two barns could be further explored, investigating where 

individuals position in relation to each other, and whether this is based on their attributes. It 

has been found that lame cows have a higher site-fidelity in a feeding area, perhaps due to a 

lack of motivation and a lack of ability to choose high-traffic, preferable feeding positions 

(209,351). Perhaps this is clear in closed barns (with cubicles) such as on the commercial farm 

in Essex but not in open barns (without cubicles) such as the RVC Research farm; an 

understanding of this would help identify cows with lameness specific to housing 
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environments. It would be of interest to investigate if other differences in housing e.g., bedding, 

as well as management e.g., milking system impact the space-use preferences of herds. For 

example, individuals may show preferences for specific areas prior to scheduled feeding times, 

but perhaps only if access is quicker from specific areas of a barn, and unhealthy individuals 

may not gain these. This would have implications for disease spread, as well as health and 

social stress, and other aspects of welfare. 

 

4.5. Conclusions  

Although direct quantitative comparisons of network measures between these barns of different 

sizes were not possible, this work provides evidence for differences in the network structure 

and space-use of two dairy herds. Specifically, this chapter suggests that a greater space 

allowance, in terms of barn layout and stocking density, and a high turnover in group 

composition may weaken social ties. These results provide a key first step to understanding 

how to optimise the housing and management of dairy herd groups. 

The main results of this chapter are outlined below: 

• Two dairy herd groups, one on a commercial farm in Essex and the second on an RVC 

Research farm, were tracked continuously using a local positioning system over one 

and three months respectively. Proximity interaction networks were compared in terms 

of structure, and space-use patterns were detected and compared between the herds 

using range size metrics.  

• The networks derived from the herd housed on the commercial farm in Essex were 

more connected than those housed on the RVC Research farm. The non-feeding zone 

network was particularly connected on both farms, compared to the feeding zone 

network.  
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• On the commercial farm in Essex there was significant inter-individual variation in the 

non-feeding zone whereas on the RVC Research farm there was significant inter-

individual variation in the feeding zone, and daily social differentiation was present on 

both farms in both functional zones.  

• Both herds used a greater area of the barn during the day and preferences for areas were 

clearer on the commercial farm in Essex than on the RVC Research farm. 

• The use of the range size metrics was confirmed by comparing space-use patterns 

between and during milking periods. 
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5. CHAPTER 5: ANALYSIS OF LOCAL POSITIONING DATA REVEALS 

BUNCHING IN HOUSED DAIRY COWS IS ASSOCIATED WITH HIGHER 

TEMPERATURES. 

5.1. Introduction 

Maintaining close proximity to other individuals can serve to thermoregulate in cold conditions 

(351–353). For instance, piglets spend over 60% of their time bunching to reduce heat loss 

(354). In contrast, cattle have been observed to instead bunch in normal conditions or when 

their environment is warmer than average ambient temperatures, through observational studies 

(281,283,284,355).  

 

Cattle may bunch in shade to decrease heat load; the body temperature of cattle at pasture can 

be reduced through the use of tree shading (356,357). Shaded structures are favoured by housed 

dairy cows during warmer periods of the day, and cows at pasture favour shade with increasing 

sunlight (346,357,358). Strong preference for shade is demonstrated further by dairy cows 

choosing shade in a test arena over lying after half a day of lying deprivation (359). Cattle may 

bunch with the intention to take advantage of shade or to create shade by exposing less body 

surface area to direct sunlight. With housed dairy cows, the former is more likely than the latter, 

given sunlight is likely to be blocked by roofing. 

 

At high temperatures, cattle may congregate at water troughs since drinking will help them 

cool down, or ventilated areas to avoid fly burdens. Moreover, bunching in itself may reduce 

fly burdens; cattle position their tails on the outside of groups and kick and swish their tails to 

protect themselves against stable flies (282,356,360–363). Increased fly burdens could trigger 

defensive aggregation, a known response of both invertebrates and vertebrates to a predatory 
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threat (364,365). Bunching may effectively result in an encounter-dilution effect whereby the 

number of flies per cow in the group decreases, as shown with tsetse flies (366), but cows may 

also lose weight by reducing the time they spend on other activities (363). If significant 

bunching occurs, the herd’s body heat may contribute to an overall rise in ambient temperature, 

which would then raise internal body temperature in a feedback cycle (55,211).  

 

In the context of dairy cattle, heat stress is defined as the sum of factors external to an animal 

that displace their body temperature from a set point, mainly caused by the microclimate within 

their localised environment including temperature, humidity, solar radiation and wind speed 

(367). Behavioural responses of dairy cattle to rising temperatures include a reduction in lying 

time and  increase in standing time (368–370). Standing serves to increase body surface area 

exposed for heat loss, but also raises the risk of lameness and can reduce sleep, which can 

weaken the immune system. Indication of heat stress is also apparent through other behavioural 

responses including reduced feed intake, thought to serve to reduce metabolic heat production, 

and an increase in drinking behaviour to cool individuals down (200,372). Physiological 

changes to heat stress have also been observed including: lower milk yield, increased 

respiration rate, increased heart rate and hindered reproduction (203,373–385).   

 

Previous research has mostly used ambient temperature (barn or local weather station 

recordings) and body temperature, and the Temperature-Humidity Index (THI) as indicators of 

heat stress (Table 1) (199,200,200,202,372,373,376,379,380,385–391). If air movement is low 

and solar radiation is effectively blocked, THI considers both the effects of temperature and 

humidity associated with thermal stress. It is relatively simple to measure on farms with large 

herds and is considered suitable for forecasting the thermal environment indoors (392). THI 
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was initially developed to gauge human heat discomfort (393) but numerous modifications 

have been created for use on cattle (386,394,395). Temperature and THI are commonly used 

to assess physiological changes, with alterations typically detected above thresholds of THI = 

65 to 72 and temperatures ranging from 19°C to 26°C (Table 1). Above THI = 60 and 

particularly above 19°C, behavioural changes have been found. THI appears to be most widely 

used to measure various metrics associated with production, and it has been found that losses 

occur when the THI reaches between 60 and 73 (Table 1). Thresholds therefore vary (THI = 

65 to 72 and 19°C to 26°C) (Table 1). 
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Table 1. Thermal thresholds of production loss: milk yield and conception rate, 

physiological changes: rectal temperature, respiration rate and heart rate and 

behavioural changes: feed intake, drinking rate and lying rate, of cattle. Where the 

relationship with temperature (200,200,202,372,373,376,385–391,396) or THI (368–370) was 

not recorded, this is estimated based on a humidity of 75%, to enable crude comparisons. 

Category Measure THI  Temperature  

Production 

loss 

Milk yield Decrease at threshold of 60 

to 72 (200,202,376,387–

391,396). 

Approximately 16°C to 23°C at 

a relative humidity of 75%. 

Conception 

rate 

Decrease at threshold of 72 

to 73 (373,386). 

Approximately 23°C to 24°C at 

a relative humidity of 75%. 

Physiological 

changes 

Rectal 

temperature 

Increase at threshold of 65 

to 69 (379,380). 

Increase at threshold of 20°C 

to 26°C (381,382). 

Respiration 

rate 

Increase at threshold of 65 

to 69 (379,380). 

Increase at threshold of 19°C 

to 25.5°C (381,383,384). 

Heart rate Increase at threshold of 72 

(385). 

Approximately 23°C to 24°C at 

a relative humidity of 75%. 

 

 

 

 

Behavioural 

changes 

Bunching Increase at approximately 

THI = 67 at a relative 

humidity of 75%. 

Increase above 19°C to 20°C 

(281,355), or higher ≤ 30°C 

than > 30°C (282). 

Feed intake Decrease at threshold of 68 

(200). 

Approximately 21°C at a 

relative humidity of 75%. 

Drinking rate Increase above 60 (372). Approximately 21°C at a 

relative humidity of 75%. 

Lying rate Decrease at approximately 

THI = 65 at a relative 

humidity of 75%. 

For every 1°C increase in mean 

hourly ambient temperature 

from 19°C and from 21°C, 

respectively in (368,369), 

decrease of approximately 21 

to 22 minutes.  

 

Another study reported that at 

lower temperatures ranging 

from -15°C to 19°C, reduction 

in lying by 1.5 minutes for 

every degree increase (370). 

 



139 
 

 
 

In both temperate and subtropical regions, prior studies have shown baseline evidence for 

bunching at high temperatures above a particular threshold (281,283,355), however, the study 

durations and frequency of behavioural recordings have been infrequent and not utilised 

continuous monitoring via sensors. In temperate regions, it was discovered that bunching in 

dairy herds increases when the air temperature surpasses a threshold of 19-20°C (281,355). 

These two studies used either video recordings at 15-minute intervals one day per week for 

thirteen weeks (281), or photographs at 15-minute intervals for three months to measure the 

distribution of cows in each of two or three divisions within a barn (355). 

 

A previous study observed a dairy herd in a humid subtropical climate, categorising individuals 

into one of four nearest neighbour groups, with recordings taken every 20 minutes for ten days, 

then one day per week for six weeks (283). Although an increase in bunching was observed 

with higher THI values (using an ambient temperature measure), a specific temperature 

threshold at which a qualitative change in behaviour occurred was not reported (283). This may 

be attributed to the high temperatures recorded throughout the study period; the weekly least 

mean squares of daily ambient temperature ranged from 21°C to 28°C (283). In contrast, a 

previous study reported a higher incidence of cows at ambient temperatures of 30°C or lower 

compared to temperatures above 30°C (282). However, it is important to note that the study 

did not explore the correlation between temperature and bunching, and used a simple binary 

method to categorise bunching (either present or absent) (282).   

 

This study investigates the association between higher temperatures and bunching behaviour 

in a dairy herd housed on a commercial farm in Essex. Bunching behaviour is defined using 

three metrics based on local positioning data (range size, inter-cow distance and nearest 

neighbour distance) from continuous recordings made over four months in 2014.  
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5.2.  Methodology 

5.2.1. Animals and housing  

A Holstein-Friesian high-yielding dairy cow herd was monitored continuously in a closed free-

stall barn on a commercial farm in Essex, from 1st August 2014 to 30th November 2014 (n = 

127 cows, minimum and maximum unique cows present per day during the study period: n = 

86 days and n = 111 days respectively). Refer to Chapter 2, Section 2.4 for further details on 

the herd and their management.  

 

5.2.2. Local positioning system and data pre-processing 

Each cow was equipped with a combined local positioning sensor, temperature sensor and 

accelerometer, Omnisense 500 (298), mounted on a weighted neck collar. Refer to Chapter 2, 

Section 2.5 for further information on the sensor system. 

Data selection and pre-processing were conducted as outlined in Chapter 2, Section 2.4.  For 

the main analysis, hours when most cows were in the milking parlour or collecting yard were 

excluded (05:00-07:59, 12:00-14:59, 20:00-22:59), since their behaviour during these time 

periods was constrained by farm staff. The sensor system reset at midnight each day and hence 

times between 23:00 and 00:59 were also excluded.   

 

 

5.2.3. Temperature data 

Barn temperature (BT12) was recorded every eight seconds via Oms500 sensors (BT2; n = 22) 

and hourly via wall-mounted fixed ‘Tinytag’ sensors (BT1; n = 4) (Fig 1A) (298,397). The 

BT1 sensors were placed at approximately equal distances down the length (x axis) of the barn 
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at a height of approximately 2.5-3m, alongside four BT2 sensors for comparison (Fig 1A). A 

mean hourly measurement was calculated (across all sensors, n = 26) to give a measure of the 

ambient barn temperature over this period. Other measures of temperature, derived from cow-

equipped sensors and a local weather station, were considered but barn temperature readings 

were used for the bunching analysis as these are the most reliable, independent measures of 

temperature (Appendix 1).  

 

Humidity was also considered but results from this analysis are not included in the main body 

of this chapter, as the readings were derived from a local weather station rather than from within 

the barn, and patterns were shown to be mainly dependent on temperature alone (Appendix 2). 

 

Examples of heatmaps for hours of extreme bunching, alongside corresponding cow positions 

at a given time, visually demonstrate the variations present across the study duration (Fig 1B 

to 1D). Fig 1B-C shows an hour during which the herd spent most time in the right cubicles, 

with some time spent in the middle and right of the feeding zone (FZ), corresponding to a low 

range size (CR = 46, FR = 166). In contrast, Fig 1C-D shows an hour where the cows were 

spread out across the non-feeding zone (NFZ) and the FZ, resulting in a higher range size (CR 

= 88, FR = 268).  
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Figure 1. (A) Barn layout of the commercial farm in Essex showing the positions of 

sensors recording barn temperature, both Oms-500 sensors (n = 11, BT2; black triangles) 

and Tinytag sensors (n = 4, grey triangles, BT1), as well as (B-E) examples of high and 

low bunching. The Oms-500 sensors (n = 22) were also used to form a triangled network to 

fix absolute spatial position (white triangles in A). The area shown in grey (upper barn area) 

was not used by this group of cows during the study period. The barn is divided into the feeding 

zone and the non-feeding zone where cubicles were located. The milking parlour (MP), 

collecting yard (CY), feed barrier (FB) and passageway (P) are also shown. The area shown in 
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grey above the feeding zone was not used by the study group but housed a high-stocked dairy 

cow herd during the study period. The space-use heatmaps show examples of high bunching 

where core range (CR, 50%) = 46, full range (FR, 95%) = 166, and ICD and NND = 12.78m 

and 2.66m respectively (B: 18/09/2014 at 11:00-12:00) and low bunching where CR = 88, FR 

= 268, and ICD and NND = 20.87m and 3.61m respectively (C: 12/10/2014 at 18:00-19:00). 

Examples of point location data for all individuals in the herd are shown for specific time points 

within each hour (D: 18/09/2014 at 11:01:32 and E: 12/10/2014 at 18:00:02).  

 

BT12 peaked during the afternoon, with drops during the night, as expected (Fig 2A). The 

coolest hourly median BT12 was recorded in November (11.89°C) and the hottest in August 

(18.20°C), with median for September and October as 18.01°C and 15.16°C respectively. 

There was a significant difference in mean temperature between months (Fig 2A; K-W chi-

squared = 1043.40, p < 2.2e-16). The mean hourly BT12 reaches above 20°C during the 

afternoon in August and September, but not during October and November (Fig 2). More 

specifically, Fig 2B shows hourly barn temperature over time for the entire study period; most 

of the values which lie above 20°C occur in August and September (93.30%, n = 334 of 358 

hours). 
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Figure 2. (A) Mean 24-hourly barn temperature (BT12 in °C) averaged over all days per 

month, and (B) mean hourly barn temperature (BT12 in °C) recorded during the full 

study period on the commercial farm in Essex (August to November 2014). In A, months 

shown are August = purple circles, September = green triangles, October = grey crosses, 

November = black diamonds (milking times are included). In B, the blue dots data points 

included in the analysis (“main”). The remaining data points, in red, were removed from the 

analysis due to milking (05:00-07:59, 12:00-14:59, 20:00-22:59), or because they are when the 

system reset (approximately 23:00 to 00:59) (“full”). Of the 2905 data points, n = 358 are 

above 20°C, with 334 of these occurring in August and September.
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5.2.4. Bunching metrics 

Given there are no formal definition of ‘bunching’ behaviour in the context of PLF, three 

bunching metrics are used: range size (core and full), mean inter-cow distance (ICD), and mean 

nearest-neighbour distance (NND). These metrics measure different aspects of space-use and 

social proximity, which may be indicative of bunching behaviour. Please refer to Section 2.4.12 

(Chapter 2) for further details on why and how these metrics were calculated.  

 

5.2.5. Segmentation and breakpoints  

A segmented relationship describes changes in a trend at specific values, with a point of change 

referred to as a breakpoint (BP) (398). To explore whether bunching behaviour is affected by 

temperature, and whether this is above a certain threshold, the following approach is adopted, 

considering findings from previous studies (281,355). 

 

5.2.6. Breakpoints 

Based on previous studies on dairy cow behaviour (Table 1) (368,369), it is hypothesised that 

changes in bunching behaviour may occur at 20°C. To test this hypothesis, eight linear 

regression models were created, two per bunching metric (CR, FR, ICD and NND), one for 

data < 20°C and the second for data ≥ 20°C. For this, the lm() function in base R was used 

(e.g., CR ~ BT12). For each model, the dependent variable was the bunching metric, and the 

independent variable was BT12. Chow tests were performed to test the significance of the 

hypothesised BP of 20°C, for all bunching metrics. For this, the function ‘sctest’ from the R 

package ‘strucchange’ was used (398,399), inputting ‘bunching metric ~ temperature’ and 

specifying the BP.  
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For completeness, the R package ‘segmented’ was used to identify the locations of forced 

breakpoints (399). For each bunching metric, the original linear model (for all BT12 values) 

was inputted into the ‘segmented()’ function e.g., segmented(CR ~ BT12), specifying one to 

two breakpoint(s) in BT12. The identified BP was used to create two new linear regression 

models e.g., 1) CR ~ BT12 where BT12 < BP and 2) CR ~ BT12 where BT12 ≥ BP, and the 

results were analysed for each of the eight models. Chow tests were performed to test the 

significance of these breakpoints.  

 

For all linear models, default R settings were used, which excludes observations containing 

NA values and uses QR factorisation, an extensively used method for solving least squares 

problems. Model assumptions were considered before drawing conclusions: heteroskedasticity 

through residual vs fitted plots and NVC tests, and residual normality through QQ-plots and 

the Shapiro-Wilks test (see Appendix 2). 

 

5.2.7. Time of day  

To explore whether time of day effects bunching behaviour, the data were split into time 

intervals between milking periods: one (I1: 1am to 4am), two (I2: 8am to 11am) and three (I3: 

3pm to 7pm). The data corresponding to each of the three intervals were then used to create 

linear regression models e.g., CR ~ BT12 for data recorded during I1 and BT12 ≥ 20°C, and 

the results are analysed. 

 



147 
 

 
 

5.3. Results 

5.3.1. Bunching metrics: time 

The bunching metrics vary over time, and drop during milking periods, where cows are located 

within the restricted space of the milking parlour, except for full range as some cows remained 

in the main barn at a given time during milking times (Fig 3). More specifically, Fig 4 shows 

the hourly bunching metrics over the entire study period, demonstrating variation in the 

bunching metrics over time. 
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Figure 3. Mean hourly bunching metric: core range (50%), full range (95%), inter-cow 

distance (m) and nearest neighbour (m) per month on the commercial farm in Essex. 

Covered months are August, September, October, and November 2014. Hours are divided into 

those in the main barn (blue; “main”) and those in the collected yard and milking parlour 

(05:00-07:59, 12:00-14:59, 20:00-22:59) or when the sensor rest at midnight (approximately 

23:00 to 00:59) (red; “full”).  
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Figure 4. Bunching metrics: core range (50%), full range (95%), inter-cow distance (m) 

and nearest neighbour (m) against time per month, from the data recorded on the 

commercial farm of Essex. Months are August, September, October, and November 2014. 

The blue dots data points included in the analysis (“main”). The remaining data points, in red, 

were removed from the analysis due to milking (05:00-07:59, 12:00-14:59, 20:00-22:59) or 

because they are when the system reset (approximately 23:00 to 00:59) (red; “full”).  
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5.3.2. Segmented relationship: bunching metrics ~ temperature 

Above or equal to 20°C, a clear negative trend is shown between all four bunching metrics and 

BT12, and these are significant for CR, FR, and ICD (Table 2; Fig 5). The trends for the range 

sizes are the strongest, followed by ICD, and the weakest (and non-significant) trend is for 

NND (Table 2; Fig 5). Below 20°C, the relationships between BT12 and the range sizes and 

ICD are also negative but to a lesser extent e.g., for CR, e = -0.15 and p = 0.06 where BT12 < 

20°C whereas e = -2.08 and p = 1.26e-13 where BT12 ≥ 20°C (Table 2; Fig 5). The direction 

of the relationship between NND and BT12 changes from positive to negative either side of 

the breakpoint (Table 2; Fig 5). This broadly supports the prediction that higher temperatures 

are associated with increasing bunching, as well as the existence of a temperature threshold in 

this relationship throughout the entire study period.  

 

For August, for a given BT12 value, the range size values are generally lower and the NND 

values are generally higher in comparison to September (Fig 5). For example, where BT12 is 

20.1°C (rounded to nearest one decimal point), CR = 60 to 65 and NND = 3.57m to 3.80m for 

August (n = 2) whereas CR = 65 to 78 and NND = 3.32m to 3.68m for September (n = 4). The 

pattern is the opposite for ICD and NND (Fig 5). This can be explained by the number of cows 

present in the barn, consistently lower in August (n = 85 to 86) compared to in September (n 

= 92 to 96). Moreover, there are negative trends between BT12 and the bunching metrics ≥ 

20°C when considering August and September separately (Table 2; Fig 5; CR: e = -1.81, SE = 

0.30, t-value = -6.03, p = 2.88e-8 and e = -1.35, SE = 0.49, t-value = -2.79, p = 0.007; FR: e = 

-2.48, SE = 0.81, t-value = -3.05, p = 0.003 and e = -0.66, SE = 1.11, t-value = -0.60, p = 0.55; 

ICD: e = -0.38, SE = 0.05, t-value = -7.44, p = 3.65e-11 and e = -0.31, SE = 0.09, t-value = -

3.27, p = 0.002 and NND: e = -0.02, SE = 0.01, t-value = -2.33, p = 0.02 and e = -0.06, SE = 

0.02, t-value = -4.00, p = 0.0002, for August and September respectively). 
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Table 2. Outputs from the linear regression model assessing the relationship between 

barn temperature (BT12) and bunching, on the commercial farm in Essex, below and 

above the breakpoint of BT12 = 20°C (n = 170), for all the months (overall) and for August 

and September alone (O, A and S, respectively), excluding outliers (n = 5). Outputs from 

Chow tests, which test the significance of the breakpoint, are also shown. Each test is conducted 

for each bunching metric (CR = core range, FR = full range, ICD = inter-cow distance, NND 

= nearest neighbour distance). Significant p-values are in bold. Periods during which cows 

were in the milking parlour or collecting yard were removed (05:00-07:59, 12:00-14:59, 20:00-

22:59), as well as periods during which the sensor reset (23:00 to 00:59). 

 

Bunching 

metric 

Chow-test  < 20°C  Selected data 

 

≥ 20°C   

CR F = 2.23,  

p = 0.11 

e = -0.15, SE = 0.08,  

t-value = -1.88, p = 0.06 

O 

 

e = -2.08, SE = 0.26, 

 t-value = -8.00, p = 1.26e-13 

 A e = -1.81, SE = 0.30,  

t-value = -6.03, p = 2.88e-8 

S e = -1.35, SE = 0.49,  

t-value = -2.79, p = 0.007 

FR F = 1.59,  

p = 0.20 

e = -0.35, SE = 0.16,  

t-value = -2.19, p = 0.03 

O 

 

e = -2.65, SE = 0.63,  

t-value = -4.24, p = 3.51e-5 

 A e = -2.48, SE = 0.81,  

t-value = -3.05, p = 0.003 

S e = -0.66, SE = 1.11,  

t-value = -0.60, p = 0.55 

ICD F = 0.91,  

p = 0.40 

e = -0.03, SE = 0.01, 

 t-value = -3.95, p = 8.46e-5 

O 

 

e = -0.33, SE = 0.04, 

t-value = -7.58, p = 1.52e-12 

  A e = -0.38, SE = 0.05,  

t-value = -7.44, p = 3.65e-11 

S e = -0.31, SE = 0.09,  

t-value = -3.27, p = 0.002 

NND F = 3.17,  

p = 0.04 

e = 0.02, SE = 0.002,  

t-value = 9.40, p < 2e-16 

O 

 

e = -0.01, SE = 0.01,  

t-value = -1.31, p = 0.19 

 A e = -0.02, SE = 0.01, 

 t-value = -2.33, p = 0.02 

S e = -0.06, SE = 0.02,  

t-value = -4.00, p = 0.0002 
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Figure 5. Linear regression plot outputs assessing the relationship between bunching and 

barn temperature (BT12) on the commercial farm in Essex, below and above (or equal 

to) the breakpoint of 20°C (≥ 20°C: n = 170). Plots are shown for each bunching metric (core 

range (50%), full range (95%), inter-cow distance (m) and nearest neighbour distance (m)), 

excluding outliers (n = 5), based on model assumptions, as shown in Appendix 1. A single 

point represents an average per hour and points are coloured by month: August = purple, 
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September = green, October = grey and November = black. Insets showing the patterns for 

August and September alone are also shown. Periods during which cows were in the milking 

parlour or collecting yard were removed (05:00-07:59, 12:00-14:59, 20:00-22:59), as well as 

periods during which the sensor reset (23:00 to 00:59). 

 

For completeness, the analysis in this section was conducted using THI at a breakpoint of 65, 

roughly equivalent to 20°C at a relative humidity of 60% (the mean hourly value over the study 

duration). Humidity readings from two local weather stations were considered, and the results 

are qualitatively similar; there are significantly negative patterns between THI and CR, FR, 

and ICD, and a positive but negligible and non-significant relationship with NND (Appendix 

3). 

 

5.3.3. Cross-checking the breakpoint 

Forcing a data-driven algorithm to find the location of breakpoints finds values close to 20°C 

for all the bunching metrics, except for FR which is not unexpected given outliers e.g., if a 

small number of cows remained in the FZ whereas the rest were bunching in the NFZ, this 

would skew the metric (Table 3). The (significant) negative trends observed using all four 

bunching metrics remain consistent above these forced breakpoints (Table 3).  
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Table 3. Data-driven barn temperature (BT12) breakpoints (BP) and corresponding 

results assessing the linear relationship between barn temperature (BT12) and each 

bunching metric: CR = core range, FR = full range, ICD = inter-cow distance, NND = 

nearest neighbour distance, on the commercial farm in Essex. Significant p-values are in 

bold. Outliers have been excluded, based on linear model assumptions (n = 5). Periods during 

which cows were in the milking parlour or collecting yard were removed (05:00-07:59, 12:00-

14:59, 20:00-22:59), as well as periods during which the sensor reset (23:00 to 00:59). 

 

Bunching 

metric 

BP 

(°C) 

Chow-test < BP ≥ BP 

CR 23.02 F = 2.07,  

p = 0.13 

e = -0.15, SE = 0.08, 

t-value = -1.88, p = 0.06 

e = -2.08, SE = 0.26,  

t-value = -8.00, p = 1.26e-13 

FR 12.18 F = 0.63,  

p = 0.54 

e = 1.60, SE = 0.78, 

t-value = 2.06, p = 0.04 

e = -0.82, SE = 0.16, 

t-value = -5.19, p = 2.58e-7 

ICD 19.69 F = 1.38, 

p = 0.25 

e = -0.03, SE = 0.01, 

 t-value = -3.56, p = 0.0004 

e = -0.35, SE = 0.04, 

t-value = -7.86, p = 1.87e-13 

NND 20.77 F = 4.14,  

p = 0.02 

e = 0.02, SE = 0.002, 

t-value = 11.00, p < 2e-16 

e = -0.01, SE = 0.01, 

t-value = -0.50, p = 0.62 
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5.3.4. Time of day 

Time of day is divided into intervals between milking times; three intervals: one (I1: 1am to 

4am- red; no values where BT12 ≥ 20°C), two (I2: 8am to 11am- blue; n = 33) and three (I3: 

3pm to 7pm- yellow; n = 142).  

 

Focussing on data above 20°C, none of the data points are in I1 and most data points lie in I3 

as opposed to I2 (n = 156 and 39, respectively), which is likely due to the barn reaching higher 

temperatures during the morning and afternoon in comparison to the night/early morning. 

Above the breakpoint, the relationship is negative during interval two (Fig 6; CR: e = -1.49, 

SE = 0.87, t-value = -1.71, p = 0.10, FR: e = -3.41, SE = 2.20, t-value = -1.55, p = 0.13, ICD: 

e = -0.42, SE = 0.19, t-value = -2.16, p = 0.04, NND: e = -0.05, SE = 0.03, t-value = -1.53, p 

= 0.14; n = 35) and interval three (Fig 6; CR: e = -2.30, SE = 0.27, t-value = -8.61, p = 7.93e-

15, FR: e = -3.28, SE = 0.66, t-value = -4.93, p = 2.08e-6, ICD: e = -0.35, SE = 0.04, t-value = 

-8.20, p = 8.85e-14, NND: e = -0.01, SE = 0.01, t-value = -0.66, p = 0.51; n = 155).
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Figure 6. Barn temperature (BT12) against the bunching metrics: core range, full range, 

inter-cow distance and nearest neighbour distance, showing data from the commercial 

farm in Essex, where BT12 ≥ the breakpoint of 20°C and according to time of day. Time 

of day is inputted as a categorical variable, divided into intervals between milking times; three 

intervals: interval one (I1; 1am to 4am- red), interval two (I2; 8am to 11am- blue) and interval 

three (I3;3pm to 7pm- yellow). Note that there are no values in I1 for this dataset where BT12 

≥ 20°C. Periods during which cows were in the milking parlour or collecting yard were 

removed (05:00-07:59, 12:00-14:59, 20:00-22:59), as well as periods during which the sensor 

reset (23:00 to 00:59).
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5.4. Discussion 

Above or equal to 20°C, the herd increased their bunching behaviour, measured in terms of 

reduced: full and core range size, inter-cow distance (ICD) and nearest neighbour distance 

(NND) with increasing barn temperature, and this pattern is found to be significant for the 

range sizes and inter-cow distance. These trends persist during the afternoon and evening (8am 

to 11am and 3pm to 7pm), but not during the night/early morning (1am to 4am) because 

temperatures did not reach 20°C. 

 

The main finding suggests that cows increase their bunching behaviour at warmer than average 

ambient temperatures. This supports previous observational studies investigating the 

relationship between bunching of dairy cows and temperature, by counting the number of cows 

in each of three to four areas of a barn at 15-minute intervals; cows have been found to crowd 

above but not below an ambient temperature of 19°C to 20°C (281,355). The findings from 

this chapter provide further support and a more detailed understanding of how cows may bunch 

at high temperatures, given the data are derived from higher frequency recordings and 

numerous measures of bunching are used, which consider various aspects in space-use and 

social proximity. Specifically, the results indicate that the herd uses less space as a whole at 

high barn temperatures (core range), and not only dyads (NND) position closer together at 

higher temperatures, but multiple individuals follow the same pattern (ICD).   

 

The increase in bunching, using all measures, at warmer than average ambient temperatures is 

found to be present during the morning and afternoon but not during the night/early morning, 

as temperatures did not reach above the 20°C breakpoint during the latter periods. Similar 
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findings have been found previously, where cows were found to crowd more during the 

afternoon, where temperatures were consistently recorded above 22°C than during the 

evening/early morning, where temperatures did not exceed 11°C (281,355). These alterations 

to the spatial positioning of the herd during specific periods of the day are likely to disrupt 

normal behaviours such as feeding, as stocking rates at the feed face are increased. Such 

changes have the potential to disproportionately affect cows with heath issues such as lameness 

who have been reported to moderate their feeding times to avoid competition at the feed face 

(242,400). The lack of bunching in the evening and overnight indicates that these periods are 

important for cows to undertake activities which may have been avoided during the day. The 

occurrence of increased tropical nights in the UK (401) and in other temperature zones may 

diminish the ability of cows to adapt to changing climatic conditions and to catch up on 

important behaviours e.g., feeding. 

 

Cows may alter their spatial positioning during the day due to a preference for specific areas 

of the barn at high temperatures. Possible factors on the commercial farm in Essex which might 

result in the presence of microclimates, namely temperature, humidity and air flow within the 

barn follow: 1) mechanical ventilation was provided by fans in the left and the middle of the 

barn 2) water troughs were located in the centre cross passage and 3) sunlight was radiating 

through the wooden cladding on the right side of the shed, whereas no was sunlight on the left 

side of the shed due to the position of the parlour. Although the overall barn temperature did 

not vary significantly, cows may have detected variations in the microclimate of the barn due 

to these factors. It is not clear to what extent each of these factors affect the bunching behaviour, 

but it can be hypothesised that cows are either drawn to preferable microclimates or driven 

away from adverse microclimates when temperatures increase above 20°C. Further work to 
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investigate temporal and spatial changes of the barn environment is needed to elucidate the 

drivers for bunching behaviours to improve housing designs. 

 

Humidity readings from a local weather station were also used, given many studies use THI as 

well as ambient temperature to measure behavioural changes in dairy cattle, and major changes 

in THI were found to be driven by temperature (see Appendix 3). The relationships between 

THI and the bunching metrics were also qualitatively similar to those for temperature alone, 

with cows bunching to a greater degree with increasing THI beyond a threshold of 65. Regional 

or local humidity is unlikely to reflect the fine scale microclimate changes experienced by cows 

in different areas of the barn at different times. The breakpoint is based on previous studies on 

dairy cows and logical reasoning (243,367,384,402), and is checked by imposing at least one 

breakpoint using an algorithm. This is outputted as close to 20°C for three of the four bunching 

metrics, and the negative trend above these thresholds remain. It must also be considered that 

environmental conditions interact complexly so other measures may also contribute to heat 

stress, such as sunlight, humidity, wind speed and ventilation (358,384,403,404).  

 

Due to the high metabolic demands of dairy cows, their bodies radiate significant heat into their 

local environment to maintain a stable core body temperature (405). Bunching of dairy cattle, 

whether due to management practices such as collection for milking or because of behavioural 

choices, has the potential to create hot and humid conditions capable of inducing heat stress. 

This has implications for welfare, with cows under heat stress showing signs of distress, such 

as an increase in respiration rate, excessive salivation and panting (346,379). Dairy milk yield, 

milk fat and milk protein decrease under  heat stress, and production losses reduce profit 

(202,377,378,388,396). This is particularly pressing given heat stress is predicted to become a 
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greater challenge in the dairy industry as demand increases (2,4,5), and due to the increase in 

tropical nights, including in regions where cattle have experienced little pressure and time to 

adapt to heat stress (401). Further study is required to better understand the relationship 

between bunching and temperature, considering appropriate heat stress thresholds at which to 

alert farmers. 

 

5.5. Conclusions 

This study provides evidence for an increase in bunching behaviour, measured using various 

spatial and social proximity measures, at higher than average ambient temperatures in a large 

housed dairy herd. This behaviour may be a maladaptive response and so the relationship 

between bunching and temperature needs further exploration, particularly given global 

temperatures are predicted to increase. 

The main results of this chapter are outlined below: 

• A dairy herd group housed on a commercial farm in Essex were monitored using a local 

positioning system, to understand the relationship between bunching behaviour and 

temperature. 

• Bunching was measured using a range of metrics to capture various degrees of spatial 

positioning and social proximity: range size, inter-cow distance and nearest neighbour 

distance. 

• The herd increased their bunching behaviour in terms of all four bunching metrics at 

barn temperatures exceeding or equal to 20°C. 

• Data-driven breakpoints were outputted as close to 20°C, and the corresponding results 

are qualitatively similar. 
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5.6. Appendix 1. Temperature  

The hourly barn temperature measures, BT1 and BT2, each a mean of independent sensors, are 

highly correlated throughout the study duration (Fig A1; all hours included: correlation = 0.90). 

Both barn temperature measures are correlated to sensor temperature (ST) (Fig A1 A-B; 

excluding milking times and sensor reset: BT1 = 0.91, BT2 = 0.95). A buffering effect is 

reflected in the differences in temperature ranges between ST and barn temperature (Fig A1; 

excluding milking hours and midnight reset; ST = 12.40°C to 24.96°C, BT1 = 7.40°C to 

28.72°C, BT2 = 6.99°C to 27.60°C). Local temperature (LT) is correlated to ST, BT1 and BT2 

(Fig A1 D-F; excluding milking times; correlations = 0.77, 0.79 and 0.80, respectively). The 

weaker relation between barn temperature and LT therefore confirms this as the most unreliable 

temperature measure. BT1 and BT2 are reliable, independent measures of temperature, so were 

combined as BT12 for the subsequent analysis.  

 

Although BT1 and BT2 are well correlated overall, Fig A1A shows outliers in the BT1 

measures (September 18th to September 29th), also evident when comparing BT1 to ST in Fig 

A2. The correlation is higher at 0.98 without these days, as shown in Fig A2. These outliers 

are likely due to a temporary malfunctioning of the BT1 sensors, potentially due to battery life. 

For these days, BT1 (n = 4) is used alone, rather than BT12. For readability, all data are referred 

to as BT12 henceforth.  
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Figure A1. Relation between temperature measures: barn temperature 1 (BT1), barn 

temperature 2 (BT2), sensor temperature (ST) and local temperature (LT) (°C) on the 

commercial farm in Essex. (A) = BT1 and BT2, (B) = BT1 and ST, (C) = ST and BT2, (d) = 

LT and ST, (e) = LT and BT1 and (f) = LT and BT2. Months are colour coded: August = purple, 

September = green, October = grey and November = black. (A), (B) and (F) contain all hours, 

except sensor reset, whereas (B) to (D) exclude milking hours and sensor reset.   
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Figure A2. Relation between temperature measures: barn temperature 1 (BT1), barn 

temperature 2 (BT2), on the commercial farm in Essex, with outliers in September 

excluded. Outliers were recorded from September 18th to September 29th. Months are colour 

coded: August = purple, September = green, October = grey and November = black. Plot 

contains all hours otherwise, except sensor reset. 
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5.7. Appendix 2. Model assumptions. 

The linear model assumptions, heteroscedasticity, and residual normality were tested where 

BT12 is below and equal to or above the breakpoint of 20°C, and the results show that 

assumptions are met for all the bunching metrics ≥ 20°C when excluding outliers (n = 5), apart 

from for residual normality for ICD (Table A1; Fig A1). Below 20°C, both model assumptions 

are not met for ICD, nor is the heteroscedasticity assumption for NND (Table A1; Fig A1). 

However, given the large sample size, particularly below the breakpoint (< 20°C: n = 1067, ≥ 

20°C: n = 170), extreme values skewing the data from residual normality and homoscedasticity 

are not unexpected, so linear regression was used. Furthermore, comparing Table A2 to Table 

2 in the main text, the conclusions drawn from the linear model outputs do not change 

drastically before excluding these outliers (n = 5). 
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Table A1. Outputs from the linear model assessing the relationship between bunching 

and barn temperature (BT12) on the commercial farm in Essex, below and above (or 

equal to) the breakpoint of 20°C (n = 195). Assumptions of heteroscedasticity and residual 

normality were tested using NVC and Shapiro-Wilks, respectively. Each test result is shown 

for each bunching metric (CR = core range, FR = full range, ICD = inter-cow distance, NND 

= nearest neighbour distance), including all the data (Y) and excluding outliers (N) (n = 5). 

Significant p-values are in bold.  

 Heteroscedasticity  Residual normality 

Bunching 

metric 

Outliers exc. 

(n = 5)  

< 20°C  

 

≥ 20°C  

 

< 20°C  

 

≥ 20°C  

 

CR N  Chi-sq = 0.01, 

p = 0.91 

Chi-sq = 2.31, 

 p = 0.13 

W = 0.98, 

p = 0.004 

W = 0.99,  

p = 0.22 

Y Chi-sq = 0.39,  

p = 0.53 

Chi-sq = 0.22,  

p = 0.64 

W = 0.99,  

p = 1.41e-8 

W = 0.99,  

p = 0.21 

FR N  Chi-sq = 0.85, 

p = 0.36 

Chi-sq = 0.38,  

p = 0.54 

W = 0.99, 

p = 2.69e-8 

W = 0.96, 

 p = 5.67e-5 

Y Chi-sq = 0.19,  

p = 0.66 

Chi-sq = 5.04,  

p = 0.02 

W = 0.99,  

p = 6.09e-7 

W = 0.99,  

p = 0.10 

ICD N  Chi-sq = 141.36, 

p < 2.2e-16 

Chi-sq = 0.89,  

p = 0.35 

W = 0.91, 

p < 2.2e-16 

W = 0.91,  

p = 1.14e-9 

Y Chi-sq = 93.97,  

p < 2.2e-16 

Chi-sq = 0.84, 

p = 0.36 

W = 0.94,  

p < 2.2e-16 

W = 0.97,  

p = 0.002 

NND N  Chi-sq = 38.57, 

p = 5.27e-10 

Chi-sq = 0.15, 

p = 0.70 

W = 0.99, 

p = 0.0007 

W = 0.97, 

p = 0.0008 

Y Chi-sq = 36.78,  

p = 1.32e-9 

Chi-sq = 2.47,  

p = 0.12 

W = 1.00,  

p = 0.40 

W = 1.00,  

p = 0.82 
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Figure A1. Visualisations of regression results and model assumptions assessing the 

relationship between bunching and barn temperature (BT12) on the commercial farm in 

Essex, below and above (or equal to) the breakpoint of BT12 = 20°C: heteroscedasticity, 

and residual normality. For each assumption, plots are shown for each bunching metric (CR 

= core range, FR = full range, ICD = inter-cow distance, NND = nearest neighbour distance).  
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Table A2. Outputs from the linear model assessing the relationship between barn 

temperature (BT12) and bunching, on the commercial farm in Essex, below and above 

(or equal to) the breakpoint of BT12 = 20°C (n = 195), including outliers (n = 5). Outputs 

from Chow tests, which test the significance of the breakpoint, are also shown. Each test result 

is shown for each bunching metric (CR = core range, FR = full range, ICD = inter-cow distance, 

NND = nearest neighbour distance). Significant p-values are in bold. Periods during which 

cows were in the milking parlour or collecting yard were removed (05:00-07:59, 12:00-14:59, 

20:00-22:59), as well as periods during which the sensor reset (23:00 to 00:59). 

 

 

 

 

 

 

Bunching 

metric 

Chow-test  < 20°C  

 

≥ 20°C  

CR F = 3.63, p = 0.03 

 

e = -0.17, SE = 0.08, 

t-value = -2.12, p = 0.03 

e = -1.89, SE = 0.28,  

t-value = -6.64, p = 3.09e-10 

FR F = 1.50, p = 0.22 

 

e = -0.42, SE = 0.16, 

t-value = -2.57, p = 0.01 

e = -2.39, SE = 0.73,  

t-value = -3.27, p = 0.001 

ICD F = 2.03, p = 0.13 

 

e = -0.04, SE = 0.01,  

t-value = -4.63, p = 4.1e-6 

e = -0.30, SE = 0.05, 

t-value = -5.66, p = 5.52e-8 

NND F = 8.21, p = 0.0003 

 

e = 0.02, SE = 0.002, 

t-value = 8.60, p < 2e-16 

e = -0.01, SE = 0.01, 

t-value = -0.78, p = 0.44 
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5.8. Appendix 3. THI analysis. 

For completeness, the main analysis was conducted using THI at a breakpoint of 65, roughly 

equivalent to 20°C at a relative humidity of 60% (the mean hourly value over the study 

duration).  

 

Humidity was not recorded within the barn. Although readings from a local weather station are 

not a direct measure of the indoor environment, and so micro-variation will not be captured 

correctly and corresponding results would rely on a few assumptions, macro-level changes in 

humidity should be. Hourly relative humidity readings were therefore obtained from local 

weather stations, Stanford Rivers and Harold Hill (406,407), approximately 3.5 miles and 7 

miles from the study location respectively, and the Temperature Humidity Index (THI) is 

calculated using the equation from (408) (Equation A1): 

Equation A1.     1.8 × 𝑇 − (1 − 𝑅𝐻)(𝑇 − 14.3) + 32,  

where T = sensor temperature (°C), and RH = relative humidity. 

 

Fig A1 shows the frequency of relative humidity recordings from the two local weather 

stations. 
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Figure A1. Plots showing relative frequency recordings from two weather stations: (A and B) Stanford Rivers and (C and D) Harold Hill near the 

commercial farm in Essex. For each weather station, the distribution of relative humidity (%) recordings are shown as a histogram (A and C) and 
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the recordings are shown across the study duration (B and D). Stanford Rivers was located approximately 3.5 miles from study site and Harold 

Hill was located approximately seven miles from study site. Humidity readings were not available for a few days during the study period: August 

1st to 3rd and September 1st, 2nd, 8th, 9th (9 of 13 hours) 11th, 12th (5 hours), 15th).  
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Figure A2 shows the humidity recordings from both weather stations over the study duration, and the results follow a similar pattern over time. 

Given humidity was often recorded at ~100% for consecutive recordings at Stanford Rivers, which indicates an issue with the sensor system, the 

following analysis was conducted using the data from Harold Hill (Fig A2). 

 

 

Figure A2. Hourly relative humidity, derived from two local weather stations, Stanford Rivers (light blue) and Harold Hill (dark blue) 

near the commercial farm in Essex. Values are shown per hour across the study duration. Stanford Rivers was located approximately 3.5 miles 

from study site and Harold Hill was located approximately seven miles from study site.
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5.8.1. Harold Hill THI analysis 

Fig A3 shows that THI using humidity from Harold Hill peaked during the afternoon. The 

mean hourly THI reaches above the breakpoint of THI = 65 during the afternoon in August and 

September, but not during October and November (Fig A3). Fig A4 shows THI per hour across 

time, showing that most of the values above the breakpoint of THI = 65 lie in August and 

September (~88.52%, n = 455 of 514 hours). 

 

 

Figure A3. Mean hourly Temperature Humidity Index (THI) across the study duration, 

using barn temperature (BT12) and relative humidity derived from Harold Hill, a 

weather station near the commercial farm in Essex. Months are in 2014, and are August = 

red, September = light blue, October = dark blue, November = green. The breakpoint of THI = 

65 is marked with a black line. Note that milking times are included. 
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Figure A4. Hourly Temperature Humidity Index (THI) across time, using barn temperature (BT12) and relative humidity derived from 

a local weather station (Harold Hill) near the commercial farm in Essex. The times shown are from August 2014 to November 2014. The 

breakpoint of THI = 65 is marked with a black line (n = 451 of 1125 hours above THI = 65). The blue dots data points included in the analysis 

(“main”). The remaining data points, in red, were removed from the analysis due to milking or because they are when the system reset (“full”).  
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The breakpoint of THI = 65 is significant for all the metrics except ICD, considering all the 

data, although this also becomes non-significant when excluding outliers for FR and NND (n 

= 5) to satisfy model assumptions (Table A1-A2; Fig A5). The relation is (significantly) 

negative above this breakpoint, before and after excluding the outliers (n = 5), except for with 

NND after excluding outliers (Table A1-A2; Fig A5). It is not unexpected that the negative 

pattern does not hold for NND i.e., the positive relationship with THI is negligible and non-

significant (e = 0.001, p = 0.51; Table A2), as this is similar to the non-significant weak 

relationship found between NND and BT12 (e = -0.01, p = 0.19; main paper- Table 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 



175 
 

 
 

Table A1. Outputs from a linear regression model assessing the relationship between the 

Temperature Humidity Index (THI) and bunching metrics, on the commercial farm in 

Essex, below and above the breakpoint of THI = 65 (n = 889 and 226, respectively), using 

humidity readings from Harold Hill weather station, with outliers included (n = 5). Chow 

test outputs testing the significance of the breakpoint are also shown. Each test is conducted 

for each bunching metric (CR = core range, FR = full range, ICD = inter-cow distance, NND 

= nearest neighbour distance). Significant p-values are in bold.  

 

Bunching 

metric 

Chow-test  THI < 65 

[Shapiro-Wilks; NVC] 

THI ≥ 65 

[Shapiro-Wilks; NVC] 

CR F = 12.87,  

p = 2.94e-6 

e = -0.13, SE = 0.06,  

t-value = -2.38, p = 0.02 

[W = 0.98, p = 5.54e-9; 

Chi-sq = 0.97, p = 0.33] 

e = -1.44, SE = 0.18,  

t-value = -7.86, p = 8.12e-14 

[W = 0.99, p = 0.006; 

Chi-sq = 0.68, p = 0.41] 

FR F = 8.56,  

p = 0.0002 

e = -0.20, SE = 0.11,  

t-value = -1.85, p = 0.06 

[W = 0.99, p = 1.61e-7; 

Chi-sq = 0.48, p = 0.49] 

e = -1.77, SE = 0.47,  

t-value = -3.81, p = 0.0002 

[W = 0.98, p = 0.0001; 

Chi-sq = 5.44, p = 0.02] 

ICD F = 1.98,  

p = 0.14 

e = -0.01, SE = 0.005,  

t-value = -2.78, p = 0.005  

[W = 0.94, p < 2.2e-16; 

Chi-sq = 61.71, p = 3.99e-15] 

e = -0.24, SE = 0.03,  

t-value = -6.97, p = 2.28e-11  

[W = 0.91, p = 6.84e-12; 

Chi-sq = 0.73, p = 0.39] 

NND F = 7.94,  

p = 0.0004 

e = 0.01, SE = 0.001,  

t-value = 8.19, p = 7.88e-16 

[W = 0.99, p = 0.0003; 

Chi-sq = 24.46, p =7.59e-7] 

e = -0.002, SE = 0.007,  

t-value = -0.23, p = 0.82 

[W = 0.98, p = 0.0001; 

Chi-sq = 0.96, p = 0.33] 
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Table A2. Outputs from a linear regression model assessing the relationship between the 

Temperature Humidity Index (THI) and bunching metrics, on the commercial farm in 

Essex, below and above the breakpoint of THI = 65 (n = 884 and 221, respectively), using 

humidity readings from Harold Hill weather station, with outliers excluded (n = 5). Chow 

test outputs testing the significance of the breakpoint are also shown. Each test is conducted 

for each bunching metric (CR = core range, FR = full range, ICD = inter-cow distance, NND 

= nearest neighbour distance), based on model assumption testing. Humidity readings were 

derived from a local weather station, Harold Hill. Significant p-values are in bold.  

Bunching 

metric 

Chow-test  THI < 65 

[Shapiro-Wilks; NVC] 

THI > 65 

[Shapiro-Wilks; NVC] 

CR F = 5.84,  

p = 0.003 

e = -0.11, SE = 0.05,  

t-value = -2.07, p = 0.04 

[W = 0.98, p = 5.54e-9; 

Chi-sq = 0.97, p = 0.33] 

e = -1.52, SE = 0.17,  

t-value = -8.76, p < 2.e-16 

[W = 0.99, p = 0.06; 

Chi-sq = 2.60, p = 0.11] 

FR F = 1.84,  

p = 0.16 

e = -0.20, SE = 0.11,  

t-value = -1.85, p = 0.06 

[W = 0.99, p = 1.61e-7; 

Chi-sq = 0.48, p = 0.49] 

e = -0.19, SE = 0.04,  

t-value = -4.98, p = 7.21e-7 

[W = 0.99, p = 0.06; 

Chi-sq = 5.78, p = 0.02] 

ICD F = 1.87,  

p = 0.15 

e = -0.01, SE = 0.005,  

t-value = -2.45, p = 0.01 

[W = 0.94, p < 2.2e-16; 

Chi-sq = 61.71, p = 3.99e-15] 

e = -0.25, SE = 0.03,  

t-value = -7.98, p = 3.84e-14  

[W = 0.95, p = 2.27e-8; 

Chi-sq = 1.49, p = 0.22] 

NND F = 0.14,  

p = 0.87 

e = 0.01, SE = 0.001,  

t-value = 8.53, p < 2e-16 

[W = 0.99, p = 0.0003; 

Chi-sq = 24.46, p = 7.59e-7] 

e = 0.001, SE = 0.01,  

t-value = 0.14, p = 0.89 

[W = 1.00, p = 0.51; 

Chi-sq = 0.07, p = 0.79] 
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Figure A5. Visualisation of linear model outputs, assessing the relationship between the 

Temperature Humidity Index (THI) and bunching metrics, on the commercial farm in 

Essex, below and above the breakpoint of THI = 65 (n = 884 where THI < 65 and 221 

where THI ≥ 65), with humidity derived from Harold Hill weather station.  Plots are shown 

for each bunching metric (CR = core range, FR = full range, ICD = inter-cow distance, NND 

= nearest neighbour distance), excluding outliers (n = 5), based on model assumption testing. 

A single point represents an average per hour and points are coloured by month: August = 

purple, September = green, October = grey and November = black.  
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Forced breakpoints are outputted as approximately THI = 54 to 68, and the relations above 

these breakpoints remain negative, and are significant for all metrics except for NND (Table 

A3).  

 

Table A3. Data-driven barn temperature (BT12) breakpoints (BP) and corresponding 

results assessing the linear relationship between the Temperature Humidity Index (THI) 

and each bunching metric: CR = core range, FR = full range, ICD = inter-cow distance, 

NND = nearest neighbour distance, on the commercial barn in Essex, using humidity 

readings from Harold Hill weather station. THI breakpoints were found using a data-driven 

approach. Significant p-values are in bold.  

 

Bunching 

metric 

BP Chow-test < BP > BP 

CR 68.27 F = 5.20,  

p = 0.01 

e = -0.07, SE = 0.04,  

t-value = -1.68, p = 0.09 

e = -2.36, SE = 0.47,  

t-value = -5.02, p = 2.29e-6 

FR 54.39 F = 2.34,  

p = 0.10 

e = 0.90, SE = 0.43,  

t-value = 2.11, p = 0.04 

e = -0.58, SE = 0.11,  

t-value = -5.22, p = 2.19e-7 

ICD 65.52 F = 2.43,  

p = 0.09 

e = -0.02, SE = 0.005,  

t-value = -3.45, p = 0.001 

e = -0.27, SE = 0.03,  

t-value = -7.92, p = 8.5e-14 

NND 68.47 F = 1.05,  

p = 0.35 

e = 0.01, SE = 0.001,  

t-value = 10.23, p < 2e-16 

e = -0.01, SE = 0.02,  

t-value = -0.80, p = 0.42 
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6. CHAPTER 6: EFFECTS OF TEMPERATURE ON A DAIRY HERD HOUSED IN 

AN OPEN BARN 

6.1. Introduction 

In Chapter 5, evidence of a dairy cow herd housed in a commercial barn with cubicles (defined 

as a closed barn) increasing their bunching behaviour in response to increasing temperature is 

provided. Bunching may occur around shaded areas, water or places with better ventilation, to 

reduce heat load, or the behaviour may serve to distribute fly burdens 

(49,282,356,362,363,409). Nonetheless, close proximity to other animals means that bunching 

may maladaptively increase internal body temperature, and so an investigation into whether 

there are relationships between temperature and bunching (or other behaviours) in different 

herd groups and barn environments is vital (55,211). 

 

The temperature at which deviations from normal physiological states, production, and 

behaviour are visible proxies for heat stress, varies between studies. For instance, reports show 

respiration rate (RR) increases above threshold temperatures (expected as metabolic costs are 

known to scale with temperature in mammals (410), but this pattern is observed from as low 

as 15°C or temperatures as high as 26°C depending on the study group (381,383,384). 

Although temperature alone is used as a proxy for heat stress, any behavioural changes in cattle 

could also be attributed to a significant impact of relative humidity (e.g., Temperature-

Humidity Index (THI)), often used to assess heat stress, which was not reported in some earlier 

studies (381,382). However, comparisons between THI thresholds, which consider humidity, 

still show differences, with measured RR increasing above environmental THI as low as 64.7 

or THI as high as 70 depending on the study group (379,411). Furthermore, with every 1°C 
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increase in mean hourly ambient temperature, lying down rate is shown to decrease by 21 

minutes from 19°C or 22 minutes from 21°C (368,369). The temperature threshold at which 

changes can be detected therefore does not only appear to be dependent on the measured 

variable, but also on the study group itself.  

 

Cow behaviour may also be linked with temperature outside of the context of heat stress. For 

example, bunching occurs at low temperatures to share warmth (352,353,404). Other 

behaviours may also change depending on mid-range temperatures, such as drinking; for each 

degree Celsius increase in ambient temperature, water intake is found to rise (409,412–414), 

although this is not the case across all herds, highlighting the need to investigate changes in 

behaviour across herd groups (415,416). 

 

Differences in temperature and THI thresholds at which changes in behavioural, physiological, 

and other metrics are found may be dependent on housing type. As temperature or THI 

increases, cows are more likely to undergo heat stress if barns are designed without 

consideration for shade, building materials, and ventilation (417), but this remains an 

assumption that has rarely been tested. The overall layout of a barn can contribute to the 

effectiveness of thermoregulation, with open spaces providing more opportunity to distance 

from conspecifics to cool down. A cow’s ability to use shaded areas to thermoregulate may in 

turn be compromised in housing systems with less space, leading to maladaptive behaviours, 

such as bunching at high temperatures. Housing may also affect behaviour irrespective of 

temperature changes. The physical layout may preclude or allow certain behaviours which 

other barn layouts do or do not allow. Negative impacts are reported in tie stall housing, 

including: increased time spent standing, increased lying interruptions and more collisions with 
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housing equipment, compared to loose housing (418–422). The slope and width of stalls may 

further impact lying behaviour, with evidence of steeper slopes reducing lying duration, and 

narrower stall partitions increasing lying duration (423,424). Bar biting and leaning against 

equipment is also shown to be more prevalent in a tie stall system compared to a loose system 

(425). It therefore appears that natural behaviour is suppressed to a greater extent in areas with 

less space. In line with this, the impact of a high heat load is likely to be heightened at higher 

stocking densities (417), or in constrained spaces. Given the investment in the design of barns, 

financial decisions should be informed by animal welfare and production. Comparing between 

barn designs can help inform this debate so it is useful to investigate whether animal comfort, 

including thermoregulation, is optimised in specific housing.  

 

This chapter aims to further the investigation of bunching behaviour with temperature, which 

was conducted in Chapter 5 using data collected from a herd housed on a commercial farm in 

Essex. This is carried out by investigating whether a second herd group, referred to as the herd 

on the RVC Research farm, also bunch in response to increasing temperature. Cows on the 

RVC Research farm, also in southeast England, were housed with a greater space allowance 

(lower stocking density and open barn layout i.e., no cubicles) than the herd on the commercial 

farm in Essex (higher stocking density and closed barn layout i.e., with cubicles). On the RVC 

Research farm, mean hourly barn temperature (BT2) was only recorded ≥ 20°C on two 

occasions, due to the location of the sensors in areas of the barn other than the non-feeding and 

feeding zones. Therefore, the hypothesis from Chapter 5 (bunching increases with barn 

temperature above ≥ 20°C), based on heat stress onset, is not appropriate. Instead, a purely 

data-driven approach is adopted in this chapter to investigate possible behavioural links 

between bunching and temperature. 
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6.2. Methods 

6.2.1. Animals and housing 

As detailed in the General Methodology (Chapter 2), a dairy cow herd (approximately 90% 

Holstein-Friesian and approximately 10% Brown Swiss) was continuously monitored on a 

farm referred to as the RVC Research farm, where cows were housed in an open barn (no 

cubicles) at a moderate stocking density (17th October 2015 to 7th December 2015; n = 55, a 

minimum of 45 cows each month; stocking density of feed space = 4.04m2 to 4.93m2 per cow, 

lying space = 7.28m2 to 8.90m2 per cow) (Figure 1). For further details on the herd and their 

management, please refer to Chapter 2, Section 2.4.  

 

6.2.2. Local positioning system and data pre-processing 

Each cow was equipped with a combined local positioning sensor and accelerometer, 

Omnisense 500 (298), mounted on a weighted neck collar. Refer to Chapter 2, Section 2.5 for 

further information on the sensor system. 

 

Data selection and pre-processing was conducted as outlined in Chapter 2, Section 2.4. For the 

main analysis, hours when most cows were in the milking parlour or collecting yard were 

excluded (05:00 to 07:59 and 14:00 to 16:59), since their behaviour during these time periods 

was constrained by farm staff. The sensor system reset at midnight each day and hence times 

between 23:00 and 00:59 were also excluded.   
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6.2.3. Temperature 

Barn temperature was recorded every ten seconds via fixed Oms500 sensors (BT2; n = 3) (298) 

which were placed in the parlour, parlour exit and handling area (referred to as ‘fixed sensors 

recording BT2’ in Fig 1). It was planned to derive barn temperature recordings from the 

remaining Om500 sensors (n = 12; see ‘fixed sensors’ in Fig 1), but upon review of the data, 

it was found that these sensors were not set to record temperature correctly. Although readings 

from inside the feeding and non-feeding zones would have provided a better direct indication 

of the temperatures the herd were experiencing, the measurements derived from the three BT2 

sensors are nevertheless still a good indicator of the ambient barn temperature and are more 

accurate compared to other possible sources of temperature data (e.g., from local weather 

stations). For the purposes of analysis, the average hourly measure across BT2 sensors (n = 3) 

was calculated (as for BT12 in Chapter 5). 

 

 

 

 



184 
 

 
 

 

Figure 1. Barn layout of the RVC Research farm showing the positions of the fixed 

sensors (Oms-500) used to form a triangulated network to fix the absolute spatial position 

and record barn temperature. Fixed sensors are shown with white triangles, and those that 

recorded barn temperature (BT2; n = 3) are shown with black triangles. The barn is divided 

into the feeding zone (FZ) and the non-feeding zone (NFZ). The milking parlour (MP), 

collecting yard (CY), feed barrier (FB) and passageway (P) are also shown. The grey areas 

were not used by the study group. However, during the study period, a low-yield dairy cow 

herd was housed in the grey area between the collecting yard/parlour and feeding zone. 

Furthermore, during the study period, a group of young stock were also housed in the grey area 

below the handling area, where x = ~ > 40m. 
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To explore time-dependent effects, the data were split into roughly two-week periods: division 

one (16/10/2015 to 28/10/2015), division two (29/10/2015 to 10/11/2015), division three 

(11/11/2015 to 23/11/2015) and division four (24/11/2015 to 08/12/2015).  

 

Although division four of the study duration (24/11/2015 to 08/12/2015) is on average a cooler 

period compared to the remaining time periods (16/10/2015 to 23/11/2015) in the UK, in 2015 

the temperatures for this division were the warmest on record across the UK to date according 

to numerous weather stations (426). BT2 peaked during the afternoon with troughs during the 

night, as expected (Fig 2). The coolest median temperature (BT2) was recorded in division one 

(16/10/2015 to 28/10/2015) at 13.76°C and the hottest in division two (29/10/2015 to 

10/11/2015) at 17.50°C), with divisions three (11/11/2015 to 23/11/2015) and four (24/11/2015 

to 08/12/2015) as 14.78°C and 15.15°C respectively, and a significant difference in median 

temperature between divisions (Fig 1; K-W chi-squared = 308.65, p < 2.2e-16). The mean 

hourly BT2 is consistently higher in division two, always above 15°C, compared to in the 

remaining divisions where BT2 only reaches above 15°C during the afternoon.    
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Figure 2. Mean barn temperature (BT2 in °C) per hour for each of four 13-day divisions 

of the study duration on the RVC Research farm. Divisions are defined as: division one 

(16/10/2015 to 28/10/2015) = blue squares, division two (29/10/2015 to 10/11/2015) = green 

circles, division three (11/11/2015 to 23/11/2015) = brown triangles, division four (24/11/2015 

to 08/12/2015) = grey diamonds). A breakpoint of 15.91°C is marked with a black line. Note 

that data from milking periods are included.
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Figure 3 shows BT2 per hour across time for the entire study period; the highest values lie in 

division two, where mean hourly BT2 reaches up to 20.50°C. 

 

 

Figure 3. Temperature (BT2 in °C) per hour across time for the entire study duration on 

the RVC Research farm. Divisions marking 13-day blocks are marked with black vertical 

lines: division one (16/10/2015 to 28/10/2015), division two (29/10/2015 to 10/11/2015), 

division three (11/11/2015 to 23/11/2015) and division four (24/11/2015 to 08/12/2015)). The 

blue dots data points included in the analysis (“main”). The remaining data points, in red, were 

removed from the analysis due to milking (05:00 to 07:59 and 14:00 to 16:59) or when the 

system reset (approximately 23:00 to 00:59) (“full”).   
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6.2.4. Bunching metrics 

Given there are no formal definition of ‘bunching’ behaviour in the context of precision 

livestock farming (PLF), four bunching metrics are used: core range (CR), full range (FR), 

mean inter-cow distance (ICD), and mean nearest-neighbour distance (NND). These metrics 

measure different aspects of space-use and social proximity, which may be indicative of 

bunching behaviour. Please refer to Section 2.4.12 (Chapter 2) for further details on why and 

how these metrics were calculated. 

 

6.2.5. Segmentation and breakpoints 

6.2.5.1. Breakpoints 

To identify the locations of forced breakpoints, the R package ‘segmented’ was used (399).  

For each bunching metric, the original linear model (for all BT2 values) was inputted into the 

‘segmented()’ function e.g., segmented(CR ~ BT2), specifying one to two breakpoint(s) in 

BT2. The identified BP was used to create two new linear regression models e.g., 1) CR ~ BT2 

where BT2 < BP and 2) CR ~ BT2 where BT2 ≥ BP, and the results were analysed for each of 

the eight models. After identifying the location of these breakpoints, Chow tests were 

performed to test their significance. Based on these results and the BT2 distribution, a 

breakpoint of 15.91°C was adopted for the final linear regression model.  

 

For all linear models, default R settings were used, which excludes observations containing 

NA values and uses QR factorisation, an extensively used method for solving least squares 

problems. Model assumptions were considered before drawing conclusions: heteroskedasticity 

through residual vs fitted plots and NVC tests, and residual normality through QQ-plots and 

the Shapiro-Wilks test (Appendix 1). 
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6.2.5.2. Time of day  

To explore whether time of day effects bunching behaviour, the data were split into time 

intervals between milking periods: one (I1: 8am to 1pm- blue; n = 130) and two (I2: 5pm to 

4am- yellow; n = 315). The data corresponding to each of the two intervals were then used to 

create linear regression models e.g., CR ~ BT2 for data recorded during I1 and BT2 ≥ 15.91°C, 

and the results were analysed.  

 

6.3. Results 

6.3.1. Bunching metrics: time 

Visualising patterns in bunching metrics shows variation across time (Fig 4-5). There are sharp 

declines in the bunching metrics during milking periods, where cows were located within the 

restricted space of the milking parlour, except for full range as several cows remained in the 

main barn at a given time during milking periods (Fig 4-5).  
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Figure 4. Bunching metrics: hourly core range (50%), full range (95%), inter-cow 

distance (m) and nearest neighbour (m) against time on the full RVC Research farm. 

Divisions marking 13-day blocks are marked with black vertical lines: division one 

(16/10/2015 to 28/10/2015), division two (29/10/2015 to 10/11/2015), division three 

(11/11/2015 to 23/11/2015) and division four (24/11/2015 to 08/12/2015)). Data points are 

colour-coded according to hours cows spent in the main barn (‘main’; blue) and in the milking 

yard/collecting parlour (05:00 to 07:59 and 14:00 to 16:59) or when the sensor system reset at 

midnight (approximately 23:00 to 00:59) (‘full’, red). 
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Figure 5. Mean hourly bunching metric: core range (50%; CR), full range (95%; FR), 

inter-cow distance (m; ICD) and nearest neighbour (m, NND), for the full herd on the 

RVC Research farm, by divisions of 13-day blocks. Divisions are defined as: division one 

(16/10/2015 to 28/10/2015; A, E, I and M for CR, FR, ICD and NND, respectively), division 

two (29/10/2015 to 10/11/2015; B, F, J and N for CR, FR, ICD and NND,, respectively), 

division three (11/11/2015 to 23/11/2015; C, G, K and O for CR, FR, ICD and NND, 

respectively) and division four (24/11/2015 to 08/12/2015; D, H, L and P for CR, FR, ICD and 

NND, respectively)). Hours are divided into those spent in the main barn (‘main’; blue; 08:00 

to 13:59, 17:00 to 22:59 and 01:00 to 04:59) and those spent in the collected yard and milking 

parlour (05:00 to 07:59 and 14:00 to 16:59) or when the sensor rest at midnight approximately 

23:00 to 00:59) (‘full’; red). 
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6.3.2. Breakpoints for bunching metrics ~ barn temperature 

Forcing an algorithm to find the location of breakpoints outputs values at 18.90°C for core 

range (CR), 13.00°C for full range (FR), 9.77°C for inter-cow distance (ICD) and 15.91°C for 

nearest neighbour distance (NND), and the breakpoints for ICD and NND are significant (Table 

1). Negative trends, significant or close to significant, hold above these breakpoints for all the 

bunching metrics (Table 1). However, the minority of the data lies where BT2 ≥ 18.90°C 

(4.18%), and most of the data lies where BT2 ≥ 13.00°C (72.50%) or BT2 ≥ 9.77°C (92.90%) 

so interpreting the model outputs based on this skewed distribution either side of this 

breakpoint would not be sensible. A breakpoint of 15.91°C is therefore adopted for the 

subsequent analysis, where the BT2 is significant for NND, and where approximately half 

(42.90%) of the data lies above or equal to this threshold. 
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Table 1. Results from analysis investigating the linear relationship between barn 

temperature (BT2) and each bunching metrics (CR = core range, FR = full range, ICD = 

inter-cow distance, NND = nearest neighbour distance), on the RVC Research farm, using 

a data-driven approach to identify breakpoints in BT2. Significant p-values are in bold. 

The breakpoints were estimated regardless of their statistical significance. After identifying the 

locations of these breakpoints, Chow tests were conducted to evaluate their significance. 

Periods during which cows were in the milking parlour or collecting yard were removed (05:00 

to 07:59 and 14:00 to 16:59), as well as periods during which the sensor reset (approximately 

23:00 to 00:59). 

Bunching 

metric 

BP 

(°C) 

Chow-test < BP ≥ BP 

CR 18.90 F = 1.72,  

p = 0.18 

e = -0.18, SE = 0.07, 

t-value = -2.47, p = 0.01 

e = 4.27, SE = 2.53, 

t-value = 2.53, p = 0.10 

FR 13.00 F = 1.52,  

p = 0.22 

e = 0.22, SE = 0.49, 

t-value = 0.46, p = 0.65 

e = -1.21, SE = 0.41, 

t-value = -2.99, p = 0.003 

ICD 9.77 F = 3.19,  

p = 0.04 

e = -0.28, SE = 0.07, 

t-value = -4.15, p = 3.92e-5 

e = -0.29, SE = 0.03, 

t-value = -8.94, p < 2e-16 

NND 15.91 F = 3.36,  

p = 0.04 

e = 0.03, SE = 0.11, 

t-value = 0.28, p = 0.78 

e = -0.23, SE = 0.04, 

t-value = -5.92, p = 8.43e-9 
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Breakpoints are compared between divisions: division one (16/10/2015 to 28/10/2015), 

division two (29/10/2015 to 10/11/2015), division three (11/11/2015 to 23/11/2015) and 

division four (24/11/2015 to 08/12/2015) for completeness, to test whether the breakpoint 

causes the change in bunching behaviour, or whether this is due to the time period of the study. 

Results show that most breakpoints lie between 12.95°C (lower quantile) and 15.79°C (upper 

quantile), with the median breakpoint as 15.45°C, close to the previously found breakpoint of 

15.91°C (Table 3). In a few cases, the breakpoint is found on the lower or upper end of the BT2 

distribution e.g., only 3.80% of the full data lie where BT2 < 7.88°C and only 1.17% of the full 

dataset lie where BT2 ≥ 19.50°C, so these breakpoints are not sensible (Table 3). Moreover, 

there is no clear pattern between breakpoints and the divisions, so the following analysis is 

conducted using the full dataset and a breakpoint of 15.91°C (Table 3).  
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Table 2. Linear regression model outputs above or equal to data-driven barn temperature 

(BT2) breakpoints, for each 13-day division of the study conducted on the RVC Research 

farm. Divisions are defined as: division one (16/10/2015 to 28/10/2015), division two 

(29/10/2015 to 10/11/2015), division three (11/11/2015 to 23/11/2015) and division four 

(24/11/2015 to 08/12/2015). The breakpoints were estimated regardless of their statistical 

significance. After identifying the locations of these breakpoints, Chow tests were conducted 

to evaluate their significance. Each test is conducted for each bunching metric (CR = core 

range, FR = full range, ICD = inter-cow distance, NND = nearest neighbour distance). 

Significant p-values are in bold. Periods during which cows were in the milking parlour or 

collecting yard were removed (05:00 to 07:59 and 14:00 to 16:59), as well as periods during 

which the sensor system reset (approximately 23:00 to 00:59). 

Bunching 

metric 

Division BP (°C) Chow-test ≥ BP °C 

CR 1 15.00 F = 0.66, p = 0.52 e = -2.86, SE = 0.83, 

t-value = -3.46, p = 0.001 

2 19.50 F = 8.06, p = 0.0004 e = 15.18, SE = 7.37, 

t-value = 2.06, p = 0.07 

3 15.72 F = 5.59, p = 0.04 e = -0.90, SE = 0.91, 

t-value = -0.99, p = 0.33 

4 9.04 F = 1.96, p = 0.14 

 

e = -0.73, SE = 0.18, 

t-value = -4.06, p = 7.24e-5 

FR 1 15.39 F = 2.96, p = 0.05 e = -9.80, SE = 2.27, 

t-value = -4.31, p = 7.55e-5 

2 19.50 F = 6.54, p = 0.002 e = 41.63, SE = 21.36, 

t-value = 1.95, p = 0.08 

3 15.50 F = 6.28, p = 0.002 e = -4.65, SE = 1.88, 

t-value = -2.48, p = 0.02 

 4 7.88 F = 0.86, p = 0.43 e = -1.40, SE = 0.40, 

t-value = -3.46, p = 0.001 

ICD 1 9.99 F = 1.95, p = 0.15 e = -0.13, SE = 0.04, 

t-value = -3.10, p = 0.02 

2 17.49 F = 11.49, p = 1.86e-5 e = -0.23, SE = 0.31, 

t-value = -0.74, p = 0.46 
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3 14.24 F = 17.36, p = 1.25e-7 e = -0.72, SE = 0.18, 

t-value = -4.04, p = 0.0001 

4 11.50 F = 1.08, p = 0.34 e = -0.54, SE = 0.09, 

t-value = -5.98, p = 1.24e-8 

NND 1 16.00 F = 1.61, p = 0.20 e = -0.28, SE = 0.12, 

t-value = -2.26, p = 0.03 

2 15.65 F = 3.39, p = 0.04 e = -0.07, SE = 0.04, 

t-value = -1.81, p = 0.07 

3 15.72 F = 6.14, p = 0.003 e = -0.07, SE = 0.04, 

t-value = -1.55, p = 0.13 

4 13.43 F = 2.54, p = 0.08 e = 0.39, SE = 0.07, 

t-value = 5.31, p = 4.74e-7 
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For NND, there is a clear qualitative change around the breakpoint of 15.91°C; the non-

significant positive increase in NND with increasing temperature below the BP becomes a 

significant negative decrease above or equal to the breakpoint (Table 6; Fig 7). There is also a 

qualitative change below and above (or equal to) the breakpoint for FR, but these trends are 

non-significant (Table 5; Fig 7). Either side of the breakpoint, there is a change in the gradient 

for CR, but the behaviour is qualitatively the same, and there is no change for ICD (Table 5; 

Fig 7). 

 

Table 3. Outputs from linear regression assessing the relationship between bunching and 

barn temperature (BT2), on the RVC Research farm, below and above a breakpoint of 

BT12 = 15.91°C (n = 320 ≥ 15.91°C), excluding outliers (n = 5). Chow test outputs testing 

the significance of the breakpoint are also shown. Each test is conducted for each bunching 

metric (CR = core range, FR = full range, ICD = inter-cow distance, NND = nearest neighbour 

distance). Outliers are removed based on model assumption testing, as shown in Appendix 1. 

Significant p-values are in bold. Periods during which cows were in the milking parlour or 

collecting yard were removed (05:00 to 07:59 and 14:00 to 16:59), as well as periods during 

which the sensor system reset (approximately 23:00 to 00:59). 

 

Bunching 

metric 

Chow-test  < 15.91°C  ≥ 15.91°C   

CR F = 2.57, p = 0.08 

 

e = 0.0002, SE = 0.11, 

t-value = 0.002, p = 1.00 

e = 0.74, SE = 0.31, 

t-value = 2.39, p = 0.02 

FR F = 0.61, p = 0.55 

 

e = -0.08, SE = 0.26, 

t-value = -0.32, p = 0.75 

e = 0.49, SE = 0.76, 

t-value = 0.64, p = 0.52 

ICD F = 1.80, p = 0.17 

 

e = -0.13, SE = 0.04, 

t-value = -4.19, p = 3.39e-5 

e = -0.20, SE = 0.12, 

t-value = -1.63, p = 0.11 

NND F = 2.51, p = 0.08 

 

e = 0.12, SE = 0.01, 

t-value = 9.59, p < 2.2e-16 

e = -0.22, SE = 0.04, 

t-value = -6.09, p = 3.39e-9 
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Figure 6. Linear regression plot outputs assessing the relationship between bunching and 

barn temperature (BT2) on the RVC Research Farm, below and above (or equal to) 

15.91°C (≥ 15.91°C: n = 315). Results are shown for each bunching metric (CR = core range, 
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FR = full range, ICD = inter-cow distance, NND = nearest neighbour distance). Outliers are 

excluded (n = 5), based on model assumption testing. A single point represents an average per 

hour and points are coloured by 13-day divisions: division one (16/10/2015 to 28/10/2015; 

green), division two (29/10/2015 to 10/11/2015; purple), division three (11/11/2015 to 

23/11/2015; yellow) and division four (24/11/2015 to 08/12/2015; grey)). Periods during which 

cows were in the milking parlour or collecting yard were removed (05:00 to 07:59 and 14:00 

to 16:59), as well as periods during which the sensor reset (approximately 23:00 to 00:59). 
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Considering the divisions separately, the negative trend between BT2 and the bunching metrics 

≥ 15.91°C is shown in most cases, except for with range size for division two and with three 

of the four metrics in division four where the relationships are positive but non-significant, so 

there is no clear impact of division on the relationship (Table 6). 

 

Table 4. Outputs from linear model assessing the relationship between bunching and 

barn temperature (BT2), on the RVC Research farm, above or equal to a breakpoint of 

15.91°C (n = 746 in total, with n = 315 ≥ 15.91°C), for each 13-day division, with outliers 

excluded (n = 5). Divisions are defined as: division one (16/10/2015 to 28/10/2015), division 

two (29/10/2015 to 10/11/2015), division three (11/11/2015 to 23/11/2015) and division four 

(24/11/2015 to 08/12/2015)). Outliers are excluded, based on model assumption testing, as 

shown in Appendix 1. Significant p-values are in bold. Periods during which cows were in the 

milking parlour or collecting yard were removed (05:00 to 07:59 and 14:00 to 16:59), as well 

as periods during which the sensor system reset (approximately 23:00 to 00:59). 

 

 ≥ 15.91°C 

Bunching 

metric 

Division 1 Division 2 Division 3 Division 4 

CR e = -0.50, SE = 0.87,  

t-value = -0.57,  

p = 0.57 

e = 0.23, SE = 0.43,  

t-value = 0.54, 

 p = 0.59 

e = -1.51, SE = 0.93, 

 t-value = -0.55,  

p = 0.59 

e = 0.46, SE = 1.50,  

t-value = 0.31,  

p = 0.76 

FR e = -7.23, SE = 2.87,  

t-value = -2.52,  

p = 0.02 

e = 0.32, SE = 1.02,  

t-value = 0.31, 

 p = 0.76 

e = -1.03, SE = 2.46,  

t-value = -0.42,  

p = 0.68 

e = 1.75, SE = 3.68, 

 t-value = 0.48,  

p = 0.64 

ICD e = -0.22, SE = 0.33,  

t-value = -0.67,  

p = 0.51 

e = -0.10, SE = 0.17,  

t-value = 0.60,  

p = 0.55 

e = -0.54, SE = 0.33,  

t-value = -1.60,  

p = 0.11 

e = -0.17, SE = 0.67, 

 t-value = -0.25,  

p = 0.80 

NND e = -0.30, SE = 0.12, 

 t-value = -2.46,  

p = 0.02 

e = -0.08, SE = 0.05, 

t-value = -1.61, 

 p = 0.11 

e = -0.07, SE = 0.05,  

t-value = -1.43,  

p = 0.16 

e = 0.34, SE = 0.19, 

 t-value = 1.82,  

p = 0.07 
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6.3.3. Time of day 

Time of day is divided into intervals between milking times: interval one (I1: 8am to 1pm- 

blue; n = 130) and interval two (I2: 5pm to 4am- yellow; n = 315). 

 

Above or equal to 15.91°C, the relationship between BT2 and NND remains significantly 

negative during both time intervals (Fig 8; I1: e = -0.21, SE = 0.05, t-value = -4.11, p = 7.04e-

5 and I2: e = -0.22, SE = 0.05, t-value = -4.28, p = 3.07e-5). The case is similar for ICD; the 

relationship remains negative across time intervals (Fig 8; I1: e = -0.15, SE = 0.17, t-value = -

0.87, p = 0.38 and I2: e = -0.17, SE = 0.17, t-value = -0.99, p = 0.33). This suggests that the 

cows were bunching across time intervals in terms of NND and ICD.  

 

The positive relationship between BT2 and CR is stronger during I2 than during I1 (Fig 8; I1: 

CR: e = 0.35, SE = 0.45, t-value = -0.77, p = 0.44 and I2: CR: e = 1.36, SE = 0.41, t-value = 

3.31, p = 0.001), and the negative relationship between BT2 and FR during I1 becomes positive 

during I2 (Fig 8; I1: FR: e = -2.18, SE = 1.09, t-value = -2.00, p = 0.048 and I2: FR: e = 3.11, 

SE = 1.04, t-value = 2.99, p = 0.003).  
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Figure 7. Barn temperature (BT2) against the bunching metrics: core range, full range, 

inter-cow distance and nearest neighbour distance, showing data collected from the RVC 

Research farm, where BT2 ≥ the breakpoint of 15.91°C, according to time of day. Time 

of day is inputted as a categorical variable, divided into intervals between milking times; three 

intervals: interval one (I1: 8am to 1pm- blue; n = 169) and interval two (I2: 5pm to 4am- 

yellow; n = 227).  Periods during which cows were in the milking parlour or collecting yard 

were removed (05:00 to 07:59 and 14:00 to 16:59), as well as periods during which the sensor 

reset (approximately 23:00 to 00:59). 
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6.4. Discussion 

In this chapter, the relationship between barn temperature (BT2) and four measures of bunching 

behaviour, core range (CR), full range (FR), inter-cow distance (ICD) and nearest neighbour 

distance (NND) were examined using data collected from a herd housed in an open barn system 

(no cubicles) on an RVC Research farm; as per a study of cows housed in a closed barn system 

(with cubicles), on a commercial farm in Essex, in Chapter 5. The herd significantly increased 

their bunching response in terms of NND with increasing barn temperature above or equal to, 

but not below, 15.91°C. On both sides of this threshold, the relationships between temperature 

and the remaining bunching metrics were found to be either negative (ICD) or qualitatively 

dissimilar to the trends for NND but non-significant (CR and FR). No clear pattern was 

detected between 13-day block divisions and the relationships between BT2 and the bunching 

metrics. The trends for NND and ICD were found to hold across times of the day but are 

inconsistent for the range sizes. This study provides evidence of cows responding to increasing 

temperature by bunching with other herd members, using various measures of bunching, an 

important finding as it could demonstrate that cows maladaptively respond to an increased heat 

load.  

 

The patterns between the bunching metrics and BT2 ≥ 15.91°C on the RVC Research farm are 

similar to those found on the commercial farm in Essex ≥ 20°C, in that cows are shown to 

bunch more above these thresholds in terms of NND. This trend holds for range size and ICD 

on the commercial farm in Essex but not on the RVC Research farm; although ICD is found to 

decline with increasing BT2, this is not only above a breakpoint. The cows bunched in terms 

of NND on the RVC Research farm ≥ 15.91°C across times of the day, as on the commercial 

farm in Essex ≥ 20°C. The greater space allowance on the RVC Research farm, compared to 
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on the commercial farm in Essex, may have meant cows were more able to find areas to cool 

down whilst less active during the evening and night, making it less likely they would bunch 

in terms of range size, whether this is driven by seeking shade, social support, or other reasons. 

 

Differences in patterns of bunching between farms could also be explained by numerous factors 

including a herd’s ability to cope with heat. Cows may become acclimatised to local 

environmental conditions such that one herd may consider a temperature warm whereas cows 

in warmer climates may not. Therefore, some herds may be less likely to respond, e.g., 

behaviourally, to high temperatures. The degree to which a cow is acclimated to a local 

temperature is likely dependent on rearing history and breed. Some cattle breeds are more heat 

tolerant than others, and tolerance could be tested in relation to behavioural responses such as 

bunching (427). Cows on the commercial farm in Essex were only Holstein-Friesian whereas 

10% of cows on the RVC Research farm were Brown Swiss, and the remaining 90% were 

Holstein-Friesian, which may have contributed differences in overall heat tolerance. 

Investigation into whether differences in temperature thresholds vary between groups would 

be useful, to help optimise management. 

 

Other individual attributes may contribute as well; cows in early lactation have been found to 

have a higher rectal temperature compared to cows in late lactation, suggesting that the former 

are more susceptible to heat stress, although this is not consistent across studies (346,379). 

However, this inconsistency may be attributed to how cows were grouped by lactation; a 

different number of categories were used in these studies, but this needs further investigation 

(346,379). Other attributes such as parity may contribute; a pattern between parity and rectal 

temperature has been observed, although this was non-significant (346,379).  
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An individual cow’s stance could also impact heat tolerance, as found with physiological 

changes including respiration rate (RR) (379,380). RR thresholds appear to be lower for lying 

cows, at THI = 60 to 66, compared to standing cows where RR thresholds are reported at THI 

= 68 to 70  (379,380). Standing exposes a greater skin surface area compared to lying, allowing 

greater heat loss, which could explain these differences. Cows on the RVC Research farm may 

have been more likely to find a comfortable space to lie down during the evening and night, 

given the space allowance was greater than on the commercial farm in Essex in terms of 

stocking density and the open barn layout, potentially lowering the extent of the bunching 

response in terms of range size and ICD due to a greater tolerance of high temperatures.  

 

The strength of bunching at higher temperatures, alongside the breakpoint, could change if 

temperature on the RVC Research farm was more frequently recorded above 20°C, or heat 

stress may occur between 15.91°C and 20°C. As it was not possible to determine the difference 

in ambient temperature between those recorded in the gateways and parlour, by the sensors, 

and within the feeding and non-feeding zones where the herd were located, it is possible that 

the relationship between temperature and bunching was masked for range size and ICD using 

this data. Alternatively, temperature may not be the (main) cause of the bunching behaviour. 

Time of day did not appear to contribute, as there was no significant difference in the 

relationship between temperature and NND between periods where temperatures reached 

above the threshold, on both the commercial farm in Essex with 20°C and the RVC Research 

farm with 15.91°C. Instead, management may contribute to the behaviour e.g., cows may bunch 

before milking in preparation to move to the collecting yard to relieve milk yield, or before 

scheduled feeding times to gain resources promptly.  
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Understanding the prevalence of bunching behaviour at high temperatures across farms is 

crucial, as is understanding the temperature at which this starts occurring in case this behaviour 

is maladaptive. Even if temperature is not the main driver behind bunching, if this is the case 

across farms, cows under high temperatures are prone to increased heat load therefore heat 

stress. This needs to be addressed for health, welfare, and productivity (55). Another important 

step would be to investigate the reasons behind bunching behaviour, e.g., shade, water, fly 

burden, stress, so that mitigation strategies can be implemented.  

 

6.5. Conclusions 

This chapter provides further support for cows bunching with increasing temperature above a 

threshold, as found on the commercial farm in Essex in Chapter 4. It is demonstrated that a 

second dairy cow herd housed on a RVC Research farm bunch in terms of NND with increasing 

barn temperature above or equal to a threshold of 15.91°C. This behaviour needs further 

exploration across herd groups, as it may be maladaptive, in which case it could potentially be 

prevented through investigating its causes. 

The main results of this chapter are outlined below: 

• The relationship between bunching behaviour and barn temperature was assessed on a 

second farm, an RVC Research farm, using a local positioning system and temperature 

sensors recording in the barn over three months.  

• Bunching behaviour was defined as in Chapter 5, as range size, inter-cow distance 

(ICD) and nearest neighbour distance (NND). 

• The herd increased their bunching behaviour in terms of NND with increasing barn 

temperature above or equal to 15.91°C. 
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• No clear patterns in the relationships between barn temperature and the bunching 

metrics were detected based on 13-day block divisions. 

• The increased bunching response in terms of NND was found to be present across times 

of the day, and to a similar degree. 
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6.6. Appendix 1. Model Assumptions 

The linear model assumptions, heteroscedasticity, and residual normality were tested where 

BT2 is below and above (or equal to) the breakpoint of 15.91°C, and the results show that 

assumptions are met for all the bunching metrics ≥ 15.91°C when excluding outliers (n = 5), 

apart from for heteroscedasticity for ICD and residual normality for ICD and NND (Table A1, 

Fig A1). However, given the large sample size (< 15.9°C: n = 426, ≥ 15.91°C: n = 320), 

extreme values skewing the data from residual normality and homoscedasticity are not 

unexpected, so linear regression was carried forward. 
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Table A1. Linear model assumptions for the model assessing bunching against barn 

temperature (BT2), on the RVC Research farm, below and above (or equal to) a 

breakpoint of 15.91°C (total n = 320): heteroscedasticity, and residual normality. 

Assumptions were tested using NVC and Shapiro-Wilks, respectively. Each test result is shown 

for each bunching metric (CR = core range, FR = full range, ICD = inter-cow distance, NND 

= nearest neighbour distance), including all the data and excluding outliers (n = 5). Significant 

p-values are in bold.  

 

 Heteroscedasticity  Residual normality 

Bunching 

metric 

Outliers exc. 

(n = 5)  

< 15.91°C  

 

≥ 15.91°C  

 

< 15.91°C  

 

≥ 15.91°C  

 

CR N  Chi-sq = 11.01, 

 p = 0.001 

Chi-sq = 0.46, 

 p = 0.50 

W = 1.00,  

p = 0.25 

W = 1,00,  

p = 0.66 

Y Chi-sq = 9.11, 

 p = 0.003 

Chi-sq = 0.18, 

 p = 0.67 

W = 0.99,  

p = 0.14 

W = 0.99,  

p = 0.07 

FR N  Chi-sq = 3.21, 

 p = 0.07 

Chi-sq = 0.31, 

 p = 0.58 

W = 0.99,  

p = 0.008 

W = 0.99,  

p = 0.05 

Y Chi-sq = 0.89, 

 p = 0.35 

Chi-sq = 0.67, 

 p = 0.41 

W = 0.99,  

p = 0.008 

W = 0.99,  

p = 0.39 

ICD N  Chi-sq = 25.29, 

 p = 4.92e-7 

Chi-sq = 2.06, 

 p = 0.15 

W = 0.97,  

p = 3.73e-7 

W = 0.99,  

p = 0.005 

Y Chi-sq = 13.29, 

 p = 0.0003 

Chi-sq = 0.59, 

 p = 0.44 

W = 0.98, 

 p = 0.0001 

W = 0.98,  

p = 0.0003 

NND N  Chi-sq = 11.46, 

 p = 0.001 

Chi-sq = 6.03, 

 p = 0.01 

W = 0.97,  

p = 2.77e-8 

W = 0.96,  

p = 6.64e-8 

Y Chi-sq = 9.83, 

 p = 0.002 

Chi-sq = 6.54, 

 p = 0.01 

W = 0.97,  

p = 2.74e-7 

W = 0.96,  

p = 1.94e-7 
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Figure A1. Plots viewing assumptions of the model assessing the relationship between 

bunching and barn temperature (BT2) on the RVC Research farm, below and above (or 

equal to) the breakpoint of BT2 = 15.91°C: heteroscedasticity, and residual normality. 

For each assumption, plots are shown for each bunching metric (CR = core range, FR = full 

range, ICD = inter-cow distance, NND = nearest neighbour distance).   
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Furthermore, comparing Table A2 to Table 4 in the main text, the conclusions drawn from the 

linear model outputs do not change drastically before excluding these outliers (n = 5). The only 

qualitative difference is in the direction of the relationship between BT2 and each of the range 

sizes < 15.91°C, before and after the removal of the outliers but all these relationships below 

the breakpoint are non-significant (Table A2 and Table 4). 

 

Table A2. Outputs from linear regression assessing the relationship between bunching 

and barn temperature (BT2), on the RVC Research farm, below and above (or equal to) 

a breakpoint of 15.91°C (n = 320), with outliers included (n = 5). Chow test outputs testing 

the significance of the breakpoint are also shown. Each test is conducted for each bunching 

metric (CR = core range, FR = full range, ICD = inter-cow distance, NND = nearest neighbour 

distance). Significant p-values are in bold.  

 

 

Bunching 

metric 

Chow-test  < 15.91°C ≥ 15.91°C 

CR F = 1.07,  

p = 0.34 

 

e = -0.03, SE = 0.11, 

t-value = -0.29, p = 0.78 

e = 0.69, SE = 0.32, 

t-value = 2.12, p = 0.04 

FR F = 1.98,  

p = 0.14 

 

e = 0.02, SE = 0.28, 

t-value = 0.07, p = 0.95 

e = 0.27, SE = 0.80, 

t-value = 0.34, p = 0.73 

ICD F = 5.77,  

p = 0.003 

 

e = -0.18, SE = 0.03, 

t-value = -5.12, p = 4.57e-7 

e = -0.17, SE = 0.12, 

t-value = -1.40, p = 0.16 

NND F = 3.36,  

p = 0.04 

 

e = 0.13, SE = 0.01, 

t-value = 9.50, p < 2.2e-16 

e = -0.23, SE = 0.04, 

t-value = -5.92, p = 8.43e-9 
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7. CHAPTER 7: GENERAL DISCUSSION  

Increasing demand for dairy commodities has incentivised the housing of livestock at high 

stocking densities with unstable group compositions (2). Understanding the impact of modern 

systems is important to improve dairy cow health and welfare as well as productivity, including 

social requirements and housing conditions. Monitoring individual cows can be difficult in 

such systems, and early indicators are often missed, but precision livestock farming shows 

promise, allowing the rapid identification of behavioural changes indicative of health and 

welfare issues to prompt treatment (167,241–243,250,252,267). Automated monitoring 

through changes in social and group-level behaviour will aid the development of such systems. 

This thesis therefore aimed to investigate the social networks of two dairy cow groups through 

a local positioning system (LPS), with a view to identify health and welfare complications 

through changes in both the network structure and consistency of herds (Chapters 3 and 4). 

Next, the relationship between temperature and the bunching behaviour of dairy cows was 

explored, a potential maladaptive behaviour which could induce heat stress, with the use of the 

same LPS as well as barn temperature readings (Chapters 5 and 6). In this discussion, the main 

findings from this thesis are highlighted, alongside limitations of this work, before suggesting 

future research questions. 

 

7.1. Accuracy and reliability of data collected through the LPS 

The LPS used for this work was validified to a 50% circular error of probability measurement 

of 1.07m to 1.90m and a mean distance error of 2.66m to 2.80m, dependent on whether the 

sensor was on a static or standing cow (242).  
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The system reset at approximately midnight, and data recorded during this period was removed 

as planned. Positions located more than 3m outside of the functional zones of interest were 

removed and unexpected errors required further pre-processing, including sensors occasionally 

‘freezing’ at the exact same or similar coordinates. Partly attributed to the metal structure of 

the housing, noise was reduced through smoothing of the data, and a few instances of 

unrealistic trajectories were removed. The total data loss from the original datasets were below 

30% for both farms, minimal considering data removed included correct location data in the 

milking parlour and other areas outside of the functional zones of interest. This pre-processing 

was carried out through a combination of automated and manual checking, the latter of which 

is unpractical on site for farmers, although only less than 26% of the original data were removed 

manually for both datasets.  

 

7.2. Proximity interaction network of two herd groups 

The cows housed on the commercial farm in Essex were found to have a highly connected 

network, whereas the cows on the RVC Research farm had a weakly connected network. 

Differences were expected, given the herds were of different sizes and subject to different 

management; varying levels of connectivity in different cow herds have previously been 

reported (166,176). The herd on the RVC Research farm were subject to more frequent changes 

in group composition, with an average of 12 individuals being added or removed daily, 

compared to on the commercial farm in Essex where only one individual was added or removed 

daily on average. Furthermore, the herd on the RVC Research farm saw a complete turnover 

of individuals during the study period (where n = 22 to 52 daily), while 91 individuals remained 

in the herd on the commercial farm in Essex throughout the entire study period (where n = 100 

to 110 daily). The daily changes in group composition on the RVC Research farm may have 

hindered the formation of strong social bonds, given the dominance hierarchy is thought to take 



214 

 

 

a fortnight to establish (132,157,272). It is important to note that the analysis on the network 

structure conducted for the herd housed on the commercial farm in Essex only included the 

cows (n = 92) that were always present throughout the study period, allowing for analysis of 

temporal variation over time. However, on the RVC Research farm, the network structure 

analysis included all cows, including those that were added or removed from the herd during 

the study period. Therefore, it is reasonable to expect that the cows studied on the commercial 

farm in Essex had stronger connections as they were more familiar with each other, even with 

an average of one individual being added or removed daily, compared to the cows on the RVC 

Research farm. However, it remains unclear whether this is the case. Moreover, the differences 

in the network connectivity between the groups could also be attributed to the lower stocking 

density and the open barn layout (no cubicles) on the RVC Research farm, in comparison to 

the closed barn (with cubicles) on the commercial farm in Essex. The more restricted space 

allowance on the commercial farm in Essex likely gave individuals less opportunity to choose 

whom to position closely to, compared to on the RVC Research farm.  Moreover, connectivity 

was zone-dependent; higher connectivity was revealed in the non-feeding zones (NFZ) 

compared to the feeding zones (FZ). Higher connectivity has been found in lying areas 

compared to standing/activity areas, which supports these findings (166,428) 

 

Despite the differences in connectivity of the two networks, significant inter-individual 

variation was shown on the commercial farm in Essex in the NFZ, suggesting that highly social 

individuals remain highly social over time, irrespective of group composition. These findings 

agree with previous research, finding variation in individual sociality in cattle (148,176,272). 

Potential differences may have been masked in the FZ due to the high turnover of individuals 

and the high stocking density. Significant inter-individual variation was shown in the FZ on 

the RVC Research farm, which may have been due to the lower stocking density, whereas in 
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the NFZ patterns may have been masked due to less demand for preferable areas i.e., cubicles 

and a greater opportunity to distance from each other. 

 

On both farms, there was significant social differentiation in both functional zones as found in 

other herd groups (166,176). Social differentiation was apparent in both zones despite the 

turnover of individuals (particularly on the RVC Research farm), perhaps due to individuals 

maintaining long-term familiarity (168). This does not appear to be the case in all unstable 

groups however, as found in a herd with individuals sourced from different farms without a 

rearing history; although observations over a time period longer than a week could have 

revealed greater preferences (429). Moreover, a lack of temporal stability over time was shown 

on the closed barn (with cubicles) on the commercial farm in Essex, which could also be the 

case on the open barn (no cubicles) on the RVC Research farm. Alternatively, the network on 

the RVC Research farm could have changed less frequently due to a greater opportunity for 

cows to choose whom to maintain closeness to, although this was beyond the scope of this 

thesis. The weak temporal stability of the commercial farm in Essex network suggests cows 

change their social bonds frequently, although these may be maintained over a shorter time, 

and restricted by the space allowance. The former suggestion is reflected in the differing results 

from a previous study, finding evidence for temporal stability of a cow network across weeks, 

of 17% to 57% (176). The level of temporal stability is likely to be herd-dependent, based on 

the frequency of regrouping, group size and composition and differences in individual sociality.  

 

The potential impact of individual attributes on social preferences was assessed on the 

commercial farm in Essex. Social assortment could not be assessed on the RVC Research farm 

due to frequent changes in group composition. While cows were not found to assort by 

lameness, parity, or days in milk on the commercial farm, research has found significant 
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assortment based on parity or milk production (linked to days in milk) in other herds (176,315). 

A study on a farm with a stocking density of 9.5m2 per cow (assuming the average group size 

of n = 110) found cows assorted by milk production (176), whereas cows on the commercial 

farm in Essex were housed at a stocking density of 3.8m2 per cow (feed space) and 5.3m2 per 

cow (lying space) (assuming the average group size of n = 104 during the analysed month). 

Limited space allowance may therefore mask social preferences, as on the commercial farm in 

Essex, but research on this is lacking. Furthermore, there is currently no research on social 

preferences of cattle at pasture, where social preferences would be expected to be revealed 

given the opportunity for unrestricted space. Non-random associations may also be influenced 

by other attributes such as personality and dominance, which requires further investigation 

(169,264,266). 

 

7.3. Space-use preferences  

Cows spread across more cells during the day compared to the night, more so on the RVC 

Research farm than on the commercial farm in Essex, as expected due to the latter barn holding 

cubicles. This was further demonstrated through visualisations of space-use, showing clear 

gaps between cubicles in the commercial farm in Essex and a fragmented core range whereas 

no obvious gaps in the space-use on the RVC Research farm. Interestingly, cows on both farms 

show preferences for certain areas in the NFZ, and this is more so the case on the commercial 

farm in Essex than on the RVC Research farm, perhaps as specific cubicles were considered 

favourable. Likewise, preference for specific areas of a barn is demonstrated in other studies 

(197,344). The preferred cubicles on both farms were closer to the collecting yards, which 

would have allowed cows in these areas to relieve a high milk yield sooner than cows 

positioned elsewhere. Evidence for higher parity cows positioning in areas closer to milking 

areas has been found previously, supporting this theory (252,347). Other factors are expected 
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to contribute as well; older, more experienced cows with high milk yields may be more likely 

to gain positions in preferred cubicles as opposed to younger cows with high milk yields (252). 

The demand for specific areas may also change over time. If the number of cubicles closer to 

a feed face is restricted, the demand for these may increase, especially before scheduled feeding 

times (197,347). 

 

7.4. Relationship between barn temperature and bunching behaviour 

Cows on the commercial farm in Essex significantly increased their bunching behaviour above 

a barn temperature threshold of 20°C, in terms of range size, inter-cow distance (ICD) and 

nearest neighbour distance (NND). Observational studies counting individuals present in a few 

areas of a barn every quarter of an hour also find that cows crowd above an ambient temperature 

of 19°C to 20°C, supporting the findings from this thesis (281,355). Barn temperatures on the 

RVC Research farm did not reach above 20°C on more than two occasions, but a significant 

negative relationship between temperature and nearest neighbour distance was found above (or 

equal to) 15.91°C.  

 

The effect of warmer than average ambient temperatures on bunching behaviour varied 

according to the time of day. Specifically, while an increase in bunching with increasing 

temperature was observed during the day, this was not present during the night/early morning 

as temperatures did not reach high values, and this finding is consistent with previous research 

(281,355). 
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7.5. Limitations of this work  

Along with the issue of occasional nonsensical data recording, another drawback of this work 

is that the accuracy of the LPS system limits the range of interactions that can be detected. 

However, the protocol for determining proximity interactions was validated to a sensitivity of 

83% and the analysis was conducted using various time and radii parameters, and similar 

results were obtained. Error must still be considered whilst interpreting outputs from automated 

data collection to allow meaningful application. The chosen protocol aimed to reduce false 

positives but would have excluded any important genuine shorter social interactions. Moreover, 

it was unable to be determined whether detected interactions were directly social or non-

deliberate/non-social, and the results probably contain both. Particularly with space-constraints 

of housing, individuals are forced in proximity to a degree, especially to gain resources, as 

indicated through the inconsistency in proximity interactions across functional zones. The 

impact of the changing group composition on the conclusions is also unknown, more so on the 

RVC Research farm than the commercial farm in Essex, and a direct comparison between the 

social networks structures on the farms was not possible due to the different group sizes. 

Furthermore, the visual mobility locomotion scores used in Chapter 3 were prone to 

classification errors, especially due to the large group size. Parity and days in milk may have 

also been too coarse to identify cows with historical associations or shared transition periods, 

thought to strengthen bonds. 

 

Previous studies used humidity, as well as ambient temperature, to measure the responses of 

dairy cows to changing weather. However, temperature has been used alone to measure 

responses (368–370,381,382), and when humidity is considered from a local weather station in 

the results, qualitatively similar results are obtained and changes in bunching are found to be 

primarily driven by temperature.  
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7.6. Future directions 

7.6.1. Further research 

To be used for health and welfare improvement, detecting individual baseline behaviours is 

essential. From this, deviations in individual and group-level/social behaviour can be detected 

over time to allow fast identification of abnormal behaviours indicative of illness or reduced 

welfare status. 

 

To expand the social network analysis of this thesis, detecting the nature of proximity 

interactions would be useful. For example, if a cow continually approaches another, it can be 

implied that the cow is initiating an interaction, whereas if the individual stops this behaviour, 

this may indicate a health or welfare problem. This was attempted using LPS data from a 

smaller beef herd, but a lack of observational data meant the classifications of outcomes from 

cow-cow approaches could not be validated. Similar work has been conducted, determining 

the direction of dairy cow interactions through video recordings (294). Identifying this 

automatically through an ‘approach and leave’ technique could enable easier detection of 

welfare status in cows consistently failing to respond to interactions in an expected manner, 

on-site for farmers. Additionally, automatic detection of affiliative and agonistic interactions, 

as achieved through video recordings (294), could help improve group management. For 

instance, the maximum stocking density before the frequency of agonistic interactions reach 

above an a priori threshold, e.g., more than in self-regulated wild groups, could be determined 

to maintain good welfare. This has been attempted using an indoor positioning system and 

standardised residuals (SR), assuming that interactions are positive when SR reaches above a 

threshold and the remainder are negative/avoidance interactions (430,431). Although the 

technique shows promise, it requires comparison against different association metrics and the 

method needs to be replicated for evaluation (430). 
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As the sensor was combined with an accelerometer, social behaviours could be catalogued and 

combined with local positioning recordings to better understand the nature of interactions and 

determine whether these are reciprocated or asymmetric. An accelerometer has been used in 

combination with a LPS to determine individual behaviour and space-use patterns linked to 

lameness (252), and this could be extended to understand individual behaviours in relation to 

social interactions, which could potentially reveal abnormal interactions indicative of 

conditions such as lameness. Magnetometers could help us better understand the directionality 

of interactions, as well as determining ‘approach and leave’ interactions. For example, 

agonistic interactions such as head butting in combination with a cow approaching would 

provide evidence for unsocial rather than social behaviour. The use of accelerometers to 

catalogue social behaviour has indeed been shown; locomotor play has been estimated to an 

accuracy of 79% at 1Hz, in dairy calves, a figure which could be improved at a higher recording 

frequency (432). Combining accelerometery data with LPS data could therefore help us better 

understand the frequency, dynamics, and types of interactions between cows.  

 

We could explore how the removal of an individual from a network may alter social 

interactions. Shifts in a network following removals are likely, given the value of and 

preference for social interactions in cow herds (166,176), and this is demonstrated with our 

current knowledge of reduced feeding behaviour and hindered immunological response of the 

remaining herd (329). Social bonds are expected to weaken with the removal of herd mates and 

are likely to be individual-specific; the removal of a key member connecting associates may 

have drastic impacts on the welfare of the remaining herd, as well as the individual subject to 

removal, and thus could be avoided. Removal of specific individuals may be necessary, 

however, if medical treatment is required. The impact of this could be better understood using 
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less crude mobility data, i.e., assessment more than once every fortnight for all individuals as 

in Chapter 3. If assortment is then found between cows of similar lameness states, which may 

have been masked in this thesis, lame cows could be removed in pairs or small groups for 

treatment, to remove drastic impacts to their welfare. In addition, if differences in sociality 

between lame and non-lame cows are revealed, this would further highlight the need to 

promptly detect lameness and enable us to do this more effectively.  

 

To directly compare networks, they must hold a similar number of nodes and edges, whether 

this is to monitor a group over time (as in Chapter 3), or compare groups (165,433). Even the 

removal of a single uncommon node between networks could result in the loss of vital 

information. Basic network measures like clustering coefficient are not appropriate for 

analysing groups subject to a high turnover of individuals or for comparing networks of vastly 

different sizes (308). Researchers have proposed other methods, such as the association of 

strength, but these are in their infancy (165,434). Given the difficulty in finding two herds that 

are exactly the same size, it would be extremely useful to develop a method that allows for 

meaningful comparisons between networks of different sizes. Such a method, developed with 

input from mathematicians and psychologists who use similar techniques, would enable us to 

better disentangle differences in network formations to better inform the management of 

livestock groups. For example, this approach could be used to investigate the impact of 

stocking density or barn layouts on the revelation of social preferences within livestock groups. 

 

As well as comparing social networks between herds, space-use patterns between herds could 

be further explored, investigating where individuals position, and whether there are patterns 

based on their attributes. Lame cows are found to have a higher site-fidelity in a feeding area, 

perhaps due to a lack of motivation and ability to choose high-traffic, preferable feeding 
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positions (209,252). Perhaps this is clear in barns with cubicles, such as the barn on the 

commercial farm in Essex, but not in open barns such as the barn on the RVC Research farm; 

an understanding of this would help identify cows with lameness whilst considering housing. 

Likewise, it would be of interest to investigate if other differences in housing and management, 

e.g., bedding, milking system, and stocking density, impact the space-use of herds. Individuals 

may favour specific areas prior to scheduled feeding times, but perhaps only if access is quicker 

from specific areas of a barn, and unhealthy individuals may not gain these. This would have 

implications for disease spread, as well as health and social stress, and other aspects of welfare. 

 

Bunching at higher than average ambient temperatures also has implications for disease spread 

e.g., tuberculosis, especially indoors and at high humidity, as this makes pathogens more 

contagious, in turn impacting the health and welfare of cattle (435,436). In terms of the 

temperature and bunching relationship, a follow-up study could incorporate barn humidity 

readings, to better understand its impact. The extent of heat stress is determined by other 

variables, including ventilation, wind speed and solar radiation, so understanding the impact of 

these mixed effects on bunching behaviour would further aid mitigation strategies, although 

the latter may be irrelevant in housed herds. Testing whether patterns hold above similar 

thresholds in the summer months on the RVC Research farm, and on other farms, would be 

useful, as would investigating the cause behind bunching at warmer than average ambient 

temperatures. This could be achieved through mapping out shaded areas, water troughs and 

recording fly counts, and considering a herd’s space-use patterns in relation to these points of 

interest. 
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7.6.2. Implementation of PLF 

The potential benefits of PLF are vast: increased production, reduced environmental impact, as 

well as improved animal health and welfare (437). It is still largely in the early-adoption phase 

and is still progressing; but end-user demands are predicted to increase (280).  

 

The main issues with farmers not implementing PLF are: the expertise required to analyse and 

understand data collected, trust in the technology, poor maintenance service, the initial 

investment and the overall benefit of the technology (438–441). Learning the use of a new 

technology increases a farmer’s workload, with large quantities of data making it difficult to 

select key information for decision-making, especially if support post-purchase is not 

sufficiently provided (441,442). The lack of trust in automated systems by farmers is 

emphasised in a study showing dairy farmers only respond to 3% of mastitis warnings 

generated by milking robots (443). PLF uptake by farmers is dependent on socio-

demographics, financial resources, herd size and experience of and trust in technology, the 

latter often based on age (440,444–446). 

 

The stress and time in handling automated systems may lessen once farmers familiarise 

themselves with the tools, and can prioritise alerts, potentially lowering overall stress, as has 

been reported in a case study of farmers using an automated oestrus system over time (447–

449). Farmers should be provided with enough support to enable uncomplicated and quick 

management and interpretation of data (444). Once farmers are familiarised with a given 

technology, trust can be solidified through transparent communication between scientists and 

farmers, aiming for continual improvement of systems to lessen false alarms and improve 

farmer satisfaction, alongside farmers and providers (450). This is particularly important given 
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the shortage of research on the quantitative effects of PLF adoption on farms (450). Companies 

providing sensor systems must continually support farmers to enable this (441). 

 

Investment decisions should be thorough, with profitability evaluated, and accessibility to 

sensor systems could be expanded by offsetting initial costs through government funded 

schemes. Measuring the overall benefit of systems is difficult, given financial circumstances 

are not the only contributing factor; the wellbeing of the farmer should be considered too. The 

overall benefit to farmers could be amplified by detecting multiple conditions with one sensor, 

to lower financial cost and workload, or by combining data from multiple sources to increase 

precision e.g., production and physiology as well as behaviour (451,452). Benefits must 

outweigh the costs, so it is crucial to work with farmers to understand these and improve the 

cost to benefit ratio. 

 

Rather than aiming to replace humans, technologies ought to support decision-making, by 

identifying complications before farmer intervention; the farmer’s knowledge remains critical 

and should not be lost through dependency on technologies (453). The bond between farmer 

and livestock should not be diminished through automated systems, as animals deprived of this 

may become more fearful of humans which could reduce their wellbeing, and farmers may lose 

motivation in their profession (454). Instead, the time saved using systems should aim to 

provide opportunities for farmers to form stronger bonds through activities such as more 

frequent visits (455).  

 

Besides considering the benefit to farmers, other parties should be carefully considered and 

involved (450). The public view of farmers may detach consumers who view automated 

systems negatively, so research on perceptions is imperative. There is also a need to create 
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standards for sharing sensor-generated data, as regulation for data ownership and sharing is 

currently limited (451,456). Data could be shared so parties other than farmers also benefit, 

such as veterinarians and slaughterhouse operators, as well as researchers to continually 

improve sensor systems, but this requires legitimisation (456). 

 

7.7. Conclusions 

This thesis demonstrates the use of a LPS to monitor the social network structure of two large 

dairy cow herds. Secondly, this thesis provides evidence for a relationship between bunching 

behaviour and warmer than average ambient temperatures in both the studied cow herds, using 

LPS and barn temperature recordings. The results show promise for the expanded use of PLF 

to improve animal health and welfare within the growing dairy industry, particularly relevant 

due to the ongoing increases in group sizes, selective grouping, and milk production per cow 

(457). Caution must be taken when implementing PLF, ensuring farmers can successfully use 

the technology and interpret outputs, using results to aid but not to finalise decision-making. 

This thesis also sheds light on potential issues associated with increasing intensity in the dairy 

industry, such as higher stocking densities restricting space allowance for preferred 

interactions, and potentially maladaptive bunching behaviour resulting from management 

regimes. It is therefore vital to understand responses of livestock to management regimes and 

the environment at the individual-level, to maintain and improve the health and welfare of 

groups across the growing industry. To do this, effective communication amongst farmers, 

product companies, equipment manufacturers, suppliers, scientists, vets, and the government 

is required (457). 
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