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Abstract—Capability Hardware Enhanced RISC Instructions
(CHERI) is an extension of conventional ISAs with capabilities
enabling fine-grained memory protection. Recently, RISC-V ISA
has been extended to CHERI-RISC-V (aka Flute) with addi-
tional support for CHERI. In this paper, we have proposed
a lightweight continuous monitoring system (CMS) based on
hardware-software co-design that communicates with the RISC
-V to identify any abnormalities in its operational behaviour.
The digital hardware of the functionality of CMS and the
CHERI Flute RISC-V has been prototyped in the FPGA. The
CMS extracts the different features from RISC-V and transmits
them to the processing system via an API. Further, an anomaly
detection program is being executed by the ARM processor
residing in the PS portion of the ZYNQ. This program enables
continuous evaluation of the system operation to spot hardware
failure or unusual system behaviour. Finally, the complete design
has been prototyped and verified on Zynq FPGA ZC706.
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I. INTRODUCTION

Anomalous program behaviour detection on RISC-V-based
embedded devices is found in various studies. Authors in [1]
conducted a thorough investigation to detect a fault using a
counter-based built-in self-test strategy in a Rocket RISC-V
microprocessor prototyped on FPGA. This study [2] created
a dataset of execution traces containing Return Oriented Pro-
gramming (ROP) exploitation on the RISC-V Instruction Set
Architecture and used deep learning AI models like long short-
term memory (LSTM) to distinguish exploited traces from
non-exploited traces to detect ROP attacks. The authors in
[3] proposed a methodology to perform real-time monitoring
of software that kept track of hardware performance counters
executing on embedded processors in cyber-physical systems.
The time series data from the hardware performance counter
measurements over a time window under well-known operat-
ing conditions are used to train a machine learning classifier.

Apart from RISC-V-specific mechanisms, the research has
delved into developing security mechanisms for general em-
bedded systems with multiple processors, and some of these
techniques could be well applied in the case of RISC-V.
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Authors in [4] utilised the subcomponent timing information
of software execution with features including intrinsic software
execution, instruction cache misses, and data cache misses
for anomaly detection. Zhai et al. [5] used a self-organizing
map (SOM)-based approach by detecting abnormal program
behaviour by proposing a methodology that extracts features
derived from the processor’s program counter (PC) and cycles
per instruction, followed by utilising the features to identify
abnormal behaviour using the SOM.

Recently, Capability Hardware Enhanced RISC Instructions
(CHERI) is an extension of conventional Instruction Set Archi-
tectures (ISA) with capabilities enabling fine-grained memory
protection and scalable software compartmentalization that has
been popularised as a new way forward to enhance security
in RISC-V. While RISC-V ISA has been extended to CHERI-
RISC-V with more support for CHERI, Flute is an open-source
64-bit RISC-V processor with a five-stage, in-order pipeline.
Designers in UoC [6] have extended the open-source Bluespec
SystemVerilog (BSV) RISC-V core Flute (64-bit, 5-stage)
with support for CHERI-RISC-V on the FPGA boards, and
these implementations are still highly experimental to bring
them into practical usage. This necessitates implementing
and prototyping a complete end-to-end implementation of the
CHERI-Flute-RISC-V processor on FPGA.

However, the employed tools can introduce malicious mod-
ifications into the designed system. While CHERI offers
security during the execution of a legitimate program, it does
not offer any guarantee that the program being loaded is, in
fact, legitimate. Thus, computer systems may be equipped
with an additional security layer that may take into account
the system’s expected behaviour (derived dynamically and/or
statically) and continuously monitor program behaviour, look-
ing for a deviation from the baseline. To achieve this, the
processor’s behaviour may be monitored in real-time through
the extraction of featured data from its PC, instructions, and
registers.

To this end, in this paper, we have proposed a lightweight
hardware-software co-design-based continuous monitoring
system (CMS) that interacts with the RISC-V in order to
detect any anomalies in its operating behaviour. The CHERI
Flute RISC-V and the CMS are implemented within the FPGA
fabric. Due to the inherently parallel nature of the hardware
execution, the RISC-V and CMS can be adapted for faster
execution. This is a major advantage of designing efficient



Fig. 1. Project structure and data transfer path.

monitoring hardware architectures able to fetch/extract data
at higher data rates. However, similar to ASIC development,
designing FPGA implementations for algorithmic analysis of
the extracted information is more complex in comparison to
software development. Hence these features are sent to the pro-
cessing system through a developed API where the ARM mi-
crocontroller is executing an anomaly detection program that
allows evaluating the system operation continuously to iden-
tify hardware failure or unusual system behaviour. Thereby,
making a holistic end-to-end hardware-software co-design
methodology initialising with the processor’s behavioural data
extraction to its anomaly detection.

The main technical contributions of this paper are sum-
marised as follows:

• A complete end-to-end design initiating with the CHERI-
FLUTE-RISC-V processor followed by designing our
proposed continuous monitoring system, FIFO and a
direct memory access module, as hardware modules have
been prototyped on the programmable logic of FPGA sur-
rounded by a PYNQ wrapper, to increase the throughput
of the data required to be passed to the Processing system
performing the anomaly detection in software owing to
its sequential nature running on ARM microcontroller.

• The designed PYNQ wrapper utilises the continuous
hardware monitoring module to filter and extract the trace
information of the CHERI-Flute processor, including pro-
gram counter, instruction, performance counters, general
purpose registers and timing information, then it utilizes
the features to verify the correctness of the program
behaviour. These features are sent to the processing
system through a developed Application processing inter-
face (API) where the ARM microcontroller is executing
an anomaly detection program that allows evaluating
the system operation continuously to identify hardware
failure or unusual system behaviour. Thereby, keeping a
provision with the ability to debug the specification at
run-time in future.

II. PROPOSED METHODOLOGY

A. Proposed PYNQ wrapper design

A typical PYNQ design includes a hardware design that
configures the PL and a Python script running into the Linux-
based PS on an ARM microcontroller, where the Python script
is responsible for loading and interacting with the hardware
design in PL (using PYNQ API) as shown in figure 1.

We designed the PYNQ wrapper for the open-source RISC-
V processor (Flute) accompanying peripherals for loading a
program into memory, console I/O, as well as storage, filtering
and preprocessing of the collected trace data from the Flute
processor etc. The hardware IPs within the PYNQ wrapper
blocks and the accompanying Python scripts using PYNQ API
interacts with the PL to collect the processor behavioural data
and subsequently process the collected data. The hardware
blocks residing within the PYNQ wrapper are directly con-
nected to the Flute RISC-V processor as shown in figure 1.
Data including program counter (PC), instruction, performance
event indicating vector, general purpose registers and signals
for console I/O are fetched from the Flute processor to the
PYNQ wrapper blocks which are then transferred to the PS.

The PYNQ wrapper utilises our designed continuous mon-
itoring hardware module to filter and extract information
commonly used for anomaly detection in program behaviour
from the program counter [5], [7], 39 hardware performance
counters (HPCs) [3], [8], [9], time since last extracted item
[10], [11], the corresponding instruction and 4 general purpose
registers (A0 - A3) responsible for storing function parameters
and return values (in case of A0 and A1). Initial filtering is
done to reduce the amount of extracted data and collect only
the data when a branch, jump or return instruction is executed
(including any instruction that immediately follows these).
Studies that use HPCs are often limited to collecting only a
few of them in real-time, between 2 and 6, or collecting them
with delays after multiplexing due to hardware limitations [3],
[8], [12]. In this work, we overcome this and extract 39 HPCs
by modifying the Bluespec source code of the Flute processor
to propagate performance event-indicating signals into our
proposed CMS module. We tested the PYNQ wrapper design
by obtaining a baseline program profile and then comparing it



Fig. 4. Data collection and anomaly detection process.

against data collected from anomalous program run, the testing
process was illustrated in figure 4 and explained in section III.

B. Hardware Performance Counter selection

The version of the RISC-V Flute processor we used
(RV64ACDFIMSUxCHERI architecture) contains 85 perfor-
mance counters from which features are extracted. We col-
lected all their values during the exploratory program run and
made a list of 37 event types that had at least one non-zero
value, which we decided to keep together with “trap” and
“interrupt” events.

C. Data transfer path

Referring to figure 1 the CHERI Flute processor (imple-
mented in Bluespec Verilog language) is modified to propagate
relevant signals outside of it to the Continuous Monitoring
System, which groups and filters them. Signals propagated
outside of the processor include program counter, instruc-
tion, 39 performance event indicating bits (each indicating
a different performance event currently taking place) and all
32 general purpose registers including their CHERI-related
metadata (e.g. pointer boundaries, permissions, object type).
The CMS module receives these signals as inputs and performs
initial filtering. The CMS counts each performance event and
the clock cycles as well since the last collected item. If the
data item is to be collected, it turns all values into a single
1024-bit vector and transfers it to AXI4-Stream Data FIFO.
As shown in figure 1 contents of that 1024-bit vector include:

• Program counter (64 bits)
• Instruction (32 bits)
• Clock ticks count since the last extracted item (64 bits)
• 39 performance counters (7 bits each) indicating how

many of each event occurred since the last extracted item
• Performance counters overflow map (39 bits), indicating

which counters have to be treated as the modulo of 128
values (due to going over their maximum value by 7 bits)

• 4 selected general purpose registers (A0-A3) without their
CHERI-related metadata (256 bits in total)

All data is collected as the instruction and program counter
are passed from stage 1 to stage 2 of the CPU pipeline.
After delivering the data to FIFO, the AXI DMA may be
requested to transfer the contents of it into previously allocated
contiguous memory. This kind of allocation was accomplished
by using allocate function from the PYNQ API, and requesting
the transfer is done by using PYNQ API. Control over the
AXI DMA module is done from a controller running in
PS. The FIFO has the capacity to store 2048 elements. A
single run of the stack-mission program (described in the
experimental setup section) results in around 1300 items being
collected (under the assumption that it immediately receives

data through standard input instead of waiting for it). After
running the program, the Python script may request the data
to be delivered through AXI DMA (S HP0, high-performance
connection) into a contiguous memory array allocated on PS.

Fig. 2. Flute controlling console I/O

As shown in figure 2 we designed 2 FIFO buffers inside
the PYNQ wrapper for controlling the console I/O. One to
store output characters before these are read, and one to
store input characters. Reading and writing into these buffers
is accomplished by using an AXI GPIO module together
with signal edge detectors ensuring reading/writing is done
efficiently for no longer than a single clock cycle.

Fig. 3. Flute interacting with memory

Inside the PYNQ wrapper, we designed a Block Memory
Generator that has 2 ports for reading and writing (figure 3).
Port A - is connected to the Flute processor using signals to
read/write data from/to memory and port B - is controllable
from python, connected to PS through the bram loader hierar-
chical block, allowing to load a program binary into memory.

III. EXPERIMENTAL SETUP OF THE DESIGN

A. Vulnerable program used in our test

To utilise the PYNQ wrapper, we used the vulnerable stack-
mission program provided for the “Exploiting an uninitialized
stack frame to manipulate control flow” CHERI-exercise [13],
with modifications. The program is vulnerable because the
buffer responsible for storing user input covers the same area
of the stack as the function pointer variable in the function that
is executed afterwards, so the uninitialized function pointer re-
tains the previously stored value in the same memory location
(ref. figure 5). Using a meticulously crafted input, a potential
attacker may divert the program execution from ”no cookies”
function executed by default into the ”success” function of
which address is supplied as a part of the input. We used
the PYNQ wrapper to collect metrics from RISC-V processor
running the stack-mission program and to detect the exploit,
which was done using the N-grams method later on [14].



Fig. 5. Stack frames overlap, allowing to pre-set the uninitialized ”cookie fn”
variable from ”eat cookies” function with the address of ”success” function
(0x800002A4).

B. How the test was done

First, we ran the stack-mission program 10 times with vary-
ing inputs to establish the baseline program behaviour profile.
The input for training program runs was chosen specifically for
the stack-mission program, attempting to contain a high variety
of input cookies to cover all branches during the training
phase. Cookies here signify a single-byte chunk received from
the user input and are stored as a local variable in a buffer.
After obtaining the baseline data, we ran the program with
input that contained the address of the “success” function
(0x800002A4) preceded by a sufficient number of equal signs
(“=”), each equal sign skipped 8 bytes in order to overwrite
the exact position of the function pointer (ref. Table I). Our
version of the stack-mission program distinguished 10 types of
possible cookie types that result in slightly different behaviour
of the program (due to custom implementation of the isxdigit
function): ‘AA’, ‘aA’, ‘Aa’, ‘0A’, ‘A0’, ‘a0’, ‘0a’, ‘00’, ‘-’, ‘=’.
Failure to put a program into every possible valid state during
online training may result in false positives while testing [15].
For that reason, we attempted to train our model with a large
variety of inputs. We aggregated the Cartesian products of all
10 cookie types and produced a string containing 200 cookies
where every cookie type was followed by every possible
cookie type at least once. We split that string into 10 input
strings with 20 cookies each.

TABLE I
USER INPUTS SUPPLIED TO THE STACK-MISSION PROGRAM

User input Dataset
AAAAAAaAAAAaAA0AAAA0AAa0AA0aAA00AA-AA= Training
aAAAaAaAaAAaaA0AaAA0aAa0aA0aaA00aA-aA= Training
AaAAAaaAAaAaAa0AAaA0Aaa0Aa0aAa00Aa-Aa= Training
0AAA0AaA0AAa0A0A0AA00Aa00A0a0A000A-0A= Training
A0AAA0aAA0AaA00AA0A0A0a0A00aA000A0-A0= Training
a0AAa0aAa0Aaa00Aa0A0a0a0a00aa000a0-a0= Training
0aAA0aaA0aAa0a0A0aA00aa00a0a0a000a-0a= Training
00AA00aA00Aa000A00A000a0000a000000-00= Training
-AA-aA-Aa-0A-A0-a0-0a-00---= Training
=AA=aA=Aa=0A=A0=a0=0a=00=-== Training
====================A402008000000000 Testing

We used a sliding window to compute unique sequences
of PC collected during baseline program runs. Collected
sequences (N-grams with N=10) were used as a lookup for
the anomalous program run. If a specific sequence of program
counters did not occur during training but occurred while
testing, then it would be classified as anomalous.

C. Results

We could detect the program flow being diverted into the
success function which normally is not executed. That is
shown in figure 6 where 4 of the collected program counters
are within the range of the success function (orange area of the
plot) and none of the collected program counters is within the
no cookies function range (sky area of the plot), lying above
the success range. Red vertical areas indicate sequences not
found in the training data, indicating anomalous behaviour.
This indicates the confirmed anomaly points that is lying in
the horizontal success and vertical red regions.

2200 2250 2300 2350 2400
Instruction index

0x80000038
0x80000078
0x800000B4
0x80000104
0x8000015C

0x800001EC

0x800002A4
0x800002D4
0x80000304

putchar2
data_available
getchar2
puts2

isxdigit2

digittoint2

success
no_cookiesinit_pointer

Fig. 6. Timeline of program counters during the anomalous run of stack-
mission program.
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Fig. 7. Throughput depending on the number of transferred items.

Maximum throughput of data transfer we achieved during
our tests was 265MB/s (”Raw” in figure 7), we measured
the alternative throughput which took into account the time
spent copying the whole buffer into separate storage before
initiating a new DMA transfer, to avoid overwriting and losing
the previous transfer (”With storage” on figure 7), maximum
achieved throughput of this type was 75MB/s.

IV. CONCLUSION

We have proposed a lightweight continuous monitoring
system (CMS) based on hardware-software co-design that
communicates with the RISC-V to identify any abnormalities
in its operational behaviour. An anomaly detection program
is being executed by the ARM (Software) that enables con-
tinuous evaluation of the system operation to spot hardware
failure or unusual system behaviour. The complete design has
been prototyped and verified on Zynq FPGA ZC706.
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