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Abstract

Perceiving the 6D pose of object is a longstanding question. It plays a crucial role in some

areas of robotics, such as object manipulation, grasping, unmanned aerial vehicles and au-

tonomous vehicles. Although researchers have proposed various algorithms to address this

problem in the history, like template matching, point pair feature, etc., object pose estimation

in 3D space still remains challenging, especially at present as robots are being used more

widely in complex environments. Currently existing algorithms cannot solve the problem

well in terms of robustness and effectiveness. In this thesis, we utilise deep learning tech-

niques to overcome the limitations of some existing pose estimation algorithms. Specifically,

we investigate two different tasks in perceiving the orientation and translation of an object in

3D space, pose estimation from single images, and pose tracking from video sequences.

For the pose estimation task from single image, we introduce a novel channel-spatial at-

tention network, which can learn the representative features from RGB-D images. Although

there are some supervised Convolutional Neutral Network (CNN) frameworks used for esti-

mating the object pose, they simply fuse the image features and geometry features together,

which result in weak representations of fusion data as these multimodal data lays in various

feature spaces. To address this, our channel-spatial attention network proposes a specific

CNN that learns the most important embedding from each data format, and convert them

to the identical dimensional feature space. Our experimental results show that the proposed

framework can achieve better or comparable estimating result, even in the condition of clut-

ter scenes, occlusions, and various illuminations. Furthermore, we propose a novel graph

representation for the pose estimation task from single images in this thesis, in which not

only the relationships between different sources of data, but the inter-connections of single

data are exploited. Unlike the CNN which only captures local features, the proposed graph-

based neural network considers the local and global features and demonstrates a more robust

performance when some occlusions exist.
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To extend the content of the pose estimation task from single image, in this thesis, the

pose tracking task is also investigated. We propose a novel tracking framework that achieves

stable and real-time tracking in the process. This framework is based on the correspondence

of two consecutive frames, where the temporal-spatial information is utilised. A segmenta-

tion CNN is firstly used to locate the interest objects. Then the correspondences are estab-

lished by a light-weight optical flow network. After that, the initial transformation can be

predicted using 3D-2D and/or 2D-2D matching.

In summary, the goal of this thesis is to extend the research direction of pose estimation

tasks in 3D space, especially by introducing some advanced deep learning techniques to

this area. In this thesis, it shows that our deep learning based methods have the advantages

of dealing with occlusions, and cutter background images over some existing object pose

estimation methods.
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Chapter 1

Introduction

1.1 Motivations

Nowadays, we have seen booming in the use of different robots in a range of industrial fields.

The object 6D pose estimation is the key element for them. For real world applications, the

object 6D pose estimation algorithms must be reliable and precise. To achieve this goal, we

need the auxiliary of algorithms and hardware components to build the system. For example,

Tesla’s self-driving system required 48 neural networks to train its vision system to recognize

the cars and pedestrians, and/or other perception tasks. In total, its training took 70000 GPU

hours [1]. In order that this giant framework be reliable, the neural networks should have the

precision to handle complex situations on the road. Also, such training requires an intense

of amount of data. Obviously, the powerful hardware can support the algorithm, allowing it

to preform computation tasks. As is the case with virtual reality, we need to know the pose

of an object to render it and its surrounding environment.

If 6D pose estimation techniques are applied to agriculture, they can be used to predict

the pose of fruits to be grasped, and improve the performance and productivity of automated

harvesting systems. In the scenarios of farm or city, we need to detect and localize the

objects precisely in those unstructured environments. For example, to harvest the apples or

strawberries planted on farms or orchards, the vision system is responsible for the detection

and estimation of the fruits and provides the position and/or orientation information to the

robot arm for further harvesting. As the last few years have revealed the powerful ability

of learning based methods for dealing with image detection and segmentation, a popular

1
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method of detecting fruits to be harvested is deep learning image segmentation techniques,

the masks produced can establish the position of the fruits. But on some occasions, the 2D

information is not sufficient to pick and/or cut the fruits without damaging them. We need

extra information, such as the fruit’s orientation, to guide the robot arm in the direction of the

fruits to be harvested. Kim et al [2] proposed a deep convolutional network for identifying

the pose of tomato and its side stems. It showed that estimating the pose of the tomatoes

accurately can increase the rate of successful harvesting.

In addition to agriculture, 6D object pose estimation techniques can be applied to ware-

house picking and place and bin-picking tasks. In these applications, 6D object pose estima-

tion plays an important role in the perception stage, to help the robot to recognize the object

and plan the motion of its gripper and/or manipulator. As in the warehouse, objects could be

placed with random. 6D object pose estimation techniques are usually required to recover the

object’s pose without damaging it, or damaging other surrounding objects. Furthermore, the

grasping pose is also quite important to a successful picking movement. To generate a suit-

able grasping pose, the object pose must first be estimated with respect to the end-effector.

Based on the estimated object pose, some algorithms [3] can plan the graphing path to grasp

objects stably. In the bin-picking task [4], the robot uses the 6D pose estimation technique to

recognise the objects to be grasped and avoid the collision. Object pose information can help

the house cleaning robot to locate the pose of an object, and guide the robot to manipulate it,

for example opening the cap of water bottle, cleaning the table, etc.

Inspired by the motivations of object 6D pose estimation tasks, this thesis, aims to de-

velop new object 6D pose estimation algorithms to accelerate their development. Our works

are developed aim to accuracy and robustness of the estimation under some challenging sit-

uations, like occlusion, background clutter, and lighting variability.

1.2 Objectives

First of all, we define the specific in object 6D pose estimation. As shown in fig 1.1, a point

P of object scissor is represented in coordinate frame To, in which we establish it as object

coordinate normally. Suppose we can find the projection P′ of P in the camera coordinate

frame Tc. The point (u,v) is the camera principal point. The objective is to find the trans-

formation (R,t) from To to Tc. To be able to find the transformation, the correspondences
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Figure 1.1: Illustration of object 6D pose estimation problem.

should be established. In the past few years, 6D object pose estimation has been investigated

intensively in both research areas and industry applications. However, Finding such a trans-

formation is not a trivial problem due to the reason that it is not easy to match them given a

set of P and P′. For example, the features of objects presented in fig 1.2 pose challenging to

traditional methods.

Figure 1.2: Illustration of objects with occlusions, texture-less objects and symmetrical
object. Images are taken from the T-LESS dataset.

This thesis focuses on estimating and tracking the object 6D pose using deep learning,
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to overcome the limitations of traditional methods. Essentially, this thesis, develops the

learning-based methods which can predict the 6D pose of an object from the input of an

image. The fig 1.3 shows an end-to-end deep learning framework to estimate the 6D pose

of an object presented in the image. This network takes image data for its input and directly

outputs the 6D pose of an object. Generally speaking, the works of this thesis are to develop

the aforementioned network.

Figure 1.3: Illustration of an end-to-end network for object 6D pose estimation.

1.3 Contributions
One solution to object 6D pose estimation using RGB camera is to use 3D-2D correspon-

dence. Suppose we know a set (more then 3 points) of 3D points of an object. We can then

find its projection in image frame through a feature extraction algorithm (SIFT, SURF). In

the end, the pose can be recovered by using PnP algorithms. In the past, this has been the

popular method to deal with 6D object pose estimation problem. But this method is not

stable when the objects to be estimated are texture-less, or being occluded. These scenarios

also pose challenges scenarios when attempting to find the features of object. Also, when it

is necessary to estimate multiple objects, the feature extraction process is time-consuming.

Due to the significant progress of hardware in recent years, depth sensors and light detection

and ranging (Lidar) sensors are used in variety of applications.

This also brings up more solutions for object pose estimation tasks. The geometry in-

formation provided by the use of a depth camera, can provide more accurate distance infor-

mation than an RGB image when the object is projected on its frame. The increased used
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of depth cameras can compensate for this information. Matching two point clouds, the pose

can be obtained by solving a 3D-3D correspondence problem. Once the point clouds of the

object in question are recovered from the data, we can use an off the shelf point cloud regis-

tration algorithm like ICP to obtain the optimized object pose. This kind of solutions usually

needs the object model to be available. But the 3D-3D matching problem still remains, since

traditional solutions significantly rely on calculating the specific local features, like the Point

Pair Feature(PPF) for extracting feature from point cloud. But PPF is not robust when the

point cloud is being occluded and/or reflective. Registration approaches are also challenging

when the point cloud is very dense. In addition, it poses challenges when identifying the

object of interest from a point cloud set.

To address the aforementioned limitations, deep learning is applied to the domain of 6D

object pose estimation. We have seen the powerful ability of deep learning to solve the prob-

lems in computer vision and robotics research. The emergence of these learning approaches

is beneficial to the progress of computational hardware and the availability of large-scale

datasets. By using large amounts of data, machines can learn the knowledge representation

of outcomes. So, by taking advantage of deep learning techniques, some researchers are

trying to solve the pose estimation problems in regard of supervised and unsupervised learn-

ing. For example, in SLAM (Simultaneous localization and mapping) tasks, deep learning

techniques are used to estimate the camera pose, depth map, and ego-motion. Object pose

estimation works in contrast to camera pose estimation, which is concerned with predicting

the pose of object in term of camera. Normally, the data for object pose estimation is ob-

tained from the camera, which could be RGB images, RGB-D images, or depth images only.

At the moment, RGB-D sensors are becoming popular in the field of robotics, as the price is

affordable. Also, compared to RGB data or depth data, RGB-D data can provide both visual

information and geometrical information, which provides a greater depth of information of

the object under analysis. In fig 1.4, it shows a sequence of RGB image, depth image, and

point cloud obtained by ZED sensor.

Among the learning-based approaches, CNN (Convolutional Neural Network) demon-

strates some noticeable results. Even using holistic-learning RGB-D based methods, in

which the pose is predicted in end to end manner, yielded remarkable results compared

to traditional methods. Previous proposed frameworks for processing RGB-D data simply
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Figure 1.4: Illustration of RGB image, depth image and point cloud.

focused on extracting color information, and geometrical information, separately, and com-

bined them together, like the works [5] [6]. This kind of fusion strategy could result in

insufficient utilization of fusion features from a variety of different data sources. Thus, in

chapter 3, it conducted the research by proposing an attention network to focus on extracting

the representative features of channel and spatial dimension. First of all, the objects to be

estimated will be localized by a segmentation network. Then, the segmented visual informa-

tion and geometrical information are processed by the 2D features extraction network and

3D feature extraction network, respectively. Our attention network doesn’t change the size

of fusion features after the refinement. So, it is convenient to insert our attention module

into the existing deep network. Once we obtain the refined fusion feature, the object 6D

pose is regressed by multiple MLP branches, where one MLP branch is used for regressing

rotation vector, one MLP branch for regressing translation vector, and one MLP branch for

predicting a confidence vector. We tested our framework on several popular datasets used in

object 6D pose estimation, and achieved remarkable performance, compared with selected

state of the art methods. From the attention map generated by our network, we found that

our network learns the features from the regions of object with sufficient features and avoids

the occlusion parts. You can find our proposed architecture in fig. 3.1 of chapter 3.

We believe that there are two limitations the framework proposed in chapter 3,which

prevent a better estimation performance, especially for the estimation of symmetrical objects.

First, the network we used to extract the point feature treated each point in the point cloud

independently, which ignores the local information. Secondly, directly regressing object

pose by MLP layers from fusion features is challenging. The symmetry objects typically

cause ambiguity during the learning process, as they have a similar feature representation
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corresponding to different poses. So, in chapter 4, we utilized a graph network to learn

the edge information between each point’s neighbours. Also, we constructed our network

in a way of Siamese architecture, in order to let them taking a pair of RGB-D samples for

training. Furthermore, we designed a loss function that enforces the Euclidean distance to be

minimized between the pose space and feature space. For testing, we only used one RGB-

D sample as input. The result of experiment showed that training with our proposed loss

function largely improves the pose estimation accuracy of symmetry objects.

In chapter 5, we extended the object 6D pose estimation to object 6D pose tracking for

robotic manipulation. We utilised the optical flow network to predict the motion of the object.

Based on the optical flow vectors we estimated, we proposed a keypoint selection scheme

to select the corresponding keypoints from two consecutive input RGB-D frames. Also, to

validate the selected keypoints, we used an iterative keypoint selection scheme to filter out

the unreasonable keypoints. Then, the change in the object’s pose between two frames is

estimated by the 3D-2D correspondences of their keypoints. We evaluated our framework

through the dataset for robotic manipulation, and demonstrated the robust and accurate pose

tracking performance through the interaction of manipulator. Our network can still track the

fast moving objects, with a high degree of accuracy, without losing the tracking. In order

to indentify and track the category object, previous learning based methods needed to learn

the features of its prior shape. Our method directly selects the keypoints based on motion

information, and it can also achieve the tracking of the category-objects.

This thesis is organised as follows: chapter 1 clarifies our research motivations, objec-

tives, and its contributions. Chapter 2 provides a literature reviews. In chapter 3, describes

the details of my contribution for the object 6D pose estimation by an attention network.

Chapter 4 demostrates the details of Siamese graph attention network for object 6D pose

estimation. Chapter 5 describes the method of object 6D pose tracking by utilising optical

flow estimation. Chapter 6 is the conclusion of this thesis.

1.4 Publications

Some of the contributions mentioned above have been submitted and published in interna-

tionally conferences and journals. Here is the list:

Chen, Tao, and Dongbing Gu. “6D Object Pose Estimation with Attention Networks.”
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2021 26th International Conference on Automation and Computing (ICAC). IEEE, 2021.

Chen, Tao, and Dongbing Gu. “CSA6D: Channel-Spatial Attention Networks for 6D

Object Pose Estimation.” Cognitive Computation 14.2 (2022): 702-713.

Chen, Tao, and Dongbing Gu. “6D Object Pose Tracking with Optical Flow Network

for Robotic Manipulation”, The 22nd World Congress of the International Federation of

Automatic Control. Accepted.



Chapter 2

Literature Review

In the field of computer vision and robotics, object pose estimation has been well studied,

especially with recent deep learning techniques. They demonstrate a powerful ability to

deal with texture-less objects and background clutter where traditional methods cannot. This

literature review discusses the most popular estimation methods,including the methods for

2D and 3D object estimation. The approaches discussed in this review are related to both

traditional and convolutional neural network based estimation methods. We analyse several

popular object detection and object pose estimation methods, such as 3D bounding box es-

timation, object coordinate regression, template-matching, and pose regression. In addition,

the thesis reviews annotated 6D pose datasets for dealing with complex environments.

2.1 Preliminaries

In this section, we are going to review three commonly used pose representations for a rigid

object, and two technical algorithms which we will use in our work to calculate the object

pose. In the literature, to represent the movement of a rigid object, the common ways are the

transformation matrix, quaternion and Lie group.

2.1.1 Representation of Object 6D pose

Generally, a transformation matrix T has the form:

T =

R t

0 1

 ,R ∈ R3×3, t ∈ R3×1 (2.1)

9
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Figure 2.1: The rotation representation by Euler Angles.

where R indicates a rotation matrix and t a translation vector. Specifically, a rotation matrix

has the properties, RRT = I, det(R) = 1, where RT is the transpose matrix of R. The

multiplication of a rotation matrix and its inverse is an identical matrix, and determinant of a

rotation matrix is 1. Intuitively, we utilise three Euler angles decoupling the aforementioned

R. In this way, a rotation can be expressed by singe rotation for x axis, y axis and z axis

respectively, three times in total. Note that the sequence of rotation can start from any axis

from x, y and z. In fig.2.1, we show the graphic expression for three Euler angles, Yaw(ψ),

Pitch(θ ) and Roll(φ ). As we know, a general rotation matrix can be represented as a 3× 3

matrix in the form:

R =


R11 R12 R13

R21 R22 R23

R31 R32 R33

 (2.2)

The converted 2.2 according to Euler angle expression, it can be written as:

R = Rz(ψ)Ry(θ)Rx(φ) (2.3)
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which means rotating the object along with roll angle, pitch angle and yaw angle respectively.

Furthermore, equation 2.3 can be expressed as follows:

R=Rz(ψ)Ry(θ)Rx(φ)=


cosθcosψ sinφsinθcosψ − cosφsinψ cosφsinθcosψ + sinφsinψ

cosθsinψ sinφsinθcosψ + cosφsinψ cosφsinθcosψ − sinφsinψ

−sinθ sinφcosθ cosφcosθ


(2.4)

While the Euler angles can represent the rotation more intuitively, they suffer from the prob-

lem called gimbal lock.

Quaternion. Due to the ambiguity of representing rotation using Euler angle, researchers

are increasingly using quaternion to express rotation.

q = q0 +q1i+q2 j+q3k (2.5)

It contains real part q0, and vector part q1i, q2 j and q3k. i, j and k are the complex elements

of the vector part. They satisfy the relationship i2 = j2 = k2 = i jk = −1. Suppose a point

p = [x,y,z] ∈ R3 in the 3D space, rotates along with axis n for angle θ . The resulting point

p′ is obtained as:

p′ = qpq−1 (2.6)

where q equals to [cos(θ/2),nsin(θ/2)].

Suppose a quaternion has a form as equation 2.5. From quaternion representation to

rotation matrix, its corresponding rotation matrix is:

R =


1−2q2

2 −2q2
3 2q1q2 +2q0q3 2q1q3 −2q0q2

2q1q2 −2q0q3 1−2q2
1 −2q2

3 2q2q3 +2q0q1

2q1q3 +2q0q2 2q2q3 −2q0q1 1−2q2
1 −2q2

2

 (2.7)

Although quaternion requires fewer parameters than the representation for object pose when

used in learning or optimization methods, it still requires the quaternion to be unit quaternion.

Also, q and -q represent the identical rotation. In the case of camera pose estimation or object

pose estimation, this constraint might increase the difficulty in obtaining the desired results.

Thus, some researchers choose Lie group to represent the object pose in 3D space.
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Lie group. The Lie group has the properties to optimise object or camera pose with no-

constraints. As we know, a rotation matrix can construct a SO(3)(special orthogonal group)

group.

SO(3) = {R ∈ R3×3|RRT = I,det(R) = 1} (2.8)

And a transformation matrix T can construct a SE(3) group(Special Euclidean Group).

SE(3) = {T =

R t

0 1

 ∈ R4×4|R ∈ SO(3), t ∈ R3} (2.9)

If we specify the rotation between -π and π , we can find the unique correspondence between

Lie groud and Lie algebra. Suppose we have Lie algebra se(3), ρ ∈ R3 representing a trans-

lation vector, and φ ∈R3 for a rotation vector in 3D space. We integrate them into the vector

form ζ ∈ R6, and its matrix form be

ζ
∧ =

φ∧ ρ

0 0

 (2.10)

There exists an exponential mapping that can map the Lie algebra to the Lie group.

exp(ζ∧) =

exp(φ∧) Jρ

0 1

 (2.11)

where exp(φ∧) = ∑
∞
n=0

1
n!(φ

∧)n, J = sinθ

θ
+(1− sinθ

θ
)aaT + 1−cosθ

θ
a∧. θ and a are the mag-

nitude and direction of vector φ , φ = θa. The symbol ∧ represents the transformation from

the vector φ to its skew symmetric matrix φ∧

In reverse, we can also map a Lie group T =

R t

0 1

 ∈ SE(3) to a Lie algebra represen-

tation ζ =

ρ

φ

 with the logarithmic mapping. θ = arccos tr(R)−1
2 , Ra = a, t = Jρ . Solving

the first two equations for θ and a, we can obtain φ as φ = θa. Solving the third equation,

we can find ρ

In the object 6D pose estimation domain, the aforementioned pose representations are

used interchangeably.



2.1. Preliminaries 13

2.1.2 Perspective-n-Point and Least Square Fitting

In our study, except for the learning methods that generate the object 6D pose straightfor-

wardly, the PnP(perspective-n-point) and least square fitting methods are used to obtain the

object 6D pose. These two methods have wide applications in the computer vision, and have

been implemented in many open source tools, like OpenCV [7]. So, in this subsection, we

are going to briefly introduce those two methods. We can also divide them into the cate-

gories: 3D-2D correspondence and 3D-3D correspondence. The 3D-2D estimation, used in

this study is known as the PnP method, which utilises the geometry relation between the

3D points and their 2D projections in the image frame to refine the camera or object pose.

3D-3D correspondence is an optimization approach that finds the best transformation (R and

T ) for two point cloud sets, so that they can match with the minimal match error.

Perspective-n-Point.PnP can calculate the object pose when given a set of correspon-

dences between 3D-2D point sets. A minimum 3 points in 3D space are required to get the

object, and their projections in the image space. It should be noticed that the coordinates of

points are presented in the world reference coordinate, not the camera coordinate. In most

cases using PnP solution, we assume the camera is calibrated, which means the camera’s in-

trinsic parameters are known. In addition, to reduce the impact of outliers in the input data,

Random Sample Consensus(RANSAC) is commonly used together with PnP. In fig 2.2, we

have three pairs of 3D-2D correspondences,(A,a),(B,b),(C,c). O is the camera principal

point. According to [8], we need the fourth point in order to address the ambiguity from the

possible solutions of P3P. We denote this pair as (D,d) Let v = AB2

OC2 , uv = BC2

OC2 , wv = AC2

OC2 ,

x = OA
OC , Y = OB

OC we can construct two equations:

(1− v)y2 −ux2 − cos(b,c)y+2uxcos(a,b)+1 = 0 (2.12)

(2−w)x2 −wy2 − cos(a,c)x+2wxycos(a,b)+1 = 0 (2.13)

Wu-Ritt proposed a zero decomposition method to solve preceding equations [9]. How-

ever, P3P only utilises three points’ information, therefore it cannot deal with the situation

with more than 3 correspondences. So, EPnP [10] is proposed to address the problem of

greater amount of correspondences.

Least Square Fitting. In the domain of camera pose estimation and object pose estima-
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Figure 2.2: Illustration of P3P Problem

tion, we often encounter the problem of estimating the transformation between two matched

point cloud sets. The ICP algorithm is a popular approach to address this kind of problem,

and has been implemented in OpenCV and Open3D, and other open-source tools. Suppose

we have two point sets with pre-established correspondences. P ={p1, . . . ,pn} ∈ R3×n,

P′={p′
1, . . . ,p

′
n} ∈ R3×n, where each p and p′ represents the 3D coordinates of point. Then,

we want to find a R ∈ R3×3, t ∈ R3×1. Let ∀i,pi = Rp′+ t. A general solution to obtaining

R and t refers to works in [11], which is based on singular value decomposition(SVD). First

of all, we define the error for the i-th point as:

ei = pi − (Rp′
i + t) (2.14)

Then we can construct a least square problem to find R, t in order to make the error to be

minimal.

min
R,t

J =
1
2

n

∑
i=1

∥∥pi − (Rp′
i + t)

∥∥2 (2.15)

We set the centroids of two point cloud sets as p= 1
n

n
∑

i=1
(pi), p′= 1

n

n
∑

i=1
(p′

i). Hence, the equation
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2.15 can be rewritten as:

min
R,t

J =
1
2

n

∑
i=1

∥∥pi −p−R(p′
i −p′)

∥∥2
+
∥∥p−Rp′− t

∥∥ (2.16)

The term ∥p−Rp′− t∥, only relates to the object centriod. Once we can calculate the R, the

t can be easily obtained by setting this term to 0. Hence, the solution for ICP algorithm can

be divided into three steps:

• Obtain the de-centralized coordinates for each point, qi = pi −p, q′
i = p′

i −p′

• Compute R according to R∗ = argmin
R

1
2

n
∑

i=1
∥qi −Rq′

i∥
2

• Calculate t, t = p−Rp′

For calculating R, expand the equation:

1
2

n

∑
i=1

∥∥qi −Rq′
i
∥∥=

1
2

n

∑
i=1

qT
i qi −2qT

i Rq′
i +q′

i
T RT Rq′

i (2.17)

In the right side of equation 2.17, the first term is independent to R, and the third term, as

RRt = I. Hence, we can further simplify the optimization equation to:

n

∑
i=1

−qT
i Rq′

i =
n

∑
i=1

−tr(Rq′
iq

T
i ) =−tr(R

n

∑
i=1

(q′
iq

′
i
T ) (2.18)

We let W ∈ R3×3 as
i=n
∑
n

qiq′T
i , then we apply SVD to W:

W = UΣVT (2.19)

where Σ is a 3×3diagonal matrix with non-negative elements, U and V are real orthogonal

matrices. When rank(W) = 3, R = UVT . Then, according to t = p−Rp′, we can get the t.

The details of provement can be found in the work of [11].

2.2 Introduction to 6D Object Pose Estimation and Track-

ing
There is a long history of the study of Pose estimation in field of computer vision.
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Whether in the fields if industry applications, robotics manipulation or autonomous driv-

ing, it is crucial to understand the pose of an object froom the perspective of the camera

or observers. In robotic applications, recovering object pose can help the robot interact

with complex a environment. Pose estimation is particularly important in regard to manip-

ulation tasks, such as the Amazon Picking Challenge(APC) [12]. The objects are grasped

and manipulated from bin and shelf and placed elsewhere without any collision between

them. If we know the pose of the object of interest, this task could be made faster and safer.

The tasks of robot navigation, obstacle avoidance and path-planning also require the abil-

ity [13] [14] to guide the robot from one place to another. Pose information can also improve

the performance of Unmanned Aerial Vehicles(UAVs) when GPS is not able to provide the

service [15] [16].

The pose of object is defined by the relation between rotation and translation to the cam-

era coordinate. In this review, most of the estimation methods use the method of supervised

training in which object pose, 2D bounding box, and 3D model are provided. And the

most challenging elements of object pose estimation are occlusion, clutter, similarities in

appearance, texture-less and variability of dataset. The ingenious design of deep learning

algorithms, has made some progress addressing aforementioned challenges, but still insuf-

ficient. Recent research to tackle occlusion and clutter problems, usually employs a voting

scheme [17] [18] [19]. Unlike more traditional methods, which need to design specific fea-

ture descriptors for texture objects, the CNN-based model can be trained through massive

annotated texture-less datasets to estimate the pose accurately. [20] [21].

In general, this review, will focus on the deep learning approaches that have emerged in

recent years, in addition to some classical non-learning methods. In the development of deep

learning, the convolutional neural network(CNN) shows the powerful ability for process-

ing those visual images, especially in regard to image classification and image recognition.

Most of the learning-based algorithms which estimate object 6D pose also rely on the ad-

vantages of those CNN detectors as the backbone network to extract features. This chapter

has reviewed some popular CNN detectors. This thesis, also investigates object 6D tracking.

Chapter 5 we proposes an algorithm to accomplish this. Essentially the methods mentioned

in this chapter concern the object 6D pose estimation and tracking topics. Chapter 3 to 5

discuss out proposed algorithms in greater depth.
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To summarise, the main method to recover object pose consists of four representations

of object pose such as 3D bounding box, object-coordinate, template matching and directly

regressing pose.

The remaining sections are organised as follows: subsection 2.3 briefly reviews several

popular 2D image detectors which are used to get the 2D bounding box and segmentation of

object of interest. Subsection 2.4 classifies the learning based and non-learning based object

pose estimation approaches and subsection 2.5 reviews the works of the optical flow network.

Subsection 2.6 reviews the works of object 6D pose tracking and subsection 2.7 explains the

commonly used datasets for object pose estimation. Subsection 2.8 summarises the com-

monly used metrics for evaluating 6D pose estimation. Subsection 2.9 is the conclusion of

chapter 2.

2.3 2D Detection and Segmentation

In the field of object pose estimation using CNN, a popular scheme was to segment target

objects first, which was usually presented in the form of bounding box and segmented mask.

In this way, we can remove the background and identify the object’s location in the image,

and move onto the next network for further processing. Using 2D detectors can extract the

mid-level features of an object. These features can be used to regress object 6D pose, 3D

bounding box, keypoints, for example. The following subsections will briefly discuss several

2D detectors used to estimate the object 2D bounding box and the semantic mask.

RCNN

Object detection posed a bigger problem than object classification. Not only did it require

knowing the class of object, but also the bounding box which surrounds the object. The

bounding box in the image is normally a rectangle, identified by its upper-left and bottom-

right corners. Before CNN was adapted to object detection, the methods of sliding window

and selective search [22] were widely used to propose bounding box. These methods were

time-consuming and ineffective. In [23], the author introduced a region proposal method fol-

lowed by a convolutional neural network called R-CNN. Firstly, about two thousand random

proposals were produced through a selective search, and then each proposal was extracted to

a fixed size as input to the convolutional network, and finally a support vector machine(SVM)
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was used to classify each proposal.

Fast RCNN

Although R-CNN used CNN in detection, it still has several drawbacks. For instance, R-

CNN is not an end-to-end network, it cannot update all layers at one time. Furthermore,

from the record of [24] it took 47s in VGG16 per image in detection. Fast R-CNN was an

end-to-end framework which was used to improve the detection result compared to R-CNN.

In contrast to R-CNN, Fast R-CNN takes whole images as input and uses them to produce

its feature map. In order to deal with arbitrary shape region of interest, the author introduced

a layer called RoI pooling that extracted a fixed-length vector as input for a remaining fully

connected layer. There were two branches at the end of architecture, one of which estimates

the softmax probability over K object classes and plus one background, the other the four

numbers of each class which represent object bounding box coordinates. The RoI pooling

layer played the key role in achieving end-to-end training. For example, we specified the

feature region we want to extract as H ×W (they were 7×7 in the original paper), and then

the corresponding shape of region of interest was h×w. The RoI pooling layer downsized

the RoI h×w into H×W by dividing it to approximately h/H×w/W sub-windows and then

applying maxpooling to each window. In this way, we can obtain a fixed size feature-vector

before sending it to the next FC layers.

Faster RCNN

Both R-CNN and Fast R-CNN can be seen as a kind of region proposal method. Fast R-

CNN inputs whole images to perform convolution, and convolutional features will be shared

with each region proposal. Faster R-CNN [25] was proposed to achieve real-time detection

performance. Faster R-CNN comprised of two modules, the Region Proposal Network(RPN)

for producing region proposals, and Fast R-CNN.

Generally, RPN directed the Fast R-CNN network to find the most likely region to belong

to the object of interest in the feature map. Once the input image has been operated by shared

convolutional layers, RPN will insert the last convolutional feature map, for example, taking

n×n region on feature map as input. It mentioned that there were 9 different scales of region

proposals in which it has a scale correspondence to original image. In [25], each position

has 9 anchors on it and RPN will determine whether each anchor contained objects or not
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and outputed the approximated coordinates of bounding box.

For the detection part, the author used the work of Fast R-CNN in order to train two net-

works jointly to share convolutional computation, rather than training them, independently.

The alternating training was the first to be adopted by the RPN. Generated region proposals

were then used to train Fast R-CNN, and then the results of Fast R-CNN will be used to

initialize RPN.

Mask RCNN

Mask R-CNN [26] was a tiny changed network compared with Faster R-CNN. It added

one more branch that identified the semantic segmentation of each object. That meant that

each pixel in each image has to be classified coorespondingly. Mask R-CNN’s network

architecture is identical to RPN in first the stage, except it added one mask branch in parallel

to object classification and bounding box regression branch. Also, it was different from the

RoI pooling layer in Fast R-CNN, and it proposed a RoIAlign layer that reduced ambiguity

at feature extraction.

As in the aforementioned, the RoI pooling layer will approximately divide the region of

interest into [h/H]× [w/W ] bins, where [·] meant rounding operation. This quantization has

little impact on classification and small translation, but it has large negative impact on pixel-

wise segmentation. To get accurate pixel level segmentation results, RoIAlign didn’t use any

quantization, it used the result of h/H instead. The bilinear interpolation was to compute the

nearby 4 points of h/H, and then perform maxpooling operations on interpolation results.

Fully Connected Neural Network

Beside the region proposal method, a fully connected neural network(FCN) [27] was also

wildly used to segment objects. The FCN replaced the last fully connected layer in CNN

with a fully convolutional layer such that it can produce the probabilities for each pixel in

the image rather than a fixed vector which represented the classification of the object. At the

end of FCN, the map will generate an input image of the same size. To get its prediction,

upsampling, some time called deconvolution, transpose convolution in other literatures, was

used to make sampling feature maps the same size as input image. To obtain more accurate

semantic segmentation results, the previous pooling layers can be unsampled and summation

with final layer unsample result.
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Except the aforementiioned network architectures, ResNet [28] was also a popular net-

work for learning object detection. To address the degradation of deep neural network,

ResNet proposed an identity short-cut connection that skipped one or more layers, which

forced the network to learn the residual information, especially for the deeper layers. With

this simple connection, it didn’t increase the parameters of the network and computational

complexity. Also, ResNet can construct very deep architecture, ResNet-18, ResNet-34,

ResNet-50, ResNet-101, ResNet-150 and other more deep variants, where number followed

by ResNet indicates the layers it has. DenseNet [29] also achieved the good performance for

feature learning. It considered the short-cut connections which connected each layer to all

the other later layers, to allow the maximum flow of information to go through the network.

Encoder-Decoder architecture [30] was also a popular choice for semantics segmentation

and was used to learn the representation of the object in object 6D pose estimation.

2.4 Object 6D Pose Estimation

In this section, the works of object pose estimation were reviewed. Subsection 2.5.1 and

subsection 2.5.2, reviewed some popular estimation approaches using traditional feature de-

tection and matching methods. From subsection 2.5.3 to subsection 2.5.9, we reviewed the

methods of deep learning for object pose estimation. In section 2.6, the methods for optical

flow estimation were discussed, as optical flow estimation was a crucial part of the frame-

work proposed in chapter 5. Section 2.7 reviewed the object 6D pose tracking methods,

2.4.1 Traditional Methods for Object 6D Pose Estimation

In this subsection, we reviewed some popular and effective traditional methods in our re-

search domain. The term “traditional” was compared to those learning methods. It didn’t

mean that they were useless in today’s researches and applications.

In fig 2.3, we showed a classical method of estimating object 6D pose. Suppose a RGB

image was taken as the input for this pipeline. The feature detection block was used to detect

the keypoints on the image. For instance, the ORB feature was a powerful feature to describe

the image. Alternatively, computer vision community also adopted SIFT and SURT. As there

were some features that belonged to background, we needed the auxiliary of object model

to match the features of the object of interest. In the PnP+Ransac block, we can determine
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Figure 2.3: Object 6D pose estimation pipeline with feature detection and feature matching
fashion.

Figure 2.4: Illustration of point pair feature.

the pose of the object by the 3D-2D correspondences established in the previous block.

Ransac was used to remove the outliers from the estimation. But this kind of framework has

limitations, in that it requires that the object to be detected has enough texture information.

In industry applications, many objects are texture-less. Also, this pipeline requires object

model which makes the framework more applicable to specific objects.

Point Pair Feature. [31] first proposed this kind of approach to detect the object pose

from point cloud data. Unlike the image feature detectoo, which described the local infor-

mation of pixels, point pair feature utilised the geometrical relationship between two points

to match scene point clouds to object model. In fig 2.4, we used two points to show how to

construct the point pair feature. In there, we have two points, Pa and Pb. Their Euclidean

distance d was one of the element in point pair feature. Then, it computed the normals of

two points, na and nb, then angle with normal and the distance vector d were taken as the

elements of point pair feature, noted as Fa and Fb in the figure. The last element was the

angle formed by two normal vectors, Fc. So, one point pair feature can be expressed as:

P(pa,pb) = (||d||,∠(na,d),∠(nb,d),∠(na,nb)) (2.20)
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To calculate the point pair feature, we needed the object 3D model. The points in object

model will be perturbed and calculate point pair feature for each point pair. So, in this way,

we have a global representation of the object, unlike the local description as provided by the

image detector. The resulting features of object model will be stored in a hash table. Point

pair features were also caculated for the scene point cloud(input data). To get the object

pose, each computed feature of object model was matched with computed features of scene,

and a Hough-voting scheme was used to vote for the highest possibility of object pose for

the object. The limitation of using point pair feature was that there would exist erroneously

detection of simple object, especially planar objects, as there would be many similar features.

2.4.2 Template-Based Methods

The most traditional template-based method probably was [32]. It was proposed by Hinter-

stoisser et al. In template-matching method, object model was required to provid multiple

viewpoints. Multiple templates will be sampled in relation to the object. [33] it stated 2000

samples could yield a more accurate result. We then extract color gradient and surface nor-

mal from the input image using the sliding window and compare them with the templates

that were stored in memory. The authors also proposed a dataset called LineMod which

was commonly used in the object pose estimation. But the condition of lighting remained

consistent in this dataset.

2.4.3 3D Bounding Box Methods

3D bounding box was a cubic that covered object tightly and fixed the its pose properly. It

was described as a tuple (x,y,z,w,h,l, θr, θp, θy) where (x,y,x) was the bottom corner of 3D

bounding box, (w,h,l) was width, height and length of 3D bounding box and (θr,θp,θy) was

the roll, pitch, and yaw angle, respectively. For those scenes where objects had to be placed

on the ground, as in the case of the car, the method would only consider yaw angle [34]

[35] predicted 2D projection of corners of 3D bounding box and calculated pose using

Perspective-n-Point(PnP) algorithm. For the training, it only required the ground-truth of

3D bounding box. Rad et al. [36] used the segmentation results to reasoning 2D projection

of 3D bounding box instead of using 2D bounding box. In [37], depth image was added

to combining with RGB image for regressing 3D bounding box. It used a CNN to extract

visual features from RGB input and a PointNet [38] to extract geometrical information after
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input pre-processing. Then resulted features were then used to directly predict box corners.

To deal with occlusion, Oberweger et al. [39] predicted heatmaps of corners of 3D bounding

box projection on image plane from multiple image patches.

2.4.4 Pose Regression-Based Methods

Inspired by the success of Mask R-CNN, Toan Do et al. [27] proposed LieNet, which di-

rectly regressed object pose from only RGB image as input. The LieNet used a VGG-16

network as its feature extractor and shared four head branches which were used for bound-

ing box regression, object classification, mask segmentation and 6D pose regression. The

pose regression branch was a multilayer perceptron that produced rotation matrices in the

representation of Lie algebra. LieNet achieved the state-of-the-art 6D object pose estimation

result while using only an RGB image, without post-refinement. With addition to LieNet,

PoseCNN [5] has been proposed by directly regressing object pose. PoseCNN used VGG16

network architecture as its feature extractor, and followed three embedding steps that pro-

duced semantic labels, translation vectors and rotation vectors, respectively. Unlike other

methods that directly regressed the object centre is cases of object translation, PoseCNN

added a Hough voting layer where the result of semantic labels and result of center regres-

sion were embedded as input into the Hough voting layer. The locations with maximum

voting score were selected as object centers. The advantage of the leveraging voting method

was to make the model robust in the clutter scene by utilising visible pixels. Within contrast

to LieNet, PoseCNN applied the quaternion format. Although the representation of quater-

nion avoided the ambiguities inherent in the representation of Euler angle, quaternion has

limitation that its unit norm must be one which imposed the limitation of value range of

network output. Also PoseCNN needed ICP algorithm for post processing.

When combined with a single RGB input, depth image can compensate for depth infor-

mation. The work of DenseFusion [6] leveraged these two different types of data to regress

object pose. DenseFusion demonstrated an effective CNN-based method that leveraged these

two sets of complementary data can into one the state-of-the-art object pose estimation re-

sult. The DenseFusion detector combined embededing features that came from segmented

RGB images and geometrcal features produced by PointNet [38]. The fusion was performed

in per-pixel level in which object appearance information and geometrical information were
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explicitly combined together, showing the potential to overcome occlusion and the clutter

scene. Also, the detector was followed by a refinement network to improve estimation accu-

racy. Inspired by the fusion between distance and color information, Gao et al. [40] argued

geometrical information obtained from point clouds can only infer pose information. The

point cloud used as input passed to two estimation networks which were similar to PointNet

but removing the spatial transformer blocks. They adopted the axis-angle representation for

the rotation regression.

2.4.5 Pose from RGB Image

There were many deep learning architectures that performed excellently in object detec-

tion [41] [25] and segmentation tasks [26]. Normally, 2D bounding box and segment mask

of object were cropped from the image, then formed the input for CNN-based 6D pose esti-

mation approaches. Kehl et al [34] first used a single-shot SSD detector to find the interested

objects, then their viewpoints were estimated through classification instead of regressing 6D

pose numerically. But this method was inaccurate when applied to real world examples. Park

et al [42] used an auto-encoder to make pixel-wise predictions for an object’s 3D coordinate,

obtaining the pose by solving 2D-3D correspondence by using PnP algorithm. They also

attempted to use a Generative Adversarial Network [43] to determine the occlusion part of

the object, but their work had complex training stages, which could pose a certain level of

difficulty for real world deployment. To consider each pixel’s contribution, Peng et al [18]

made use of a voting scheme to select the best keypoint from each pixel’s prediction. Sim-

ilarly, Xiang et al [5] proposed a network that regressed the center of object as translation

from pixels and regressed their distance to the centre directly. Due to the discontinuity of

each object’s rotation space, it was hard to predict numbers as rotation vectors directly from

a single RGB image. Briefly most RGB methods used a 2D detector as their backbone for

feature extraction, and its effectiveness in estimating 6D pose from extracted features has

been demonstrated.

2.4.6 Pose from RGB-D/Point Cloud Data

RGB-D/Point cloud methods: To understand 3D scenarios, PointNet pioneered the classi-

fication and segmentation of 3D data. To overcome the limitation of PointNet that treated

individual points in 3D space independently, VoxelNet [44] encoded 3D points into regular
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voxels. Although voxelization can locally exploit the geometry information of point cloud, it

will result in plenty of empty voxels which were not memory and computation friendly. Gao

et al [40] utilised two PointNet-like networks to direfctly regress object pose from un-ordered

point sets. Wang et al [6] proposed an iterative fusion network that took RGB-D image as

input. In their work, the pose was estimated from the combined features of RGB information

and depth information. In 3D detection tasks, Sindagi et al [45] proposed a similar multi-

modality fusion strategy for vehicle detection using the KITTI dataset. In their work, they

obtained image feature map from a pre-trained Faster-RCNN network, while point cloud was

projected back to image plane using camera intrinsic information. The point features were

appended with corresponding image features, then a Voxel Feature Encoding layer which

was obtained from VoxelNet, used to encode aggregated information.

2.4.7 Object Coordinate Regression

Within contrast to the approaches that directly regressed pose information, object coordinate

regression methods, which regressed 3D object coordinates, established the 2D-3D corre-

spondence that was used to calculate pose by PnP and RANSAC [10] [21]. This method

often required object model, and can be divided into RGB-only and RGB-D input methods.

In [42], the authors proposed a pipeline called Pix2Pose that used a single RGB input patch to

estimate object coordinates. The input patch was obtained from 2D object segmentation con-

taining the object of interest. The network was an auto-encoder that predicted coordinates,

so ground-truth coordinates were calculated by rendering object models with ground-truth

pose.

2.4.8 Attention Mechanism

The model with attention mechanisms have shown a remarkbale performance in the take of

machine translation. The Transformer [46] almost became a standard network in the domain

of natural language processing. Not only in the sequence-based (text, audio) tasks, but also

in image and 3D data processing. It was a powerful technique to enhance the feature repre-

sentation learned from those data. Woo et al [47] proposed that, processing a given feature

map, in terms of different dimensions can focus its attention map on necessary information.

For graph-structure data, Veličković et al [48] introduced a network architecture with an

attention layer which considered the contributions from different neighbors of a node. Fur-
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thermore, attention mechanism has a vast array of potential applications in video responses

to questions, video captioning, and video recognition.

2.4.9 Transformer-based Object 6D Pose estimation

Transformer [46] demonstrated its superiority for processing text data in the domain of nat-

ural language processing and its multi-head self-attention mechanism has been widely in-

corporated into the deep neural network for processing image data. The work of [49] built

a vision transformer that spilt the images into a number of patches, and then they were

processed by a pure transformer. Its experimental results proved that it could achieve the

same performance as CNN in image classification tasks. Recently, transformer-based net-

works also demonstrated the competitive performance on the object 6D pose estimation task.

Amini et al. [50] proposed an architecture for pose regression of multiple objects. It used

ResNet50 [28] for the extraction of visual features, and positional encoding information to

enter into the transformer encoder-decoder, followed by three layers MLPs to regress ob-

ject pose. As the same author of [50], they proposed an advanced network called YOLO-

Pose [51], which worked as predicting the 2D projections of 3D keypoints in the image.

Thereafter, the object pose can be recovered by PnP algorithm. 6-ViT [52] was a transformer-

based instance representation learning framework, which can be used to estimate object 6D

pose. It was constructed in a similar way to the network we proposed in Chapter 3. It took

two various modalities as input, RGB and point cloud, respectively. To process RGB patch, it

created the Pixelformer module to extract appearance embeddings, which has a transformer-

based encoder-decoder architecture. To process point cloud source, it proposed Pointformer

which has a cascaded transformer encoder and an all-MLPs decoder to extract geometrical

information. Then, a multi-source aggregation network was used to unify the representation

of fused embeddings. By adding the shape-prior information to the fused representation,

6-ViT can also predict the 6D pose for category-level objects. In the end, two MLP branches

were used to reconstruct the instance point representation of the object, where the object

pose can be recovered from observed point cloud and reconstructed point cloud, using a

least-square estimation.
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2.5 Optical Flow Estimation
Optical flow describes the pixels’ motion in the consecutive frames, and the amount of

elapsed time. In general, the optical flow algorithm makes several assumptions. Here we

list two important assumptions.

1 The pixel’s intensities remain constant during two consecutive frame.

2 Neighbouring pixels have similar motion.

We can summarise these two assumptions in one equation.

I(x,y, t) = I(x+dx,y+dy, t +dt) (2.21)

Applying the taylor series approximation, finally we can get the equations.

fxu+ fyv+ ft = 0 (2.22)

where

fx =
∂ f
∂x

, fy =
∂ f
∂y

,u =
∂dx
∂dt

,v =
∂dy
∂dt

(2.23)

fx and fy are the image gradients. u and v are the motion in x and y direction along time dt,

respectively.

There are two kinds of optical flow normally used in applications, sparse optical and

dense optical. Spare optical flow tracks the specific features of pixel motion, such as cor-

ners. Hence, it requires using some dedicated algorithms(SIFT,SURF) to pre-process the

images before calculating the sparse optical flow. In contrast, dense optical flow calculates

the motion of entire pixels in the image.

In the scenario of object pose estimation and tracking, the objects to be estimated could

be complicated, especially illumination variation. These kind of situations make it very

challenging to predict optical flow when using traditional algorithms. But recently, deep

learning techniques have been used to predict the optical flow, and show the high accuracy

and robustness.

This section reviews the learning-based optical flow estimation algorithms, as optical

flow estimation played a key role in the work of Chapter 5, where optical flow was used
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to find the correspondence between two frames. FlowNet [53] was the first proposed CNN

network to predict the optical flow. FlowNet consists of two variants, FlowNetSimple and

FlowNetCorr. FlowNetSimple only utilized convolutional operation to process input data,

where two input frames were simply stack together. Instead of using the generic convolu-

tional network, FlowNetCorr uses two sepatrate but identical networks to process the input

frames and concatenate them together in the later stage. To force the network to learn the

meaningful correspondence bwtween two images, a correlation layer is proposed to multiply

the feature maps before they are stacked together. Training a supervised optical flow network

requires a large labelled optical flow dataset, which is unlikely to label each pixel’s motion

by human operator. The authrs of FlowNet, also published a synthesis dataset, FlyingChair,

to help the training of optical flow network. FlowNet2 [54] is an advanced version in com-

parison to FlowNet, more equipped to deal with pixels with small displacements, and more

robust to process real-world data. For the large displacement case, FlowNet2 uses multiple

FlowNetSimple networks to learn it, in which the second image is warped with the predicted

flow, then passed to the next stage. For small displacement, it replaces the stride operation

in FlowSimpleNet with a smaller stride operation. Finally, the predicted results from large

displacement and small displacement are fed into a fusion network to obtain the final flow

prediction. In the case of PWC-Net [55], it establishes a pyramid network to process the in-

put images. Specially, it uses up-sampled flow generated from a higher level pyramid to warp

the first image, and then proceeds to a cost volume layer, which stores the mismatched costs

of corresponding pixels, Then using cost volume as input, the final flow is estimated using a

multi-layer CNN. Since optical flow estimation has a wider range of applications, it needs to

be more friendly to resource-limited devices, like running on embedded systems. Hence, the

light-weight optical flow networks [56], [57] are designed for the trade-off between speed

and computation budget.

Below, we showed some qualitative results obtained from SimpleFlowNet and Lite-

FlowNet on NOCS dataset and YCB-Video datase, respectively.

Fig. 2.5 and Fig 2.6 are visualizations of optical flow estimated by SimpleFlowNet on

NOCS dataset and YCB-Video dataset, respectively. Fig 2.7 is the visualization of optical

flow of the LiteFlowNet prediction. The color indicates the motion direction, and its intensity

is the displacement of the motion.
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Figure 2.5: Examples of optical flow estimation on NOCS dataset (small camera movement)
by SimpleFlowNet.

Figure 2.6: Examples of optical flow estimation on YCB-Video by SimpleFlowNet.

2.6 Object 6D Pose Tracking

In this section, we are going to review the recent application of object 6D pose tracking meth-

ods. As with above subsections, we focus on reviewing the works related to deep learning

methods, but some traditional tracking algorithms will also be covered. Generally, learning

based object pose tracking and object pose estimation have some similarities, for example,

most of object pose estimation networks can be used in object pose tracking to predict the

object pose from static frame. There are several factors that must be considered when using

object pose tracking methods. In tracking, we usually have the observation before getting the

pose result. Most of the time, we need to consider the spatial-temporal relation to determine

the current pose from the previous and current observations. The classical Bayesian filtering
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Figure 2.7: Examples of optical flow estimation on NOCS dataset by LiteFlowNet.

methods can be used to do this, which we will review in the next subsection. We can also

use contemporary recurrent neural network, graph neural network and CNN to deal with this

situation. As in tracking, an object might encounter occlusion during its movement, there-

fore the tracking algorithm must be robust to address this issue in order to avoid losing of

the object being tracked. In robotics applications, the object pose tracking algorithms might

also be interrupted by other objects or manipulators.
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2.6.1 Object 6D Pose Tracking by Optimization

To overcome the challenges faced by the objects, such as self-occlusion, in-distinguish view,

some works have tried to estimate the probability distribution of object pose. This estima-

tion method models the uncertainty during the process of prediction. Here we are going

to review some optimization methods for predicting 6-DOF object pose without the aid of

deep learning. Karman filter and Particle filter are a popular and flexible tracking algorithm

for tracking 2D or 3D objects, and they are commonly used to fuse the motion prior and

the measurement information. A simple particle filter tracking pipeline could be as follows:

Given the initial 6-DOF object pose distribution and initial weights, the sampled particles

are propagated to predict the pose in the next frame using the motion model. Next, we must

re-calculate the weights of particles using likelihood function. Then, the updated weights are

used to re-sample the particles. The updated pose can be obtained by calculating the mean

of re-sampled particles. Like in this fashion, Choi et al. [58] proposed a particle filter based

tracking algorithm with high efficiency GPU implementation. They take point coordinates,

point colors, and normals as the measurements for the likelihood function. Also, it needs

to render the object model with predicted pose to the calculation, which makes it limited

for some applications. In the work of [59], they utilised a Siamese network to predict the

object 6-DOF pose with the quaternion representation. Combining particle filter and deep

neural network, [60] utilised Rao-blackwellized particle filters to decouple the rotation and

translation. First of all, they create a codebook by training an auto-encoder on photorealistic

images, which are generated by discreting the 3D orientation space into the fixed number

bins. So, it maps each rotation vector to a latent variable, which will later be used as ob-

servation likelihood functions. Then, the sampled particles with translation distribution are

propagated to crop the predicted Regions of Interest(ROIs) where the object of interest could

be included. The cropped regions will be sent to an auto-encoder to predict their corre-

sponding latent variables, and compare them with the pre-computed codebook to update the

distribution of 3D object orientation.

2.6.2 Object 6D Pose Tracking by Multi-Views

Some methods leverage images taken from various view points to realize the tracking pro-

cess. In these methods, these multi-view images often have a spatial-temporal relationship
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because they are usually obtained from a time sequence. In this subsection, the methods

reviewed mainly involve taking a pair of images as input, which are normally the previous

observation and the current observation. Generally, these images can be real observations

from the camera during the tracking process. These cases normally rely on a segmentation

network to crop the patches that encapsulate the objects of interest. Feature matching is then

performed by a deep neural network or other classical feature detectors. On the other hand,

some methods use only the current observation as reference image and take the auxiliary of

object CAD model rendered by previous pose estimate, which is intended to provide camera

intrinsics. Hence, the residuals between real observation and rendered image can be mea-

sured through different criteria, such as measuring the differences between the contours of

two objects or the displacement of keypoints.

As in the work [61], it utilises the feature matching and registration by a deep CNN to

calculate the relative pose change of an object. Two consecutive RGB-D images are given

as input, first using a segmentation network to determine the region of interest. Then, a

deep CNN is used to find the keypoint correspondence between two segmented images. The

depth point cloud can be recovered from the 2D keypoints and corresponding depth pixels.

Then, the relative pose change of object can be estimated from two depth point clouds by

ICP algorithm. The work of se(3)-TrackNet [62], renders the object model as a reference

image for the previous estimated pose, and takes the current observation image to predict

the feature residuals between them. Then, based on the feature discrepancies, two separate

branches are used to estimate the relative transformation via Lie Algebra, ξ = (t,w) ∈ se(3).

Marougkas et al [63] proposed a multi-attentional framework which takes an observed image

and a rendered image to track a single known object. They generated two attention maps;

one is the attention weight for foreground, another is the attention weight for occlusion of

object. In the work of [64], Manhardt et al. propose an object 6D pose refinement network,

which can also be used in the context of tracking. To update the pose change, they use the

object CAD model and a pose hypothesis to generate a synthesis scene of object without

background. Thereafter, they crop the patches from rendered scene and real scene, followed

by the deep neural networks to extract low-level and high-level features. Then, the pose

change is regressed from those extracted features.
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2.6.3 Others Object 6D Pose Tracking Methods

There are some other methods that we cannot review comprehensively. For example, some

works train their deep network purely on the synthetics data [65] [66], to avoid the human-

interaction to label the pose information.

2.7 Datasets

This section, demonstrates several popular datasets used for posing estimation and/or track-

ing. As we know, data is crucial for any learning-based algorithms, especially for 6D object

pose estimation. Obtaining pose information require an accurate and stable sensor configura-

tion. Researchers have to consider how to annotate pose dataset more quickly and accurately.

At the moment, we have several datasets which are widely used in the research of pose esti-

mation. They perform different roles like pin-picking applications, grasping applications and

others related to the robotics or computer vision field. The objects in those datasets focus

on different properties, such as texture-less objects, symmetry objects, occluded objects and

objects with clutter background. Normally, there are two stages of the dataset, the training

set and test set with annotated ground-truth information. The object models will also be cre-

ating manually or obtained through 3D reconstruction techniques like KinectFusion [67], in

the case of some frameworks require it.

• LineMod and LineMod-Occluded: The LineMod dataset is provided by Hinter-

stoisser et al [68]. 15 texture-less objects are placed on the table in the cluttered back-

ground. The dataset contains 15 image sequences, but each image sequence only has

been annotated by one object. The lighting condition is constant in the dataset, with

no significant occlusion with any of the other objects. Based on the LineMod dataset,

Brachmann et al [33] provide an advanced dataset called LineMod-Occluded. In this

advanced dataset, the authors add all the annotations for each test image sequence, and

various lighting conditions, and object occlusion. That makes thg new dataset more

challenging.

• YCB-Video : The YCB-Video dataset is provided along with the PoseCNN detector

[5]. The dataset has 21 household obejcts from 92 videos with 133,827 frames. Apart
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from real captured images, there are around 80,000 synthetic images provided. Also

the object CAD models have been given.

• T-LESS : T-LESS [20] is a popular dataset at the moment used for the estimation of

texture-less objects or symmetry objects. It is designed for the estimation of texture-

less objects in regard to potential industry-relevant applications. Objects in T-Less

are challenging because they have no texture, and all objects have a similar color and

shape. The dataset is obtained through three time-synchronised different sensors (Mi-

crosoft Kinect v2, Canon IXUS 950 IS, Primesense Carmine 1.09). The training set

has 38,000 images from each sensor with a plain black background, while the test set

has 10,000 images from each sensor with a more complex background. The two differ-

ent types of object models are also provided, one is the manually created CAD model,

another is the semi-automatically produced.

• MVTec ITODD : Contrary to the aforementioned dataset, MVTec ITODD [21] fo-

cuses on industry applications. The dataset contains 28 rigid objects with different

shapes and surfaces from 800 scenes, captured by two industrial stereo cameras and

three gray-scale cameras.

• HB(HomebrewedDB): The HB [69] dataset is the dataset designed to deal with tex-

ture and texture-less objects, scalability, occlusion and various light condition. Note

that the training data in HB dataset is rendered by the 3D reconstructed models instead

of real data. Using HB dataset, [17] [70] demonstrated that training on synthetic data

can also achieve better generalization compared with using real data.

The datasets mentioned above are commonly used in the pose estimation research commu-

nity. To achieve robust performance, however, data augmentation might be needed to make

dataset generalizing well.

2.8 Metrics for Evaluating the Object 6D Pose
To analyse the accuracy of the object pose produced by the algorithms, we need the criterion

to compare the predicted value with ground-truth value. It assesses the performance of the

network, and can give us an intuitive measurement of the results. In this subsection, we
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Figure 2.8: Illustration of distance calculation of ADD metric for non-symmetrical object.

review several commonly used metrics in the field of object 6D pose estimation, some of

which will be used from Chapter 3 to Chapter 5.

Average Distance(ADD) The average distance is proposed in [33] in the first time. It

is most wildly used in the evaluation for object 6D pose estimation and it has two vari-

ants(ADD, ADD-S) which aim for non-symmetrical and symmetrical objects, respectively.

ADD =
1
m ∑

x∈M

∥∥(Rx+ t)− (R̃x+ t̃)
∥∥ (2.24)

In formulation of ADD, R̃ and t̃ are the predicted rotation and translation, while R and t

are the ground-Truth. x denotes the points selected from the 3D model of object of interest.

The predictions of rotation and translation are considered correct if the score of ADD is

under a predefined threshold. As we can see in fig 2.8, the object model is transformed by the

predicted pose and ground-truth pose. The black lines indicate the distance of corresponding

points between two transformed point clouds. Obviously, the distance will be more small if

the predicted pose is more close to ground-truth pose.

This threshold is normally considered as a constant value that describes coarseness of

estimation multiply the diameter of the 3D model. Note that this metric cannot deal well

with the objects with symmetric shape. Like illustrated in fig 2.9, calculating like ADD met-

ric for symmetrical object will result in huge penalties for the rotation that are equivalent to

symmetrical axis. Therefore, to evaluate the model’s performance on symmetric objects,

the ADD-S is used. In the formulation of ADD-S, the score is calculated as average distance

to the closest point, and x1 and x2 are selected from the same 3D model. In fig 2.10, it shows
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Figure 2.9: Illustration of distance calculation of ADD metric for symmetrical object. It
shows two transformations that have different rotations(90 degrees and 180 degrees) but
with identical translations.

Figure 2.10: Illustration of distance calculation of ADD-S metric for symmetrical object.

two different rotations(90 degrees and 180 degrees) and same translations. The objects in

the bottom are transformed by their ground-truth pose. We can see that the corresponding

between predicted point cloud and ground-truth point cloud are established by the their near-

est points where their average distances are close to each other even rotating with different

degrees along with z-axis

ADD−S =
1
m ∑

x1∈M
min
x2∈M

∥∥(Rx1 + t)− (R̃x2 + t̃)
∥∥ (2.25)

Visible Surface Discrepancy(VSD) The method VSD requires depth image to calculate

the visible mask of the object of interest. If we know the ground-truth pose and estimated

pose, we can render the distance map D and D̃, respectively, and these two generated images
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are intersected with the depth image of test image to obtain visibility masks V and Ṽ. The

VSD can determine whether the pose estimation is correct or not by comparing two generated

visibility masks.

eV SD = avgp∈Ṽ∪V

 0, p ∈ Ṽ∩V∧|D̃(p)−D(p)|< τ

1, otherwise
(2.26)

Where |D̃(p)−D(p)| is the distance between the surfaces of two rendering models.

2D Projection This method computes the average distance from 2D projection. It takes

3D object models as input and then projects the model’s vertices onto an image plane based

on ground-truth pose and estimated pose. The AD is measured by calculating the distance

between two projected points on the image if the average re-projection error e2Dpro j is less

than 5 pixels. The formulation can be written as below:

e2Dpro j =
1
|V| ∑

v∈V
||KR̃v−KRv||2 (2.27)

where corresponding pixels are computed by coordinates of vertices v left multiply object

pose R and then left multiply camera intrinsic matrices K. The point cloud of object of

interest can also be used as its 3D model.

Rotation and Translation Error To directly measure the numerical error between the

predicted pose and ground-truth pose, we can use the performance metric proposed in [71].

Suppose we have predicted pose P̂ = {R̂, t̂|R̂ ∈ SO(3), t̂ ∈R3} and ground-truth object pose

P = {R, t|R ∈ SO(3), t ∈ R3}. The rotation error can be calculated as:

rerr(R̂,R) = arccos(
Tr(R̂T R)−1

2
) (2.28)

where Tr indicates the trace of the matrix. The translation error can be calculated by the L2

norm of two translation vectors.

terr = ||t̂− t||2 (2.29)

Comparison In order to comprehensively evaluate the performance of various methods

on 6D object pose estimation dataset, this section provides statistical records of different

methods using average distance as an evaluation metrics.
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Method input ape bench vise cam can cat driller duck box glue Hole punch iron lamp phone MEAN
Brach et al. [72] RGB-D 98.1 99.0 99.7 99.7 99.1 100.0 96.2 99.7 99.0 98.0 99.9 99.5 99.6 99.0
Kehl et al. [73] RGB-D 96.9 94.1 97.7 95.2 97.4 96.2 97.3 99.9 78.6 96.8 98.7 96.2 92.8 95.2
Wang et al. [6] RGB-D 92.3 93.2 94.4 93.1 96.5 87.0 92.3 99.8 100.0 92.1 97.0 95.3 92.8 94.3

Hinterstoisser et al. [32] RGB-D 95.8 98.7 97.5 95.4 99.3 93.6 95.9 99.8 91.8 95.9 97.5 97.7 93.3 96.6
Tekin et al. [70] RGB 21.6 81.8 36.6 68.8 41.8 63.5 27.2 69.6 80.0 42.6 75.0 71.1 47.7 56.0

BB8 [36] RGB 40.4 91.8 55.7 64.1 62.6 74.4 44.3 57.8 41.2 67.2 84.7 76.5 54.0 62.7
LieNet [74] RGB 38.8 71.2 52.5 86.1 66.2 82.3 32.5 79.4 63.7 56.4 65.1 89.4 65.0 65.2

Pix2Pose [42] RGB 58.1 91.0 60.9 84.4 65.0 76.3 43.8 96.8 79.4 74.8 83.4 82.0 45.0 72.4
SSD-6D [34] RGB - - - - - - - - - - - - - 76.3
DPOD [17] Synthetic/RGB 87.7 98.4 96.0 99.7 94.7 98.8 86.2 99.9 96.8 86.8 100.0 96.8 94.6 95.1

Table 2.1: The performances of some state of art algorithms for object 6D pose estimation
on LineMod dataset.

TABLE I compares the performances of different methods using RGB or RGB-D as input

evaluated on LineMod dataset. The table shows that using RGB-D as input can achieve a

better performance. Note that the DPOD method [17] takes synthetic data in training process

while using real data for testing.

2.9 Conclusion

In this chapter, we focus on reviewing the methods that utilise convolutional networks to

estimate object 6D pose. Due to the success of 2D image detection by CNN, objects of

interest can be localised accurately, such as in the representation of its bounding box and

segmentation. A resized segmented image patch can be used as input to regress object pose

directly. If an object’s model is provided, the detector can predict a 2D projection of a 3D

bounding box and 2D-3D correspondences can retrieve object pose using PnP algorithm.

Since the 2D appearance is projected from the real object, some efforts tried to predict object

coordinates in the world-coordinate system. Then coarse pose is given by PnP algorithm and

RANSAC removes outliers. Template-matching extracts color-gradient and surface normal

of the object of interest as template searching on input image’s space.

Conveying 6D object pose estimation to pose tracking, many existing frameworks for

object detection and object pose estimation can be utilised to implement the object pose

tracking framework. Optimization approaches combine the motion priors and current mea-

surement to predict the pose distribution of the object of interest. We can also utilise the

CNNs to find the features between two temporal-related images, and recover the object pose

from their correspondences. The estimate of optical flow provides a straightforward way to

determine information regarding the motion of the object. Thanks to the well-designed archi-

tectures and the advances in hardware, those CNN-based optical flow networks can predict

optical flow quickly and accurately.
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A dataset of high quality is essential to training a good performance network. The model

is usually tested on LineMod, YCB-Video, T-LESS datasets where 6D pose annotations are

available, but the pose estimation datasets are not limited to the aforementioned. To evaluate

the performance of the 6D pose detector, we need the metrics to evaluate the gap between

predicted pose and the ground-truth pose. Hence, we review some commonly used metrics

in this chapter.
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Chapter 3

Channel-Spatial Attention Networks for

6D Object Pose Estimation

6D object pose estimation plays a crucial role in robotic manipulation and grasping tasks.

The aim to estimate the 6D object pose from RGB or RGB-D images is to detect objects and

estimate their orientations and translations relative to the given canonical models. RGB-D

cameras provide two sensory modalities: RGB and depth images, which could benefit the

estimation accuracy. But the exploitation of two different modality sources remains a chal-

lenging issue. In this chapter, inspired by recent works on attention networks that could

focus on important regions and ignore unnecessary information, we propose a novel net-

work: Channel-Spatial Attention Network (CSA6D) to estimate the 6D object pose from

RGB-D camera. The proposed CSA6D includes a pre-trained 2D network to segment the

interested objects from RGB image. Then it uses two separate networks to extract appear-

ance and geometrical features from RGB and depth images for each segmented object. Two

feature vectors for each pixel are stacked together as a fusion vector which is refined by

an attention module to generate a aggregated feature vector. The attention module includes

a channel attention block and a spatial attention block which can effectively leverage the

concatenated embeddings into accurate 6D pose prediction on known objects. We evaluate

proposed network on two benchmark datasets YCB-Video dataset and LineMod dataset and

the results show it can outperform previous state-of-the-art methods under ADD and ADD-S

metrics. Also, the attention map demonstrates our proposed network searches for the unique

geometry information as the most likely features for pose estimation. From experiments, we

41
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Figure 3.1: Overview of our proposed framework: (a) image segmentation and point cloud
re-construction, (b) appearance and geometrical feature extraction, and feature fusion, (c)
attention module for feature refinement, and (d) pose regression. The inputs are RGB image
and depth image. The final outputs are R:rotation, t:translation, C:confidence.

conclude that the proposed network can accurately estimate the object pose by effectively

leveraging multi-modality features.

3.1 Introduction
The aim to solve 6D object pose estimation problem with RGB or RGB-D images is to detect

objects and estimate their orientations and translations relative to the given canonical mod-

els. It is a long standing problem in computer vision and robotics communities. Potentially

the solutions to the problem could be applied to robot manipulation [75–77], self-driving

cars [78, 79] or augmented reality [80, 81]. There are still some challenging issues in solv-

ing the problem when the images include severe occlusions, cluttered background, lighting

variations, texture-less objects, or symmetrical objects.

Traditionally geometrical methods were used to solve the problem by matching RGB

image features with object’s 3D models [33,68]. These methods require well-designed hand-

crafted features which are not robust to lighting variations, background clutters, or texture-

less objects.

Recently deep learning methods have been proposed to solve the problem as CNNs have

shown significant robustness to environment variations. Some of them took a holistic method

to train end-to-end neural networks and regress the 6D pose directly from the networks [5].

Some of them exploited a key-point method and solved the problem with two stages: first

estimate 2D keypoints of the object using deep networks and then estimate the 6D pose via
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2D-3D correspondences with a PnP algorithm [82, 83]. Dense methods were also explored

where a feature is extracted for each object pixel or patch and then the best minimal set

of points is selected via the RANSAC algorithm or each feature casts a vote for 6D pose

hypotheses [84].

RGB-D cameras have made two data modalities (RGB images and depth images) eas-

ily available and further pushed the research front for better 6D pose estimation. Some of

RGB-D methods first estimated an initial pose from RGB image and then refined it on point

clouds using an ICP algorithm or other optimisation algorithms [85, 86]. Others used two

separate networks for RGB images and 3D point cloud to extract appearance and point-wise

geometrical features, then concatenated both features to regress the 6D pose [6].

Recently attention mechanisms have shown a remarkable performance in deep learning

applications. The Transformer [46] becomes very effective in natural language processing.

Not only in the sequence-based (text, audio) tasks, but in image and 3D data tasks it is a

powerful technique to enhance the feature representation learned from those data [87–90].

Woo et al [47] proposed an attention module that can process a given feature map in terms

of spatial and channel dimensions to focus on necessary information. For graph-structure

data, Veličković et al [48] introduced a network architecture with an attention layer which

considers the contribution from different neighbors of a node. Like the aforementioned at-

tention mechanisms, our attention module is also a self-attention method, but we do not

generate weighted value for each feature, we refine the feature directly using Channel at-

tention module and Spatial attention module, and it’s simple than Transformer’s multi-head

self-attention.

In this chapter, we propose a novel end-to-end network: Channel-Spatial Attention Net-

work (CSA6D) for 6D object pose estimation from RGB-D images. The proposed CSA6D

includes a pre-trained 2D network to segment the interested objects from RGB image. Then

it uses a 2D image detector and a 3D point cloud detector to extract appearance features and

point-wise geometrical features from each segmented object. Two feature vectors for each

pixel are stacked together as a fusion vector. Next it uses an attention module to process

the fusion vector along spatial and channel axes to obtain an aggregated feature vector. Fi-

nally the 6D object pose is directly estimated from the aggregated feature vector via fully

connected layers.
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Our innovation is the use of an attention module to refine the fusion feature vector alone

spatial and channel axes to improve the representation of feature map, and this design leads to

a considerable accuracy improvement, so post-processing step is unnecessary in our model.

In previous work [6], the fusion feature vector is directly fed to stacked MLP layers to regress

the output. Here we argue that this process might not exploit the potential of all the infor-

mation well while our proposed attention module could focus on more important features

for pose regression. Since two modality features are simply blending together, the spatial-

attention and channel-attention blocks are used to extract related representative features from

their embedding space while keeping the original structure. Specifically, this design makes a

robust representation for the modality fusion scheme and does not require a costly refinement

step.

We evaluate our model on the LindMod dataset [68] and YCB-Video dataset [5]. The

quantitative result shows that our proposed model can achieve a result with the state of the

art accuracy compared with other learning methods.

3.2 CSA6D architecture

The architecture of our CSA6D is depicted in Fig. 3.1. An input RGB-D image with 640

x 480 pixels is fed to the system. Firstly, the RGB image is segmented by using a semantic

segmentation network and each interested object is cropped from the image with its corre-

sponding 2D bounding box and masks. By finding the corresponding region in the depth

image with object masks, the object 3D point cloud is recovered by the camera calibra-

tion matrix and cropped depth region. The pre-trained segmentation network we used is

an encoder-decoder network Mask R-CNN [26]. This segmentation network outputs N + 1

binary maps in which each pixel belonging to that class (background class included) is acti-

vated and N is the number of object classes. The image patch that contains interested object

is cropped by using 2D bounding box obtained from the segmentation network.

Secondly, we extract appearance features of the object from the cropped image patch

using a CNN. Here we use Pyramid Scene Parsing Network (PSPNet) [91] as the appearance

feature extractor to obtain an image feature map shown as the top branch in Fig. 3.1. The

resulted feature map has size H ×W ×C where C represents the dimension of each pixel in

their feature space. H and W are the height and width of the original image patch. We extract
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geometry features from the 3D point cloud data using a variant of PointNet [38] shown as

the bottom branch in Fig. 3.1. The correspondence between two features for each pixel is

established by using projection.

Thirdly, as appearance features in RGB image and geometry features in depth are com-

plementary, they are stacked together as a fusion vector to form a compact representation of

the interested object. We apply an channel attention block followed by a spatial attention

block to refine the fusion feature. More specifically, the attention blocks perform max-pool

and average-pool operations in channel and spatial axes to get a new aggregated feature

vector that has same dimensionality with the fusion feature vector.

Finally we have three separate branches to estimate the rotation, translation and confi-

dence, respectively, each of them using five fully connected layers. The confidence score

refers to the confidence the network has on each prediction.

3.2.1 Attention Module

Figure 3.2: The channel-attention block. H×W represents the input dimensions. Operations
are stated inside the box and the feature dimensions are shown after the operation box. Multi-
layer perceptron(MLP) has three layers with output dimensions (W, W/16, W).

Due to the occlusion of objects or potential segmentation errors, we might include the

pixels that belong to other objects or background. This result could deteriorate the robustness

of fusion features. To overcome this problem, our attention module is to refine the fusion

features so that it could alleviate the potential problem. Our attention module comprises

of two blocks, channel attention block and spatial attention block and this is inspired by

CBAM [47]. They are modified to process 1D fusion features used in our network instead of

2D image features originally proposed.
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Figure 3.3: The spatial-attention block. The operations inside the box are 1D convolution,
batch-normalization, and ReLu function. Broadcasting operation duplicates its input feature
map W ×1 for H times to form a feature map with dimension W ×H.

Assuming a fusion feature F f has a shape RP×C where P is the number of pixels, the

channel attention block can produce an 1D channel attention vector Mc ∈ RP×1, the spatial

attention block can refine a new spatial attention feature Ms ∈ RP×C. These two blocks

are concatenated together as shown in Fig. 3.1. The channel attention block takes the fusion

feature as input and generate a channel attention feature F
′
. These two features are multiplied

together and the result is fed to the spatial attention block to generate a spatial attention

feature. Again these two features are multiplied together to generate an aggregated feature

vector F
′′
. Hence, the overall procedure can be written as follow:

F
′
= Mc(F f )

⊗
F f

F
′′
= Ms(F

′
)
⊗

F
′

(3.1)

where F
′
is the output from the channel attention block and F

′′
is the final output that has the

same shape with the fusion feature.
⊗

represents the element-wise multiplication. Broadcast

operation to attention map is applied if needed.

Channel Attention Block

The details of the channel attention block are shown in Fig. 3.2. It applies point-wise max-

pool and average-pool operations to the fusion feature map respectively, and the resulted

descriptors are summed element-wise. A shared multi-layer perceptron network is used to
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process the resulted descriptor, which has three neuron layers. To prevent the network’s

parameters overload, the middle neuron size is set to W/16 that is suggested by [47]. The

feature map generated by the MLP has dimension W × 1 and is processed by the Sigmoid

function to produce the final channel attention map with size W ×1.

Spatial Attention Module

After the first multiplication shown in Fig. 3.1 (to enable the multiplication, broadcasting

operation is applied to the channel attention map), the channel attention vector is refined

as F
′ ∈ RH×W . To get the spatial attention feature, max-pool and average-pool operations

are applied to generate two features F
′
avg and F

′
max, and both have size W × 1, and they

are concatenated. Average-pooling and Max-pooling are commonly used pooling functions.

The intuition behind these two pooling functions is that combining the global information

captured by average-pool function and the local information captured by max-pool function

can have a better performance for our task than using one of them. Here, we use a 1× 1

convolutional layer to process the concatenated feature instead of the convolutional layer

with kernel size of 7×7, then followed by batch-normalization and ReLu operations. So the

spatial attention block is calculated as:

F
′
avg = AvgPool(F

′
)

F
′
max = MaxPool(F

′
)

Ms(F
′
) = sigmoid( f 1×1(F

′
avg,F

′
max))

(3.2)

where sigmoid denotes the Sigmoid function, which is used to output the normalized feature.

Finally the aggregated feature vector F
′′

is obtained by multiplication, and used to estimate

the object pose by the pose predictor.

3.3 Loss Function

In this subsection, we describe the loss function used in our model. we train the loss in a

mean square error function as shown below:

Li =
1
m ∑

j

∥∥(Tx j − T̃x j)
∥∥2 (3.3)
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where x j is the jth point randomly selected from points of object model, and T is the ground

truth transformation and T̃ is the predicted transformation from jth refined attention features.

We also output the confidences of model’s predictions, which we would like to utilise to

penalise the bad features. So inspired by the DenseFusion [6], we add a regularize term to

balance overall prediction. Hence, our final loss function is described as:

L =
1
N ∑

i
(LiCi −Wlog(Ci)) (3.4)

where N is the total number of sampled refined attention features, Ci is the confidence vec-

tor for each sampled refined attention feature and W is the hyperparameter for confidence.

During inference, the highest confidence is selected as final output.

3.4 Experiments
In this section, we describe the training details of our network. The network is evaluated on

challenging datasets YCB-Video dataset [5] and LindMod dataset [68] . We use a GeForce

GTX 1080 Ti graphic card to train our network, which took appx. 300 hours to finish the

iterations of 500 epochs on the YCB-Video dataset, and on the LineMod dataset it costs

appx. 200 hours to finish 500 epochs. The network is implemented in Pytorch.

3.4.1 Datasets

The LineMod and YCB-Video datasets are two commonly used benchmark datasets. The

YCB-Video dataset contains mixed 21 textured and texture-less household objects coming

from 92 video sequences. Each frame is annotated with 6D object pose ground-truth. The

LineMod dataset has 13 texture-less objects placed on the table in the cluttered background.

The datasets were captured by Kinect camera, and each image has its associated depth image

and has an object pose annotation. The spilt of training/test sets are unchanged with official

datasets.

3.4.2 Training

In the semantic segmentation network for appearance feature learning, ResNet-18 [28] is

used as backbone network, and 4 pyramid levels for pooling are 1×1, 2×2, 3×3, and 6×6.

The dimension of geometry feature is set to 1024 and the dimension of appearance feature
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is 384, hence, the dimension of fusion feature is 1024 + 384. To predict the pose, we have

three independent Multi-layer perceptrons (MLP) applied on the aggregated feature in which

each MLP has 5 hidden neuron layers, (1408-640-256-128-4) are the size of hidden layer

for the rotation prediction (quaternion), (1408-640-256-128-3) for the translation prediction

and (1408-640-256-128-1) for the confidence prediction. In order to prevent over-fitting,

we apply data argumentation technique on input RGB patch. For instance, we add some

random noises to brightness, contrast, saturation and hue of image of training set. In point

cloud, tiny translation error is added. To balance the accuracy and computation, we use

Farthest Point Sampling (FPS) algorithm proposed in PointNet to sample 1000 points from

the recovered point cloud before feeding it to PointNet. In this way, we can maintain the

surface information with limited number of points. The hyperparameter W in equation 4 is

chosen as 0.01.

3.4.3 Evaluation Metrics

ADD(S) metrics

To evaluate the network’s performance, we use Average Distance of Model Points (ADD)

[5] as metric to non-symmetric objects and Average Closest Point Distance (ADD-S) to

symmetric objects.

ADD =
1
m ∑

x∈M

∥∥(Rx+ t)− (R̃x+ t̃)
∥∥

2

where R̃ and t̃ are the predicted rotation and translation matrices, while R and t are the

ground-truth of matrices. x denotes the points randomly selected from 3D model of object

of interest. The prediction of rotation and translation is considered as correct if the score of

ADD is lower than a predefined threshold. To evaluate the model’s performance on sym-

metric objects, the ADD-S is used for evaluation. The ADD-S score is calculated as average

distance to the closest point.

ADD-S =
1
m ∑

x1∈M
min
x2∈M

∥∥(Rx1 + t)− (R̃x2 + t̃)
∥∥

2

where x1 and x2 are selected from the same 3D model.

We report the area under curve (AUC) for ADD and ADD-S metrics. Also, we set the

maximum threshold of both curves to be 0.1m. Beside this, we further test the ADD-S under
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threshold 0.01m to illustrate the network’s tolerance to small errors. During evaluation, we

use ADD metric for non-symmetric objects and ADD-S for symmetric objects.

2D Re-Projection Error

In addition to ADD(S) metrics, we also use the 2D projection metric to quantify the perfor-

mance of our network. In this way, the object model points are projected to image plane by

ground-truth pose and predicted pose. The prediction pose is treated as correct if the average

distance of corresponding points is less than 5 pixels. The 2D Re-projection error can be

calculated as below:

2D Repro j =
1
m ∑

x∈M

∥∥K(Rx+ t)−K(R̃x+ t̃)
∥∥

2

where K is the camera intrinsic matrix.

3.5 Results

3.5.1 YCB-Video Dataset

In this section, we first report the evaluated result of our network on the YCB-Video dataset.

We also compare our network with four state-of-the-art pose estimation algorithms (PoseCNN

[5], PoseCNN [5] with ICP refinement, PointFusion [37], and DenseFusion [6]). As we can

see in Table 3.1, the algorithms are classified into RGB class and RGB-D class. Clearly, the

RGB method PoseCNN is lack of accuracy compared with other methods, no matter under

which evaluation metrics. We believe this is due to the loss of geometry information. By

using the result of PoseCNN as initial estimation, the refinement algorithm ICP can largely

improve the performance through optimizing the initial estimation in 3D space. PointFu-

sion [37] and DenseFusion [6] both used RGB image and depth image as their inputs and

they can extract appearance and geometrical features for pose estimation. Compared with

these two RGB-D methods, our model completely outperform the PointFusion in terms of

the performance of individual object or average performance under the ADD-S and ADD(S).

Evaluating by ADD-S metric, we lead DenseFusion 0.2% in the performance for all objects,

1.7% under ADD(S). Also, we have more number of highest score objects compared with

DenseFusion. It is worth noting that our method has 3 out of 5 best performances on sym-
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metry objects (with bold name in Table 3.1). As we know, symmetry objects could cause

ambiguity for the feature learning. Hence, we can conclude that our result shows a strong

capability of the proposed attention module in learning effective representation from those

symmetry objects.

3.5.2 LineMod Dataset

We report the evaluated result of our network on the LineMod dataset. We also compare our

network with four state-of-the-art pose estimation algorithms (DenseFusion [6], PoseCNN

[5], SSD-6D [34], and PVNet [18]). To achieve a fair comparison, all segmented masks

used in these methods are provided by PoseCNN. As we can see in Table 4.1, our method

outperforms other methods. Ours refer to the evaluation result using AUC threshold under

0.1m. Our method leads DenseFusion algorithm 3.6% and outperforms PoseCNN nearly

9%. Even we use more strict criteria (ADD-S<0.01m), our method achieves an equivalent

performance with DenseFusion 94.3% and still outperforms PoseCNN. For the individual

object, while DenseFusion has 100% accuracy on glue, we achieve the highest prediction on

8 out of 13 objects.

In Table 3.3, the accuracy results by evaluating of 2D projection metric are shown. As

DenseFusion does not provide its evaluation result, so we re-trained it to obtain the statistical

result shown in Table 3.3. We evaluate the model in three different thresholds(10 pixels, 5

pixels and 2 pixels). Under the condition of 10 pixels, our network has the highest accuracy

almost for every objects, except the egg box object, but the gap between them is small(0.1%)

and glue object with the same accuracy. In 5 pixel criteria, We see our network has the high-

est accuracy almost for every objects, except the egg box object, but the gap between them is

0.2%. When the threshold decreases to 2 pixels, both methods’ accuracy drop sharply. But

our network still has the relative better performance.

We also test our network’s performance within small average distance thresholds (ranged

0 - 0.01meter). In this way, we can see how well our model is in the high-precision pose

estimation tasks. In Fig. 3.4, we report the accuracy of each object in LineMod with varying

threshold. As we can see that until the threshold of 0.006 meters, our network can achieve an

accurate prediction (>80%). Less than threshold of 0.005, the accuracy curves drop sharply.

Note that the object egg box has poor prediction when the threshold is low than 0.07. This
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situation may be caused by the hard prediction of symmetric object in small tolerance of

error of ADD-S metric. In Fig. 3.5, we report the average accuracy of all objects in the

LineMod dataset for DenseFusioin and ours. For threshold > 0.03, our curve is in the above

of curve of DenseFusion, which means our network has a better performance. Some samples

of our estimation results are shown in Fig. 3.6 by projecting their estimated poses back to

the image. They provide a clear view on the good quality of our estimation results.

Specifically, we draw the attention maps as shown in Fig. 3.7, where specified region is

highlighted as important area for object’s pose. The darker the color, the more crucial the

area. For instance, in the top row object kettle (object can in Table 4.1 and Table 3.3) is

highlighted in its handle area and this region has the highest confidence to object pose. In

the second row object driller and fourth row object lamp, their heads are being treated as the

parts that have the best estimation for their pose, and we believe this is due to their heads’

distinct geometrical information. Furthermore, our model identifies the edge of symmetry

object egg box as its focused region which is much reasonable.

Figure 3.4: Accuracy-Threshold curve for each object in LineMod

3.5.3 Ablation Study

To investigate how our attention modules affect the performance, we test our model with

different setups in the LineMod dataset. As shown in Table 3.4, Channel Block and Spatial

Block indicate that only corresponding attention block is used in our model, and Channel

+ Spatial Blocks refers to our complete framework. From the perspective of estimation ac-
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Figure 3.5: Average accuracy by varying average distance thresholds

curacy, the configuration of Channel + Spatial Blocks show the best accuracy in terms of

ADD(S) and ADD-S metrics. But it also has the longest inference time (18.2 milliseconds

per image) for each input image and the largest number of parameters in memory. The

parameters column indicates the parameters for block itself. In the contrary, the System

parameters column means the full number of parameters of our model with the existence

of corresponding block. As we can see from the table, the Spatial block only has 16 pa-

rameters, which is quite tiny compared with the Channel block, and it makes sense that the

Spatial block can run with the fastest inference time. Note that the number of parameters in

the Spatial block contributes much less to the entire model, because we only have learnable

parameters in two convolutional layers as depicted in Fig. 3.3. The Channel block has almost

the same system parameters with the Channel + Spatial blocks. In summary, the combina-

tion of Channel block and Spatial block do improve the accuracy and they are lightweight

compared with the entire model.

We believe that the potential of this attention module could also be used in object pose

tracking tasks with a framework of pose refinement that predicts the residual of pose within

two consecutive frames. As indicated in Fig. 3.7, our model could focus on some particular

regions of the object for pose estimation. This might improve the tracking performance when

the occlusion occurs in some scenes.
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Table 3.4: Ablation study by using either channel block/spatial block or the combination of
channel block and spatial block.

Time(ms/image) Parameters System parameters(Millions) ADD(S) ADD-S
Channel Block 18.1 2184 23.624M 96.5 99.5
Spatial Block 17.7 16 23.374M 97.2 99.6

Channel+Spatial Blocks 18.3 2200 23.624M 97.9 99.7

3.5.4 Robustness to Occlusion

To explore how robust of our network with occlusion objects, we proposed a occlusion rate

to reflect how much of an object being occluded. We take p as the total number of pixels

of an interested object in ground truth data, and λ as the number of pixels being projected

by object model with ground truth pose. Due to self-occlusion of the object, we treat the

number of pixels projected in image as λ/2. So the occlusion rate r can be represented as

below:

r = 1− p/(λ/2)

Therefore, the bigger values of r, the more occlusion of an object. In experiment, we cal-

culated r for each labeled object in the LineMod dataset and averaged them. In Fig. 3.8,

we show the performance of our network against different occlusion rates. The blue curve

represents our network’s estimation accuracy in terms of different occlusion rates. When the

r increases, our accuracy remains stable but the curve of DenseFsuion (Orange color) has

some fluctuations as r increases.

3.6 Conclusions

In this chapter, we present a network CSA6D that can estimate the 6D object pose from RGB-

D image. Both appearance features from RGB image and geometry features from depth

image are densely fused together for direct pose regression. Our main innovation includes

the use of channel and spatial attention modules to refine the dense fusion feature in order

to improve the network performance without adding too much computational burden. Our

evaluation results on public datasets show that our network is accurate and robust compared

with some existing methods.
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Figure 3.8: Prediction accuracy against object occlusion rate

The attention module is lightweight and efficient, and could be easily inserted into other

leaning tasks. We demonstrate that our model can extract features of specific regions for

object pose estimation tasks. In our future work, we aim to reduce the computational com-

plexity further in real-time applications. Based on our ablation study of attention blocks,

the inference time of our model can be reduced using the spatial attention block only with-

out sacrificing too much accuracy. Also, we believe that making our model (especially the

image feature extraction model) lighter could significantly reduce the inference time, which

can make it possible to work in real-time applications.



Chapter 4

Siamese Graph-Attention Network for

6D Object Pose Estimation

4.1 Introduction

In the previous chapter, we described an end-to-end learning framework to regress the object

6D pose directly from RGB-D input image. It focused on learning the feature by embed-

ding from different data sources, guided by a distance loss function. Generally speaking,

those end-to-end learning methods of object 6D pose estimation have a similar architecture,

where a CNN is used to learn the embedding of objects, and the multiple regression layers

for regressing the pose of objects. In not an end-to-end learning frameworks, rather multi-

ple regression layers can predict other attributes of objects, for example, 2D keypoints, 3D

bounding box and object coordinates, etc. If a network takes RGB-D as input, it normally

uses two separate branches of network to process RGB data and depth data, as shown in

Chapter 3. To process the depth or depth point cloud data, we tend to extract the sufficient

representative geometrical information. Although PointNet exploits the geometry informa-

tion, local geometrical information is ignored as PointNet only considers individual points.

In this chapter, we introduce an edge convolution operation that can leverage point neigh-

bourhood information. We believe that by adding this extra local geometry information the

pose features can be extracted more robustly.

Normally, the object pose (Rotation, Translation) is regressed directly by Multi-Layer

Perceptron(MLP). Meanwhile, due to the different spaces of rotation and translation, they

61
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Figure 4.1: Left: PointNet learning, each point is treated as individual. Right: Edge Convo-
lution, each point’s neighbours are considered as extra information in learning.

are estimated through different branches. But estimating numerical pose vector from fea-

ture space can be problematic, since directly estimating object pose in angle space is not

trivial. Therefore, in this chapter, we use a Siamese network to learn discriminated interme-

diate features from feature space and pose space. An intensive annotation dataset is a key to

supervised-learning method for object 6D pose estimation, and the foundation to guarantee

the network’s performance. However, most of algorithms in object 6D pose estimation, they

make use of single input data(RGB, RGB-D, 3D laser scan) to learn the 6D pose with super-

vised signals. While some methods utilise multiple views, they require a specific designed

network architecture to learn the invariant features in supervised or unsupervised ways. For

unsupervised ways, the most commonly used learning objectives consider the consistency

between the views of two input frames. Therefore, the large discrepancies between the two

frames may result in poor network performance. So, in this chapter, we use a Siamese

network that shares the same weights, combined with EdgeNet [92], to fully exploit the

middle-level features for directly regressing object 6D pose. Our method takes RGB-D data

as input, while EdgeNet is used to aggregate the information around each point, and a CNN

network to learn the visual features from RGB data. Beside this, we also examine each point

independently to determine the feature of each of them. Then, we feed the pixel features,

edge features, and point features into an attention network, leveraging the fusion features to

achieve the final representation of input data. The final fusion features are used as the input

for our pose estimator, which is constructed by MLP layers to regress two vectors (R,t). So,

in this way, from the learning process from the layer which records input data to the layer

which produces fusion feature, is from image space to feature space, and the learning process
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of the pose estimator transforms features from feature space to pose space. Directly using

features in feature space to predict the pose in pose space makes the network hard to gen-

eralize. So, the accuracy of the prediction is improved through a pose-processing step such

as iterative refinement [6]. But in our work, we introduce a Siamese network to make the

feature space to closer to the pose space. As illustrated in fig 4.4, we build two identical net-

works, which share the same weights. These two identical networks input different RGB-D

data, in which the objects are presented in different poses. During training, we force the loss

function to minimize the error between feature space and pose space. This idea is inspired

by the work of [93], which hypothesises that Euclidean distance between samples images

from the dataset should remain the same in feature space and pose space. In inference time,

we only utilise one network to predict the object pose.

4.2 Related Works

[94] proposed a graph CNN based framework for object 6D pose estimation, in which they

simply fuse the node features and appearance features together to regress the object pose

directly by MLP layers. This fusion scheme can only leverages the geometrical informa-

tion efficiently by means of a graph network. [95] proposed a Siamese full flow network to

fuse appearance feature and geometric feature, allowing for communication between each

encoding layer from image data and point cloud data, and in reverse. FS6D [96] utilises

this full flow network as its feature extraction network to learn the representative features

from a selection of support images and query images. Then, FS6D uses the linear Trans-

former to calculate the similarity between support feature and query feature and establish the

correspondence. Also, they produce a large shape diversity dataset generated by a physical

rendering engine. In a similar fashion to our work, HybridPose [97], adopts two stages to

regress the object’s pose. In the first stage, it learns the hybrid representation for an object’s

keypoints, edge vectors and symmetry correspondences. Due to the poor generalization from

the hybrid representation to the object pose space by the pose regressor in the second stage,

the authors divide the training set into two parts, one for training and another for validation.

They introduce critical points into the loss function, to make the pose regression model gen-

eralize well into the pose space during testing. [98] uses a Siamese graph neural network to

construct the keypoint graph from the combination of synthesis image and real world image.
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Due to the lack of labels of keypoints in real world datasets, they assume the geometrical

relationship between synthesis and real data remains identical, and train the graph network

for the real image by supervising the structure loss.

In our work, we use a Siamese network in a different way, where we still use a graph

attention network to learn the robust features from visual data and geometrical data. But, we

build up our system under a Siamese architecture, which uses two different images as input.

We don’t need to design specific layers to learn the invariant pose representations for the

objects in input images. We focus on the leaning objective that forces the network to maintain

equal distance between their corresponding feature spaces, and the distance between feature

space and pose space. In this way, during testing, we improve the network performance

in the two stages through our object pose estimation framework, especially as it uses deep

regressor to obtain the final object pose.

4.3 Edge Convolution
This subsection, explicitly describes the components of our proposed network, especially the

graph CNN we used to process the depth point cloud and how to train our Siamese network.

In the below, we called the our graph network as EgdeConv Network. Compared to CSA6D

network we proposed in Chapter3, this chapter uses a graph CNN to replace the PointNet

in CSA6D net for capturing the local geometrical features and maintaining the permutation

invariance. To segment the object of interest and extract the visual features, we still adopt

the identical segmentation network architecture as in CSA6D. EdgeConv [92] exploits local

geometric structures by constructing a graph (K-NN graph) based on each point’s K local

neighbours.

A point cloud P can simply be represented as P = {p1, ...,pn} ⊆ RF×n, and F initially

takes as 3 . We construct a direct graph G = (V,E) by using the K-nearest neighbour graph

where vertices V = {1, ...,n} and edges E ⊆ V×V. The edge features are represented as

ei j = hθ (pi,p j) where hθ :RF ×RF →RF ′
is a non-linear function with learnable parameters

θ and F ′ is the output dimensionalities of edge feature. The EdgeConv operator is defined

as:

p′
i = max

j:(i, j)∈E
hθ (pi,p j) (4.1)

where p′
i is i-th node output of EdgeConv operator. To explicitly combine the global and
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local structures with local neighbourhood information captured by p j −pi, in particular, the

operator can be defined as:

e′i jm = ReLU(Θm · (p j −pi)+Φm ·pi) (4.2)

where Θm and Φm in equation 4.2 can be implemented as shared MLPs. In the end, the edge

feature is selected by applying a channel-wise symmetric aggregation function:

x′im = max
j:(i, j)∈E

p′
i jm (4.3)

So, inspired by the EdgeConv operator, the network that extracts the geometrical embedding

from depth point cloud is proposed. Figure 4.2 shows of the method through which Edge-

Conv process point cloud. The input point cloud represented as N × 3 is obtained from the

segmentation network. There are four EdgeConv blocks used for learning edge features. The

number which follows EdgeConv denotes the output dimensions. The output of each block

is aggregated together before being fed into last EdgeConv block. Then, the output of the last

EdgeConv block is combined with the features from RGB image, and the features from point

cloud, without considering the features of their neighbours. Three multi-layer perceptrons

(MLPs) are finally used in the end to predict the rotation R ∈ R4(quaternion), translation

t ∈ R3 and confident C ∈ R for the prediction.

Figure 4.2: EdgeConv Architecture.

4.3.1 EdgeConv Implementation

Figure 4.2 is the EdgeConv architecture for processing point cloud. N×3 is the size of input

point cloud data in which each point contains X , Y , Z coordinates. If EdgeConv IS followed

by numbers, it represents the output dimensions of features after processing by EdgeConv

operation. Before the last EdgeConv operation, outputs of EdgeConv-64, EdgeConv-64,
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EdgeConv-128, EdgeConv-256 are concatenated together. In the end, EdgeConv model will

generate the feature with size N ×1024.

Figure 4.3: Implementation of EdgeConv. It consists of a dynamic updating block for
constructing a new graph in each layer, a 2D convolutional operation and a maxpooling
operation.

In each EdgeConv step, the point feature will be processed in three steps. Fig 4.3, it shows

the implementation details of EdgeConv. First, we will examine the edge features of point’s

neighbours, and combine their features together. To process the raw input depth point cloud,

the coordinates of points are treated as the features of points by get graph f eature operation,

in which we recompute the k-nearest neighbours of each point in each layer. Through this

updating operation, we can get the different graph from each layer. Unlike the classical graph

CNN, where the input graph is fixed after the graph has been constructed. Our experiment

shows that this updating process can lead to a better estimation performance compared to a

fixed graph. They will then be processed by a 2D convolutional network with kernel size

of 1, followed by the maxpooling operation. Through the maxpooling, the local features

aggregated by k-nearest neighbours are extracted. When we apply the EdgeConv operation

to each point of the input, we can create the edges and obtain the local features for each

point, hence, we define the features we obtain as edge features. Combining edge feature and

point feature, we can have a more robust representation for the point cloud.

4.4 Model Architecture
Fig 4.4 shows the complete framework for estimating the object 6D pose. Our model uses

the same Encoder-Decoder architecture that has been used in CSA6D network for extracting

color information. It generates the pixel features with dimension H×W ×D where H, W and
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Figure 4.4: Our graph attention network architecture.

D represent the height, width and feature dimensions, respectively. The segmented mask is

used to recover the depth point cloud. At the same time, the EdgeCovn network is extracting

the edge features and point features simultaneously. To extract point features, the Edge-

Conv network treats each point independently,rather than searching the nearest neighbours

for each point. Then, we concatenate the pixel features, edge features, and point features

together. As in Chapter 3 demostrates, simply stacking the embedding of multi-modalities

features results in poor learning performance. So, here, we use a spatial attention to enhance

the representation of fused features by weighting the importance of fused features. After

applying the spatial attention network, the dimensionality of fused features remain identical.

In the end, to regress the pose of object, we construct a pose multiple-layers MLP to regress

the rotation vector, translation vector and the confidence of each point.

4.4.1 Features Fusion

In the feature extraction stage, we have extracted the pixel feature and edge feature fea-

ture. We also add the point feature to the final aggregated feature, which is obtained by

setting K = 0 in K-NN algorithm. So, our final feature can be represented as follows:

F f = FPixel
⊕

FPoint
⊕

FEdge.

To process the fusion feature, we use the attention module proposed in Chapter 3 to

enhance representation of fusion feature. The fusion feature will be processed through the

spatial attention module and Channel attention module. Once we get the improved fusion
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feature, we use a regressor comprised of 3 branches of fully connected layers to regress the

pose vector.

4.4.2 Siamese Network for Pose Regression

As can be seen in most pose regression tasks, especially in the deep learning domain, pose

information is learned by using fully connected layers that maps the feature vectors to target

vectors, a straightforward but brutal learning approach. In some extreme cases, leaning

this mapping function can be challenging. For example, objects with similar appearance

can cause ambiguity for the network, as the object with various poses would result in same

features. Also, when the object is occluded, the network does not have sufficient features

to learn the mapping from feature space to pose space. Even though supervised signal is

the most efficient way for the network to achieve its best performance during training, the

estimation accuracy will decrease when we apply the unseen data to the network during

testing.

This chapter aims to solve this problem by introducing a twin regression network (also

known as Siamese network). The twin regression network includes two identical neural net-

works that share the same parameters, which means we don’t need to change the architecture

proposed in fig 4.4. The twin regression network tends to learn the interrelationship between

the training samples.

In fig 4.5, we show the architecture of twin regression networks that are based on the

network proposed in fig 4.4. It comprises of a twin regression network for learning the

differences in sample features, and a fully connected layer to estimate pose directly from

the fusion feature. We only use the twin regression network in the training stage. First of

all, we sample two different RGBD images, in which the objects of interest are presented

in different poses. They are then processed by the segmentation network to get the masks

of objects. Hence, we can get the region of objects of interest in RGB images and the

depth point clouds recovered from depth images. Then we use two separate graph attention

networks we proposed in fig 4.4 to obtain the fusion features f (x1) and f (x2) for two samples

x1and x2. These two graph attention networks share identical network’s parameters. Then

two MLP networks take the fusion features to regress the pose p1 and p2 for sample x1 and

x2. As we can see in the fig 4.5, the entire process can be treated as from x→ f (x)→ g( f (x)).
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Figure 4.5: Twin regression network architecture.

In the next subsection, we will explain how to introduce them into the loss function to train

our network.

4.4.3 Loss Function

To design our loss function, we adopt the hypothesis mentioned in [93], that the Euclidean

distance between two samples in feature space should be kept identical in angle space for two

same samples during training. Suppose in the training dataset we have training data XTrain

= (xtrain
1 , xtrain

2 ,...,xtrain
n ), with their labels YTrain =(ytrain

1 , ytrain
2 ,...,ytrain

n ), in which X train

consists of RGB image and depth image, and Y train has the ground-truth data (Rotation and

translation) for the objects in the X train.

To train the twin regression network, a pair of data (xtrain
1 , xtrain

2 ) is sampled from the

dataset. In equation below, we use x1, x2 without superscripts to represent the sampled data.

The twin network training process can be benefit from the objects with various pose. To

collect the samples from dataset, we set the step as 10.

Our loss function is comprised of two parts, Lpose and L f . We first define Lp as the loss

of pose predictions of the twin network.
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Lp =
1
m

k

∑
j=1

m

∑
i=1

∥∥(T jxi − T̃ jxi)
∥∥2

=
1
m

k

∑
j=1

m

∑
i=1

∥∥y jxi −g( f (x j))xi)
∥∥2 (4.4)

where T j and y j are the ground-truth pose, T̃ and g( f (x j)) are the predicted poses from last

MLP layer that utilises the attention features. m is the number of points sampled from the

object model. k is the amount of sample data we collected from the dataset. Essentially,

equation 4.4, uses the same loss function as equation 3.3 from chapter 3. The object’s model

is transformed by the ground-truth pose and estimated pose, and their average distance is

calculated. The difference here is we have more than one form of input data. We also

predict the confidence score Ci of each attention feature for balancing the entire prediction.

Therefore, the final loss of pose regression Lpose is defined as:

Lpose =
1
n

n

∑
i
(LpCi −Wlog(Ci)) (4.5)

where n is the number of attention features and W is the hyper-parameter to balance left

term and right term in equation 4.5. In the stage of testing, the predicted pose with highest

confidence will be treated as the final output of the network.

For L f loss, we force the network to maintain the same distance between its feature space

and pose space. In other case, as shown in fig 4.5, the distance between attention features

f (x1) and f (x2), and the distance between labels of pose y1 and y2 are used as the learning

objective in L f . Here, we use L2 distance to calculate their difference. In order to make the

training process consistent, we normalize the output of last layer of attention network. Also,

the output from pose regression layers is normalized. If quaternion is estimated by the pose

regression layers, it already has unit norm. Finally, we can define L f in the format as:

L f =
1
k

k

∑
i

∥∥∥∥∥∥∥
∥∥ f (xi,1)− f (xi,2))

∥∥2︸ ︷︷ ︸
feature differences

−
∥∥yi,1 − yi,2

∥∥2︸ ︷︷ ︸
pose differences

∥∥∥∥∥∥∥
2

(4.6)

where k is the number of samples. f (xi,1) and f (xi,2) are the normalised attention features.

yi,1 and yi,2 are the corresponding labels for samples. In equation 4.6, the training loss

consists of loss in feature space and loss in pose space. Here, we explain the case when

symmetrical objects are encountered during training. As texts explaining in equation 4.6,
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the term
∥∥yi,1 − yi,2

∥∥2 measures the differences between the pose of sampled objects. For

the large different pose, it is likely that network will generate identical features, which are

reflected as the result of
∥∥ f (xi,1)− f (xi,2))

∥∥2 to close in zero. To alleviate this ambiguity,

the loss L f will enforce function f to learn different representations for objects xi,1 and xi,2

in order to minimize itself. When the sampled objects have similar pose, the loss Lp can

enforce the network to predict estimated T̃ j to close in its ground-truth pose T j. In the end,

to balance this two situations, we combine Lpose and L f to define our final loss function:

L = αLpose +(1−α)L f (4.7)

where α is the hyper-parameter used to determine the importance of the terms in equation

4.7.

4.4.4 Training Details

This subsection explains the details of constructing our network and how to train the net-

work. As in the Chapter 3, a pre-trained Mask-RCNN [26] is used to segment the object of

interest. PsPNet [91] is adopted to process the segmented images, and to extract the visual

features. We use camera intrinsic to recover the depth point cloud from the mask of object

and its corresponding depth image, and we sample 500 points from the depth point cloud,

forwarding to EdgeNet to extract edge features and point features, where we set K = 8 to

build the K −NN graph. In order to obtain the features of individual point itself, it is not

necessary to search the neighbours of each point. In the fig 4.6, we show the size of each

feature from different branches. Note that when we build our twin regression network, we

just duplicate the network as shown in fig 4.6. The input RGB-D data we take, for example

from LineMod data, is the size of 480× 640× 4 including 3 channels RGB image and 1

channel depth image. For simplicity, the segmentation network doesn’t show in fig 4.6. Sup-

pose we already have the mask of object of interest, we can plot a tight bounding box around

the object with the size H ×W ×3. Furthermore, we can recover the depth point cloud from

its corresponding mask regions, where we sample 500 points, expressed as [500,3]. In fig

4.6, the pixel features denote the feature obtained from PsPNet, which are represented by

yellow block. The pixel features will be encoded with the dimensionalities 32 → 64 → 128

without changing the height and width of the cropped image. The processing of edge fea-
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Figure 4.6: The flow of feature dimensions of our proposed graph attention network.
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tures is shown in the orange color block. This block takes the recovered point cloud as input

and constructs a KNN graph for each orange block. The edge features are calculated by

the EdgeNet which is illustrated in fig 4.3. In the end, we get the edge features with the

size of [500,1024]. The grey blocks indicate the processing of point features, and it has the

final output as [500,256]. To fuse the different sources of data, we stack the pixel features,

edge features and point features together and can obtain the fusion features with the size of

[500,1408]. Then, the attention network refines the fusion features to learn the most repre-

sentative features for further object 6-dof pose regression. The implementation details of the

attention module can be found in subsection 3.1.2 of Chapter 3. The last part, the 3 branches

MLP with 4 layers, are used to regress rotation vectors(with quaternion), translation vectors,

and confidence vectors.

During training, we duplicate our graph attention network, to make it taking 2 pairs of

RGB-D input data simultaneously. We set the hyper-parameter α in equation 4.7, as 0.5 in

training. Our network is implemented using PyTorch package and is trained on the machine

with NVIDIA GeForce GTX 1081 Ti and Intel® Core™ i9-7900X CPU @ 3.30GHz × 20

CPU. The network is optimized by Adam algorithm [99] and is trained by the learning rate

1e−4.

4.5 Experiment Results

In this section, we demonstrate the effect of the experimental results on the LineMod dataset.

We show the quantitative results based on ADD-S metric and pose root mean square er-

ror(RMSE) for rotation and translation. We use these results to prove that our network can

achieve the best performance compared to networks which adopt a similar training scheme to

ours. We also demonstrate that the performance of the the proposed graph attention network

can be improved by training as twin regression network, especially for symmetry objects.

Evaluation Metrics. To evaluate the performance of the network, we use ADD(Eq.

2.24) andADD−S(Eq.2.25) which are commonly used metric for object 6D pose estimation.

Also, the pose root mean square errors(RMSE) are reported, where the average errors for

Euler angles (RMSER) and translation vector (RMSEt) are calculated. In table 4.2, we use

Rerr and terr in short.

In table 4.1, we show the effectiveness of performance of our proposed network on
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Table 4.1: Quantitative evaluation result on the LineMod dataset for Graph Attention Net-
work with Twin regression network. Objects with bold indicate symmetry objects. Numbers
with bold mean the best performance in comparison.

RGB-D
LineMod [32] LCHF [100] Balntas et al [101] Balntas et al * [101] Ours ADD-S Ours ADD

ape 32.01 35.51 53.26 51.61 63.5 62.5
bench vi 28.64 46.92 52.89 51.70 75.3 76.5
camera - - 59.73 57.21 69.8 72.5

can 24.45 35.25 51.59 49.84 81.0 82.0
cat 33.74 35.51 57.46 56.66 82.7 81.9

driller 21.22 43.38 46.71 45.16 59.7 60.0
duck 30.16 37.50 51.58 50.51 62.3 66.4

egg box - - 59.29 58.20 99.9 76.1
glue - - 55.51 53.14 99.4 73.2

hole punch 32.01 43.33 55.84 57.51 66.4 68.2
iron 26.82 38.80 60.31 58.32 81.9 82.4
lamp 22.81 36.59 57.91 57.76 88.9 90.0
phone 23.25 32.01 61.35 58.66 76.4 77.8
mean 27.51 38.48 55.64 54.32 77.5 74.5

LineMod dataset, compared to the methods that focus on learning the RGB-D descriptor

for object 6D pose estimation. LineMod [32] samples the object from different viewpoints,

and generates features from color gradient, with surface normal as the template. The object

to be estimated is matched with the templates to get its pose. LCHF [100] combines the

LineMod and Hough Forests to do the pose estimation and alleviates the degraded network

performance in the existing occlusion and background clutter. Balntas’s work [101] pro-

poses a deep RGB-D descriptor leaning framework, which can realise the object recognition

and object pose estimation tasks. They implement a similar scheme to our proposed model,

but they consider the negative samples in order to distinguish the different objects from the

dataset. As we built a segmentation network in our pipeline, we do not necessarily consider

these negative samples. The records of performance are obtained from the published work

of [101]. The star in Balntas’s method indicates the performance of using direct regression

loss, otherwise the only differences considerred would be feature space and pose space.

In table 4.1, the first four columns measure the pose estimation accuracy of the methods

by the percentage which correctly matches their closest template. The results demonstrate

that the performance of our network exceeds others. We achieved 77.5% average prediction

accuracy on ADD-S metric, and 74.5% average prediction accuracy on ADD metric. We

believe this is due to the well-designed network’s architecture and learning metric.

In table 4.2, we evaluate the performances of our network by training with different loss
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ape benchvise cam can cat driller duck eggbox glue holepunch. iron lamp phone average
Rerr terr Rerr terr Rerr terr Rerr terr Rerr terr Rerr terr Rerr terr Rerr terr Rerr terr Rerr terr Rerr terr Rerr terr Rerr terr Rerr terr

Lpose 16.40 0.885 12.46 0.85 14.12 0.89 13.42 0.86 14.79 0.88 17.15 0.85 15.44 0.88 94.14 0.89 89.22 0.87 15.45 0.90 13.57 0.89 12.49 0.86 12.97 0.87 26.50 0.87
Lpose + L f 17.66 0.88 16.57 0.85 16.53 0.89 17.80 0.86 15.39 0.88 30.36 0.85 15.85 0.88 19.12 0.89 24.63 0.87 23.16 0.90 16.86 0.89 13.28 0.86 17.69 0.87 18.83 0.88

Table 4.2: Ablation study that compares the performance of combination of Lpose and
Lpose +L f , evaluated on the LindMod dataset by calculating rotation and translation errors,
Rerr and terr.

functions. Here, we test two varying loss functions, Lpose and Lpose+L f , respectively. When

training the network solely with Lpose, the network just learns the features, guided by the

difference between the predicted pose and ground truth pose, as illustrated in equation 4.4.

However, when combined with Lpose + L f , the relationship between the features and pose

are considered, which can help the network to learn more representative and robust feature

descriptors from RGB-D data. As we can see in table 4.2, two kinds of metrics are reported,

rotation error Rerr and translation error terr, respectively. The network only achieves an

average 26.50 degrees of Rerr when Lposeisused, and an average 0.87m of terr. In terms of

estimating the rotation and translation, the network makes a more precise estimate of the

translation vector, which can achieve 0.87m of terr on average when training with Lpose loss

function. We note that the accuracy of the estimation of the translation vector are almost

identical within two different loss functions. For the sake of simplicity, we only report two

digits after the decimal. For the rotation estimation, we can see that in the training with

Lpose + L f , the rotation error has been decreased from 26.50 degrees to 18.83 degrees. In

particular, the network makes extensive errors when estimating the symmetry of the objects

eggbox and glue, when learned by Lpose. Guided by our proposed loss function, we can see

that the Rerr error has been reduced from 94.14 degrees to 19.12 degrees for eggbox object,

from 89.22 degrees to 24.63 degrees for glue object.

4.6 Conclusion
In this chapter, we use the graph convolutional network to improve the geometrical embed-

ding representation from RGB-D data in the object 6D pose estimation task. It takes the

neighbouring information of each individual point into account by constructing a K nearest

the neighbouring graphs, followed by an edge convolutional network to dynamically update

the geometrical features. To learn a robust fused feature from different data format, we utilise

the attention scheme to select the representative fusion features. Finally, the pose is regressed

by the MLP layers. In order to alleviate the ambiguity pose estimate caused by the symmetry
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object, we construct a Siamese network, which enforces the feature learning guided by the

pose differences. The quantitative results evaluated on LineMod dataset demonstrate that

the precision of rotation estimation can be improved through training with our proposed loss

function.



Chapter 5

6D Object Pose Tracking with Optical

Flow Network for Robotic Manipulation

In this chapter, we propose a novel 6D object pose tracking framework for robotic manip-

ulation tasks. The framework takes a RGB-D video stream as input and outputs a 6D pose

estimate corresponding to each frame for the interested object to be tracked. The novelty

lies in the pose change estimation where we leverage a segmentation network and an op-

tical flow network to estimate the pose change between previous and current frames. The

final 6D pose estimate is the multiplication of the 6D pose matrix in previous frame and the

pose change. Unlike most tracking networks, our pose tracking mdeol does not require any

object 3D model as auxiliary input. We take two consecutive frames as the input and esti-

mate their optical flow map by using a pre-trained optical flow network. Our framework is a

keypoint based estimation method. The estimated flow map can extract the temporal motion

information that can be used to generate keypoint candidates. Then an iterative keypoint

refinement scheme is used to validate the selected keypoints. Our experimental results show

that our framework can outperform some existing works or achieve comparable results in

three selected datasets.

5.1 Introduction
Object 6D pose tracking, which is the process that continuously predicts the motion of ob-

ject(normally rotation and translation vector, velocity and the sizes of object included in

some of the cases) in the time sequences. It has been considerably used in the computer vi-

77
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sion and robotics communities, where the tracked objectives can be human beings, animals,

objects, and various signals. For instance, in the scenario of health care for older people,

understanding and tracking their movement is the key of preventing them from the harm of

falling and some other emergencies. Yan et al [102] proposed a graph neural network based

tracker to track the movement of body skeletons, by extracting the joints’ features from spa-

tial and temporal dimensions. In intellectual agriculture, where the drone can be used for

spraying pesticides in order to avoid the human involving from the toxic substances. There-

fore, a precise tracking of the trajectories of the drone is the important step to accomplish this

gold [103] [104]. In the emerging domain of AR/VR, the high accuracy of pose estimation

to objects and players are crucial for the good experience of those equipments. To render a

realistic environment, a robust and precise pose estimate or tracking framework is essential

for the reconstruction of such environments [105] [106].

Object 6D pose estimation from a single frame is the process where the estimated pose is

produced only by current frame while object 6D pose tracking usually considers spatial and

temporal information from consecutive frames to predict or update the pose estimation. In

recent years, we have seen many efforts to address various 6D pose tracking problems, but

some scenes still pose significant challenges, such as clutter environment, occlusion, light

condition variations, etc. Deep learning based methods have been explored and have shown

the superiority for dealing with the challenging scenes. Learning based methods use large

amount of labelled data to train the networks in order to optimize the network models that

can regress the numerical 6D pose. Learning to select the keypoints of interested object is

one of the popular learning-based methods, in which the selected keypoints are learnt from

input frame and then the pose information is extracted from them.

In this chapter, we proposed a novel tracking framework that leverages a segmentation

network and an optical flow network to achieve the object 6D pose tracking. Unlike the

most tracking networks, our framework does not require any object 3D model as auxiliary

input. We take two consecutive RGB-D frames as input and estimate their optical flow map

by using a pre-trained optical flow network. The flow map records the motion information

of interested object that can be used to generate the keypoints. The optical flow estimation

is robust to the noise in object appearance or some occlusions. We calculate two optical

flow maps: forward flow and backward flow between previous and current frames. Then
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the consistency between these two flow maps are used to remove the outliers. We use the

segmentation network to generate an object mask. From the consistency map and object

mask, the keypoints are selected. Furthermore, we propose an iterative keypoint refinement

scheme to validate the selected keypoints.

Figure 5.1: The tracking model that only utilises flow features to predict object 6D pose.

Figure 5.2: A tracking pipeline. Given the initial object pose Pose0 the network was used to
predict the pose change ∆Pose

5.2 Relative Works

In this section, we review the works of object 6D pose tracking that are based on learning

approaches, especially we focus on the reviewing of keypoint-based, category-level methods.

Our method is belong to keypoint-based tracking, but it can also be used in the category-level

objects tracking without learning the specific features to distinguish various kinds of object.
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5.2.1 Keypoint-based Object Pose Tracking

Learning-based keypoint tracking replies on unsupervised or semi-supervised objectives to

find keypoints that can establish a geometrical correspondence for the previous view and

current view. So, the pose is not being learnt in an end to end manner. In the work of [107],

Wang et al proposed a Anchor-based keypoints scheme, which can be used for tracking the

category-level objects. They designed a 3D cuboid around the depth point cloud that recovers

from the segmented mask, and the distance-weighted values from point cloud to the anchors

on the 3D cuboid are treated as the features for each anchor. Then, a self-supervised network

is used to estimate ordered keypoints for predicting the pose transformation. Wen et al [61]

introduced a tracker that leverages a network to produce category-level semantic keypoints.

An initial relative transformation, then can be obtained from the keypoints registration. In

the backend of their framework, a pose graph [108] is utilised for refining the initial pose.

The work [109], is the combination of keypoint estimation and undertainty estimation for a

known category object, where the estimated 2D projected keypoints derive from the object

3D bounding box and Bayesian filter is used for filtering out label and sensor noises. The

aforementioned methods are affected by the quality of visual feature of input data. For

tracking a texture-less or non-texture objects, it’s hard to learn the reliable presentation for

those objects. Our method can overcome these limitations well.

5.2.2 End-to-End Learning Object Pose Tracking

Differing from the above methods, this end to end tracking directly regresses pose from the

input data. In the work of Wen et al [62], they utilised the combination of real data and

synthetic data to train encoder-decoder-like network to regress object pose via Lie Alge-

bra representation. Li [110] proposed an iterative matching scheme which also be applying

in pose tracking. They use an ligh-weight optical flow network as a backbone network to

learning deep features, which then be passed to two separated fully connected layers to pre-

dict rotation and translation, respectively. Unlike the way of using optical flow network

in our study, [110] needs a Zoom-In pre-process step to enlarge the details of real image

and rendered image for the purpose of keeping enough visual details, so that optical net-

work can learn the robust feature representation. The work [111], proposed by Piga et al, is

the method performing object pose tracking through UKF [112] from object mask and ob-
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ject CAD model. They use recovered point cloud as the measurement for the measurement

model of UKF to update the posterior distribution of object pose. Deng et al [60] utilised

Rao-blackwellized particle filtering to track the object’s pose distribution, where the esti-

mation of rotation distribution is conditioned on the translation estimation. The particles is

firstly propagated to predict likely RoI(Region of Interest) patches, followed by a pre-trained

autoencoder to update the possibility of rotation’s posterior distribution. The accuracy of

this method is inherently limited by the sampling space of particle filters as it rotation space

is discretized into a fixed distribution. While the particle distribution can be precisely, the

burden of computation increases.

5.2.3 3D Dense Scene Flow

In this section, we summarize some related experiments, that inspire us to propose the fi-

nal framework. These experiments is designed around utilising an optical flow network to

perform object 6D tracking from RGB or RGB-D input.

Inspired by the work of [110], we use the fully connected layers to regress pose change

directly from the features that learned from an optical flow network, and this pose change will

be used for the next frame for tracking. This process is shown in the Fig. 5.1. The observed

RGB images and corresponding masks for interest objects at timestamp t and t+1 are feed to

the model. FlowNetSimple will generate an optical flow map (8× 10× 1024) that encoded

the relative motion information. After optical flow estimation, we use fully connected layers

to regress pose, where translation and rotation are regressed by two separate FC layers.

In Fig. 5.2, we show our tracking pipeline combined with the network of fig 5.1. The

initial pose value Pose0 is given for observed image at t0. The network tasks images at t0 and

t1 to estimate a relative pose change for t1. So we can express the pose of considered object

at t1 as Pose1 = Pose0 ·∆Pose1. After K time steps, the pose therefore can be express as:

Posek = Pose0 ·∆Pose1 ·∆Pose2 · · ·∆Posek (5.1)

But this kind of networks suffer the challenging to predict the precise pose parameters.

Directly learning ∆pose from image space to pose space can be tough. It can be shown that

such network,like steerable CNN [113] [114] with properties of equivariance and equiv-

arient will have a better generalisation in this directly pose estimation task. However, this
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network can not guarantee the real-time performance.

As our gold is to predict the state of object in 3D space, therefor we conducted the exper-

iments that estimate the 3D flow(scene flow) from depth point clod. Scene flow can provide

the understating of dynamic environment, like moving direction of the point in previous

frame to next frame. It’s 2D projection in image frame is the optical flow. In this study, we

mainly used the deep-learning based methods to obtain the scene flow. FlowNet [53] and

FlowNet2 [54] are two CNN networks to do that, showing the high accuracy and efficiency.

However, those two networks mentioned above can not deal with the irregular data, for ex-

ample 3D point cloud. Hence we utilised the FlowNet3D [115] which aims for the 3D scene

learning.

Figure 5.3: 3D scene flow prediction using FlowNet3D

Fig 5.3 shows the tracking architecture based on FlowNet3D. Pt and Pt+1 are two con-

secutive point cloud sets. The FlowNet3D is going to predict the translation vector with

respect of Pt . Hence, the relative transformation can be estimated by optimising a least

square problem.

argmin
T

||PtT−Pt+1||2 (5.2)
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Where T is the relative transformation, which includes rotation and translation. To train

this network, we simply construct a distance loss function that try to minimize the average

distance between two point clouds.

Ldis =
1
n
||Σn(Pn

t Tn)−Σ(Pn
t+1)||2 (5.3)

Where the n is the number of the points in point cloud.

Figure 5.4: Training loss of Ldis .

In Fig 5.4, we plotted the loss of Ldis function in the first around 50 epochs. We can see

that the loss are deceasing gradually after 15 epochs. It turns out that loss function starts

convergence. However, the we can not reach the minimal of the loss function as function

was stuck in the sub-minimal region. Actually, learning such distance loss function can be

real challenging. First of all, the network must learn the correspondences from two two point

cloud. Unfortunately, the point cloud was recovered from the mask of interest object and its

depth map where both have nosily data due to imprecise segmentation and sensor noisy.

Based on the training analysis of Ldis function, we imposed more constraints on the

network. We constructed a loss function that consider the distance and pose prediction su-
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Figure 5.5: Training loss of Ldis + Lpose.

pervised by the grounth-ture pose.

Lpose = ||P− P̂||2 (5.4)

Where P is the labelled pose and P̂ is the predicted pose by the network. Then the total loss

function can be written as:

L = αLdis +βLpose (5.5)

In equation 5.5, α and β are the hyper-parameters, which are used to balance the loss func-

tion. We take 0.5 for each other in our experiment. In Fig 5.5, we plot the loss function. We

can see that the function has significant fluctuation after the several epochs. Until here, we

conduct that although FlowNet3D can predict the scene flow in term of 3D data. It has worst

generalization to the prediction of object pose in 3D space.

5.3 Our Network Model

Our tracking network model is shown in the Fig 5.6. It consists of three stages: object optical

flow estimation and segmentation, keypoint section, and iterative keypoint refinement. We
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Figure 5.6: Our network model for object 6D Pose tracking

utilise the optical flow map that is extracted by a deep neural network called LiteFlowNet

[56], which can find the correspondences between two image rapidly. The optical flow map

records the motion information for every pixel in the image. However, we only need the

motion information for tracked object. A segmentation network is used on the images (Ik

and Ik−1 in Fig. 5.6) to obtain its mask (Mk).

5.3.1 Object Optical Flow Estimation and Segmentation

In our proposed model, the object mask of object and the optical flow are computed parallel.

We choose an off-the-shell CNN network named transductive-VOS network [116] to segment

the mask of object.

Given two consecutive RGB frames Ik−1 and Ik, the estimated flow map Fk−1,k describes

the pixel motion from Ik−1 to Ik called forward flow. We also calculate backward flow

Fk,k−1, which describes the pixel motion from Ik to Ik−1. Using these two different directional

flow maps, we calculate the flow consistency Fc between two flows:

Fc = w(Fk,k−1[x])−Fk−1,k[x] (5.6)
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where w represents the warping operation:

w(Fk,k−1[x]) = Fk,k−1[x+Fk−1,k[x]] (5.7)

The Fc tends to be a smaller value if the forward flow and backward flow are accuracy

enough. Accordingly the keypoints to be selected from the flow map have higher accuracy.

In Fig 5.7, it shows the optical flow consistency for the object 009 gelatin box from Fast-

YCB dataset. The red color indicates the higher inconsistency, and blue color for lower

inconsistency. The flow consistency being part of object can be cropped by the mask of

object.

5.3.2 Keypoint Selection

We tend to establish the correspondences between previous and current frame for those pixels

that have a high flow consistency value, meanwhile we just need to focus on the pixels of

object. With the aid of object mask, we can extract the pixels that both exist in Ik−1 and Ik.

Considering the out of view or self-occlusion during the movement of object, we calculate

the intersection area of two masks. Given two masks Mk−1 ∈ [0,1][H,W ], Mk ∈ [0,1][H,W ]

where 0 represents the pixel of background, 1 for the pixel of object, their intersection M is

used to crop the regions from the global flow consistency map.

M = Mk−1 ∩Mk, M ∈ [0,1][H,W ] (5.8)

As shown in Fig. 5.6, the object flow consistency map is cropped by using the intersection

of masks. We just select the keypoints that are located in the object. We adopt a local best-

K selection scheme proposed in [117]. The region inside the object bounding box will be

divided into patches of size of 5×5 and patches that don’t equate to the size will be ignored.

In Fig. 5.8, we show the object consistency map that has been divided into patches.

The value of patch j is calculated as:

C j = min(N/L,Q j) (5.9)

where N is the number of valid matches calculated by the forward-backward flow consis-
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Figure 5.8: The object flow consistency map with grids

tency on entire cropped region, L is the number of divided patches, and Q j is the number of

valid matches after thresholding of forward-backward consistency in j-th patch. As we can

see in equation 5.9, N/L represents the average distribution of keypoints on entire image. In

order to let the selected keypoints remaining the geometrical information of object as much

as possible, we prefer to select the them sparely. If we only choose the keypoints based on

highest forward-backward consistency, it’s very likely that the selected keypoints are being

clustered together. Hence, we compare the keypoint numbers between average distribution

and specific patch, and the smaller one is treated as the value of patch. Finally, the keypoints

inside the top K valued patches are selected(local best-K). By using the local best-K selec-

tion we can increase the diversity of matched keypoints on object and avoid the potential

selections on one specified region of object. Although the local best-K selection can avoid

the selection from identical region, but there are still some bad quality keypoints. In below

subsection, we introduce an iterative refinement scheme that can remove the outliers existed

in the keypoints after local best-K selection.

5.3.3 Iterative Keypoint Refinement

The keypoint selection is based on the forward-backward consistency values. But there still

exists the uncertainty in selected keypoints. For example, all the pixels share the similar

prediction when the object motion is small, which make the selection very challenging. Also

we found the optical flow estimation for small objects are not very stable. In our model, an

iterative keypoint refinement scheme to improve the quality of keypoints is introduced. In

this step, we calculate the rigid flow Fr, which measures the difference between the keypoints

selected by the flow consistency and the keypoints re-projected by estimated pose change ∆T:

Fr = K∆TK−1D[x]− x (5.10)
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where x is a selected keypoint, D is the corresponding depth, and K is the camera intrinsic

matrix. So in the equation 5.10, D[x] will recover the keypoint x to 3D point. Then ,the 3D

point is transformed into camera coordinate by left multiplying K−1. Then, left multiplying

∆T is going to calculate the position of 3D point after movement. Then, further left mul-

tiplying K will project the 3D point into image frame. Therefore, the left term in equation

5.10 is actually the predicted keypoint position in the next image frame, confined by the mo-

tion of object in 3D space with pose change ∆T. Obviously, the position difference within

keypoint in current frame and next frame is pixel motion in image, which is optical flow, but

calculated with geometrical relationship. In another word, Fr should be consistent with the

filtered flow Fc that are obtained after thresholding forward-backward optical flow. Their

difference can be calculated below:

Fd = |Fc −Fr| (5.11)

The Fd is used as the criterion to check whether or not the selected keypoints encounter high

uncertainty induced by the flow network. This process works as blow:

• Find a set of keypoints by forward-backward consistency.

• Calculate their rigid flow Fr using equation 5.10.

• Calculate Fd using equation 5.11.

• If Fd < σrigid , the keypoint is treated as valid keypoint and re-selected for final estima-

tion. σrigid is a pre-defined threshold for the rigid flow measurement.

• Iterate all the keypoints from forward-backward consistency. Then, we can get a new

re-selected keypoint set, which forms a new 2D-2D matching.

Given the 2D-2D matching pairs between two consecutive frames, the depth image, and

the keypoint positions, we recover the depth point cloud for the object. Considering the

potential inaccuracy of segmentation network, the graph-cut RANSAC algorithm [118] is

used to remove outliers. Afterwards, the pose change are estimated from the point cloud

registration PnP via a least square approach [11].
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5.4 Experiments
In this section, it describes the datasets we used for testing our network, and the metrics that

use to evaluate the tracking performance. In the end, it reports the quantitative and qualitative

results of our network on the selected datasets.

5.4.1 Datasets

Fast-YCB [119] dataset: the objects in this dataset are selected from the model of YCB-

Video dataset, and are created from computer rendering. The motion of object in this dataset

is increased moderate to fast. These photo-realistic images have more significant reflection

of light compared with the dataset captured under the real-world. Object pose label, depth,

mask, and optical flow are provided in the Fast-YCB dataset.

YCBInEOAT [62] dataset: this dataset contains 9 video sequences which are manipu-

lated by a robot manipulator. In this dataset, 3 kinds of end-effector, a vacuum gripper, a

Robotiq 2F-85 gripper and a Yale T42 hand are used to interact with object.

NOCS [120] dataset: this dataset contains 6 category-level objects bottle, bowl, camera,

can, laptop and mug. No exact object CAD model is assumed in the dataset. It requires pro-

posed algorithms to have the ability to recognize those unseen objects during either training

or testing. Except the label of object pose, the size of object is also provided in the dataset.

There are two kinds of movement of objects in our selected datasets.

1. The camera is fixed during the tracking process only the objects are moving. Our

network model is able to estimate the object pose directly. The YCBInEOAT and

Fast-YCB datasets are in this category.

2. The objects are statically placed in the table-top place only the camera is moving in

the front of objects. The images are captured from different poses of the camera. Our

network model is able to estimate the camera pose. Then the object pose is obtained

from the estimated camera pose. The NOCS dataset is in this category. In Fig 5.9, the

estimated camera trajectories of scene 1 are plotted from the of real test set of NOCS

dataset. Although we don’t have the ground-truth of the real trajectories of camera,

but its accuracy can be reflected on estimation of object pose.
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Figure 5.9: Estimated camera trajectory from NOCS dataset

5.4.2 Evaluation Metrics

We report the pose root mean square error(RMSE) for rotation(Rerr) and translation(terr),

which computes the average precision of three Euler angles and translation vector. For the

scenarios of grasping and object manipulation, the IoU25 metric is calculated, where the

overlapping volume between predicted 3D bounding box and ground-truth bounding box is

higher than 25% to be counted as correct. We also report the performance of our algorithm

evaluated by 5◦5cm, where the rotation error less than 5 degrees and translation error less

than 5cm are treated as corrected.

The threshold for the forward-backward consistency is set to 5. The image grid of ob-

ject bounding box is set to 10× 10 for the Fast-YCB dataset, 30× 30 for the NOCS and

YCBInEOAT datasets. We set the rigid optical flow Fr threshold as 0.1 cm to select the best

accuracy matching. During the keypoint selection from forward-backward flow consistency,

we take 200 matching keypoints with the least consistent values. Then in the iterative key-

points refinement scheme, we reduce the selected keypoints to 16. The object pose change

are obtained by the PnP algorithm through these 16 paired keypoints.

5.4.3 Results

Evaluation on the YCBInEOAT dataset

The table 5.1 shows the quantitative results on the YCBInEOAT dataset. The methods

Se(3)-TrackNet* and RGF* with star indicate that they used the object CAD model in

their pipelines. We utilised the same segmentation network and the initial pose estimation

as in BundleTrack [61]. The metircs ADD and ADD− S are computed and the results are

treated as correct when the metric threshold is lower than 0.1 meter. The evaluation re-
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sults of BundleTrack are taken from its public release, and the evaluation results of Se(3)-

TrackNet*, RGF*, and TEASER are taken from their publications [61]. It is necessary to

use the object model to compute the ADD and ADD-S metrics, but the original YCBInEOAT

dataset doesn’t provide the object models for objects: 003 cracker box, 021 bleach cleanser,

004 sugar box, 005 tomato soup can and 006 mustard bottle. Here, we utilised the corre-

sponding object models from the YCB-Video dataset for the evaluation.

Methods 003 cracker box 021 bleach cleanser 004 sugar box 005 tomato soup can 006 mustard bottle Mean
ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S

BundleTrack [61] 85.07 89.41 89.34 94.72 85.56 90.22 86.00 95.13 92.26 95.35 87.34 92.53
Se(3)-TrackNet* [62] 90.76 94.06 89.58 94.44 92.43 94.80 93.40 96.95 97.00 97.92 92.66 95.53

RGF* [121] 34.78 55.44 29.40 45.03 15.82 16.87 15.13 26.44 56.49 60.17 29.98 39.90
TEASER* [122] 63.24 81.35 61.83 82.45 51.91 81.42 41.36 71.61 71.92 88.53 57.91 81.17

Ours 94.72 94.95 97.58 98.03 99.7 99.8 99.69 99.84 99.59 99.72 98.25 98.46

Table 5.1: Quantitative results in the YCBInEOAT dataset by using ADD(S) metrics.

In Table 5.1, we highlight the best performance with bold number. Our method outper-

forms the BundleTrack for each object in the YCBInEOAT dataset, and it has more than 90%

accuracy for each object. The ADD average accuracy is improved from 87.34% to 98.25%

for ADD, and 92.53% to 98.46% for ADD−S. In the YCBInEOAT dataset, the objects are

presented with small scale, which require a very precise and reliable prediction of the key-

points, and they are occluded most of the time by the manipulator. These are challenging

scenes to the pose tracking tasks. The better performance from our network mainly relies

on the robust keypoint selections with our proposed optical flow and segmentation networks.

The Fig 5.10 shows the the matching keypoints between two consecutive frames from the

YCBInEoat daset. The pose tracking performance is shown in Fig 5.11 where each row

shows the estimation result for one object. It can be seen our model performs well even with

the interaction of robot arm.

Evaluation on the Fast-YCB dataset

In Table 5.3, we present the quantitative results of our model compared with some other

tracking frameworks. We used the same Mask-RCNN [26] as in ROFT [119] and the same

pose initial estimate as in DOPE [123]. Since there is no symmetry object presented in the

Fast-YCB dataset, we only utilise the ADD metric to evaluate the tracking performance. In

the average performance, our model achieves the highest accuracy 84.28% compared with

68.10% of PoseRBPF, 76.59% of ROFT, and 72.06% of SE(3)-TrackNet. Our method leads

the performance for all the objects except for the object 010 potted meat can for which the
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Figure 5.10: Qualitative results of keypoints selection on YCBInEoat dataset. The first two
rows show the matched keypoints for the object cracker box, The second two rows show
the matched keypoints for the object bleach cleanser. The last two rows show the matched
keypoints for the object mustard bottle.

PoseRBPF has the best accuracy 87.29% better than 66.17% of ours. Under the rotation

error Rerr, our method has the lowest error 8.888 deg in Table 5.3. For the translation error

terr, our model significantly reduces the error to 0.355 cm in average, leading the second best

performance of ROFT about 3 cm.
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data loading optical flow prediction keypoint selection pose inference average tracking time
Fast-YCB 0.11s 0.237s 0.025s 0.002s 0.034s

YCBInEOAT 0.028s 0.083s 0.01s 0.005s 0.04s

Table 5.2: The table shows the time that spent on each section when running our system on
Fast-YCB and YCBInEOAT datasets.

Evaluation on the NOCS dataset:

In Table 5.4, we report the quantitative evaluation results by our framework on the NOCS

datset, where 5◦5cm, IoU25, Rerr, and terr metrics are analysed. We classify the methods

for comparison as with CAD model or without CAD model. We also specify the modality

of input for each method as RGB, RGD-D, Depth, and Point Cloud. For 5◦5cm and IoU25

metrics, a higher value indicates a better performance, and a higher value indicates a worse

performance for Rerr and terr metrics. We used the same segmentation network and the initial

pose estimation as in BundleTrack. As we can see, our method outperforms other methods

with CAD model. Especially for 6-PACK, our method largely leads the performance for the

four metrics, except for the object bowl where 6-PACK achieves 100% on the IoU25, but

our result 99.61% is very close. Also, 6-PACK has the lower rotation error for bowl object,

which is 5.2 degree compared with 11.44 degree of ours. Our significant improvement is on

the estimation of translation vector where we can see from the table that terr is considerably

lower than other methods. We achieve 0.013cm average translation error while the best one

in other methods is 2.1cm.

Computation Time Analysis

In this section, we analyze the time consumption during the entire tracking process, shown

in Table 5.2. We calculated the time of four various operations of our system, which are data

loading, optical flow prediction, keypoint selection and pose inference, receptively. Among

the keypoint selection, consumptions consist of the time of forward-backward flow consis-

tency calculation, local best-K selection and rigid flow calculation. Pose inference indicates

the calculation time using PnP algorithm. In the last column of Table 5.2, we analysed the

average time of performing tracking on two datasets. As we can see, our system can achieve

29.4Hz on Fast-YCB dataset and 25Hz on YCBInEOAT dataset, which are close to the real

time requirement of 30Hz for tracking. This tracking performance is enough for most of the

pose tracking task. As the images in Fast-YCB(720× 1280 pixels) have larger image size
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Model Methods Input Metrics bottle bowl camera can laptop mug overall

with 3D
Model

NOCS [120] RGB-D

5◦5cm 5.5 62.2 0.6 7.1 25.5 0.9 17.0
IoU25 48.7 99.6 90.6 77.0 94.7 82.8 82.2
Rerr 25.6 4.7 33.8 16.9 8.6 31.5 20.2
terr 14.4 1.2 3.1 4.0 2.4 4.0 4.9

6-PACK [107] RGB-D

5◦5cm 24.5 55.0 10.1 22.6 63.5 24.1 33.3
IoU25 91.1 100.0 87.6 92.6 98.1 95.2 94.2
Rerr 15.6 5.2 35.7 13.9 4.7 21.3 16.0
terr 4.0 1.7 5.6 4.8 2.5 2.3 3.5

KeypointNet [124]
Point
Cloud

5◦5cm 5.9 16.8 1.8 4.3 49.2 3.1 13.5
IoU25 23.1 74.7 30.9 42.6 94.6 52.0 53.0
Rerr 28.5 9.8 45.2 28.8 6.5 61.2 30.0
terr 9.5 8.2 8.5 13.1 4.4 6.7 8.4

without
3D
Model

ICP
[125]

Point
Cloud

5◦5cm 10.1 40.3 12.6 17.2 14.8 6.2 16.9
IoU25 29.9 79.7 53.1 40.5 50.9 27.7 47.0
Rerr 48.0 19.0 80.5 47.1 37.7 56.3 48.1
terr 15.7 4.7 12.2 9.4 9.2 9.2 10.5

MaskFusion [126] RGB-D

5◦5cm 15.5 32.3 11.7 8.8 73.9 16.4 26.5
IoU25 51.4 71.4 60.8 49.7 99.9 56.2 64.9
Rerr 36.7 12.3 43.0 34.9 3.4 40.6 28.5
terr 11.3 5.3 11.1 9.3 3.5 9.2 8.3

BundleTrack [61] RGB-D

5◦5cm 86.5 99.6 85.8 99.2 99.9 53.6 87.4
IoU 100.0 99.9 99.9 100.0 99.9 99.9 99.9
Rerr 1.6 1.7 3.0 1.5 1.5 5.2 2.4
terr 2.3 2.1 2.1 2.1 2.2 2.2 2.1

CAPTRA
[127]

Depth

5◦5cm 79.46 79.20 0.41 64.70 94.03 55.17 74.51
IoU25 72.11 79.64 2.50 62.47 87.20 80.70 76.42
Rerr 3.29 3.50 17.82 3.43 2.24 5.36 3.56
terr 2.60 1.43 35.53 5.69 1.48 0.79 2.40

Ours RGB-D

5◦5cm 96.32 98.81 85.5 98.31 98.59 56.5 89.5
IoU25 99.74 99.61 99.67 99.58 99.68 99.63 99.6
Rerr 4.43 11.44 3.13 4.47 1.73 5.12 5.05
terr 0.015 0.013 0.014 0.013 0.014 0.014 0.013

Table 5.4: Quantitative results on NOCS dataset, reported by 5o5cm, Iou25, Rerr,terr metrics.

than images in YCBInEOAT(480×640 pixels), the data loading and optical flow prediction

steps of Fast-YCB occupied longer time than the time running on YCBInEOAT. However,

the rest steps cost almost same time on two datasets.

5.4.4 Limitations and Future Works

In the experiment, we found that our algorithm has the limitation to handle out of plane

movement of object. This resulted in the inaccuracy estimation of optical flow, further af-

fected the performance of object pose tracking. In Fig 5.14, we showed the AUC evaluation

results of all of the image sequences of 003 cracker box and 004 sugar box objects from

Fast-YCB dataset. We can clearly see that, for some frames, our algorithm can not predict

the object pose accurately , in where those frames showed the high errors for rotation and

translation . As the objects in Fast-YCB dataset having more variabilities for rotation, some
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of out-of-plane motions made the optical flow network hard to find the correct corresponding

pixels. In the future work, we might modify our framework to overcome this limitation.

5.5 Conclusion
In this chapter, we propose an object pose tracking framework that utilizes the off-the-shelf

optical flow network as a backbone network to select the effective keypoints of the object to

establish a 3D-2D correspondence between the previous and current frame. Then the object

pose is recovered by using a point cloud registration algorithm PnP. Our algorithm can handle

the cases where the object is moving but the camera is static or the object is moving but the

camera is static. Furthermore, to guarantee the robust and reliable selection of keypoints,

we use an iterative keypoint refinement scheme to re-select the keypoints. The experiment

results show that our framework outperforms or has a competitive performance over other

tracking frameworks in selected datasets.
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Figure 5.12: Qualitative results of keypoint selections on the Fast-YCB dataset. The
visualizations show the selection results of 003 cracker box, 006 mustard bottle and
009 gelatin box objects by each 3 image sets from top to the bottom.
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Figure 5.13: Selected keypoint matching on the NOCS dataset. The top three matching
images are selected from scenes 1 of the NOCS dataset, and the bottom three matching
images show the keypoint matching from scene 2 of the NOCS dataset.
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Figure 5.14: Rotation errors for the 003 cracker box object and 004 sugar box object, re-
spectively, in Fast-YCB dataset. The spikes in two figures are induced by the challenging
self-rotation by object, like out-of-plane rotation.
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Chapter 6

Conclusions

In this chapter, we summarize the works we did in the research area of object 6D pose

estimation and give the future works that we can work on to facilitate the development of

this topic.

6.1 Research Summary
In this thesis, we introduced three deep neural network pipelines for object 6D pose estima-

tion and tracking and we focused on the RGB-D data as input. We aimed to improve the

accuracy of estimation, and made the estimation and/or tracking procedures more reliable

when we deal with the challenging scenarios for the objects to be estimated or tracked. The

first contribution in this thesis was an attention network for improving the representative of

fusion features from both of the RGB and depth data. By using our proposed attention net-

work, the simply concatenated pixel features and point features can be enhanced, so that they

can improve the accuracy of object pose regression.

The second work was the graph attention network for object 6D pose estimation. Con-

sidering the local information of depth point clouds we recover from the crop images, the

graph attention network took the edge information of depth information as edge features to

form the fusion features so that fusion features have the combination of point features, pixel

features and edge features. Then, the fusion features were processed by our proposed at-

tention networks. For training, we constructed the graph attention network architecture in

the manner of Siamese network, in order to enforce the feature space and pose space to be

closed. In this way, the ambiguity of feature embeddings caused by symmetry objects could
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be alleviated. Quantitative results on LineMod dataset demonstrated that pose estimation

accuracy can be improved through our network.

Finally, for the third contribution, we proposed an object 6D pose tracking framework by

utilizing an off the shelf optical flow network. The optical flow network took two consecutive

RGB-D frames to predict the motion of objects in the image frame. Then, we selected

the keypoints of object based on the predicted optical flow vector. We also proposed an

iterative keypoint refinement scheme to remove the outliers among the keypoints. From

the experimental results, our tracking framework demonstrated the abilities for tracking fast

moving objects and occluded objects. Also, our framework is model-free, and not restricted

by the shape of objects to be tracked.

6.2 Future Plans
In this section, we discussed some possible development directions of object 6D pose esti-

mation that could benefit the research of it.

As we have noticed some limitations existed in the optical flow tracking system in Chap-

ter 5, there are some extensions that could make the system more versatile. For tracking

the fast moving objects, its velocity is usually an important factor to the application. As the

depth information, mask information, optical flow information are available in our system,

we can built another pipeline for the velocity prediction, similar to [119]. Furthermore, the

estimation of size of object is being considered in recent proposed algorithm [128]. There-

fore, for our network, we could make it as multi-tasks network to the object pose, size and

velocity, simultaneously.

In below, we discuss four directions from different perspectives that can accelerate the

development of object pose estimation research.

• Dataset. Although we have some datasets that were made for object 6D pose estima-

tion. There were either presented in small scale or in simple scenes. Building a large

scale dataset as well as the objects with challening poses is not easy to implement. So,

some efforts have tried the computer-generated data for training the pose estimation

networks. But the gap between simulation and reality still exists. Domain adaptation

and domain randomization can be used to overcome the simulation to real world gap.

Hence, we could make the effort for developing algorithms to bring synthetic data to
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be closer to real data.

• Generalization and Standardization. At the moment, the generalization of object 6D

pose estimation and tracking algorithms still have poor generalization to the applica-

tions. The estimation performance might get worse when we change the scene. For

example, in real applications, lighting condition is poor. This will significantly af-

fect the localization and estimation of objects we interest. Except the generalization

ability, there is no a standardization for the object 6D pose estimation and/or track-

ing. Some methods require only RGB data and some RGB-D data. Some approaches

need object 3D model to realize the estimation. These various requirements make the

estimation pipelines hard to be deployed into industrial applications. Thus, focusing

on the improvement of generalization and standardization will significantly benefit the

researches on object pose estimation direction.

• Lightweight Architecture. To make the object pose estimation network being lightweight

is getting more and more important. By making the network lightweight, we could re-

duce the usage of computational resources and improve the speed of inference. This

is quite important for deploying object pose estimation algorithms into those embed-

ded vision systems. Hence, to design lightweight as well as accurate pose estimation

network should gain more research attention in the future.

• Multi-Sensor Fusion for Pose Estimation. The signals to be used for objects pose es-

timation in this thesis are images captured by camera. They only rely on the visual

information to reason the object pose, which have limitations in some scenarios. In the

future work, the algorithms proposed in this thesis can potentially be applied in scenes

where multiple sensing sensor are available, like Inertial Measurement Unit(IMU),

odometer, accelerator. Actually, in the robot state estimation, the above sensors are

used a lot independently to measure the pose, distance and velocity. But fuse the in-

formation coming from those sensors together for a single agent or multiple-agents is

quite challenging task in robotics. Each unique sensor has its own sensing frequency

and different uncertainty. How do the algorithm combine those variables to get the fi-

nal estimation? Kalman filter and its variants are used popular to address the different

estimation uncertainty, but in complex motion, its observation model is difficult to be
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constructed. So, to utilise the advantages both in probability model and deep learning

model, the Attention network we proposed in Chapter 3 could be further developed.

For example, we could design more branches in the network for processing various

modalities data, then attention network could be used to learn the representation be-

tween observation and state models. In this manner, the entire system will be more

robust than solely using deep learning network.

In real life applications, this research can combine with the robot manipulator to help

human for the house-cleaning, cooking and so on. For example, in an intelligent

kitchen, a cooking robot needs a precise, robust object pose estimation algorithm to

accurately locate the position of utensils and estimate their pose. This kind of applica-

tion requires the pose estimation generalized well on different objects because of the

complex environment and objects to be recognized. Also, for a coffee-making robot,

the equipped vision system must track the state of cup with real-time and high preci-

sion. The estimated state of cup or manipulator can provide the feedback to control

unit to adjust the coffee making action of robot. In the state estimation of aircraft and

satellite, vision-based pose estimation method is an important choice to their pose es-

timation as this can be done from the ground camera or from other observers in case

some estimation units on the estimated aircraft and satellite are damaged. For example,

a real time tracking and monitoring system on the airport can improve the operation

efficiency and safety. We can imagine as the development of hardware and software,

there will be more applications that can benefit from object pose estimation.
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L. Leal-Taixé, and R. Cucchiara, “Motsynth: How Can Synthetic Data Help Pedes-

trian Detection and Tracking?” in Proceedings of the IEEE/CVF International Con-

ference on Computer Vision, 2021, pp. 10 849–10 859.

[66] Y. Liu, Z. Wang, X. Zhou, and L. Zheng, “Synthetic Data Are as Good as the

Real for Association Knowledge Learning in Multi-object Tracking,” arXiv preprint

arXiv:2106.16100, 2021.

[67] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohi,

J. Shotton, S. Hodges, and A. Fitzgibbon, “KinectFusion: Real-Time Dense Surface

Mapping and Tracking,” in 2011 10th IEEE international symposium on mixed and

augmented reality. Ieee, 2011, pp. 127–136.

[68] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige, N. Navab, and V. Lep-

etit, “Multimodal Templates for Real-Time Detection of Texture-less Objects in Heav-

ily Cluttered Scenes ,” in 2011 international conference on computer vision. IEEE,

2011, pp. 858–865.

[69] R. Kaskman, S. Zakharov, I. Shugurov, and S. Ilic, “Homebreweddb: RGB-D Dataset

for 6D Pose Estimation of 3D Objects,” in Proceedings of the IEEE/CVF International

Conference on Computer Vision Workshops, 2019, pp. 0–0.

[70] B. Tekin, S. N. Sinha, and P. Fua, “Real-Time Seamless Single Shot 6D Object Pose

Prediction,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2018, pp. 292–301.



BIBLIOGRAPHY 115

[71] M. Garon, D. Laurendeau, and J.-F. Lalonde, “A Framework for Evaluating 6-DOF

Object Trackers,” in Proceedings of the European Conference on Computer Vision

(ECCV), 2018, pp. 582–597.

[72] E. Brachmann, F. Michel, A. Krull, M. Y. Yang, S. Gumhold et al., “Uncertainty-

Driven 6D Pose Estimation of Objects and Scenes from a Single RGB Image,” in Pro-

ceedings of the IEEE conference on computer vision and pattern recognition, 2016,

pp. 3364–3372.

[73] W. Kehl, F. Milletari, F. Tombari, S. Ilic, and N. Navab, “Deep Learning of Local

RGB-D Patches for 3D Object Detection and 6D Pose Estimation,” in European con-

ference on computer vision. Springer, 2016, pp. 205–220.

[74] T. Do, T. Pham, M. Cai, and I. Reid, “Real-Time Monocular Object Instance 6D Pose

Estimation,” 2019.

[75] J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and S. Birchfield, “Deep

Object Pose Estimation for Semantic Robotic Grasping of Household Objects,” arXiv

preprint arXiv:1809.10790, 2018.

[76] A. Collet, M. Martinez, and S. S. Srinivasa, “The MOPED Framework: Object Recog-

nition and Pose Estimation for Manipulation,” The international journal of robotics

research, vol. 30, no. 10, pp. 1284–1306, 2011.

[77] J. Mahler, M. Matl, X. Liu, A. Li, D. Gealy, and K. Goldberg, “Dex-Net 3.0: Com-

puting Robust Vacuum Suction Grasp Targets in Point Clouds using a New Analytic

Model and Deep Learning,” in 2018 IEEE International Conference on robotics and

automation (ICRA). IEEE, 2018, pp. 5620–5627.

[78] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-View 3D Object Detection Network

for Autonomous Driving,” in Proceedings of the IEEE conference on Computer Vision

and Pattern Recognition, 2017, pp. 1907–1915.

[79] A. Geiger, P. Lenz, and R. Urtasun, “Are We Ready for Autonomous Driving? The

KITTI Vision Benchmark Suite,” in 2012 IEEE conference on computer vision and

pattern recognition. IEEE, 2012, pp. 3354–3361.



116 BIBLIOGRAPHY

[80] D. J. Tan, N. Navab, and F. Tombari, “6D Object Pose Estimation with Depth Images:

A Seamless Approach for Robotic Interaction and Augmented Reality,” arXiv preprint

arXiv:1709.01459, 2017.

[81] E. Marchand, H. Uchiyama, and F. Spindler, “Pose Estimation for Augmented Reality:

A Hands-On Survey,” IEEE transactions on visualization and computer graphics,

vol. 22, no. 12, pp. 2633–2651, 2015.

[82] G. Pavlakos, X. Zhou, A. Chan, K. G. Derpanis, and K. Daniilidis, “6-DOF Object

Pose from Semantic Keypoints,” in 2017 IEEE international conference on robotics

and automation (ICRA). IEEE, 2017, pp. 2011–2018.

[83] S. Suwajanakorn, N. Snavely, J. Tompson, and M. Norouzi, “Discovery of Latent 3D

Keypoints via End-to-end Geometric Reasoning,” arXiv preprint arXiv:1807.03146,

2018.

[84] W. Kehl, F. Milletari, F. Tombari, S. Ilic, and N. Navab, “Deep Learning of Local

RGB-D Patches for 3D Object Detection and 6D Pose Estimation,” in European con-

ference on computer vision. Springer, 2016, pp. 205–220.

[85] O. H. Jafari, S. K. Mustikovela, K. Pertsch, E. Brachmann, and C. Rother, “iPose:

Instance-Aware 6D Pose Estimation of Partly Occluded Objects,” in Asian Conference

on Computer Vision. Springer, 2018, pp. 477–492.
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