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An Adaptable Lateral Resolution Acoustic
Beamforming for the Internet of Bio-Nano Things

in the Brain
Hanna Firew and Michael Taynnan Barros, Member, IEEE,

Abstract—The Internet of Bio-Nano Things in the Brain are
minimally invasive untethered links between the brain tissue
and silicon platforms. Even though these interfaces have been
envisioned for many biomedical applications, it is unclear how the
ultimate technology will support spatially distributed networks.
In this paper, we address the distributed power allocation through
adaptable beamforming by varying the acoustic beam lateral
resolution. Our results show improvements in average power
transfer efficiency for sparser beams compared to narrower ones
for a randomly placed network of implantable devices with 15
nodes within a 4mm2 space in the neocortex.

Index Terms—Neural Interfaces, Wireless Network, Ultra-
sound beamforming, Neural dust, Network Adaptation

I. INTRODUCTION

Neurodegenerative diseases are a burden to the ageing
society as the biggest challenge is to provide early detection
and treatment for chronic diseases without traumatic interven-
tion. While most treatment approaches focus on chemicals
or surgery, the emerging area of electroceuticals provides
approaches based on the Internet of Bio-Nano Things focusing
on stimulation and sensing of brain tissue [1]–[3]. Current
deep brain stimulation (DBS) solutions are bulky - they include
invasive probes and leads implanted in the patient’s brain to
allow current injection and neural stimulation actions [4].

Wireless brain interfaces have been introduced recently with
the potential to overcome these limitations and challenges
of existing invasive solutions by providing completely un-
tethered solutions. Stimulation current is provided by either
a passive wireless current injection to neurons or an active
one, where a device converts a wirelessly radiated energy to
a current with adequate frequency and impedance matching
so that stimulation is achieved [5], [6]. However, to do so, a
network of multiple implanted devices would provide extended
capabilities for controlling patterns and codes of populations of
neurons, which would lead to more effective treatment based
on stimulation. The network of wireless neural interfaces has
only been initially hinted at in the literature for infrared media
[7]. This technology not only supports directional communi-
cation with multiple devices based on ultrasound signals but
supports half-duplex communications and networks services
such as addressing, multi-hopping or routing for example [8].
To achieve that, we must develop the building blocks such as
signal processing and protocols that manage computing and
energy resources in the wireless neural interfaces.

Current literature reports mostly on the usage of straight
beams with mostly high acoustic frequency (>5MHz) and
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Fig. 1. Sketch of intended adaptable setup for networked wireless implantable
neural interfaces controlled and powered by ultrasound beam.

static lateral resolution. There are also reliable examples trans-
ducer configurations that provides enough power to achieve
great efficiency in single devices in animal models, but not
in multiple networked devices in both numerical or non-
biological experimental platforms. The main question now that
is put forward is what beamforming techniques should emerge
and that is what our contributions are focused.

Inspired by techniques of beam manipulation in ultrasound
medical imaging, we propose an adaptable beamforming tech-
nique that allows the selection of devices based on the lateral
resolution of the acoustic beam. Lateral resolution is defined
as the level of acoustic pressure variation from the focal
point in the horizontal axis. It is controlled by the acoustic
carrier frequency, and ultimately expands and contracts the
beam over the network space. This approach presents not
only the ability to coordinate what devices will be active
but allows the possibility of addressing devices based on
their geographic position in the Brain tissue. We evaluate our
method by combining numerical and simulations based on
the Transducer Array Calculation (TAC) platform developed
by Kohout et al. [9]. We were able to accurately define a
transducer array set up with revised parameters to control the
lateral resolution of the beams. We characterize the effects
of lateral resolution-based beamforming by calculating the
average received power and average power transfer efficiency
when scaling the number of network nodes. Our results show
that while lateral resolution indeed achieves selective of the
devices, the average efficiency was non-constant throughout
the network. This means that devices can operate on different
time scales due to the energy harvesting process, which is
suitable for asynchronous networks.
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II. ACOUSTIC LATERAL RESOLUTION-BASED
BEAMFORMING TECHNIQUE

In medical imaging, the lateral resolution is used to observe
the spatial range of the beam to evaluate the diffusion of
sound pressure in a certain area surrounding the focal acoustic
intensity point. We use this concept to investigate that given
the size of the network, we can adapt the lateral resolution
of the beam to provide selectivity in the network. We aim
to provide the required developed theoretical work to demon-
strate the feasibility of our approach. We do not, however,
provide utility to such selectivity feature since it can be used
for various building blocks for developing a full network
solution, including addressing or energy harvesting strategies.
In this section, we put forward the necessary models that
explain the propagation of an acoustic beam from a transducer
array composed of squared sources, the lateral resolution-
based beamforming as well as the acoustic attenuation losses
from skull and tissue.

A. Acoustic Beam Propagation based on Transducer Array of
Squared Elements

Acoustic beam propagation was modelled and evaluated
through a directive wave pattern description based on sound
fields generated by squared transducers in far and near fields
(see Fig. 1). We consider a transducer array with N elements
with an area of ∆A = ∆h∆w as ∆h and ∆w are the
dimensions of each transducer. The transducer is separated by
a constant spacing space that results in simple homogeneous
distributions of transducer across the array area. We consider
a transducer of piezoelectric material placed in a connective
substrate to a driver, that controls the current delivered to
each transducer. Even though the circuitry of the driver is not
explored in this paper, the proposed lateral resolution-based
beamforming requires a new design to deal with protocols and
device communications similar to [10], [11], and therefore the
present theoretical study is important to capture its feasibility.
The pressure of the sound field formed by N transducers will
have a total pressure p0 at a point in the field-dependent on the
complex surface velocity for each element in the array (un)
and the pressure field generated by each element (Pn) as well,
defined as

p0 =
j · ρ · c

λ

N∑
n=1

un · Pn (1)

Ocheltree and Frizzel [9] define Pn as the integration of
the spherical wave produced by each element, as done in the
conventional surface integral technique, and defined as

Pn =

∫ h/2

−h/2

∫ w/2

−w/2

e−(α+j·k)r

r
dx0dy0 (2)

with r =

√
z2 + (x− xn − x0)

2
+ (y − yn − y0)

2, where j
=
√
−1, ρ is density of medium, c is the phase velocity of

the sound wave, λ is the wavelength, k is the wave number,
α is the attenuation coefficient, r is the distance between the
field point and an element area of the sound source piston,
dx0 and dy0 are the dimensions of the single element in the
transducer array [9]. Note that the intervals [-h/2,h/2] and [-
w/2,w/2] represent the area of the transducer array.

B. Lateral Resolution-based Beamforming

To determine the relationship between the geometry of the
beam and its frequency, we investigate the proposed modelling
for lateral resolution (gamma). Even though our objective
differs from that proposed for lateral resolution, the same
relationship between frequency and beam shape holds, and
there is a wealth of literature that can be analysed and
incorporated into the distributed acoustic energy harvesting
problems. Since we already have a solution for acoustic
propagation based on Eq. (2), the ultrasonic radiation for a
single element can be derived proportionally so that there is a
direct correlation between frequency and lateral resolution at
r. As demonstrated by [12], each dimension can be treated
independently. Here, we concentrate on reducing r to the
x dimension (with z = y = 0), and we assume that the
focal point of the ultrasonic wave at r obtains the following
expression:

Pn ∝ sinc
(
Lx

λr

)
, (3)

and considering that the resolution is defined as the distance
from the peak of the beam to the point zero of the beam, we
can solve Eq. (3) considering it equal to zero, thus yielding
to γ = r

L . For a given frequency f , and a cost function
c(f) we define that there is an associated γ that produces
a maximisation of this cost function. Such cost function
should be related to the objective of the network in terms of
performance. In this paper we focus on the network efficiency
of the power transfer, which is defined in the next sections.

C. Transcranial acoustic absorption

The skull is a brain-protective barrier not only for avoid-
ing foreign body contact with it but as well as protecting
tissue perturbation through acoustic signals. Acoustic signals
dissipate around the skull and, for a scenario of transcranial
penetration of acoustic waves, it can become a major chal-
lenge. For batteryless devices depending on acoustic energy
conversion, means that the skull will cause a major loss of
energy that could be harvested. Literature ( [5]) shows that
we can quantify such losses using the attenuation coefficient
(α), which is defined as the relationship between the frequency
used for acoustic transmission (f ) and the relaxed frequency
(fs) due to soft matter propagation

α =
A · f · fs

λ · (f2 + f2
s )

(4)

where A is a empirical constant. We can assume that the
frequency relaxation and λ can be estimated also through a
new empirical constant (a) to simplify the relationship with α
and f thus obtaining α(f) = a · f .

III. NETWORKED WIRELESS IMPLANTABLE NEURAL
INTERFACES

For the network design, we defined a hierarchical and
centralized set-up by having an external primary device (the
ultrasound transducer) and implantable secondary devices (the
miniaturized implants). The ultrasound transducer is placed 1)
outside of the skull on the surface of the skin and 2) at the
dura space between the skull and the brain tissue. In both
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Fig. 2. Illustration of the network structure used in our network response
analysis.

cases, the ultrasound beam will travel through different tissue
layers before it reaches the devices implanted in the brain (see
Fig. 1). The beamforming performance was computed through
an algorithm that produces a network response to a determined
beam and analysed through received power and the efficiency
of the power transfer from the transducer to the implantable
device. We describe in the following the device response as
well as the network response respectively.

A. Device response

Efficiency of the power transfer from transducer to the
implantable device as percentage is then calculated as:

E =
Psb

Pin
· 100 (5)

where Psb is power in the skull or in brain and Pin is initial
power [5]. Initial power is calculated as Pin = p2

2ρc · Ad,
where p is the initial pressure of the ultrasound wave, ρ is
the density of the medium and c is the velocity of the sound
wave in the medium and , Ad, which is the effective area of
the piezoelectric element of the implantable device [13]. In
this case, the medium is the skull. Received power behaviour
in a point in the field is calculated as:

Psb =
p2

2 · ρ · c
· 10

−(αfd
10) ·Ad, (6)

where this is the intensity of the sound wave in the skull or
brain as explained above. α is the attenuation coefficient of
the medium, f is the frequency of the sound wave and d is
the distance from the transducer to a point in the field.
B. Network response

A network of wireless brain interfaces analysis objective is
to obtain a link between the produced ultrasonic beam from a
transducer array so that a collective quantification of received
power and power transfer efficiency is obtained. This is not
only a spatial problem but an efficiency problem as well. There
is a probability of the device being included in the near field
of the beams with a tendency of some devices being further
away in the far-field. Then as the signal propagates in the
brain tissue further devices may need more time to convert
the energy necessary to function. We assume that the network
of wireless neural interfaces will reside in sub-centimetre area,
which may be limited compared to the whole brain’s volume,
but sufficient to target the scale of a population of neurons.
The structure of the network analysis is depicted in Fig. 2 We

consider the placement of a maximum, arbitrarily chosen, 15
neural interfaces in the network area using a random uniform
distribution. To obtain the collective quantification of network
response to the beamforming, we calculate the average powers
and efficiencies from the device response model. We assume
that when a device is out of the beam reach, both power and ef-
ficiency become zero. We analyse an arbitrary network located
in the brain neocortex considering also the average thickness
of a human brain’s skull. The deepness of the network is about
1.5cm with an average network area of 0.5cm2. The spacing
of the network was defined based on the previously obtain
beam width analysis from a set of 10x10 transducer elements.
The objective of this paper is not to focus on the optimisation
of the transducer, since there is a wide variety of existing pre-
defined transducers that are commercially available. Therefore,
we kept the network dimensions static throughout our analysis.

IV. RESULTS

A. Transcranial Ultrasound Simulations

The presented results in this section were made through the
Transcranial Ultrasound Simulations (TAC) proposed in [9].
TAC provides the beams and sound pressure distribution with
2D/3D visualization of beamforming in near and far-fields.
The acoustic pressure of the beams differs between a few
thousand pascals to megapascals based on 9 different beam
shapes. We will show how these changes can dramatically
alter the network-wide energy provision, where small scale
neural implants are impacted the most.

B. Analysis of Skull Acoustic Loss

Many works in the literature point out scenarios where the
transducers are only placed in the subdural space. We also
evaluated the received power behaviour of the beam with or
without the skull (see Fig. 4). To mimic in vivo conditions
speed of sound in the medium was set to 3500 m/s (average
speed of sound in cortical bone [14]) , which is the speed of
sound in skull [15]. From the results, we can see that skull
causes a barrier that attenuates ultrasound beam at a lot higher
rate than brain tissue. In a case in which there is no skull,
based on the performed simulations initial pressure would be
higher due to the slower speed of sound in the brain. The initial
intensity and therefore initial power is higher when there is no
skull between the transducer and the brain tissue.

C. Power and efficiency of a single device

Fig. 3 shows 9 beams produced with sine waves with
frequencies from 50 kHz (beam 1) to 100 MHz (beam 9),
It was assumed that a single device is placed up to 5 cm away
from the transducer array on a straight vertical line below the
transducer’s central point (see Fig. 2). Power levels of the 9
beams differed from high and sufficient levels of power to too
low-level power in the brain. Higher frequency waves (5 MHz
or higher) result in higher initial pressure and higher initial
power, but will also have a higher attenuation impact. Lower
frequency waves can provide enough pressure in brain tissue
despite lower initial pressure since it will be less impacted by
attenuation. The efficiency of power transfer from the external
transducer to the implantable device was calculated for the
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Fig. 3. Beams achieved from simulations with TAC. Frequencies used on simulations: top row from left to right is 50 kHz, 100 kHz and 500 kHz; middle
row from left to right is 1 MHz, 2.5 MHz and 5 MHz; bottom row from left to right is 10 MHz, 50 MHz and 100 MHz.

corresponding beams 1-9. Fig. 5 presents average efficiencies
in a varying distance between 1cm to 5cm from the transducer
across all devices in a network. Efficiency is defined by Eq.
(6). The efficiency drastically decreases as the frequency of
the sound wave increases exponentially. The beam 1 at 1 MHz
decreased nearly 98% to beam 5 at 2/5 MHz.

D. Power and efficiency of the network

Based on the above-mentioned power results for a single
device, three beams (beams 3-5) were chosen for further
network calculations to facilitate the impact of widening the
beams with beam 3 the widest and beam 5 the most narrow.
More complex beamforming techniques may be deployed,
however, the paper’s goal is to show that even with con-
ventional beamforming techniques, higher efficiency can be
achieved. All three beams can provide a possibly sufficient
amount of power at least 10 mW [16] and the frequency of
waves is commonly used in other studies in the literature. We
can see that in the beginning average received power in the
brain remains stable for each beam but after an individual

Fig. 4. Power behavior of the beam with single implantable device when
skull is present in the scenario.

point, each graph has a drop in the power level, Fig. 6. As
the beams widen, it allows a broader coverage of devices is
achieved. In the network evaluation of the efficiency, we can
see the same behaviour as with the power evaluation (see Fig.
7). As more devices are in the range of the beam with beam
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Fig. 5. Average efficiency of power transfer from the transducer to implanted
device in brain for single implantable device.

Fig. 6. Scalability analysis of the average power received of the network.

3 the efficiency drops later than with beams 4 and 5. On the
contrary, higher frequencies were preferences for such type of
technology, however as the results show, as the beam widens
up lower frequencies are used, resulting in better efficiency
results. Based on the network evaluation use of the wider
beams is more beneficial as we can reach more devices with
a single beam. Therefore we can recommend emphasizing
beamforming research to find the most optimal beam forms
and parameter configurations.

V. CONCLUSION AND DISCUSSION

In this work, we analyse the received power and power
transfer efficiency for a network of wireless neural interfaces
using a proposed lateral resolution beamforming technique.
We explore the beam-shape versus frequency relationship to
analyse adaptable strategies based on the network configu-
ration. Our results show that wider ultrasound beams can
achieve higher distributed power conversion efficiency up to
25%. Our results show that chosen lateral resolution acoustic
beamforming can be used for controlling the ultrasound beam
in shape and strength. This will enable the adaptable use of
ultrasound for various situations in the case of neural interfaces
from individual implanted devices to the network of those
devices.
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