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Abstract

In this article, we use a deep quantile estimator, based on neural networks and their
universal approximation property to examine a non-linear association between the
conditional quantiles of a dependent variable and predictors. This methodology is
versatile and allows both the use of different penalty functions, as well as high di-
mensional covariates. We present a Monte Carlo exercise where we examine the fi-
nite sample properties of the deep quantile estimator and show that it delivers good
finite sample performance. We use the deep quantile estimator to forecast value-at-
risk and find significant gains over linear quantile regression alternatives and other
models, which are supported by various testing schemes. Further, we consider also
an alternative architecture that allows the use of mixed frequency data in neural net-
works. This article also contributes to the interpretability of neural network output
by making comparisons between the commonly used Shapley Additive Explanation
values and an alternative method based on partial derivatives.
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Since the seminal work of Koenker and Bassett (1978) and Koenker and Hallock (2001),

quantile regression has grown in popularity and has found applications in several disci-

plines both in academia and industry, see for example, Chernozhukov and Umantsev

(2001); Adams et al. (2021); and Koenker et al. (2017). They generalize ordinary sample

quantiles to the regression setting, that give more extensive information on the conditional

distribution of a dependent variable, given the covariates, relative to the classical regression

setting; that is, estimation of the conditional mean. This extension can be of great
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importance under extreme events, where the conditional distribution of variables such as

asset returns tends to exhibit skewness, or under the presence of outliers and/or asymme-

tries, see for example, Baur and Schulze (2005).

An assumption made in the early literature, was the linear association between the con-

ditional quantile of the target variable and predictors. This was predominately an assump-

tion that allowed for streamlined computation and theoretical inference, but was clearly

restrictive. A more recent strand of the literature, relaxed the linearity assumption and con-

sidered non-parametric estimators for the conditional quantile, that is, based on different

methods, see for example, Belloni et al. (2019) and references therein. Recent advances in

machine learning (ML) literature, which is the focus of this article, show how modeling

frameworks such as neural networks can be used to estimate general, non-linear, and poten-

tially highly complicated associations.

Specifically, a large number of studies have shown that feed-forward neural networks

can approximate arbitrarily well any continuous function of several real variables, see for

example, Hornik (1991); Hornik, Stinchcombe, and White (1989); Gallant and White

(1992); and Park and Sandberg (1991). Recent works by Liang and Srikant (2016) and

Yarotsky (2017) extend this result for feed-forward neural networks with multiple layers,

provided sufficiently many hidden neurons and layers are available. Notice that, besides

neural networks, other non-parametric approaches, for example, splines, wavelets, the

Fourier basis, as well as simple polynomial approximations, do have the universal approxi-

mation property, based on the Stone–Weierstrass theorem.

There is considerable empirical work identifying non-linearities and asymmetries in fi-

nancial variables, see for example, Gu, Kelly, and Xiu (2020, 2021); He and

Krishnamurthy (2013); and Pohl, Schmedders, and Wilms (2018), where they illustrate that

ML offers richer functional form specifications that can capture potential non-linearities

between dependent and independent variables. Some examples include Gu, Kelly, and Xiu

(2020) in which, they evaluate the forecast accuracy of ML methods in measuring equity

risk premia, and find that neural networks give substantial forecasting gains in asset pricing

compared to linear models, and Bucci (2020), where a recurrent neural network is pro-

posed, that approximates realized volatility well and outperforms other classic non-linear

estimators in forecasting. In a similar fashion, Smalter Hall and Cook (2017) use several

neural network architectures to predict unemployment in the United States and find that

neural networks outperform forecasts from a linear benchmark model at short horizons. In

addition, Gu, Kelly, and Xiu (2021) propose the use of a conditional Autoencoder,1 and il-

lustrate its superior performance relative to linear unsupervised learning methods.

Before we discuss the contributions of this article, we provide a succinct summary of the

current ML literature on non-linear quantile and value-at-risk (VaR) estimation, but we

note that the majority of this work, was not available during the writing of this article.

Keilbar and Wang (2022) use neural networks to estimate a non-linear conditional VaR

model introduced by Tobias and Brunnermeier (2016) and find that, it gives significant

gains in modeling systemic risk. In addition, Tambwekar et al. (2022) estimate a non-linear

binary quantile regression and develop confidence scores to assess the reliability of predic-

tion. Padilla, Tansey, and Chen (2022) examine the performance of a quantile neural

1 Autoencoders are artificial neural networks that can be used as a dimensionality reduction

technique.
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network using the rectified linear unit (ReLU) as activation function and show that it has

superior statistical performance relative to other quantile regression methods. Chen et al.

(2020) propose a unified non-linear framework, based on feed-forward neural networks,

that allows the estimation of treatment effects, for which they establish consistency and

asymptotic normality. Their framework includes the quantile estimator and allows for

high-dimensional covariates. ML-based estimators for quantiles have been proposed in

other fields, see for example, Meinshausen (2006), where quantile random forests are intro-

duced, and Zhang, Quan, and Srinivasan (2019) that propose a quantile neural network

estimator.

In this article, we contribute to the expanding literature on the use of ML in Finance

and use a deep quantile estimator that can capture non-linear associations between asset

returns and predictors to forecast VaR. Note that this estimator also allows for high dimen-

sional data. We further consider an alternative architecture that allows the use of mixed fre-

quency data. We also contribute toward the explainable ML literature, by proposing the

use of partial derivatives as a means to “peeking” inside the black box.

We first explore the small sample properties of the deep quantile estimator via Monte

Carlo (MC) experiments, which show that the estimator delivers good finite sample per-

formance. Then we examine the performance of the deep quantile estimator, in the context

of one of the most widely examined problems in finance: that of measuring and subsequent-

ly forecasting the risk of a portfolio adequately, via VaR modeling. VaR is a popular model

that was first introduced in the late 80s and since then, has become a standard toolkit in

measuring market risk. It measures how much value a portfolio can lose within a given

time period with some small probability, s. VaR and quantiles are related in the following

manner, let r ¼ ðr1; . . . ; rTÞ0 denote the returns of a portfolio, then, the sth VaR is equiva-

lent of computing the negative value of the sth quantile of r, �qsðrÞ.
In this article, we argue, following the non-parametric literature, that the linear relation-

ship between VaR and predictors can be restrictive and use the deep quantile neural net-

work estimator that allows a non-linear association between covariates and VaR. This

method appears particularly suitable for developing sound predictions for the past stock re-

turn losses in the United States over the sample period from September 1985 up to August

2020, the importance of which has been brought to the forefront by the recent COVID-19

pandemic. Specifically, our aim is to forecast 10-day ahead VaR produced from daily VaR

forecasts. We use daily frequency returns in a fixed forecasting framework that is outlined

below.

Under this forecasting framework, mixed frequency models become relevant bench-

marks to the non-linear quantile estimator, see for example, Ghysels, Plazzi, and Valkanov

(2016). Hence, we also include a linear MIxed DAta Sampling (MIDAS) model as a com-

petitor and also a non-linear MIDAS model, which is an extension to the deep quantile esti-

mator. Further, we consider 10-day compounded VaR forecasts that exhibit similar

patterns, which we relegate to the Supplementary Appendix.

We are not the first to use ML methods for VaR forecasting, see for example, Du,

Wang, and Xu (2019), where they propose a recurrent neural network, as a forecasting

methodology for the VaR model and exhibit an improved forecast performance relative to

traditional methods. To the best of our knowledge though, there has been no application

that uses a neural network quantile estimator in finance for forecasting VaR. Note that in

this article, we consider a set of neural networks that allows for mixed frequency
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estimation, following the current literature see for example, Xu et al. (2021); Borup,

Rapach, and Schütte (2022); and Babii, Ghysels, and Striaukas (2022b).

Our empirical analysis shows that the deep quantile estimator outperforms the linear,

MIDAS, and other non-parametric quantile models, in forecasting VaR. We assess the fore-

casting accuracy between models based on two statistical tests. The first is the Diebold and

Mariano (1995) (DM) test with the Harvey, Leybourne, and Newbold (1997) adjustment,

and the second is the Giacomini and White (2006) (GW) test. Results from both tests sug-

gest that the neural network estimator has higher accuracy in forecasting VaR. We use the

linear quantile method as a benchmark to assess whether the deep quantile estimator has

predictive gains or not. This measure illustrates gains up to 98% relative to the linear one,

for the deep quantile estimator and up to 84% for the non-linear MIDAS model. Further,

we use the quantile score test that provides further evidence in favor of the neural network

estimator.

We further examine whether the deep quantile estimator nests forecasts produced from

the linear and other non-parametric models, using the encompassing test of Giacomini and

Komunjer (2005). Overall, we find that forecasts from the deep quantile estimator encom-

pass forecasts from competing models more times than vice versa. There are some cases

where the test is inconclusive, suggesting that a forecast combination from a different pair

of models would provide a better result, which is in line with the result of Bates and

Granger (1969).

While ML methods show a great capacity at both approximating highly complicated

non-linear functions and forecasting, they are routinely criticized as they lack interpretabil-

ity and are considered a “black box”; in the sense that they do not offer simple summaries

of relationships in the data. Recently though, there has been a number of studies that try to

make ML output interpretable, see for example, Athey and Imbens (2017); Wager and

Athey (2018); Belloni, Chernozhukov, and Hansen (2014); and Joseph (2019). In this art-

icle, we also try to understand in a semi-structural fashion, which variables impact the fore-

casting performance of the deep quantile estimator more. To this end, we first use Shapley

Additive Explanation (SHAP) values as proposed by Lundberg and Lee (2017) and further

developed by Joseph (2019), that have started to become a standard tool for interpretability

in ML methods. Further, we use partial derivatives as a means of investigating the marginal

contribution/influence of each variable to the output. We compare the partial derivatives

and SHAP values over time, and our results can be summarized as follows. First, partial

derivatives overall are more stable than SHAP values, and are able to produce interpretable

results, at a fraction of the computational time of SHAP. Second, the partial derivatives of

the deep quantile estimator fluctuate around the estimate of the conditional linear quantile

and (i) exhibit time variation and (ii) can capture stressful events in the U.S. economy for in-

stance the COVID-19 pandemic and the 2008 financial crisis.

The remainder of the article is organized as follows. Section 1 introduces the deep quan-

tile estimator. Section 2 contains the MC exercise. Section 3 presents our empirical applica-

tion. Section 4 presents the semi-structural analysis. Conclusions are set out in Section 5.

We relegate to the Supplementary Appendix the specifications of the competing models,

empirical results from a 1-day ahead VaR forecasting exercise, 10-day compounded VaR

forecasts, GW test, and results from the quantile score test and predictive gains.
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1 Empirical Methodology

In this section, we start by summarizing the underlying theory of a quantile regression as

outlined by Koenker and Bassett (1978) and Koenker (2005) and argue that the linear rela-

tionship of the conditional quantile between a dependent variable given the covariates, can

be restrictive. We illustrate how some fundamental results on the universal approximation

property of neural networks can be used to approximate a non-linear relationship instead,

and define the deep quantile estimator. We conclude with a discussion on how different

penalization schemes can be used and further how hyper-parameters can be selected via

time-series cross validation (CV).

1.1 Linear Quantile Regression

The standard goal in econometric analysis is to infer a relationship between a dependent

variable and one or more covariates. We consider the following linear regression model:

yt ¼ x0tbþ ut; (1)

where yt is the dependent variable at time t, b ¼ ðb1; . . . ;bpÞ0 is a vector of unobserved slope

parameters, xt ¼ ðxt1; . . . ; xtpÞ0 is a vector of known covariates, and ut is the random error

of the regression which satisfies EðutjxtÞ ¼ 0. Standard regression analysis tries to come up

with an estimate of the conditional mean of yt given xt, that minimizes the expected

squared error loss:

bb ¼ arg min
b

1

T

XT

t¼1

ðyt � x0tbÞ
2: (2)

This can be restrictive though, when (i) non-linearities and outliers exist and (ii) since it

provides just an aspect of the conditional distribution of yt; given xt by construction. These

potential limitations led to the development of quantile regression. In their seminal work,

Koenker and Bassett (1978) generalize ordinary sample quantiles to the regression setting,

that give more complete information on the conditional distribution of yt given xt; for

which we now provide a succinct description.

The quantile regression model can be defined as

QyðsjxtÞ ¼ x0tbðsÞ; s 2 ð0;1Þ; (3)

such that yt satisfies the quantile constraint Pr½yt � x0tbðsÞjxt� ¼ s, where bðsÞ are regres-

sion coefficients that depend on s. Quantile regression tries to come up with an estimate for

the sth conditional quantile, bQyðs;xtÞ :¼ bbðsÞ, by minimizing the following function

bbðsÞ ¼ arg min
b

1

T

XT

t¼1

qs

�
yt � x0tbðsÞ

�
; (4)

where qsð�Þ is the quantile loss function defined as

qsðutÞ ¼
sutðsÞ; if utðsÞ � 0
ð1� sÞutðsÞ; if utðsÞ < 0

�

and utðsÞ ¼ yt � x0tbðsÞ. The quantile estimator in Equation (4), provides (i) much richer in-

formation on the whole conditional distribution of yt as function of the xt, and (ii) more
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robust estimates under the presence of outliers and non-linearities, when compared with

the ordinary least squares estimator.

Notice that the linear association assumption, QyðsjxtÞ ¼ x0tbðsÞ, can be generally re-

strictive. Instead, we consider the case of the following non-linear association,

QyðsjxtÞ ¼ hsðxtÞ;

where hsð�Þ is some unknown, (potentially highly) non-linear function. In this article, we

use an estimation strategy to approximate hsðxtÞ with neural networks using their universal

approximation property. Specifically, we assume that there exists a neural network with a

function Gsðxt;wÞ, to be defined below, that can approximate hsðxtÞ well. Before we illus-

trate how this methodology is implemented, we provide a discussion on how neural net-

works can approximate hsðxtÞ.

1.2 Neural Networks

In this article, we limit our attention to feed-forward neural networks, to approximate

hsðxtÞ. This architecture consists of an input layer of covariates, the hidden layer(s) where

non-linear transformations of the covariates occur, and the output layer that gives the final

prediction. Each hidden layer has several interconnected neurons relating it to both the pre-

vious and next ones. Specifically, information flows from one layer to the other, via neu-

rons only in one direction, and the connections correspond to weights. Optimizing a loss

function w.r.t. these weights makes neural networks capable of learning.

Throughout our exposition, L denotes the total number of hidden layers, a measure for

the depth of a neural network, and JðlÞ denotes the total number of neurons at layer l, a

measure of its width. We start by presenting a general definition of a deep (multi-layer)

feed-forward neural network. Let rlð�Þ; l ¼ 0; . . . ;L be the activation function used at the

lth layer, that is applied element-wise and induces non-linearity. We use the ReLU activa-

tion function, rlð�Þ ¼ maxð�;0Þ, for l ¼ 1; . . . ;L� 1, applied element-wise and a linear one

for the output layer, l¼L. We denote by gðlÞ the output of the lth layer which is a vector of

length equal to the number of the JðlÞ neurons in that layer, such that gð0Þ ¼ xt. Then, the

overall structure of the network is equal to:

Gsðxt;wÞ ¼ gðLÞ
�

gðL�1Þ
�
� � �
�

gð1Þð�Þ
���

; (5)

where

gðlÞðxtÞ ¼ rl

�
W ðl�1Þgðl�1Þ þ bðlÞ

�
; l ¼ 1; . . . ;L; (6)

W ðlÞ is a JðlÞ � Jðl�1Þ matrix of weights, bðlÞ is a JðlÞ � 1 vector of biases giving an overall vec-

tor w ¼ ðvecðW ð0ÞÞ0; . . . ; vecðW ðLÞÞ0; bð1Þ0; . . . ; bðLÞ0Þ0 of trainable parameters of dimensions

JðlÞð1þ Jðl�1ÞÞ total number of parameters in each hidden layer l, Jð0Þ ¼ p and JðLÞ ¼ 1.

According to various universal approximation theorems [see e.g., the theoretical results

in Hornik (1991), Hornik, Stinchcombe, and White (1989), Gallant and White (1992),

Kapetanios and Blake (2010), Liang and Srikant (2016), and Yarotsky (2017)], Gsðxt;wÞ
can approximate arbitrarily well hsðxtÞ, such that, for any � > 0,

sup
t
jGsðxt;wÞ � hsðxtÞj < �: (7)
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In this sense, the above ð�Þ-approximation can be seen as a sieve-type non-parametric es-

timation bound, where � can become arbitrarily small by increasing the complexity of

Gsðxt;wÞ.
The increase in complexity can occur, either by letting L!1, which stands for deep

learning, or by letting JðlÞ ! 1. While asymptotically, both ways deliver the same results

(see e.g., Farrell, Liang, and Misra (2021) and references therein), the approximation error

has been shown to decline exponentially with L, see for example, Babii et al. (2020) but

only polynomially with JðlÞ, providing some evidence for the prevalent use of deep learning.

Notice that there also exists an alternative approximation theory for sparse deep learning,

see for example, the work of Schmidt-Hieber (2020). As an illustration, in the

Supplementary Appendix, we depict a simple feed-forward neural network with two inputs,

two hidden layers, a total of five neurons and one output layer.

1.3 Non-linear Quantile Regression

We assume that the conditional quantile follows a non-linear relationship QyðsjxtÞ ¼
hsðxtÞ and there exists a function Gsðxt;wÞ, that can (�)-approximate hsðxtÞ, see the bound

in Equation (7). Using this assumption, we can formally define the conditional quantile

function as the following approximation

QyðsjxtÞ ¼ Gsðxt;wÞ þOðeÞ;

where Gsðxt;wÞ is the unknown non-linear function we want to estimate in order to ap-

proximate hsðxtÞ. We obtain the deep neural network conditional quantile estimate from

the solution of the following minimization problem:

QyðsjxtÞ ¼ argmin
w

1

T

XT

t¼1

qs

�
yt �Gsðxt;wÞ

�
; (8)

where w ¼ ðvecðW ð0ÞÞ0; . . . ; vecðW ðLÞÞ0; bð1Þ0; . . . ; bðLÞ0Þ0 contains all model parameters, and

Gsðxt;wÞ denotes the overall non-linear mapping, described in Equations (5) and (6).

Notice that the choice of Gsðxt;wÞ will govern whether the model is parametric or non-

parametric. If the number of neurons and layers is small, then the model is parametric, if

the above number becomes large, then the model becomes non-parametric, since the num-

ber of estimated parameters increases with the sample size, similar to sieve non-parametric

approximations.

To allow the use of mixed frequency data, we can make the following changes to the

structure of the network Gsðxt;wÞ:
In the input layer, we implement frequency alignment on each input variable xt accord-

ing to the corresponding maximum lag order K. Thus, each high-frequency predictor xt is

transformed into a low-frequency vector x?t ¼ BðLu;qÞxt,

BðLu;qÞ ¼
XK

k¼0

Bðk;qÞLk
u; Bðk;qÞ ¼ expð#1kþ #2k2ÞPK

k¼1

exp ð#1kþ #2k2Þ
; (9)

where Bðk;qÞ is the normalized Almon polynomial, Lk
u is a lag operator such that

Lk
uxu

t ¼ xu
t�k; the lag coefficients in Bðk;qÞ of the corresponding lag operator Lk are para-

meterized as a function of a small dimensional vector of parameters q. We use this weight
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function on the frequency alignment vector to reduce the number of parameters and ensure

a parsimonious specification. As a consequence, the low-frequency variable x?t which has

the same frequency as the output yt is obtained. The rest of the architecture of the deep

MIDAS follows the architecture of the deep quantile estimator, but instead of using xt in

Equation (6), we use x?t .

1.4 Regularized Non-linear Quantile Regression

Neural networks have a great capacity to estimate non-linear relationships from the data,

but this comes at a cost, since they are prone to overfitting. This can lead to a severe drop

in their forecasting performance, especially in small samples. There is a variety of common-

ly used techniques in ML, see for example, Gu, Kelly, and Xiu (2021) for a good summary,

that can be used to ease this impact, originally coming from the high-dimensional statistical

literature. The reader is also referred to Goodfellow, Bengio, and Courville (2016) for an

excellent summary of different topics about the implementation of neural networks, includ-

ing regularization.

1.4.1 Regularization

A common solution to this caveat is regularization, where a penalty term is imposed on the

weights of the neural network and is appended in the loss function. Regularization, general-

ly improves the out-of-sample performance of the network by decreasing the in-sample

noise from over-parameterization, utilizing the bias-variance trade-off. Further, another

benefit of regularization is that it provides computational gains in the optimization algo-

rithm. The penalized loss function, for a given quantile s, can be written as:

LðGsðxt;wÞ; ytÞ ¼
1

T

XT

t¼1

qsðyt � bGsðxt;wÞÞ þ /ðwÞ; (10)

where the penalty term is

/ðwÞ ¼

kkwk1; LASSO

kkwk2
2; Ridge

kð1� aÞkwk1 þ kakwk2
2; Elastic Net

0; otherwise

;

8>>>>>><
>>>>>>:

and k and a are tuning parameters, for which we discuss their selection below. Generally,

there is a plethora of loss functions, and the choice among them, depends mainly on the

task at hand. In this article, we use the quantile loss function. The different penalization

schemes on /ðwÞ work as follows: deep LASSO or l1-norm penalization, is a regularization

method that shrinks uniformly all the weights to zero, and some at exactly zero. The latter

is referred to as the variable selection property of the deep LASSO. Deep Ridge works in a

similar manner to the deep LASSO, by shrinking the weights, uniformly to zero, but not at

exactly zero. Finally, the deep Elnet2 is a combination of deep LASSO and deep Ridge,

which has been shown to retain good features from both methods, see for example, Zou

and Hastie (2005).

2 Deep Elastic net.
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1.4.2 Cross validation

The CV scheme consists of choices on the overall architecture of the neural network: the

total number of layers (L) and neurons (J), the learning rate (c) of the Stochastic Gradient

Decent (SGD), the batch size, dropout rate, level of regularization, and a choice on the acti-

vation functions.

Regarding the choice on the activation functions, we use ReLU for the hidden layers and

a linear function for the output layer. We tune the learning rate of the optimizer, c, from

five discrete values in the interval ½0:01;0:001�. For the width of the neural network we

tune the hyper-parameters from the following grid ½1; 5; 10�. The batch size is selected via

the following grid ½10; 20�.3 Further, we tune the regularization parameter, k, from five dis-

crete values in the interval ½0:01;0:001�, both for deep LASSO and deep Ridge, and for the

case of the deep Elnet we choose a from a grid ½0:1; 0:5; 0:9�. We also use dropout regular-

ization, where the dropout probability is up to 20%, see for example, Gu, Kelly, and Xiu

(2020). For the non-linear MIDAS, we also cross validate #1 from eight discrete values in

the interval ½�1; 0:5� and for #2, we use six discrete values in ½�0:5;0:5�.
We use two different sets of grids to tune the depth of the neural networks. The first set

is used in our MC experiments where we use two different grids ½1; 3; 5� and ½10; 15; 20�,
which lead to shallow and deep neural networks, respectively. We use this first set to exam-

ine whether shallow or deep neural networks have better finite performance, which we dis-

cuss in the next Section 2. Given these results, we use the following grid ½1; 5; 10� as the

second set, in our empirical application.

To select the various hyper-parameters outlined above, we follow Babii, Ghysels, and

Striaukas (2022a) and references therein and use a time-series CV scheme, which we suc-

cinctly describe: Let d denote a gap of observations that separates the test and training sam-

ples with the aim of reducing the dependence between the two. For some d 2 N and at each

t ¼ 1; . . . ;T:

• If t > dþ 1 and t < T � d, we use the following sample I t;d ¼ f1; . . . ; t � d� 1; t þ dþ
1; . . . ;Tg to estimate all the different hyper-parameters, denoted as w�t, for simplicity.

For t ¼ 1; . . . ; dþ 1, we use I t;d ¼ ft þ dþ 1; . . . ;Tg as the training sample. For t ¼
T � d; . . . ;T the training sample is I t;d ¼ f1; . . . ;T � d� 1g. Next, we use the left-out

observations to test the model:

CV ¼ 1

T

XT

t¼1

qsðyt � bGsðxt;w�tÞÞ þ /ðw�tÞ: (11)

• Finally, we minimize CV with respect to all different hyper-parameters.

It is clear that tuning all these different architectures, parameters and hyper-parameters

increases considerably the computational cost. To ease the computational burden of time-

series CV we follow Babii, Ghysels, and Striaukas (2022a) and draw randomly a sub-

sample I � T of size j and minimize:

CVj ¼
1

j

X
t2I

qsðyt � bGsðxt;w�tÞÞ þ /ðw�tÞ: (12)

3 We have also considered batch normalization and find that overall, results exhibit similar pattern

with and without it.
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Throughout the MC experiments and empirical application, we set j¼ 20 and d¼ 5 as

in Babii, Ghysels, and Striaukas (2022a). Finally, we use the optimal parameters and hyper-

parameters from the time-series CV and evaluate the out-of-sample performance of the

network.

1.4.3 Optimization

The estimation of neural networks is generally a computational cumbersome optimization

problem due to non-linearities and non-convexities. The most commonly used solution uti-

lizes stochastic gradient descent (SGD) to train a neural network. SGD uses a batch of a

specific size, that is, a small subset of the data at each epoch (iteration) of the optimization

to evaluate the gradient, to alleviate the computation hurdle. The step of the derivative at

each epoch is controlled by the learning rate, c. We use the adaptive moment estimation al-

gorithm (ADAM) proposed by Kingma and Ba (2014),4 which is a more efficient version of

SGD. Finally, we set the number of epochs to 5000 and use early stopping, following Gu,

Kelly, and Xiu (2020) to avoid any potential overfitting.

2 Monte Carlo

2.1 Setup

In this section, we present MC experiments, in order to study the finite sample performance

of the deep quantile estimator as outlined in Section 1, for the different penalization

schemes. We generate artificial data fytg using a single predictor fxtg, according to the fol-

lowing model:

yt ¼ hsðxtÞ þ ut; (13)

where ut is the realization of a random variable u distributed as, ut 	
i:i:d:Nð�rU�1ðsÞ;r2Þ; r ¼ 0:1 and U�1 is the quantile function of the standard normal dis-

tribution. hsð�Þ is the general non-linear function that we wish to approximate via the deep

quantile estimator.

All the experiments are based on the following values: s 2 ð1%; 2:5%; 5%;

10%;20%Þ; T 2 ð100; 300; 500;1000Þ and the number of MC replications is 1000. We

consider the following five data-generating mechanisms to assess the finite sample proper-

ties of the deep quantile estimator:

Case I: We consider the case of a N(0, 1) simulated single predictor that is generated as

yt ¼ hsðxtÞ þ ut; hsðxtÞ ¼ sinð2pxtÞ; xt	i:i:d:Nð0;1Þ:

This is the simplest design in our MC experiments. We use this simple case to showcase

that linear methods, as expected, cannot produce reasonable performance under a sigmoid

type of a non-linear function hsð�Þ.

4 ADAM is using estimates for the first and second moments of the gradient to calculate the learning

rate.
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Case II: We consider an AR(1) simulated single predictor as follows:

yt ¼ hsðxtÞ þ ut; hsðxtÞ ¼ sinð2pxtÞ;

where xt is simulated as

xt ¼ 0:8xt�1 þ et; et	i:i:d:Nð0;1Þ:

In this design, we increase the complexity by introducing a correlated predictor.

Case III: We consider the case of a single predictor generated via a GARCH(1,1) model

yt ¼ hsðxtÞ þ ut; hsðxtÞ ¼ sinð2pxtÞ;

where xt is simulated as:

xt ¼ rtet; r2
t ¼ 1þ 0:7x2

t�1 þ 0:2r2
t�1; et	i:i:d:Nð0; 1Þ:

In this design, we wish to examine, how the deep quantile estimator fares, when the regres-

sor is conditionally heteroskedastic, following a GARCH(1, 1) model. A GARCH type of

assumption on the distribution of asset returns is one commonly used in the literature.

Case IV: We consider the case of a single predictor that is generated as follows:

yt ¼ hsðxtÞ þ ut; hsðxtÞ ¼ Gsðxt;wÞ; xt	i:i:d:Nð0;1Þ:

In this case, we simulate hsðxtÞ to reflect a function composition, commonly used in neural

networks. We simulate it with three hidden layers and a specific number of neurons, such as

Gsðxt;wÞ ¼
�

W ð3Þ
�

sin
�

W ð2Þ
�

sin
�

W ð1Þ
�

sin
�

W ð0Þx0t þ bð1Þ
��
þ bð2Þ

��
þ bð3Þ

���0
;

where w ¼ ðvecðW ð0ÞÞ0; . . . ; vecðW ð3ÞÞ0; bð1Þ0; . . . ; bð3Þ0Þ0; W ð0Þ is 50�1, W ð1Þ is 10� 50,

W ð2Þ is 8�10 and W ð3Þ is 1� 8. Further, we simulate the weights, w; so that, every entry

wi;j is simulated as, wi;j ¼ di;j1ðdi;j > 0:5Þ, where di;j 	 Uð0; 1Þ, allowing for some sparsity.

Case V: We consider an AR(1) simulated error as follows:

yt ¼ hsðxtÞ þ et; hsðxtÞ ¼ sinð2pxtÞ; xt	i:i:d:Nð0; 1Þ;

where et is simulated as

et ¼ 0:6et�1 þ ut:

We use this design to examine whether correlated errors impact the deep quantile

estimator.

Across all cases, we estimate hsðxtÞ using the deep quantile estimator with different penal-

ization schemes. Let bhs;pen ¼ bGs;penðxt;wÞ denotes the estimate, where pen corresponds to

no regularization, deep LASSO, deep Ridge, and deep Elnet. We use the following metrics

in order to evaluate the small sample properties, of the deep quantile estimator across

R¼ 1000, MC replications: (i) the average mean-squared error of the true residuals,
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AMSEut
¼ 1

R
1
T

PR
i¼1 ð

PT
t¼1 u2

t Þi, (ii) the average mean-squared error of the estimated resid-

uals, AMSEbut ;pen
¼ 1

R
1
T

PR
i¼1

�PT
t¼1 ðyt � byt;penÞ

2
�

i
and finally, (iii) the average absolute

bias ABIASbhs ;pen
¼ 1

R
1
T

PR
i¼1

�PT
t¼1 jðhsðxtÞ � bGs;penðxt;wÞÞj

�
i
. We report results only for

AMSEbut ;pen
below, since results for the alternative metrics exhibit similar patterns and are

available upon request.

2.2 Results

We consider a linear quantile estimator, other sieve-type have estimators such as polyno-

mials and B-splines (defined in the Supplementary Appendix), shallow and deep neural net-

work estimators with their depth being described in Section 1. Note, that we also use the

time-series CV to select the optimal number of knots of the B-splines estimator from the fol-

lowing grid of six discrete values in the interval ½5;10�. Our MC aims to answer which esti-

mator has the best asymptotic properties under a non-linear setup. We find that both

shallow and deep networks deliver good finite sample properties across quantiles, with

shallow learning being the best between the two in most cases. Further, neural networks

perform better than the linear quantile and other sieve estimators. We present our MC

results for Cases I–V in Tables 1–5, respectively.

In Table 1, we can see that the linear quantile estimator, under a non-linear setup

does not work, as expected, and the MSE remains constant as the sample size increases.

Next, we present the asymptotic properties for the deep quantile estimator across different

penalization schemes, namely deep quantile, deep LASSO, deep Ridge, and deep Elastic

Net, and find that the deep quantile non-linear estimators have good finite sample

properties.

When s ¼ 1% it appears that the deep quantile estimator works well for sample sizes

larger than T¼ 300, but in comparison with the linear one it generally works better. In

Case II, the non-linear estimators depict fine finite sample properties and their performance

is better than the linear one. In this case, the non-regularized estimator performs better than

the regularized ones. Next, similar behavior appears in Case III. In Case IV, where we allow

for some sparsity in the weights, we find, as expected, that the linear quantile regression es-

timator, does not work under non-linearity, while the non-linear one works as expected. In

Case V, where we consider serial correlated errors, we find that adding a penalty term in

the non-linear estimators improves the performance of the deep quantile estimator in ex-

treme quantiles.

We further find, as expected, that the linear quantile regression, second-order quantile

polynomial, and cubic splines estimators, do not work under non-linearity. Finally, in very

few occasions, we find that splines estimator performs better than shallow networks for

small sample sizes and extreme quantiles.

Overall, our MC results suggest that the deep quantile estimator using both deep and

shallow learning has good finite sample properties, and can approximate non-linear func-

tions. We also find evidence in favor of the penalization schemes described in Section 1.

Specifically, the penalized deep quantile estimators also have good finite sample properties,

and in some cases, perform better that the non-regularized one; a finding in favor of weight

regularization.
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Table 1. MC results for Case I. Model:yt ¼ hsðxt Þ þ ut ;hsðxt Þ ¼ sin ð2pxt Þ; xt 	 i:i:d:Nð0; 1Þ;ut 	 i:i:d:N
�
� rU�1ðsÞ; r2

�
; r ¼ 0:1 and U�1 is the quantile function

of the standard normal distribution

s T deep

Quantile

deep

LASSO

deep

Ridge

deep

Elnet

shallow

Quantile

shallow

LASSO

shallow

Ridge

shallow

Elnet

Linear Polynomial Splines

1% 100 1.610 1.837 1.860 1.685 1.563 1.839 1.790 1.715 1.754 1.710 1.543

300 1.667 1.735 1.737 1.694 1.411 1.703 1.500 1.332 1.749 1.743 1.727

500 1.687 1.651 1.677 1.676 1.285 1.430 1.172 1.094 1.757 1.757 1.690

1000 1.723 1.381 1.470 1.186 1.150 0.745 1.023 0.849 1.768 1.767 1.710

2.5% 100 1.432 1.561 1.548 1.493 1.380 1.441 1.397 1.407 1.645 1.620 1.547

300 1.315 1.253 1.375 1.281 1.057 1.218 0.899 0.848 1.637 1.635 1.619

500 1.335 0.875 0.968 0.989 0.755 0.872 0.712 0.680 1.640 1.638 1.583

1000 1.301 0.547 0.823 0.674 0.558 0.459 0.580 0.450 1.651 1.650 1.607

5% 100 1.257 1.308 1.312 1.280 1.184 1.243 1.127 1.096 1.532 1.524 1.477

300 0.895 0.699 0.873 0.802 0.860 0.799 0.580 0.624 1.526 1.523 1.506

500 0.928 0.469 0.642 0.647 0.562 0.494 0.501 0.438 1.530 1.528 1.473

1000 0.919 0.279 0.616 0.399 0.300 0.215 0.380 0.259 1.542 1.542 1.500

10% 100 0.958 0.939 0.971 0.987 1.002 0.955 0.848 0.831 1.387 1.378 1.321

300 0.498 0.369 0.466 0.473 0.584 0.503 0.423 0.471 1.378 1.376 1.356

500 0.702 0.277 0.387 0.386 0.311 0.281 0.373 0.298 1.387 1.386 1.331

1000 0.542 0.158 0.360 0.181 0.143 0.108 0.141 0.178 1.394 1.394 1.350

20% 100 0.694 0.616 0.666 0.665 0.665 0.631 0.615 0.617 1.124 1.118 1.002

300 0.325 0.225 0.307 0.294 0.336 0.279 0.290 0.251 1.126 1.121 1.076

500 0.404 0.148 0.265 0.199 0.178 0.150 0.178 0.177 1.131 1.129 1.068

1000 0.179 0.099 0.225 0.136 0.068 0.058 0.060 0.097 1.142 1.141 1.088

Notes: The figure presents the average mean-squared error of the estimated residuals, AMSEbut ;pen
for the different penalization schemes (Model), T ¼ 100; 300; 500; 1000 and different

quantiles, s ¼ ð1%; 2:5%; 5%; 10%; 20%Þ. Entries in bold indicate the model with minimum AMSE value for each quantile and different sample size.
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Table 2. MC results for Case II. Model: yt ¼ hsðxt Þ þ ut ;hsðxt Þ ¼ sinð2pxt Þ; xt ¼ 0:8xt�1 þ et ; et 	 i:i:d:Nð0; 1Þ;ut 	 i:i:d:Nð�rU�1ðsÞ; r2Þ; r ¼ 0:1 and U�1 is the

quantile function of the standard normal distribution

s T deep

Quantile

deep

LASSO

deep

Ridge

deep

Elnet

shallow

Quantile

shallow

LASSO

shallow

Ridge

shallow

Elnet

Linear Polynomial Splines

1% 100 1.647 1.873 1.848 1.686 1.645 2.200 1.942 1.816 1.774 1.716 1.553

300 1.761 1.798 1.803 1.784 1.558 1.791 1.765 1.689 1.781 1.773 1.744

500 1.755 1.763 1.758 1.768 1.546 1.688 1.551 1.511 1.756 1.753 1.733

1000 1.779 1.735 1.747 1.670 1.435 1.235 1.395 1.291 1.768 1.767 1.759

2.5% 100 1.512 1.624 1.592 1.554 1.541 1.647 1.634 1.567 1.651 1.640 1.556

300 1.564 1.569 1.611 1.565 1.357 1.522 1.326 1.266 1.662 1.659 1.638

500 1.551 1.411 1.441 1.433 1.190 1.356 1.147 1.072 1.639 1.638 1.627

1000 1.555 1.133 1.297 1.114 0.902 0.966 0.974 0.904 1.653 1.652 1.645

5% 100 1.388 1.441 1.442 1.408 1.349 1.462 1.359 1.378 1.543 1.526 1.458

300 1.329 1.212 1.289 1.244 1.136 1.260 0.985 0.958 1.552 1.549 1.530

500 1.300 0.943 1.045 1.033 0.907 1.080 0.918 0.845 1.532 1.531 1.520

1000 1.198 0.650 0.863 0.790 0.569 0.690 0.726 0.594 1.544 1.543 1.537

10% 100 1.171 1.192 1.217 1.183 1.152 1.190 1.068 1.092 1.384 1.376 1.304

300 0.940 0.769 0.851 0.842 0.897 0.918 0.677 0.687 1.404 1.400 1.377

500 0.935 0.564 0.712 0.660 0.657 0.685 0.656 0.591 1.383 1.381 1.367

1000 0.813 0.367 0.616 0.449 0.357 0.342 0.455 0.382 1.395 1.394 1.387

20% 100 0.904 0.850 0.877 0.879 0.878 0.865 0.822 0.810 1.135 1.128 1.035

300 0.624 0.501 0.546 0.567 0.556 0.538 0.466 0.434 1.142 1.139 1.108

500 0.593 0.337 0.446 0.403 0.387 0.372 0.391 0.368 1.130 1.128 1.105

1000 0.440 0.211 0.414 0.228 0.180 0.124 0.224 0.224 1.140 1.139 1.128

Notes: The figure presents the average mean-squared error of the estimated residuals, AMSEbut ;pen
for the different penalization schemes (Model), T ¼ 100; 300; 500; 1000 and different

quantiles, s ¼ ð1%; 2:5%; 5%; 10%; 20%Þ. Entries in bold indicate the model with minimum AMSE value for each quantile and different sample size.
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Table 3. MC results for Case III. Model: yt ¼ hsðxt Þ þ ut ;hsðxt Þ ¼ sinð2pxt Þ; xt ¼ rt et ; r2
t ¼ 1þ 0:7x2

t�1 þ 0:2r2
t�1;ut 	 i:i:d:Nð�rU�1ðsÞ; r2Þ; r ¼ 0:1 and U�1 is the

quantile function of the standard normal distribution

s T deep

Quantile

deep

LASSO

deep

Ridge

deep

Elnet

shallow

Quantile

shallow

LASSO

shallow

Ridge

shallow

Elnet

Linear Polynomial Splines

1% 100 1.617 1.872 1.810 1.658 1.804 2.545 2.400 1.990 1.732 1.682 1.518

300 1.751 1.780 1.779 1.772 1.645 1.842 1.860 1.783 1.750 1.742 1.716

500 1.778 1.797 1.795 1.795 1.680 1.793 1.794 1.761 1.764 1.762 1.741

1000 1.779 1.792 1.786 1.778 1.660 1.639 1.705 1.686 1.762 1.760 1.750

2.5% 100 1.516 1.605 1.581 1.542 1.594 1.735 1.675 1.621 1.613 1.600 1.516

300 1.610 1.619 1.624 1.619 1.541 1.607 1.569 1.525 1.635 1.632 1.607

500 1.636 1.611 1.625 1.627 1.520 1.578 1.502 1.457 1.649 1.648 1.634

1000 1.639 1.532 1.593 1.540 1.444 1.460 1.429 1.378 1.644 1.644 1.637

5% 100 1.411 1.461 1.456 1.432 1.435 1.520 1.450 1.455 1.510 1.505 1.426

300 1.465 1.439 1.454 1.447 1.393 1.443 1.355 1.299 1.522 1.521 1.499

500 1.482 1.371 1.410 1.391 1.346 1.407 1.313 1.236 1.539 1.536 1.523

1000 1.478 1.183 1.274 1.216 1.176 1.236 1.170 1.123 1.535 1.534 1.528

10% 100 1.264 1.273 1.278 1.272 1.271 1.294 1.276 1.255 1.365 1.357 1.280

300 1.241 1.154 1.199 1.206 1.189 1.197 1.089 1.081 1.375 1.374 1.350

500 1.234 1.041 1.108 1.093 1.091 1.168 1.060 0.993 1.391 1.389 1.376

1000 1.179 0.825 0.972 0.913 0.804 0.889 0.855 0.840 1.390 1.389 1.382

20% 100 0.985 0.963 0.979 0.980 0.976 0.990 0.965 0.964 1.100 1.094 1.008

300 0.934 0.812 0.865 0.883 0.877 0.880 0.801 0.778 1.120 1.118 1.087

500 0.869 0.690 0.762 0.733 0.703 0.734 0.681 0.654 1.134 1.132 1.111

1000 0.770 0.524 0.680 0.554 0.478 0.466 0.574 0.543 1.136 1.135 1.125

Notes: The figure presents the average mean-squared error of the estimated residuals, AMSEbut ;pen
for the different penalization schemes (Model), T ¼ 100; 300; 500; 1000 and different

quantiles, s ¼ ð1%; 2:5%; 5%; 10%; 20%Þ. Entries in bold indicate the model with minimum AMSE value for each quantile and different sample size.
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Table 4. MC results for Case IV. Model: yt ¼ hsðxt Þ þ ut ;hsðxt Þ ¼ Gðxt ;wÞ; xt 	 i:i:d:Nð0; 1Þ;wi ;j ¼ di ;j 1ðdi ;j > 0:1Þ; di ;j 	 Uð0; 1Þ;ut 	 i:i:d:Nð�rU�1ðsÞ; r2Þ; r ¼
0:1 and U�1 is the quantile function of the standard normal distribution

s T deep

Quantile

deep

LASSO

deep

Ridge

deep

Elnet

shallow

Quantile

shallow

LASSO

shallow

Ridge

shallow

Elnet

Linear Polynomial Splines

1% 100 0.567 0.733 0.740 0.627 0.580 0.595 0.626 0.629 0.749 0.775 0.263

300 0.544 0.558 0.603 0.584 0.399 0.323 0.410 0.385 0.779 0.780 0.410

500 0.492 0.396 0.405 0.406 0.255 0.217 0.255 0.252 0.710 0.705 0.330

1000 0.542 0.315 0.339 0.281 0.257 0.169 0.266 0.202 0.794 0.777 0.496

2.5% 100 0.402 0.456 0.429 0.428 0.388 0.392 0.379 0.413 0.629 0.629 0.270

300 0.301 0.280 0.325 0.299 0.256 0.178 0.199 0.214 0.688 0.717 0.303

500 0.306 0.192 0.224 0.201 0.178 0.146 0.162 0.156 0.680 0.681 0.350

1000 0.322 0.141 0.208 0.157 0.127 0.101 0.154 0.120 0.715 0.724 0.371

5% 100 0.304 0.313 0.317 0.348 0.306 0.283 0.290 0.288 0.618 0.663 0.213

300 0.157 0.124 0.170 0.161 0.165 0.123 0.128 0.146 0.619 0.661 0.282

500 0.189 0.094 0.129 0.124 0.111 0.076 0.122 0.100 0.644 0.674 0.286

1000 0.182 0.077 0.146 0.095 0.079 0.064 0.075 0.077 0.636 0.657 0.340

10% 100 0.190 0.169 0.183 0.200 0.193 0.191 0.197 0.200 0.514 0.546 0.148

300 0.101 0.092 0.101 0.120 0.098 0.084 0.092 0.093 0.558 0.593 0.267

500 0.136 0.065 0.093 0.082 0.055 0.055 0.060 0.065 0.536 0.566 0.274

1000 0.093 0.049 0.077 0.055 0.039 0.041 0.042 0.044 0.577 0.612 0.339

20% 100 0.133 0.112 0.128 0.127 0.134 0.124 0.119 0.113 0.425 0.465 0.126

300 0.081 0.053 0.073 0.070 0.063 0.048 0.051 0.050 0.420 0.443 0.210

500 0.060 0.038 0.059 0.050 0.036 0.032 0.034 0.035 0.419 0.450 0.267

1000 0.050 0.034 0.038 0.033 0.023 0.026 0.023 0.028 0.436 0.469 0.239

Notes: The figure presents the average mean-squared error of the estimated residuals, AMSEbut ;pen
for the different penalization schemes (Model), T ¼ 100; 300; 500; 1000 and different

quantiles, s ¼ ð1%; 2:5%; 5%; 10%; 20%Þ. Entries in bold indicate the model with minimum AMSE value for each quantile and different sample size.

1
6

J
o

u
rn

a
l
o

f
F

in
a

n
cia

l
E

co
n

o
m

e
trics

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/advance-article/doi/10.1093/jjfinec/nbad014/7163191 by guest on 15 M

ay 2023



Table 5. MC results for Case V. Model:yt ¼ hsðxt Þ þ et ;hsðxt Þ ¼ sinð2pxt Þ; xt 	 i:i:d:Nð0; 1Þ; et ¼ 0:6et�1 þ ut ;ut 	 i:i:d:Nð�rU�1ðsÞ; r2Þ; r ¼ 0:1 and U�1 is the

quantile function of the standard normal distribution

s T deep

Quantile

deep

LASSO

deep

Ridge

deep

Elnet

shallow

Quantile

shallow

LASSO

shallow

Ridge

shallow

Elnet

Linear Polynomial Splines

1% 100 1.687 1.811 1.769 1.690 1.615 1.707 1.840 1.752 1.827 1.780 1.571

300 1.805 1.780 1.805 1.797 1.519 1.321 1.609 1.481 1.854 1.849 1.834

500 1.798 1.688 1.758 1.714 1.444 1.029 1.321 1.213 1.852 1.849 1.775

1000 1.852 1.524 1.572 1.456 1.254 0.789 0.999 0.904 1.852 1.849 1.781

2.5% 100 1.527 1.569 1.580 1.535 1.433 1.389 1.512 1.464 1.682 1.660 1.565

300 1.556 1.312 1.441 1.406 1.139 0.800 1.058 1.025 1.699 1.699 1.686

500 1.551 1.048 1.246 1.166 0.972 0.572 0.867 0.746 1.716 1.715 1.647

1000 1.517 0.768 1.013 0.826 0.764 0.348 0.567 0.505 1.708 1.707 1.636

5% 100 1.367 1.371 1.385 1.349 1.261 1.102 1.224 1.180 1.565 1.562 1.454

300 1.187 0.818 0.952 0.975 0.885 0.559 0.674 0.669 1.574 1.569 1.526

500 1.156 0.604 0.832 0.738 0.683 0.363 0.638 0.503 1.577 1.576 1.523

1000 1.091 0.405 0.741 0.443 0.414 0.205 0.349 0.289 1.572 1.571 1.509

10% 100 1.055 0.998 1.082 1.018 0.979 0.805 0.907 0.891 1.384 1.377 1.311

300 0.733 0.444 0.582 0.626 0.579 0.358 0.479 0.425 1.402 1.400 1.359

500 0.752 0.330 0.547 0.449 0.404 0.252 0.402 0.343 1.408 1.407 1.350

1000 0.562 0.203 0.460 0.219 0.172 0.125 0.168 0.187 1.405 1.405 1.347

20% 100 0.753 0.678 0.715 0.727 0.716 0.612 0.674 0.677 1.112 1.111 0.997

300 0.429 0.262 0.399 0.325 0.351 0.234 0.322 0.257 1.132 1.130 1.089

500 0.381 0.201 0.348 0.206 0.229 0.155 0.191 0.209 1.135 1.133 1.082

1000 0.230 0.120 0.194 0.146 0.062 0.071 0.071 0.112 1.133 1.132 1.074

Notes: The figure presents the average mean-squared error of the estimated residuals, AMSEbut ;pen
for the different penalization schemes (Model), T ¼ 100; 300; 500; 1000 and different

quantiles, s ¼ ð1%; 2:5%; 5%; 10%; 20%Þ. Entries in bold indicate the model with minimum AMSE value for each quantile and different sample size.
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3 Empirical Setup

In this section, we outline our empirical application setup, where we use the deep quantile

estimator to forecast VaR. We examine the predictive ability of the deep quantile estimator

and other non-parametric models, relative to the linear one, using the quantile-

encompassing test of Giacomini and Komunjer (2005). We further examine the predictive

performance of the different methods by testing their forecasting accuracy, using the DM,

GW, and quantile score tests.

3.1 Deep Quantile VaR Forecasting

The data used in our empirical application consist of around 36 years of daily prices on the

S&P500 index (source: Bloomberg), from September 1985 to August 2020 (T¼9053

observations). We use daily log returns, defined as rt ¼ log ðPt=Pt�1Þ for our forecasting

analysis. We use four different classes of VaR models and produce forecasts for s ¼
ð1%;5%; 10%Þ empirical conditional quantiles, using the deep quantile estimator.

The first VaR specification we consider is the GARCH(1,1) model that has been pro-

posed by Bollerslev (1986), in which r2
1;t ¼ x0 þ x1r2

1;t�1 þ x2r2
t�1, see Equation (14). The

second VaR specification we consider, is RiskMetrics, proposed by Morgan (1996), which

assumes r2
2;t ¼ kr2

2;t�1 þ ð1� kÞr2
t�1, where for daily returns, k ¼ 0:94, see Equation (15).

The last two specifications we consider follow the Conditional Autoregressive VaR

(CAViaR) model, proposed by Engle and Manganelli (2004), where a specific quantile is

analyzed, rather than the whole distribution. Specifically, the CAViaR model corrects the

past VaRj;t�1 estimates in the following way: it increases VaRj;t when VaRj;t�1 is above the

sth quantile, while, when the VaRj;t�1 is less than the sth quantile, it reduces VaRj;t. Thus,

the third VaR we examine is the symmetric absolute value (SV) that responds symmetrically

to past returns, see Equation (16) and lastly, we consider the asymmetric slope value (ASV)

as it offers a different response to positive and negative returns, see Equation (17). For ease

of exposition, we refer to the above specification as VaR1;t; . . . ;VaR4;t, respectively. We

summarize their specifications below:

VaR1;t ¼ b0 þ b1r1;t (14)

VaR2;t ¼ b0 þ b1r2;t (15)

VaR3;t ¼ b0 þ b1VaR3;t�1 þ b2jrt�1j (16)

VaR4;t ¼ b0 þ b1VaR4;t�1 þ b2rþt�1 � b3r�t�1; (17)

where bi, i ¼ 0; . . . ;3 are parameters to be estimated. We use these specifications following

Giacomini and Komunjer (2005). Under the mixed frequency setup, we consider the follow-

ing equation

VaR
ðMIDASÞ
i;t ¼ BðLu;qÞVaRi;t; (18)

where BðLu;qÞ is defined in Equation (9), i¼ 1, . . . ; 4 and q are parameters to be esti-

mated. For a more detailed summary of MIDAS we refer the reader to Ghysels, Santa-

Clara, and Valkanov (2004). As discussed in Section 1, the linear association between VaR

and the covariates can be restrictive. Instead, we assume that the relationship between the

response variable, VaR, and the covariates has an unknown non-linear form for a given s,

that we wish to approximate with the deep quantile estimator as
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VaR1;t ¼ Gsðr1;t;wÞ (19)

VaR2;t ¼ Gsðr2;t;wÞ (20)

VaR3;t ¼ GsðVaR3;t�1; jrt�1j;wÞ (21)

VaR4;t ¼ GsðVaR4;t�1; r
þ
t�1; r

�
t�1;wÞ; (22)

where VaRj;t; j ¼ 1; . . . ; 4 is indexed at (day) t ¼ 1; . . . ;T. The dimension p of covariates

that we use in our analysis depends on the specification chosen for VaR. Specifically, if

j¼1, 2 then p¼1, if j¼ 3, p¼ 2 and finally if j¼ 4 then p¼3.

In the Supplementary Appendix, we briefly delineate the model specifications for the

quantile B-splines, quantile polynomial, and quantile MIDAS estimators.

3.2 Forecasting Exercise Design

This section presents our forecasting exercise design. We reserve the last 2000 observations

to evaluate the out-of-sample performance using various tests and use the remaining 7053

observations to tune parameters via time-series CV as described in Section 1. This specific

split is used because we follow Giacomini and Komunjer (2005) and want the power of the

conditional quantile forecast encompassing (CQFE) test to be comparable with their exer-

cise. Generally, a forecasting exercise is performed either via a recursive or rolling window,

see for example, Ghysels et al. (2019), yet in either setting to produce all h-step ahead fore-

casts for the last 2000 observations and to tune the hyper-parameters can be computation-

ally challenging. Instead, we follow Giacomini and Komunjer (2005) and perform a fixed

forecast window exercise, in which we estimate our models once.

For our forecasting design, we use a fixed forecast window exercise and predict the ten-

day-ahead VaR as:

dVaR1;tþ10jF t ¼ Gsðr1;t;w

Þ; (23)

where F t denotes the information set up to time t, w
 denotes the optimal weights obtained

from the time-series CV. Equation (23) illustrates how forecasts for the first VaR specifica-

tion were obtained via the deep quantile estimator. In a similar manner, forecasts can be

obtained for other VaR specifications and alternative models, using Equations (14)–(22).

We evaluate the forecasting performance of VaR models with the deep quantile estima-

tor as in Section 1. Further, we consider ten-day compounded VaR forecasts, which we rele-

gate to the Supplementary Appendix.

3.3 Forecast Evaluation

In this section, we discuss the various tests we have considered, in order to evaluate the pre-

dictive ability of the deep quantile estimator and present the testing results. In general, root

mean-squared forecast error (RMSFE) is used to measure the accuracy of point estimates

and is defined as

RMSFEj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1

ðyj;tþh � bGsðxj;tþh;wÞÞ2

T

vuuut
;
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where j ¼ 1; . . . ; 4 depends on the specification chosen for VaRj, h denotes the forecasting

horizon and bGsðxj;tþh;wÞ is the solution of Equation (8) after selecting the optimal w via

CV at the sth quantile.

Table 6 reports relative RMSFEj ¼
RMSFEM

j

RMSFEB
j

, where RMSFEM comes from the competing

estimator and RMSFEB from the linear quantile estimator for each VaR specification. In

most cases, the linear quantile estimator outperforms polynomial and splines estimators

across competing models and quantiles. In all cases, deep quantile and deep quantile

MIDAS estimators outperform the linear quantile estimator. The forecast gains of the deep

quantile vary from 50% to 98%, while the gains from deep quantile MIDAS fluctuate be-

tween 11% and 84%. We find that neural network models improve VaR forecasts in all

VaR models across the different quantiles we consider.

3.3.1 DM test

We perform a quantitative forecast comparison across different methods and test their stat-

istical significance. To do so, we calculate the RMSFE for each method and perform the

DM test, with the Harvey, Leybourne, and Newbold (1997) adjustment to gauge the statis-

tical significance of the forecasts. As our empirical application entails quantiles, we com-

pute the DM statistics based on the comparison of empirical quantile losses rather than the

MSE loss. With the DM test, we assess the forecasting accuracy of the deep quantile estima-

tor relative to the benchmark linear quantile regression model. In this exercise, we set s

equal to 1%; 5%; and 10%.

Results from the DM test are reported in Table 6, where asterisks denote the statistical

significance of rejecting the null hypothesis of the test at 1%; 5%; and 10% level of signifi-

cance, for all quantiles and models we consider. These results suggest that forecasts pro-

duced from the non-linear estimator outperform, for the majority of cases, forecasts

obtained from the linear and non-parametric quantile regression estimators.

3.3.2 GW test

In a similar manner and to complement the DM test, we follow Carriero, Kapetanios, and

Marcellino (2009) and further calculate the GW test of equal forecasting accuracy, that can

handle forecasts based on both nested and non-nested models, regardless of the estimation

procedures used for the derivation of the forecasts, including the deep quantile estimator.

As in the DM test, we compute the GW statistics based on the empirical quantile losses ra-

ther than the MSE one. Table 2 in the Supplementary Appendix illustrates the results for

GW test, where daggers denote the statistical significance of rejecting the null hypothesis of

the test at 1%; 5% and 10% level of significance, for all quantiles and different models we

consider. Similar to the DM forecasting accuracy test, the GW test is again significant at

1% in most cases, with the following exceptions.

Quantile polynomial regression forecasts are only significant at the 1% level of signifi-

cance for ASV model at s ¼ 5%. In quantile splines, forecasts for the RM specification at

s ¼ 10% are significant at the 5% level of significance and under SV at s ¼ 10% are signifi-

cant at the 10% level of significance. Forecasts from the linear MIDAS, under the SV speci-

fication, at s ¼ 1% are insignificant and at s ¼ 5% are significant at the 5% level of

significance and under the ASV specification, at s ¼ 1% and s ¼ 5%, are significant at the

10% significance level.
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Results for the SV with Deep MIDAS estimator are not significant at s ¼ 1% and s ¼
5% for the GW test, while results for the ASV with Deep MIDAS estimator are significant

at 5% for all quantiles we consider. Results for the SV with Deep LASSO MIDAS estimator

at s ¼ 1%are not significant, while at s ¼ 5% are significant at the 5% level of significance.

Results for the SV with Deep Ridge MIDAS estimator are only significant at the 5%

level of significance for the GW test at s ¼ 10%. Results for the ASV with Deep Ridge

MIDAS estimator are only significant at the 5% level of significance across quantiles.

Forecasts from deep Elnet MIDAS model under SV specification at s ¼ 10% are significant

at 5% level of significance. Finally, forecasts from deep Elnet under ASV specification

across quantiles are significant at the 5% level of significance.

Overall, results from both the DM and GW tests suggest that the non-linear estimators

outperform, for the majority of times, competing linear and non-parametric estimators in

VaR forecasting.

3.3.3 CQFE

We present the implementation of the CQFE test as proposed by Giacomini and Komunjer

(2005) and the generalized method of moments (GMM) estimation as proposed by Hansen

(1982). Let bq1;t be a vector of the sth quantile forecasts produced from model 1 and bq2;t be

the competing forecasts produced from model 2. The basic principle of CQFE is to test

whether bq1;t conditionally encompasses bq2;t. Encompassing occurs when the second set of

forecasts fails to add new information to the first set of quantile forecasts (or vice versa) in

which case the first (second) quantile forecast is said to encompass the second (first).

The aim of the CQFE test is to test the null hypothesis, that bq1;t performs better that any

linear combination of bq1;t and bq2;t. Under the null hypothesis, it holds

Et

�
qsðytþ1 � bq1;tÞ

�
� Et

�
qsðytþ1 � h0 � h1bq1;t � h2bq2;tÞ

�
; (24)

that is satisfied if and only if the weights ðh1; h2Þ are equal to (1, 0). The objective function

of the GMM is:

JT ¼ gTðhÞ0WTgTðhÞ:

The optimal weights are computed as:

h? ¼ arg min
h

gTðhÞ0WTgTðhÞ; gTðhÞ ¼

PT
t¼1

ðs� 1sfytþ1 � h0qt < 0gÞzT

T
;

where WT is a positive definite matrix, gTðhÞ is the sample moment condition, h ¼
ðh0; h1; h2Þ0 is a set of weights, h? ¼ ðh?0; h?1; h?2Þ

0 denotes the optimal weights, and bqt ¼
ð1; bq1;t; bq2;tÞ

0 is a vector with the forecasted values based on the pairwise models 1; and 2

in the CQFE test, m denotes the out-of-sample size and zT is a vector of instruments.

Hansen (1982) showed that by setting WT ¼ S�1
T that is, the inverse of an asymptotic co-

variance matrix, is optimal as it estimates h? with as small as possible asymptotic variance.

S is also known as the spectral density matrix of gT . We follow Newey and West (1987)

and use a heteroskedasticity robust estimate bST , of S defined as:
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Table 6. Comparison of the forecasting methods

Model s Polynomial Splines MIDAS Deep QR Deep Deep LASSO Deep LASSO Deep Ridge Deep Ridge Deep Elnet Deep Elnet

MIDAS MIDAS MIDAS MIDAS

GARCH 1% 0.909 0.791*** 1.083*** 0.346*** 0.346*** 0.236*** 0.335*** 0.177*** 0.453*** 0.146*** 0.469***

5% 1.256 1.182*** 1.364*** 0.331*** 0.430*** 0.190*** 0.364*** 0.223*** 0.331*** 0.190*** 0.529***

10% 1.486 1.554*** 1.486*** 0.189*** 0.459*** 0.122*** 0.419*** 0.270*** 0.405*** 0.189*** 0.541**

RM 1% 0.780 0.570*** 1.066*** 0.289*** 0.246*** 0.141*** 0.164*** 0.207*** 0.220*** 0.239*** 0.410***

5% 1.000 0.806*** 1.232*** 0.348*** 0.174*** 0.142*** 0.174*** 0.29*** 0.213*** 0.168*** 0.310***

10% 1.282 1.176*** 1.447*** 0.400*** 0.259*** 0.129*** 0.224*** 0.329*** 0.235*** 0.176*** 0.200***

SV 1% 1.000 1.511*** 0.838 0.198*** 0.850 0.024*** 0.871 0.225*** 0.850 0.498*** 0.895

5% 1.000 1.716*** 0.795 0.148*** 0.824 0.062*** 0.795 0.097*** 0.830 0.102*** 0.864

10% 1.000 1.264*** 0.736* 0.142*** 0.745* 0.047*** 0.708** 0.151*** 0.764 0.104*** 0.792

ASV 1% 1.000 1.040*** 4.918*** 0.235*** 0.601* 0.096*** 0.586* 0.014*** 0.584* 0.037*** 0.586*

5% 1.000*** 1.034*** 4.559** 0.080*** 0.584* 0.122*** 0.576* 0.067*** 0.567* 0.063*** 0.584*

10% 1.000 1.275*** 1.209*** 0.033*** 0.582* 0.013*** 0.542** 0.098*** 0.542** 0.052*** 0.536**

Notes: The table reports relative RMSFE. The smaller the entry (<1) the better the forecast. *, **, and *** denote results from DM test with the Harvey, Leybourne, and Newbold

(1997) adjustment for predictive accuracy, indicating rejection of the null hypothesis that the models have the same predictive accuracy at the 10%, 5%, and 1% levels of significance,

respectively.
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bST ¼ bS0 þ
Xm
j¼1

1� j

mþ 1

� �
ðbS j þ bS 0jÞ; where bS j ¼

1

T

XT

t¼jþ1

gtðbhÞgt�jðbhÞ:
bS0 is the estimated spectral density matrix evaluated at frequency zero. The GMM estima-

tion is performed recursively, that is, (i) minimize JT using an identity weighting matrix to

get h?, which gives WT via bST and (ii) minimize JT using WT ¼ bS�1

T from step (i).

Consequently, we consider two separate test H10 : ðh?1; h?2Þ ¼ ð1; 0Þ versus H1a : ðh?1; h?2Þ 6¼
ð1; 0Þ and H20 : ðh?1; h?2Þ ¼ ð0; 1Þ versus H2a : ðh?1; h?2Þ 6¼ ð0;1Þ, which correspond to testing

whether forecast bq1;t encompasses bq2;t or bq2;t encompasses bq1;t. Then the CQFE statistics are

defined as:

ENC1 ¼ T
�
ðh?1; h?2Þ � ð1;0Þ

�bX�ðh?1; h?2Þ � ð1; 0Þ�0
ENC2 ¼ T

�
ðh?1; h

?
2Þ � ð0;1Þ

�bX�ðh?1; h?2Þ � ð0; 1Þ�0;
where bX ¼ gTðhÞ0S�1gTðhÞ. The asymptotic distribution of the GMM estimates of h

requires the moment conditions to be once differentiable. To satisfy this requirement, we

follow Giacomini and Komunjer (2005) and replace the moment condition with the follow-

ing smooth approximation:

gsðhÞ ¼

PT
t¼1

½s� ð1� expððytþ1 � h0bqtÞ=gÞÞ�1fytþ1 � h0bqt < 0gÞzT

T
;

where g is the smoothing parameter. We choose the critical values, ccrit of the test from a v2
2

distribution, in which bqi;t encompasses bqj;t, if ENCi � ccrit 8i 6¼ j ¼ 1;2. In the empirical

application, the vector of instruments, zT , is ð1; rt;VaRi;t;VaRj;tÞ;8i 6¼ j ¼ 1;2.

We select g to be 0.005, following the CQFE test rejection probabilities in Giacomini

and Komunjer (2005), since our POOS size is 2000 observations. We consider the following

five blocks: (i) the non-parametric, (ii) the non-linear, (iii) the non-linear MIDAS, (iv) the

linear, and (v) the linear MIDAS blocks. The non-parametric block consists of the quantile

polynomial and quantile splines estimators, the non-linear block consists of the deep quan-

tile estimators for the different regularization schemes and the non-linear MIDAS block

consists of the deep MIDAS estimators for the different regularization schemes. Finally, the

linear and linear MIDAS blocks consist of the linear quantile and linear quantile MIDAS

estimators, respectively.

We examine each block of models across different quantiles. Specifically, we consider

how many times the models within a specific block outperform models from other blocks

and present these results in Table 7. Under this setting, a win denotes that the prevailing

model encompasses the competing benchmark model, while a loss means that the compet-

ing model encompasses the prevailing one. Precisely, we consider a win when the computed

p-value of the CQFE test fails to reject the null hypothesis, that is, H10 or H20. On the con-

trary, in the case where the CQFE test suggests that there is no encompassing between the

forecasts, we consider this as a loss, that is, the null hypothesis is rejected. Furthermore, the

CQFE test has a gray zone in which the test can fail to reject both null hypotheses

(H10 and H20), hence the test is inconclusive. Below we summarize the CQFE testing

results for the different quantiles when g ¼ 0:005.
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For the 10th quantile, the non-linear block encompasses 713 times the competing

blocks, in comparison to the linear block, which encompasses the competing blocks 173

times and the non-parametric block that encompasses the others 322 times. The linear

block does not encompass other blocks less than 15 times and the non-linear block for 86

times. Additionally, the test is inconclusive 696 times for the non-linear block and 159

times for the linear one. Thus, the non-linear block is ranked first in terms of how many

times it encompasses the other blocks and the non-linear MIDAS block is ranked second.

For the 5th quantile, the non-linear block encompasses 739 times other blocks, 342

times the non-parametric, and the linear 170 times. Further, the linear block does not en-

compass the other blocks 18 times and the non-linear 60 times. Finally, for the non-linear

block, the CQFE test is inconclusive 726 times and 166 times for the linear block. The

ranking of the first two blocks is the same as in the 10th quantile.

Finally, we examine the first quantile. In this case, the non-linear block encompasses

757 times the other blocks, 336 times the non-parametric, and the linear block 173 times.

Furthermore, the linear block does not encompass 15 times the other blocks and the non-

linear 42 times. The test is inconclusive 751 times for the non-linear block and 170 times

for the linear one. The ranking remains the same as above. Results for different smoothing

parameters g suggest similar patterns and are available upon request.

4 Semi-structural Analysis

A general issue in ML is the trade-off between accuracy and interpretability; where the out-

put of a highly complicated model, for example, a deep neural network, can have great ac-

curacy or forecasting performance, but cannot be easily interpreted. In this section, we first

discuss the details of two methods that can be used to make ML methods interpretable. The

first one is the SHAP values, which has received a lot of attention recently, and the second

is partial derivatives. Further, we make a formal comparison on the output of both meth-

ods, based on the output of the deep quantile estimator that illustrates, (i) that both meth-

ods can be used to make the impact of each covariate in neural networks interpretable and

(ii) perhaps surprisingly that the use of partial derivatives, offers more stable results at a

fraction of the computational cost.

4.1 Shapley Values

SHAP values are a general class of additive attribution methods, based on the initial work

of Shapley (1953) where the goal was to determine how to fairly split a pay-off among play-

ers in a cooperative game. In the context of ML, the goal of SHAP values is to explain the

prediction of the dependent variable by estimating the contribution of each covariate to the

prediction. SHAP values, following the exposition in Lundberg and Lee (2017) and

Lundberg, Erion, and Lee (2018) can be constructed as follows.

Let f ðxtÞ ¼ bGðxt;wÞ be the output of the estimated model we wish to interpret, given a

p� 1 vector of covariates xt, and bf the explanation model, to be defined below. Further, let

x
†

t be the M� 1 subset (vector) of xt that contains simplified covariates. These simplified

covariates, can be mapped to the original through a mapping function hxt
ð�Þ, such that

xt ¼ hxt
ðx†

t Þ. Then under the local accuracy property of Lundberg and Lee (2017), if there

exists a vector, z
†

t , with binary inputs, such that z
†

t � x
†

t , then bf ðz†

t Þ � f ðhxt
ðz†

t ÞÞ, where the

explanation model (i.e., the additive attribution function) is
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bf ðz†

t Þ ¼ /0 þ
XM
i¼1

/iz
†

t;i; (25)

and f ðz†

t Þ represents the linear decomposition of the original ML model, where /0 is the

intercept, /i 2 R is the effect to each dependent variable z
†

t 2 ð0;1Þ, that provides local and

global inference at the same time. If zt;i ¼ 1 then the covariate is observed, on the contrary,

if zt;i ¼ 0 then the covariate is unknown. Under the following three properties: (i) local ac-

curacy that is, the explanation function should match the original model, (ii) missingness,

which ensures that input variable have no attributed effect and (iii) consistency, under

which, if an input variables is important, then the effect to each dependent variable should

not decline, the SHAP value is

/i ¼
X

M�p fig
jMj!ðp� jMj � 1Þ!

p!
½fM[figðxM[figÞ � fMðxMÞ�; (26)

where p is the set of all predictors, jMj is the number of non-zero elements in x
†

t ; fMðxMÞ is

the model’s output using except from the ith covariate, and fM[figðxM[figÞ is the output of

the model, when fig is included in the covariate set.

The calculation of SHAP values can be computationally expensive, as it requires 2N pos-

sible permutations of the predictors. For the case of deep neural networks Lundberg and

Lee (2017), and Shrikumar, Greenside, and Kundaje (2017), have shown that DeepLIFT

can be used as an approximation of the deep SHAP that is computationally feasible,5 pre-

serving the three properties above. DeepLIFT is a recursive prediction explanation method

for deep learning. The Additive feature attribution methods analogy of DeepLIFT is called

the summation-to-delta property is

Xp

i¼1

CDxt;iDo ¼ Do: (27)

Then, the SHAP values can be obtained as

Table 7. Entries of the table present the number of times a block encompasses (wins), does not

encompass (losses) and is inconclusive, according to the CQFE test for different quantiles s

g ¼
0.005

Block wins losses inconclusive wins losses inconclusive wins losses Inconclusive

s ¼ 1% s ¼ 5% s ¼ 10%

Linear 173 15 170 170 18 166 173 15 159

Non-parametric 336 40 334 342 34 332 322 54 306

Non-linear 757 42 751 739 60 726 713 86 696

MIDAS 175 13 173 174 14 172 179 9 169

Non-linear

MIDAS

709 43 704 700 52 687 657 95 638

Notes: Results are reported for g ¼ 0:005.

5 There are other methods that can be used to achieve this, such as Tree Explainer, Kernel Explainer,

Linear Explainer, and Gradient Explainer.
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/i ¼ CDxt;iDo;

where CDxt;iDo, represents the impact of a covariate to a reference value relative to the initial

value, is assigned to each xt;i covariate, o ¼ f ð�Þ is the output of the model, Do ¼
f ðxÞ � f ðrÞ; Dxt;i ¼ f ðxt;iÞ � rt;i and r the reference value. Equation (27) matches Equation

(25), if in Do we set /0 ¼ f ðrt;iÞ and /i ¼ CDxt;iDo.

4.2 Partial Derivatives

The use of partial derivatives for the interpretation of a model is straight forward in econo-

metrics, with various uses, ranging from the simple linear regression model to impulse re-

sponse analysis. In this section, we show how partial derivatives can be used even in highly

non-linear deep neural networks. Before we start the analysis, note that while the deep

neural networks are highly non-linear, their solution/output via SGD optimization methods

can be treated as differentiable function, as the majority of activation functions are differen-

tiable. Let’s consider the case of ReLU, that is, not differentiable at 0, whereas it is in every

other point. From the point of gradient descent, heuristically, it works well enough to treat

it as a differentiable function. Further, Goodfellow, Bengio, and Courville (2016) argue

that this issue is negligible and ML softwares are prone to rounding errors, which make it

very unlikely to compute the gradient at a singularity point. Note that even in this extreme

case, both SGD and ADAM, will use the right subgradient at 0.

For a general xt 2 R
p, let

dj;i;t ¼
@ bGj;sðxt;wÞ
@xj;i;t�1

; (28)

denote the partial derivative of covariate xi ¼ xit, for i ¼ 1; . . . ; p at time t ¼
1; . . . ;T; bGj;sðxt;wÞ is the forecasted VaRj;t, across the j different VaR specifications we

consider. We assess the partial derivative in time, since, following Kapetanios (2007), we

expect it to vary in time, due to the inherent non-linearity of the neural network. Our cova-

riate(s) xt is the conditional volatility for GARCH and RM, VaR lagged values, the abso-

lute S&P500 daily return, and the positive and negative S&P500 daily returns for SV and

ASV, respectively. It is evident that under the classic linear regression problem, or linear

quantile regression model, the effect of the covariates xt to the dependent variable yt is con-

stant, time invariant, and corresponds to bbðsÞ.
4.3 Results

In this application, we use the whole sample size, that is, around 36 years of daily returns

on the S&P500 index to provide an accurate interpretation of the deep quantile estimator.

Figures 1–4 illustrate the partial derivatives and SHAP values evaluated in time on the out-

put of the deep quantile6 estimator, for a specific quantile s. Further, we compare the par-

tial derivatives of the deep quantile estimator relative to the linear quantile regression

partial derivative, that is, the bðsÞ coefficient. Both partial derivatives and SHAP values

6 In this section, we limit our attention in the output of the best performing model, in terms of its fore-

casting capacity, as reflected by the forecast gains measure in Section 3, for each model, based

on the different penalization schemes. Results from all the different penalization schemes suggest

similar patterns to the ones discussed above and are available upon request.
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seem to identify interesting patterns that can be linked to some well-known events. Below

we discuss our results for all models we have considered in our empirical application.

The results for the first two models, that is, GARCH and RM can be summarized to-

gether, since in both models there is only one covariate, that is the conditional volatility,

but with a different specification. The results from this model are illustrated in Figure 1.

We find that the partial derivative appears to be more stable over time, fluctuating around

the constant partial derivative, bðsÞ, of the linear quantile estimator. When there is a crisis

or a stressful event in the financial markets, they increase. As an example, we see significant

Figure 1. Partial derivative, SHAP, and bbðsÞ for GARCH and RM models. (a) GARCH without penalty. (b)

GARCH with Elnet penalty. (c) GARCH with Elnet penalty. (d) RM without penalty. (e) RM without pen-

alty. (f) RM with Ridge penalty.
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spikes in the partial derivatives, both in March 2020 as well as in 2008, which stand for the

onset of the COVID-19 pandemic and the Great Recession, respectively. We also find that

the biggest increase occurs in 1987, the year when Black Monday happened, and also sig-

nificant variation during the U.S. government shutdown in 2019. The values for the partial

derivatives generally increase, as s decreases. SHAP values have a similar behavior with the

partial derivatives, but are more volatile across time. For the first two models, there are

some events, for example, during the 1991, where the values for both SHAP and partial

Figure 2. Partial derivative, SHAP, and bbðsÞ for SV model. (a) SV without penalty. (b) SV without pen-

alty. (c) SV with LASSO penalty. (d) VaR lagged values without penalty. (e) VaR lagged values without

penalty. (f) VaR lagged values LASSO penalty.
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derivatives do not increase a lot. We view this finding as an inability of these two models,

to properly account for this crisis.

In the last two models, the merit of SHAP values and partial derivatives becomes clear,

since in these models we have more than one covariate and both methods can provide an in-

dication on the effect of each covariate on the final output. Overall, we find that increasing

the number of covariates, allow the models to account for all crises within the sample.

For the case of the SV model, we find that the important covariate is the lagged values of

VaR, rather than the absolute values of S&P500. Similar to the one covariate models, we

Figure 3. Partial derivative, SHAP, and bbðsÞ for ASV model. (a) ASV with Ridge penalty. (b) ASV with

Ridge penalty. (c) ASV without penalty. (d) S&P500 positive values with Ridge penalty. (e) S&P500

positive values with Ridge penalty. (f) S&P500 positive values without penalty.
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find that the partial derivatives are more stable than SHAP values, fluctuating closely

around bðsÞ and picking up when there are crisis or distress in the economy or financial

markets. The SHAP values again appear to be more volatile with a wider range. Similar to

the findings of the one covariate models, the higher the values for the partial derivative and

SHAP, the lower the s quantile.

For the case of the ASV model, we find that again the lagged values of VaR are the most

significant covariate, the negative S&P500 returns have some impact and the positive

S&P500 returns are almost insignificant. Similar to the cases above, we find that the partial

derivative is more stable than SHAP values, fluctuating closely around bðsÞ and picking up

when there is a crisis or distress in the economy or financial markets. The SHAP values

Figure 4. Partial derivative, SHAP, and bbðsÞ for ASV model. (a) S&P500 negative values with Ridge pen-

alty. (b) S&P500 negative values with Ridge penalty. (c) S&P500 negative values without penalty.
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again appear to be more volatile with a wider range. Again and same as before, lower quan-

tiles have higher partial derivatives. The results for these two models are illustrated in

Figures 2–4.

Different penalization schemes maintain the aforementioned results, with a lower mag-

nitude. Overall, we observe that the linear quantile regression shows a fixed pattern across

time, and is evident that this model does not anticipate shocks in the economy. Our analysis

suggests that it is higher during stressful events. As Engle and Manganelli (2004) suggest,

SV and ASV react more to negative shocks, and in stressful events, their spike is larger than

the GARCH and RM models. Finally, covariates with the minimum contribution on the

forecasted values, such as the positive S&P500 returns have negligible impact on both

SHAP and partial derivatives values.

5 Conclusion

In this article, we contribute to the expanding literature on the use of ML in finance and

use the deep quantile estimator that has the potential to capture the non-linear association

between asset returns and predictors. In Section 1, we lay out the exact workings of the

deep quantile estimator, and illustrate how it generalizes linear quantile regression.

In the MC exercise in Section 2, we study the finite sample properties of the deep quan-

tile estimator, based on a number of data-generating processes. We present extensive evi-

dence the estimator gives good finite sample performance, that is a function of T, uniformly

across different regularization schemes.

We use the deep quantile estimator, with various penalization schemes, to forecast VaR.

We find that the deep quantile estimator gives considerable predictive gains, up to 98%,

relative to the VaR forecasts produced by the linear quantile regression. This result is

backed by the forecasting accuracy tests, that is, the DM, the GW, and the quantile score

tests. Further, results from the CQFE test of Giacomini and Komunjer (2005) suggest that

forecasts obtained from the non-linear estimators encompass forecasts from the linear and

non-parametric models with a higher frequency. These findings are in support of the non-

linear association between the conditional quantile of asset returns and covariates, hence

suggesting a new avenue in forecasting in finance and in macroeconomics during extreme

events.

In addition, we do a semi-structural analysis to examine the contribution of the predic-

tors in VaR over time. We consider, following the ML literature, SHAP values, and further

partial derivatives. Our findings suggest that the non-linear estimator reacts more in stress-

ful events and exhibits time variation, while the linear quantile estimator presents, as

expected, a constant time-invariant behavior. We conclude that financial variables are char-

acterized by non-linearities, which the deep quantile estimator can approximate quite well.

Finally, we make a formal comparison between SHAP and partial derivatives, and inter-

estingly find that partial derivatives can be used to make ML methods interpretable, are

less volatile, easier to interpret and can be computed at a fraction of time used in the calcu-

lation of SHAP values.

Supplemental Data

Supplemental data are available at https://www.datahostingsite.com.

Chronopoulos et al. j Deep Neural Network Quantile Regression 31

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/advance-article/doi/10.1093/jjfinec/nbad014/7163191 by guest on 15 M

ay 2023

https://academic.oup.com/jfec/article-lookup/doi/10.1093/jjfinec/nbad014#supplementary-data
https://www.datahostingsite.com


References

Adams, P. A., T. Adrian, N. Boyarchenko, and D. Giannone. 2021. Forecasting Macroeconomic

Risks. International Journal of Forecasting 37: 1173–1191.

Athey, S., and G. W. Imbens. 2017. The State of Applied Econometrics: Causality and Policy

Evaluation. Journal of Economic Perspectives 31: 3–32.

Babii, A., X. Chen, E. Ghysels, and R. Kumar. 2020. Binary Choice with Asymmetric Loss in a

Data-rich Environment: Theory and an Application to Racial Justice, arXiv preprint arXiv:

2010.08463.

Babii, A., E. Ghysels, and J. Striaukas. 2022a. High-Dimensional Granger Causality Tests with an

Application to VIX and News. Journal of Financial Econometrics nbac023.

Babii, A., E. Ghysels, and J. Striaukas. 2022b. Machine Learning Time Series Regressions with an

Application to Nowcasting. Journal of Business & Economic Statistics 40: 1094–1106.

Bates, J. M., and C. W. Granger. 1969. The Combination of Forecasts. Journal of the Operational

Research Society 20: 451–468.

Baur, D, and N. Schulze. 2005. Coexceedances in Financial Markets—A Quantile Regression

Analysis of Contagion. Emerging Markets Review 6: 21–43.

Belloni, A., V. Chernozhukov, D. Chetverikov, and I. Fernández-Val. 2019. Conditional Quantile

Processes Based on Series or Many Regressors. Journal of Econometrics 213: 4–29.

Belloni, A., V. Chernozhukov, and C. Hansen. 2014. Inference on Treatment Effects after

Selection among High-Dimensional Controls. The Review of Economic Studies 81: 608–650.

Bollerslev, T. 1986. Generalized Autoregressive Conditional Heteroskedasticity. Journal of

Econometrics 31: 307–327.
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