Adaptive
Article

Adaptive Behavior
2023, Vol. 0(0) 1-14

A Minimal “Functionally Sentient” © The Author(y) 2023

° ° ° o @
Organism Trained With Backpropagation -A'mde reuse guidelines
sagepub.com/journals-permissions

Thl"Ough Time DOI: 10.1177/10597123231166416

journals.sagepub.com/home/adb

S Sage

Mahrad Pisheh Var @, Michael Fairbank and Spyridon Samothrakis

Abstract

This article presents a scenario where a simple simulated organism must explore and exploit an environment containing a
food pile. The organism learns to make observations of the environment, use memory to record those observations, and
thus plan and navigate to the regions with the strongest food density. We compare different reinforcement learning
algorithms with an adaptive dynamic programming algorithm and conclude that backpropagation through time can
convincingly solve this recurrent neural-network challenge. Furthermore, we argue that this algorithm successfully mimics
a minimal ‘functionally sentient’ organism’s fundamental objectives and mental environmental-mapping skills while seeking a
food pile distributed statically or randomly in an environment.

Keywords
Back propagation through time, BPTT, adaptive behaviour, ADP algorithm, control task, partially observable environment

Handling Editor: Robert Lowe, University of Gothenburg, Sweden

Introduction observations and its internal memory to learn to navigate
and move towards a randomly positioned food source — see
Figure 1. The food source’s location is randomised at every
‘game’ reset, where the agent is re-initialised according to
its original position. The agent receives sensory data of the
density of food at its current location (this is the height of the
Gaussian bump, i.e. a single scalar reading) at every time
step of its journey.
To solve the proposed problem:

Existing Reinforcement Learning (RL) and Adaptive Dy-
namic Programming (ADP) algorithms have become more
efficient in examining, learning and solving new problems
(e.g., a new game) (Mnih et al., 2013; Silver et al., 2018).
However, solutions can be computationally demanding as
the algorithms slowly adapt to a new problem. The existing
RL methods cannot efficiently adapt to an existing problem
that has been learnt once but then changes its rules (Li et al.,
2018). This article presents a surprisingly simple partial-
observability problem where the goal is randomised, and
many ADP/RL algorithms struggle to solve it.

A partially observable domain is one in which the agent
does not receive inputs describing the whole state of the
system at once. Consequently, an ‘observation sequence’ is
required for the agent to recreate the ‘state’ from obser-
vations (in the form of a belief model, a predictive state
representation, or any other scheme). Intuitively, a partially
observable domain is analogous to a poker game; one needs
to observe sequences of opponent actions to try and recreate Computer Science, University of Essex, Colchester, England
the state. A simple ‘bird’s-eye’ look at the table is not .

Corresponding author:
enough. L. . . Mahrad Pisheh Var, Computer Science, University of Essex, Wivenhoe

We propose a close-to-minimal problem in a partially pyri Colchester CO4 35Q, England.

observable environment, where an agent has to use Email: mpishe@essex.ac.uk

e The agent has to devise a movement strategy that
quickly explores, taking samples of the food density
at multiple nearby locations.

e It also must devise a memory strategy that quickly
records observations to acquire the location infor-
mation about the food source. Then, an exploitation
strategy quickly moves the agent towards the dis-
covered densest food location.

Adaptive Behavior 0(0)

Figure 1. Simple food density distribution, where the height of
the Gaussian bump indicates food density. Pathway shows an
example solution trajectory found by the agent, starting at the
bottom and finishing at the X’.

This solution requires a recurrent neural network
(RNN) with recurrent-memory nodes to act as an ex-
ploration and memorisation strategy. It also requires an
ADP/RL algorithm to discover this RNN exploration
algorithm.

It is known that RNNs are of importance in under-
standing the brain (Prince et al., 2021). It also is known that
RNNs are, in theory, Turing Complete (Chung and
Siegelmann 2021), and therefore, each point of an
RNN’s weight-space potentially represents a different
possible algorithm. Therefore, if the RNN architecture is
sufficiently large, there should be at least one point in
weight-space representing an RNN algorithm capable of
solving the food-exploration problem we are setting it.

The RNN algorithm will require the formation of
memories about the partially explored environment and
goal. Hence, the RNN algorithm must be capable of learning
about its environment. It is the objective of the ADP/RL
algorithm to find such a set of weights. If the ADP/RL
algorithm manages this, it must have ‘learned how to learn’
or performed meta-learning.

Hence, there are two levels of learning required here: the
inner learning algorithm executed by the RNN as it explores
the food environment; and the outer learning algorithm, that
is, the ADP/RL algorithm, which discovers an RNN ex-
ploration algorithm capable of doing this.

Even though this food-exploration challenge is relatively
easy and could easily be solved by many pre-existing hill-
climbing algorithms from computer science, the RNN algo-
rithm we seek must be discovered by the ADP/RL algorithm
instead of being hand-programmed. Furthermore, the RNN
algorithm must be self-adaptive to any new randomised lo-
cation for the food pile without requiring further tuning of its
weights.

To tackle this partially observable environment, we se-
lected all RL algorithms applicable to continuous action and
state spaces, which were readily available in the current
version of the Stable-Baselines package (Raffin et al., 2019)
(version 1.1.0). These included Advantage Actor-Critic
(A2C), Soft Actor-Critic (SAC), Deep Deterministic Pol-
icy Gradient (DDPG) and Twin Delayed DDPG (TD3)
(Mnih et al., 2016; Haarnoja et al., 2017; Lillicrap et al.,
2015; Fujimoto et al., 2018). We also used the classic ADP
model-based algorithm, backpropagation through time
(BPTT, Werbos (1990); Lillicrap and Santoro (2019)).
However, our experiments show that the selected state-of-
the-art RL algorithms could not devise a policy that causes
the agent to devise such a recurrent-memory—based ex-
ploration strategy.

Contrarily, our implemented BPTT devised an explo-
ration strategy with recurrent-memory features. This out-
come is consistent with prior work by Fairbank, Li, et al.
(2014), which shows that BPTT is capable of finding RNN
solutions for exploiting partially observable environments,
and also that BPTT can exhibit more robust convergence
than classic RL algorithms (Fairbank et al., 2013). Although
it can be argued that BPTT is not a ‘true’ RL algorithm since
it requires access to a known environment model, we show
that using BPTT to train the agent uniquely enables a so-
lution to be found. Moreover, BPTT’s advantage of re-
ceiving model-based gradient information about the
environment is crucial in solving this task.

We propose that this navigational problem, and the
RNN’s algorithm that must be learned to solve it, emulate in
the simplest possible sense, the memory-manipulation tasks
that some organisms must perform to locate foods (e.g.
E-coli bacteria sensory-based navigation (Hu and Tu
2014)). Hence, we argue that this RNN is functionally
equivalent to the food-seeking sentient behaviour of the
simplest organisms. It includes the formation of memories
that describe the agent’s environment and the goal-directed
adaptive behaviour to exploit the environment and obtain
food. By ‘functionally sentient’, we mean that the external
behaviours of the agent mimic those of a sentient creature.
We do not make any claims as to whether our simulation is
sentient or such simple organisms are. Our approach follows
a long tradition in adaptive-behaviour research of devel-
oping ‘minimal agents’ (Conway et al., 1970; Braitenberg,
1986; Beer, 2003) that portray complicated behaviour.

One of the critical challenges for the agent in this par-
ticular task is that the single environment sensor returns
only one scalar value. Hence, to deduce the slope of the food
gradient, several scalar readings are required (i.e. requiring a
memory), and these must be combined by some sort of
algorithm (e.g. triangulation) to deduce the food density
gradient. While this might require some thought for a hu-
man programmer to devise a solution algorithm, this all
needs self-learning by an RNN. Moreover, once solved,

Pisheh Var et al.

there are some capabilities of the RNN which are common
to simple organisms which are assumed sentient:

1. It has an internal belief state about its environment
(e.g. current estimation of food gradient? What was
the agent’s previous location?).

2. This belief state of its environment changes as it
explores.

3. It must execute a purposeful movement strategy to
increase knowledge (exploration).

4. It must perform some form of computation on its
memories (e.g. triangulation) to fully exploit the
environment.

5. Once the goal is discovered, it moves towards it
(exploitation).

We show that the two significant challenges of a partially
observable environment and unexpected perturbations to
the environment (Braun et al., 2009) have been simulated
and solved in our experiments. The unexpected perturba-
tions consisted of randomising the food location at every
environment reset. We implemented a simplified form of the
gated recurrent unit (GRU; Chung et al. (2014)), working
with sensors to tackle this problem and overcome these
challenges.

This article contributes to current knowledge by em-
phasising the usefulness of BPTT in simple biologically
feasible exploration contexts, where some form of memory
manipulation and algorithmic discovery is required for their
solution. Although it is a classic 1990 algorithm (Werbos,
1990), BPTT is often overlooked in reinforcement learning,
yet here we show it can outperform some state-of-the-art
reinforcement learning algorithms. We have also shown
how a simplified GRU memory can be incorporated into this
navigational algorithmic-discovery task.

The rest of the article is structured as follows: The
Related Work section describes other ADP/RL work that
tackles partially observable domains, plus meta-learning
and ‘learning to learn’. Next, the Environment and Agent
Definitions section describes the physics world that the
agent explores, the sensing capabilities of the agent, and the
memory model it uses. The Backpropagation Through Time
Algorithm section describes how BPTT is not just restricted
to learning static time sequences, but can also be used to
train an agent in this ADP/RL setting. The Experiments
section compares the various ADP/RL algorithms’ abilities
to solve two versions of the problem — a simplified problem
that is fully observable and the main partially observable
problem. Next, the Discussion section compares the BPTT
performance with the selected state-of-the-art algorithms in
tackling the partially observable environment and attempts
to account for the differences. Finally, the Conclusion
section summarises our findings and explains future work
needing to be done.

Related Work

This section describes related research to tackle partially
observable domains using ADP/RL algorithms. Different
approaches to achieving meta-learning are compared, and
their identification as meta-learning is observed.

Tackling Partially Observable Environments

Partially Observable Markov Decision Processes
(POMDPs) (Kaelbling et al., 1998) can be used to tackle
domains where they map the history of observations to
actions. One of the most effective ways to train POMDP
policies is through Recurrent Neural Networks (RNNs)
(Wierstra et al., 2007; 2010). As stated by Wierstra et al.
(2010), traditional approaches such as value-function
methods applied to RNNs had sub-par performance when
given incomplete state observations. Therefore, Wierstra
et al. (2010) introduced the Recurrent Policy Gradient
(RPG) algorithm to learn memory-based policies for deep-
mapping memory POMDPs. This algorithm back-
propagates the estimated return-weighted ‘eligibilities’
backwards through time using an RNN. Wierstra et al.
(2010) showed that policy updates could become a func-
tion of any event in the recorded history, using the back-
propagation through time method. This approach
outperformed other state-of-the-art RL algorithms in three
important game-like benchmarks.

Similarly to Wierstra et al. (2010), Hausknecht and Stone
(2015) observed that standard value-based methods had
considerable room for improvement when dealing with
POMDPs. Their proposed solution was to modify a Deep
Q-Network (DQN) to deal with POMDPs. Their approach
was named Deep Recurrent Q-Network (DRQN) and
combined Long Short Term Memory (LSTM) (Hochreiter
and Schmidhuber 1997) with a DQN. They experimented
with flickering Atari domains — a modification to the classic
Atari games such that the agent is given either fully revealed
or fully obscured observation with probability p = 0.5. They
trained models with full observations and evaluated them
with partial observations. They argued that the flickering
rate in these domains directly affected the performance of
the DQN. However, over a range of 10 different games
where flickering was used, they found that using an RNN
only improved the agent’s performance in one of those
10 games.

In other testing domains, Wierstra et al. (2010) showed
that recurrency could be a helpful method for handling state
observations. However, they showed that stacking the
observations in the input layer of a convolutional network
performs similarly to the recurrency method used by
Hausknecht and Stone (2015) in their chosen domains; this
can be seen as a way to turn the POMDP problem into a
finite-memory MDP (Kaelbling et al., 1998). A controller

Adaptive Behavior 0(0)

on n previous observations can be as successful as a re-
current neural network’s internal ‘belief” state if this is all
that environment dynamics needs.

Meta-Learning

Meta-learning, a former informal notion of cognitive psy-
chology that is also referred to as ‘learning to learn’, was
more recently developed into a formal notion of machine
learning (Schaul and Schmidhuber 2010). Schaul and
Schmidhuber (2010) define meta-learning as the process
of learning how to learn in the context of machine learning.
Informally, a meta-learning algorithm alters a learning al-
gorithm or the learning process based on experience. The
updated learner is more adept at gaining knowledge from
new experiences than the original learner.

Meta-learning is approached differently by different
researchers. In a setup where a series of different tasks with
a shared underlying set of regularities, Thrun and Pratt
(1998) state that the rapid improvement of the agent’s
performance in each new task can be identified as meta-
learning. At the architectural level, meta-learning is con-
ceptualised as involving two learning systems: a lower-level
(or ‘inner’) system which learns quickly and is primarily
responsible for adapting to each new task; and a higher-level
(or ‘outer’) system which learns more slowly and works
across tasks to improve the lower-level system (Prokhorov
et al., 2002; Younger et al., 2001).

Some researchers interpret meta-learning in a much
stronger sense, requiring it specifically to mean being able to
replicate the adaptive weight processes which occur when
training neural networks. For example, Cotter and Conwell
(1990)’s early work showed how fixed-weight RNNs could
approximate an adaptive-weight learning algorithm. They
demonstrated this idea by transforming a backward error
propagation network into a fixed-weight system. Younger
et al. (1999) expanded upon this idea by using an RNN to
store knowledge analogous to short-term memory. This
method allowed the neural network to learn dynamically,
enabling learning to occur continually as part of the net’s
behaviour.

Younger et al. (2001) and Prokhorov et al. (2002) used
the term meta-learning to describe adaptive behaviour with
fixed weights in RNNs. However, Lo and Bassu (2001) used
alternative terminology by referring to fixed-weight adap-
tive RNN behaviour as ‘accommodative’ neural networks.
In this article, we use the term meta-learning as used by
Younger et al. (2001) and Prokhorov et al. (2002).

Similarly to Thrun and Pratt (1998), Hochreiter et al.
(2001) presented an RNN that was trained on a series of
interrelated tasks using standard backpropagation, where
the network received an auxiliary input indicating the target
output for the preceding step. Compared with Prokhorov
et al. (2002), Hochreiter et al. (2001) focus on the

knowledge-transfer mechanism using RNNs. They argued
that using an RNN to represent a differentiable version of a
Turing machine was possible. Furthermore, they hypoth-
esised that gradient-based optimisation approaches could
derive a learning algorithm from a random starting point.

Santoro et al. (2016) suggested that augmented-memory
neural networks (MANNSs) can perform meta-learning in
tasks that require short- and long-term memory. To obtain
useful representations of raw data (meta-representation),
they used gradient descent to learn an abstract method
slowly. In addition, they incorporated an external memory
module to bind never-before-seen information rapidly.
Their method was based on Neural Turing Machines
(Graves et al., 2014), architectures with augmented memory
capacities. These architectures offer the ability to encode
and retrieve new information quickly.

The previously mentioned works on meta-learning (i.e.
by Cotter and Conwell (1990), Younger et al. (1999),
Hochreiter et al. (2001), Prokhorov et al. (2002) and Santoro
et al. (2016)) only addressed their algorithm’s usage in
supervised learning. However, our article will demonstrate
meta-learning in a control problem where the environment
is partially observable.

One of the recent popular approaches to meta-learning in
RL (known as ‘meta reinforcement learning’) is made by
Finn et al. (2017); Nichol and Schulman (2018) suggesting a
method at the validation time to learn an initialisation of the
model-agnostic meta-learning (MAML) model. Finn et al.
(2017) showed that MAML learns a model that can quickly
adapt with a single gradient update which resulted in a few
gradient steps to achieve a good performance. However, the
methods provided by Finn et al. (2017) and Nichol and
Schulman (2018) do not explicitly consider the necessity of
exploring the initial policy. This problem is addressed by
Stadie et al. (2018), where they considered per-task sam-
pling distributions as extra information for exploration;
exploration for model-agnostic meta-learning (E-MAML)
typically consists of a feed-forward policy. This method
optimises the per-task sample distributions about the an-
ticipated future returns generated by the post-adaptation
policy explicitly during adaptation.

Ortega et al. (2019) proposed a method to recast memory-
based meta-learning within a Bayesian framework; this
memory-based meta-learning translates the hard problem of
probabilistic sequential inference into a regression problem.
According to Ortega et al. (2019), this is accomplished by
amortising data that has been Bayes-filtered, with the ad-
aptation being implemented in the memory dynamics as a
state-machine with adequate statistics.

Adaptive Dynamic Programming

Adaptive Dynamic Programming (ADP) (Murray et al.,
2002; Wang et al., 2009; Prokhorov and Wunsch 1997)

Pisheh Var et al.

and Reinforcement Learning (RL) (Sutton and Barto 2018)
are closely related; both aim to learn a policy function that
maximises a long-term reward function. However, a critical
difference between ADP and RL is that ADP is not re-
stricted to assuming that the environment is a black box.
This allows ADP to take advantage of efficient gradient
calculations through the environment. Prominent ADP
methods which do this are BPTT and its critic-based relative
Dual Heuristic Programming (DHP) (Prokhorov and
Wunsch 1997; Fairbank et al., 2012, 2014b). These are
appropriate when the state space is continuous and the
environment’s physics model is known and differentiable.
Under these circumstances, DHP and BPTT can learn much
more quickly than model-free RL models, sometimes
quicker by several orders of magnitude (Fairbank and
Alonso 2012).

Fu et al. (2014) enhanced training an RNN with BPTT,
by using the Levenberg-Marquardt (LM) algorithm as an
accelerated optimiser. The algorithm was tested to control a
grid-connected converter (GCC) optimally. The results
presented by Fu et al. (2014) showed the combination of the
LM algorithm and a forward accumulation through time
(FATT) to calculate the Jacobian matrix could train RNNs
better than the BPTT algorithm without LM.

However, despite BPTT’s reliance on its knowledge of
a physics model, BPTT can allow an agent to be adaptive
when an environment’s physics model is changing
(Fairbank, Li, et al., 2014). Fairbank, Li, et al. (2014) give
another example of such adaptive behaviour through
model-based differentiable physics models of the
environment.

Fairbank and Alonso (2012) presented a different min-
imal setup where the ADP algorithm outperformed model-
free algorithms. Fairbank, Li, et al. (2014) show how BPTT
can train an adaptive agent in an electrical control task. We
extend these works here by training an RNN to perform a
memory-manipulation task in a more biologically relevant
environment.

Teichmann (2015) used ADP/RL methods to train
simulated agents foraging for food in an environment. Their
work differs from ours in that it only handled static food
distributions. Hence the agent’s (x, y) coordinates indicate
the food density, and Teichmann (2015)’s work did not need
to use meta-learning to create an algorithm capable of
seeking out a randomised food location.

Environment and Agent Definitions

We developed an environment to test navigational tasks.
The agent (a simulated organism) has the task of finding the
densest point of a food pile in this environment.

Environment Rewards

A two-dimensional environment was created for an agent to
explore and navigate. In the environment, there is a food pile
parameterised by (Xfood> Viood> Zfood> Ofood)- Lhe following
Gaussian-type function describes the food-pile’s density at
location (x, y)

(x - xfood)2 + (y _yfood)2
d(x’y) = Zfood T+ eXp 2 (1)

O%ood

Here zg,,q 1s a constant specifying the food-pile height, and
Ofood 18 a parameter governing the width of the food
bump. For example, see Figure 1.

As the agent moves across the environment at discrete
time step ¢, it has location (x,, y;), and it uptakes the food at
its new position (x;, y;). The food supply at any location is
deemed inexhaustible. Hence, the total food accumulated
during an episode of length L steps is given by

@

where 7, = d (x,, y;) and 0 <y <1 is a discount factor.

The objective of our problem is for the agent to learn to
rapidly walk to the top of the food pile to maximise the
food (reward) accumulated in a fixed finite episode length
L = 30. Furthermore, the location and height of the food
pile are randomised; this forces the agent to make ob-
servations and use memory to maximise the reward in any
episode.

Agent’s Physics

In the simple case with no memory, at each time step ¢, the
agent outputs a two-dimensional action vector @’; € R%. The
velocity V', of the agent is determined by

V', = vautanh(|@,|)a,

(32)

where | @,| is the Euclidean length, @, = @,/|d;| + €, € =
107 and vy = 0.2. The tanh appearing in (3a) limits the
agent’s speed to less than v,,,. The construction of (3a)
allows the velocity vector V', to be anywhere strictly inside
a circle of radius vy,.x. This will allow the agent to wander
freely in any direction. The position of the agent is updated
according to the velocity vector V', using the Euler method

with a discrete time step A7 = 1
?Hl = ?t + 7IAT7 (3b)

where ', = (x;,1,) is the agent’s position at the specified
time step.

Adaptive Behavior 0(0)

Agent Brain

A neural network with weight vector W chooses the actions
and memory state of the agent. We refer to this neural
network as the ‘agent brain’; but this neural network is also
known as the ‘actor’ in the RL literature, or the ‘action
network’ in the ADP literature.

At any time step ¢, the agent receives an observation
vector 0,

7r = (xtsy” d(-xtsyt)) (4)

The final component of 0, represents a scalar sensor
reading that the agent receives about the food density at their
current location, given by (1). In some experiments, we
omitted this sensor reading from the observation vector 0.

The memory state of the agent at time ¢ is given by a
vector /h,€R”, where m is the number of recurrent-
memory nodes.

The neural network we implemented is shown in
Figure 2. It has dim(0’,) + m inputs and dim(a’,) + 2m
output nodes. This allows for recurrence in the neural
network and allows the neural network to receive obser-
vations (0’,) as input and to make a control action (@) as
output. At time ¢, the output vector 7); of the neural network
is given by

=~
I

PN

=

!

S

t» Ot) (5a)
where 7 denotes the neural network, o’ is the observation
vector at time ¢ and %, is the recurrent-memory state at
time . -

The output vector j , is partitioned into chunks defined
by
(5b)

— _ —sinput —sgate
J t = |: a 1 t B t :|
as shown in Figure 2.

Here, @, is the action vector (of length 2) chosen by the
. . e . . —input
agent in this deterministic policy function, and 7%,
—sgate .
h, (each of length m) are memory gates and inputs,

which are used to provide a GRU-style recurrent memory.
The recurrent memory is updated during each time step
by the equation

W = tanh(ﬁ’i“"“t) oo(,)+ H,0(1-a(h"))
Q)

where ¢ denotes the logistic sigmoid activation function,
and © denotes element-wise vector multiplication.

To fully apply equations (3a) and (6), the neural network
7 must produce unbounded outputs, that is, have no acti-
vation function on its final layer.

and

" O

Yt

d(lt»yt) —gate
t

—

Tl

g(—input
h’t

Figure 2. Main neural-network structure used in our
experiments.

This simplified version of gated memory omits ‘forget’
gates that appeared in the original GRUs defined by Cho
et al. (2014). Our equation (6) is similar to the work of
Zhou et al. (2016), simplifying GRUs to omit the forget
gates.

Backpropagation Through Time Algorithm

BPTT is commonly used for supervised learning tasks,
such as time-series forecasting or natural language
processing. However, it is not widely known that BPTT
can also be used in RL or ADP tasks, provided that there
is access to a known, differentiable model of the
training environment,' which in this problem, we have
(as defined in the Environment and Agent Definitions
section).

BPTT is used to compute the derivative of the total
reward R (defined by (2)) with respect to the weights of the
neural network, w. To do this, it views the environment
model as an extra layer of a recurrent neural network,
combined with the agent’s original neural network (‘Agent
Brain’), as shown in Figure 3.

BPTT uses automatic differentiation to compute the
required derivative OR/0W. Internally, this unrolls the
combined network of Figure 3 ‘through time’ to obtain
the unrolled network shown in Figure 4. Automatic
differentiation is then used to ‘backpropagate’ the de-
rivatives of R with respect to W right through the unrolled
network.

Once the quantity OR/0W is obtained, gradient ascent on
R can then be performed to improve the performance of the
neural network at maximising R

AW =a— @)

Pisheh Var et al.

where o > 0 is a small learning rate. This single simple
process is model-based, that is, requires knowledge of the
derivatives of the environment functions (1), (3) and (6). If
successful, this learning process will maximise R by (7);
hence, this will train the neural network to solve the ex-
ploration problem and use the recurrent-memory nodes to
execute the exploration algorithm necessary to find and
exploit the food pile.

Interestingly, even though knowledge of the food-pile
distribution function (1) and physics model (3) is needed
to be known during training (by the BPTT algorithm; not
by the agent), once the agent has ‘learned how to learn’,
access to full knowledge of (1) and (3) is not needed.
After training, the agent’s RNN samples exploratory
scalar values of the function (3) and then makes decisions
based on those samples. It no longer gets or needs access
to the derivatives of this function. In this sense, once
trained, the ‘inner’ component of the meta-learning
system (i.e. the RNN) has learned to perform true
model-free RL on the environment (albeit only on this
specific food-pile environment). Once trained, and when
the RNN is unleashed on the environment, it performs
model-free RL to locate and exploit the peak of the
food pile.

Recurrence

=
=) <2 L
& 0% &z [Ori1s hen
[2
s 2
o 3z
Sl EorE <2
[Ouh/ §~ :‘91 g 2
&) S SN
~ 3 P > Tt+1
T o
£ 2 g
.*:" -

2306

[

Figure 3. Recurrence between Agent Brain and Physics model
allows the Agent’s brain to produce new recurrent-memory
data from the previous observations received by the Physics
model.

Experiments

We experimented with two versions of the problem and five
selected RL and ADP algorithms. In the first version, we
simplified the problem by fixing the distribution of the
food pile; this means that exploratory observations are not
required to solve the problem. In the second version, we
used the full partially observable problem, where the lo-
cation and height of the food source were randomised, and
the agent must make exploratory observations to find
the food.

General Experimented Algorithm Setup

The following RL algorithms were used in all experiments:
Advantage Actor-Critic (A2C) (Mnih et al., 2016), Soft
Actor-Critic (SAC) (Haarnoja et al., 2017), Deep Deter-
ministic Policy Gradient (DDPG) (Lillicrap et al., 2015) and
Twin Delayed DDPG (TD3) (Fujimoto et al., 2018). These
RL algorithms’ implementations came from the Stable-
Baselines package (Raffin et al., 2019) (version 1.1.0).
These state-of-the-art algorithms were selected considering
their successful history in different benchmark environ-
ments (Brockman et al., 2016). Additionally, the im-
plementation of BPTT that we used was our own.

Each algorithm was run for 100,000 iterations, over
20 different trials. The hyper-parameters used by each al-
gorithm were:

e The DDPG, SAC and TD3 algorithms used
100 batches in replay memory with a buffer size of
10°. Neural network weights were optimised with an
Adam optimiser, with a learning rate of .001. The
DDPG algorithm used the soft update coefficient
(‘Polyak’ update) of .005, and its default discount
factor was .99.

In the A2C algorithm, we used a discount factor of
.99 and a value-function coefficient for the loss
calculation of .5. This algorithm used RMSprop
optimiser with € = 10™°. In addition, the A2C al-
gorithm used action noise exploration with an entropy
coefficient of .001.

O 01 v 0Oy
[v v
=5 . o5 . =5 . o 5
Z 2 & Z 2 & 7 E & iE
g3 2 g3 2 g3 . g g2
Zl- 7 o] — Tinput 7 gate - 7 jov} — Jinput 7 gate - 7 ov) — Tinput 7 gate)
S E G0kl | § |G, ny™ e)| EE |G h)| § @Ay R EE | Bk 2l b R |5
& 5 & 5 g & =Y &
+ + + +

Figure 4. Unrolled combined network in BPTT.

Adaptive Behavior 0(0)

® BPTT used the Adam optimiser with a learning rate of
.001, with a discount factor of 1.

For the four main RL algorithms, the above hyper-
parameters were the default values provided by the Stable-
Baselines package. The learning rates were adjusted to produce
optimal results on the initial experiment (i.e. fixed food location
experiment). We then transferred these optimal and default
hyper-parameters values to use in the second experiment.

The batching method in our BPTT implementation enabled
the algorithm to process 100 complete trajectories per iteration
(i.e. per update of the weights in the neural network). Since each
trajectory (episode) length was L = 30, the BPTT algorithm
allowed 3000 environment steps for each weight update. To
match this as closely as possible for the selected RL algorithms,
we set the hyper-parameters provided in the Stable-Baselines
package to be train frequency = 3000 and
gradient step = —1. This ensures the algorithm updates
the weights in the neural network for every 3000 environment
interactions taken by the agent. When it does so, these weight
updates are accumulated over those 3000 environment steps.

All the selected RL algorithms (DDPG, A2C, SAC and
TD3) consist of actor and critic networks. The actor net-
work is structured as described above (see Figure 2).

All of the critic networks used by the RL algorithms were
Q-networks. These implement a function Q: (o', @) — R.
Hence, the critic network has four input nodes (two for 0.
two for @) and one output. There is one hidden layer of
20 tanh nodes (like in Figure 2) and no activation function
on the final layer.

The network used in BPTT did not have a critic net-
work, however. Instead, it only required an action network
with an identical structure and purpose to the above actor
networks.

Simplified Experiment: Fixed Food Location

In this initial simplified experiment, the food pile was
fixed at (0,0), with zg,,; = 1 and o64,,, = 8. This initial
experiment aims to validate that all the selected ADP/RL
algorithms work as intended. The initial agent positions
were randomised uniformly at the start of every episode
with x € [-5, 5], y € [-5, 5] to prevent memorising a
fixed solution.

The environment is fully known in this simplified ex-
periment since the food source is always in the same place,
(0,0). Hence, we did not include any recurrent-memory
nodes, or the sensor input d (x;, y;) in the neural network, as
these were not required. The neural-network structure we
used in our ADP/RL algorithms consisted of one hidden
layer with 20 nodes (like in Figure 2, but without the inputs

— . —sgate —input
hand d (x,, y;), and without the outputs 2, and &,

The tanh activation function was used in the hidden layer,
and no activation function was used in the output layer.

Full Partial-Observability Experiment: Randomised
Food-Pile Location

In this main experiment, the food location was re-
randomised at the start of each episode, and the initial
agent positions were always started from (0,0). This is the
full partial-observability version of the problem, which is
necessary for sensing and memory capabilities. Each time
an agent starts, the food-pile location was chosen with
uniform random distribution such that x¢,,q € [—5, 5],
Yfood € [—5, 5], Zooa € [0.5, 1.5] and 64,4 = 8. In addition,
we randomised the height of the food source (zg,04) Within
that range to apply further difficulty in this full partial-
observability experiment.

The neural network used in this experiment is the same as
in the previous experiment, except that now there are now
m = 20 recurrent nodes (5a) and also the sensor input d (x;,
v,) is used in (4).

Compared to the previous experiment, this changid
the actor network to have an extra 20 input nodes for 7,
and an extra node holding the sensory input (d (x;, y,)).
The actor-network output was extended by 20 nodes for
—sgate —sinput
h, and a further 20 nodes for 4, , compared to the
previous experiment. See Figure 2. The gitic network’s
input was also extended by 20 nodes for /%, and the extra
input node for d (x,, y,), and the critic output remained a
scalar for holding Q-values.

An interesting implementation detail is that we put the
recurrence equation (6) into the environment model and not
in our neural network, in accordance with Figures 3 and 4.

Under this scheme, the ‘environment’ is treated as a more
. . . . —-~gate

complicated function, which takes extra inputs 7,

—>input |

h, (in addition to the usual state and action inputs), and

emits extra output information /% ,,; (in addition to the usual
next state and reward, information). The neural network is
considered feed-forward (Figure 2).

While this change of view makes no functional dif-
ference to the way equations (3b) and (6) behave, from an
implementation point of view, it can be useful to put (6)
into the environment because it then enables learning
algorithms that were not written with recurrent neural
networks in mind to be applied to our environment, and to
be able to instil the agent with the capabilities of gated
recurrent memory.

and

Results

The following result graphs show the mean value and its
95% confidence intervals calculated over 20 trials by the
‘Seaborn’ software library. Figure 5 shows that BPTT
solved the simplified version of the problem stably and
robustly. However, the selected state-of-the-art RL algo-
rithms also did approximately solve the problem but did not

Pisheh Var et al.

Results for fixed food-pile location

N}
I3
o

N
N
3

Ve o 2N 7\
Wt AN SRR

PN ST RN e P
Y i b PR
‘/I‘\’v}-a "’

. . N
Ll o o
o o o

Validation Reward

N
o

Algorithm
— A2C

BPTT
‘‘‘‘‘‘‘ DDPG
--=- SAC
—— TD3

10.0
75

20 40 60 80 100
Iterations (x103)

Figure 5. Algorithms’ performance on fixed food location
validation environment over 100,000 iterations and averaged
over 20 trials.

perform as rapidly and did not achieve stable learning or the
same final total reward as was achieved by BPTT.

From the final iteration results shown in Figure 5, we
selected a sample of 10 trajectories created by our agent
trained by BPTT. Next, we visualised their movement
behaviour in Figure 6. The circles in Figure 6 show the
starting point of the agents, and the crosses represent the
goal points in the environment space. The arrows show the
direction of the moving agents; this shows them precisely
moving towards the fixed food-source location in straight
lines.

According to Figure 6, it can be seen that the BPTT agent
navigates towards the goal optimally. This shows that the
average reward (25.5) achieved by the BPTT method in
Figure 5 is a significant target to aim for in the following
experiment.

The results are shown in Figure 7 for this full partial-
observability experiment. The selected RL algorithms
struggled to perform well and devise a navigational strategy
to find the peak of the food pile. Nevertheless, they achieved
between 6 and 12.5 maximum average rewards, showing
that the agents did not explore properly and got stuck in the
same local region. However, the BPTT algorithm reached
around 22.5 maximum average rewards, indicating that the
BPTT agents solved the problem.

The score attained by BPTT is close to the maximum
score of 25.5, which was attained in the simplified exper-
iment, indicating that the BPTT agent is close-to-optimal in
the partially observable environment. Furthermore, there is
a symmetry between the two situations (even though the
arrows are reversed between Figures 6 and 8(a)), which
indicates that the maximum reward attainable should be
roughly the same between the two situations. There is a
slight reduction in performance in comparison, though (i.e.
22.5 < 25.5), as each agent in the full partial-observability

problem needs to spend some initial time exploring before it
can head quickly to the top of the food pile.

Figure 8(a) shows a sample of 10 trajectories from the
fully trained BPTT agent’s behavioural movement.
Figure 8(b) shows a close-up zoom of the central region,
highlighting the agents performing an exploration strategy
to reach the goal.

Figure 8(b) shows that the RNN exploration algorithm
learned to navigate and devise a movement strategy using input
sensory data and memory. It illustrates that the 10 sample tra-
jectories created by the BPTT agents started from (0,0), with a
break-off point around (0.1, —0.19). From that separation point, it
showed that the RNN’s memories of previous observations affect
our agents’ decisions after sampling multiple sensor results.

We performed an ablation study using three different
versions of the neural-network architecture to clarify that
recurrent memories and a sensor were required for the BPTT
algorithm to solve the randomised food-location environ-
ment. These different versions involved removing the
sensor and/or the recurrent memory. The results are shown
in Figure 9 and conclude that the recurrent-memory nodes
and sensor input are necessary for solving the
navigational task.

Discussion

In our experiments, BPTT showed competency in perfor-
mance and stability in both the simplified and in the partially
observable environments. The BPTT algorithm discovered
an exploration method that looks like the agent is wobbling
as it moves towards the goal. This wobble at the start can be
assumed to be the agent taking exploratory actions, that is, it
has successfully learned how to learn. The other RL al-
gorithms could only solve the fixed food location problem,
but failed to scale up to the full partially observable
randomised food-pile problem. In the simplified experi-
ment, the selected RL algorithms had poorer performance
than the BPTT algorithm seen in Figure 5. This is partly due
to the RL algorithms always needing to embed stochastic
exploration into their actions. Another reason is that they
cannot exploit true gradient information through the envi-
ronment model when learning, which BPTT benefits from.

It appears in Figures 5 and 7 that at the start of training,
the agents receive an average validation reward of ap-
proximately 10. This is explained because for an average
randomisation of the initial agent and food positions if the
agents were to stand still for 30 time-steps. Then, they
would receive an average total reward of 10.7 (a value we
found in a separate informal experiment).

Figures 5 and 7 show that the reward progression does
not consistently show monotonic improvement, especially
with the RL algorithms. This is likely because the RL al-
gorithms are not proven to be true gradient ascent on any

Adaptive Behavior 0(0)

Top-Down view. Food pile fixed at (0,0).

Figure 6. Top-down view of BPTT results for the simplified
experiment (with no sensor or recurrent memory). The x and y
axes describe the location. Each different coloured pathway
represents a trajectory starting from a different coloured spot. All
trajectories end up at the food-pile location (0,0).

Results for randomised food-pile location

25 . (LIRS a A
200 /
;
A’
2 17.5 / Algorithm
= / — A2C
€150 ——- BPTT
S g DDPG
< I
2 125 | = SAC
S e —— TD3
i 'r A,
100
AR 4 A
) oo o Bk n i oA g BRI
i ""‘.0.;‘-.’ Agdtapel "-.,-m.". (e
i3 ,‘—‘. |

i i X
7 %:ﬂ»;%ffwﬁmf ab

5.0

20 40 60 80 100
Iterations (x103)

Figure 7. Algorithms’ performance on randomised food location
validation environment over 100,000 iterations and averaged
over 20 trials. Each algorithm used sensory data input and

20 recurrent nodes.

objective function, in contrast to BPTT (Barnard, 1993;
Fairbank et al., 2013).

Figure 7 shows that the selected RL algorithms failed
to devise any movement strategy that improved on the
initial average reward of 10.7. Their agents got stuck in
the same region and did not successfully apply explo-
ration strategies.

(a) Tgp-Down view. Agent starting location fixed at (0,0).

High-level view of sample of ten randomised food-pile environments.

(b) Top-Down view. Agent starting location fixed at (0,0).

0.4+

0.21

0.0 4

-0.2

=0.4 4

0.4

A close zoomed view of the region from z-range [—0.5,0.5] and
y-range [—0.5, 0.5], showing the initial exploratory actions the agents
took in Fig. 8a.

Figure 8. Behaviour of fully trained BPTT agents at solving the
randomised food-pile problem on a test set. The x and y axes
describe the location. Each coloured pathway represents a
trajectory from the common start point at (0,0). These show the
agents exploring and calculating the direction of increasing food
density and then travelling to the food-pile peaks. Each different
coloured trajectory ends up at or near the centre of its own
specific food-pile location (indicated by the coloured X
symbols).

This might be because the recurrent memory and the
sensory-input features uniquely benefited the BPTT al-
gorithm. However, the selected RL algorithms are sensi-
tive to hyper-parameters chosen to solve RL-based
problems. Unfortunately, we could not find any combi-
nation of hyper-parameters to see any improvements.
However, our successful initial fixed food-pile experiment
(Figure 5) using the RL algorithms with the same hyper-
parameters indicates that the hyper-parameters we used
were at least reasonable.

One interesting trajectory in Figure 8(b) is the purple line
which shows a complete turnaround at approximately
(—0.25, —0.3) as the agent ‘realises’ it set off in the wrong
direction. This systematic exploration method and multiple
sampling of the food density from different locations allow
the RNN to deduce the direction in which the food density

Pisheh Var et al.

Results for randomised food-pile location

24

22

20

Algorithm
—— BPTT with sensor and recurrent memory
BPTT with sensor but no recurrent memory
16 -+« BPTT with no sensor or recurrent memory

Validation Reward

2 5 8 10 12 15 18 20
Iterations (x103)

Figure 9. The effect of solving the randomised food-pile location
problem with and without sensors and memory is that each
algorithm setup is experimented with over 10,000 iterations and
averaged over 20 different trials.

increases the most. The agent (RNN) learns during an
episode (the ‘inner’ learning algorithm).

The pathways over the food hill taken by our BPTT
agents indicate that the agents’ RNNs have discovered an
exploration algorithm that samples and records food heights
in the environment and acts accordingly. Furthermore, the
BPTT algorithm (the ‘outer algorithm”) has chosen weights
that enabled the RNN to behave like this. This adaptive
behaviour is consistent with the minimal simulated ‘or-
ganism’ approach favoured in this work. To solve the full
partial-observability experiment, the ablation study in
Figure 9 shows that our implemented BPTT algorithm re-
quires recurrent memory combined with sensory-based
information. The other two variants of the implemented
BPTT (BPTT with no sensor or recurrent memory, and
BPTT with sensor and no recurrent memory) failed to solve
the problem.

In the partially observable environment, we forced all
algorithms to obey our recurrent-memory equation (6) by
embedding those equations within the environment model.
Although this combined system (of physics plus memory)
is a valid ‘environment’, it turned out to be a particularly
challenging one that the RL algorithms could not
cope with.

In contrast, the BPTT algorithm exploits knowledge of
the true derivatives which pass through the physics envi-
ronment, through the memory model, and the neural net-
work, that is, back-propagating gradients right through the
unrolled network shown in Figure 4; and these derivatives
seem to have been crucial in correctly solving this explo-
ration problem. It seems a reasonable explanation that
gradient-based algorithms such as BPTT can potentially
extract more information quickly from an environment than

scalar-based model-free RL methods (Fairbank and Alonso
2012).

Conclusion

Using a sensor and recurrent-memory capabilities, we
have presented a simple simulated ‘organism’ with an
exploratory task to solve a food-gathering problem in a
partial-observable and differentiable environment. Our
full partial-observability experiment showed that the
agent learned to learn with fixed RNN weights. This
matches the definition of meta-learning given by
Prokhorov et al. (2002) and Younger et al. (2001), and the
definition of ‘accommodative neural networks’ by Lo and
Bassu (2001).

We found this opportunity to emphasise the potential
benefits of BPTT on neural control and demonstrate its
performance on navigational tasks with limited observable
signals in a continuous-state environment. BPTT can ne-
gotiate the exploration-exploitation trade-off, and with the
evaluation of the entire trajectory, the average reward im-
proves the agent’s policy using a reward-based policy
update.

The ablation study in Figure 9 confirms that both the use
of memories and sensor observations are necessary to solve
this task. Furthermore, the trajectories shown in Figure 8(a)
are fairly direct, indicating that any initial triangulation
calculation made by the RNN must have been fairly ac-
curate. This suggests a purposefulness of the goal seeking,
which is in contrast to a simpler stochastic hill-climbing
algorithm, which might be expected to show random ¢jit-
tering’ throughout the length of the trajectory.

These conclusions indicate that our agent must possess
all five numbered sentient-creature attributes listed in the
introduction.

Out of the algorithms considered, only the BPTT al-
gorithm could successfully produce a working RNN. The
fact that the solution is self-learned is beneficial because, in
principle, without any further modification, the self-learning
method could create any other RNN algorithm of similar
complexity for different tasks.

BPTT is an ADP algorithm that uses the physics model and
its derivatives to enable rapid learning. The other selected
state-of-the-art algorithms used in the experiments are ‘true’
RL, where the physics model is separated from the learning
model, and the agent learns in a separated interactive envi-
ronment by trial and error. Despite this limitation of BPTT that
requires access to the physics-model derivatives during
training, we argue that once created by the BPTT algorithm,
the final RNN created does not require any access to these
derivatives and that the RNN executes a model-free algorithm
to explore and exploit the environment.

In future work, it would be possible to investigate more
elaborate food distributions and partial observability than

12

Adaptive Behavior 0(0)

that shown in Figure 1, possibly while enhancing the
sensory capabilities of the agent. It would also be possible to
investigate alternative memory mechanisms to (6), such as
incorporating a full GRU (Cho et al., 2014), LSTM
(Hochreiter and Schmidhuber 1997) or the content-adaptive
recurrent units (CARU) (Chan et al., 2020).

Finally, since the selected RL algorithms failed to show
improvements in our experiments, exploring state-of-the-art
RL algorithms is suggested to understand their performance
in tackling full partial-observable environments and enable
them to benefit from gradient-based learning through their
recurrent-memory nodes.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with re-
spect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: This
research was partially supported by the Business and Local
Government Data Research Centre BLG DRC (ES/S007156/1)
and by the ESRC Research Centre on Micro-Social Change
(MiSoC) - ES/S012486/1, both funded by the Economic and Social
Research Council (ESRC).

ORCID iD

Mabhrad Pisheh Var @ https://orcid.org/0000-0003-2441-9589

Note

1. Strictly speaking, this requirement for BPTT to make use of a
known environment model means it is part of ADP but not
“true” RL, as pure RL expects to be able to handle an envi-
ronment we know nothing about.

References

Barnard, E. (1993). Temporal-difference methods and markov
models. IEEE Transactions on Systems, Man, and Cyber-
netics, 23(2), 357-365. https://doi.org/10.1109/21.229449

Beer, R. D. (2003). The dynamics of active categorical perception
in an evolved model agent. Adaptive Behavior, 11(4),
209-243. https://doi.org/10.1177/1059712303114001

Braitenberg, V. (1986). Vehicles: Experiments in synthetic psy-
chology. MIT press.

Braun, D. A., Aertsen, A., Wolpert, D. M., & Mehring, C. (2009).
Learning optimal adaptation strategies in unpredictable motor
tasks. The Journal of Neuroscience: The Official Journal of
the Society for Neuroscience, 29(20), 6472—6478. https://doi.
org/10.1523/INEUROSCI.3075-08.2009

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., & Zaremba, W. (2016). OpenAi gym.
arXiv preprint arXiv:1606.01540.

Chan, K. H., Ke, W., & Im, S. K. (2020). Caru: A content-adaptive
recurrent unit for the transition of hidden state in nlp. In
International conference on neural information processing
(pp. 693-703). Springer.

Cho, K., Van Merriénboer, B., Bahdanau, D., & Bengio, Y. (2014).
On the properties of neural machine translation: Enco-
der-decoder approaches. 103—111. Association for Compu-
tational Linguistics. arXiv preprint arXiv:1409.1259.

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical
evaluation of gated recurrent neural networks on sequence
modeling. arXiv preprint arXiv:1412.3555.

Chung, S. & Siegelmann, H. (2021). Turing completeness of
bounded-precision recurrent neural networks. Advances in
Neural Information Processing Systems, 34, 28431-28441.

Conway, J. (1970). The game of life. Scientific American,
223(4), 4.

Cotter, N. E. & Conwell, P. R. (1990). Fixed-weight networks can
learn. In 7990 IJCNN international joint conference on neural
networks (pp. 553-559). IEEE.

Fairbank, M. & Alonso, E. (2012). A comparison of learning speed
and ability to cope without exploration between DHP and TD
(0). In The 2012 international joint conference on neural
networks (IJCNN) (pp. 1-8). IEEE.

Fairbank, M., Alonso, E., & Prokhorov, D. (2012). Simple and fast
calculation of the second-order gradients for globalized dual
heuristic dynamic programming in neural networks. [EEE
Transactions on Neural Networks and Learning Systems, 23(10),
1671-1676. https://doi.org/10.1109/TNNLS.2012.2205268

Fairbank, M., Alonso, E., & Prokhorov, D. (2013). An equivalence
between adaptive dynamic programming with a critic and
backpropagation through time. /[EEE Transactions on Neural
Networks and Learning Systems, 24(12), 2088-2100. https://
doi.org/10.1109/TNNLS.2013.2271778

Fairbank, M., Li, S., Fu, X., Alonso, E., & Wunsch, D. (2014). An
adaptive recurrent neural-network controller using a stabili-
zation matrix and predictive inputs to solve a tracking
problem under disturbances. Neural Networks, 49, 74-86.
https://doi.org/10.1016/j.neunet.2013.09.010

Fairbank, M., Prokhorov, D., & Alonso, E. (2014). Clipping in
neurocontrol by adaptive dynamic programming. /EEE Trans-
actions on Neural Networks and Learning Systems, 25(10),
1909-1920. https://doi.org/10.1109/TNNLS.2014.2297991

Finn, C., Abbeel, P., & Levine, S. (2017). Model-agnostic meta-
learning for fast adaptation of deep networks. In International
conference on machine learning (pp. 1126—1135). PMLR.

Fu, X., Li, S., Fairbank, M., Wunsch, D. C., & Alonso, E. (2015).
Training recurrent neural networks with the levenberg—
marquardt algorithm for optimal control of a grid-connected
converter. /[EEE Transactions on Neural Networks and
Learning Systems, 26(9), 1900-1912. https://doi.org/10.
1109/TNNLS.2014.2361267

Fujimoto, S., Hoof, H., & Meger, D. (2018). Addressing function
approximation error in actor-critic methods. In International
conference on machine learning (pp. 1587-1596). PMLR.

Pisheh Var et al.

13

Graves, A., Wayne, G., & Danihelka, 1. (2014). Neural turing
machines. arXiv preprint arXiv:1410.5401.

Haarnoja, T., Tang, H., Abbeel, P., & Levine, S. (2017). Rein-
forcement learning with deep energy-based policies. In In-
ternational conference on machine learning
(pp. 1352-1361). PMLR.

Hausknecht, M. & Stone, P. (2015). Deep recurrent Q-learning for
partially observable MDPs. In 2015 aaai fall symposium
series. AAAI Press.

Hochreiter, S. & Schmidhuber, J. (1997). Long short-term
memory. Neural Computation, 9(8), 1735-1780. https://
doi.org/10.1162/neco0.1997.9.8.1735

Hochreiter, S., Younger, A. S., & Conwell, P. R. (2001). Learning
to learn using gradient descent. In International conference
on artificial neural networks (pp. 87-94). Springer.

Hu, B. & Tu, Y. (2014). Behaviors and strategies of bacterial
navigation in chemical and nonchemical gradients. PLoS
Computational Biology, 10(6), €1003672. https://doi.org/10.
1371/journal.pcbi. 1003672

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998).
Planning and acting in partially observable stochastic do-
mains. Artificial Intelligence, 101(1-2), 99—134. https://doi.
org/10.1016/s0004-3702(98)00023-x

Li, W., Zhou, F., Chowdhury, K. R., & Meleis, W. (2019).
QTCP: Adaptive congestion control with reinforcement
learning. [EEE Transactions on Network Science and
Engineering, 6(3), 445-458. https://doi.org/10.1109/tnse.
2018.2835758

Lillicrap, T. P, Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y.,
Silver, D., & Wierstra, D. (2015). Continuous control with
deep reinforcement arXiv preprint
1509.02971.

Lillicrap, T. P. & Santoro, A. (2019). Backpropagation through
time and the brain. Current Opinion in Neurobiology, 55,
82-89. https://doi.org/10.1016/j.conb.2019.01.011

Lo, J. T. & Bassu, D. (2001) Adaptive vs. accommodative neural
networks for adaptive system identification. In IJJCNN’01.
International Joint Conference on Neural Networks. Pro-
ceedings (Cat. No. 01CH37222), volume 2, 1279-1284, NJ,
USA, IEEE.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T.,
Harley, T., Silver, D., & Kavukcuoglu, K. (2016).
Asynchronous methods for deep reinforcement learning.

learning. arXiv:

In International conference on machine
(pp- 1928-1937). PMLR.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, L.,
Wierstra, D., & Riedmiller, M. (2013). Playing atari with
deep reinforcement learning. DeepMind Technologies. arXiv
preprint arXiv:1312.5602.

Murray, J. J., Cox, C. J., Lendaris, G. G., & Saeks, R. (2002).

Adaptive dynamic programming. [EEE Transactions on

learning

Systems, Man, and Cybernetics, Part C (Applications and
Reviews), 32(2), 140-153. https://doi.org/10.1109/tsmcc.
2002.801727

Nichol, A. & Schulman, J. (2018) Reptile: A scalable metalearning
algorithm. Artificial Intelligence, 2(3), 4. arXiv preprint arXiv:
1803.02999.

Ortega, P. A., Wang, J. X., Rowland, M., Genewein, T., Kurth-
Nelson, Z., Pascanu, R., Heess, N., Veness, J., Pritzel, A.,
Sprechmann, P., et al. (2019). Meta-learning of sequential
strategies. arXiv preprint arXiv:1905.03030.

Prince, L. Y., Eyono, R. H., Boven, E., Ghosh, A., Pemberton, J.,
Scherr, F., Clopath, C., Costa, R. P., Maass, W., Richards,
B. A., et al. (2021). Current state and future directions for
learning in biological recurrent neural networks: A per-
spective piece. arXiv preprint arXiv:2105.05382.

Prokhorov, D. V., Feldkarnp, L., & Tyukin, 1. Y. (2002) Adaptive
behavior with fixed weights in RNN: An overview. In Pro-
ceedings of the 2002 international joint conference on neural
networks. [JCNN’02 (Cat. No. 02CH37290), volume 3,
pp. 2018-2022, NJ, USA, IEEE.

Prokhorov, D. V. & Wunsch, D. C. (1997). Adaptive critic designs.
IEEE Transactions on Neural Networks, 8(5), 997-1007.
https://doi.org/10.1109/72.623201

Raffin, A., Hill, A., Ernestus, M., Gleave, A., Kanervisto, A., &
Dormann, N. (2019). Stable baselines3. https://github.com/
DLR-RM/stable-baselines3

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., & Lillicrap,
T. (2016). Meta-learning with memory-augmented neural
networks. In International conference on machine learning
(pp. 1842-1850). PMLR.

Schaul, T. & Schmidhuber, J. (2010). Metalearning. Scholarpedia,
5(6), 4650. https://doi.org/10.4249/scholarpedia.4650

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, 1., Lai, M.,
Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T.,
Lillicrap, T., Simonyan, K., & Hassabis, D. (2018). A general
reinforcement learning algorithm that masters chess, shogi,
and go through self-play. Science, 362(6419), 1140—1144.
https://doi.org/10.1126/science.aar6404

Stadie, B. C., Yang, G., Houthooft, R., Chen, X., Duan, Y., Wu, Y.,
Abbeel, P., & Sutskever, 1. (2018). Some considerations on
learning to explore via meta-reinforcement learning. arXiv
preprint arXiv:1803.01118.

Sutton, R. S. & Barto, A. G. (2018). Reinforcement learning: An
introduction. MIT press.

Teichmann, J. (2015). Models of aposematism and the role of
aversive learning. [PhD Thesis City University London].

Thrun, S. & Pratt, L. (1998). Learning to learn: Introduction and
overview. In Learning to learn (pp. 3—17). Springer.

Wang, F. Y., Zhang, H., & Liu, D. (2009). Adaptive dynamic
programming: An introduction. /JEEE Computational Intel-
ligence Magazine, 4(2), 39-47. https://doi.org/10.1109/mci.
2009.932261

Werbos, P. J. (1990). Backpropagation through time: What it does
and how to do it. Proceedings of the IEEE, 78(10),
1550-1560. https://doi.org/10.1109/5.58337

Wierstra, D., Foerster, A., Peters, J., & Schmidhuber, J.
(2007). Solving deep memory POMDPs with recurrent

14 Adaptive Behavior 0(0)
policy gradients. In International conference on artificial ~ Younger, A. S., Hochreiter, S., & Conwell, P. R. (2001). Meta-
neural networks (pp. 697-706). Springer. learning with backpropagation. 1JCNN’01. International

Wierstra, D., Forster, A., Peters, J., & Schmidhuber, J. (2010). Joint Conference on Neural Networks. Proceedings (Cat. No.
Recurrent policy gradients. Logic Journal of IGPL, 18(5), 01CH37222. (volume 3). 1098-7576, NJ, USA, IEEE.
620—634. https://doi.org/10.1093/jigpal/jzp049 Zhou, G. B., Wu, J., Zhang, C. L., & Zhou, Z. H. (2016). Minimal

Younger, A. S., Conwell, P. R., & Cotter, N. E. (1999). Fixed- gated unit for recurrent neural networks. International
weight on-line learning. /EEE Transactions on Neural Net- Journal of Automation and Computing, 13(3), 226-234.
works, 10(2), 272-283. https://doi.org/10.1109/72.750553 https://doi.org/10.1007/s11633-016-1006-2

About the Authors

Mahrad Pisheh Var is a highly motivated PhD student who is currently conducting research under the
supervision of Michael Fairbank in the field of neuro control. He obtained his undergraduate degrees in
Computer Science and Computer Games with a 1st and a distinction respectively from the University of
Essex. He is passionate about discovering novel gradient-based techniques for training neural networks and
believes that there is a great potential for improving Al to converge quickly. Mahrad moved to the United
Kingdom at the age of 17 and has since accomplished numerous academic achievements. He has gained
invaluable experience in developing his own game engine from scratch and working with cutting-edge
technologies such as Als and BClIs brain computer interfaces. With his strong academic background and
practical experience in the field, Mahrad is well-positioned to make significant contributions to the field of
neuro control and AL

Michael Fairbank is a senior lecturer and researcher in learning algorithms for adaptive dynamic pro-
gramming and neural networks, at the University of Essex, UK. He received his Ph.D. from City University
of London in 2014, B.Sc. degree in Mathematical Physics from Nottingham University in 1994, and M.Sc.
in Knowledge Based Systems from Edinburgh University in 1995.

Spyridon Samothrakis is a Senior Lecturer and Deputy Director of the Institute for Analytics and Data
Science at the University of Essex. He obtained his PhD in Computer Science in 2014, focusing on optimal
game playing in multi-player games. Dr Samothrakis has worked extensively with businesses and his
current research interests are meta-learning and reinforcement learning.

