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Abstract. This paper describes a simple memory augmentation tech-
nique that employs tabular Q-learning to solve binary cell structured
mazes with exits generated randomly at the start of each solution at-
tempt. A standard tabular Q-learning can solve any maze with continu-
ous learning; however, if the learning is stopped and the policy is frozen,
the agent will not adapt to solve newly generated exits. To avoid using
Recurrent Neural Networks RNNs to solve memory-required tasks, we
designed and implemented a simple external memory to remember the
agent’s cell visit history. This memory also expands the state information
to hold more information, assisting tabular Q-learning in distinguishing
its path from entering and exiting a maze corridor. Experiments on five
maze problems of varying complexity are presented. The maze has two
and four predefined exits; the exit will be randomly assigned at the start
of each solution attempt. The results show that tabular Q-learning with a
frozen policy can outperform standard deep-learning algorithms without
incorporating RNNs into the model structure.

Keywords: Tabular Q-learning, Augmented memory in Q-learning,
Maze Navigation, Augmented memory in Q-learning, Maze Navigation
and Eulerian tours.

1 Introduction

A maze is a simple and discrete technique to demonstrate exploratory tasks.
The Q-learning algorithm can solve the problem of finding a path through a
fixed maze [1]. The traditional Q-learning method uses a Q-table, initialised
with potentially arbitrary fixed values [2], to assign to each state a Q-value for
each of the possible actions allowed from that state.

The exploration tasks become complicated when the exit locations of the
maze are randomised at the start of every solution attempt. In this case, the
agent is given a new exploration assignment at the beginning of the maze; this
will require the agent to adapt.
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Traditional tabular Q-learning methods with continuous learning can adapt
and solve the same maze if the exit location is moved, provided the Q-learning
algorithm continues to learn indefinitely. However, once the traditional tabular
Q-learning algorithm has stopped learning, i.e. has stopped updating the Q-
values, the algorithm can only handle one possible exploration task. The frozen
policy learned by the traditional tabular Q-learning will prevent the agent from
backtracking upon entering a corridor.

The agent must have a memory to remember that it entered a dead-end
corridor and use that to backtrack and exit. Furthermore, once the agent enters
a dead-end corridor in the maze, it requires the state information fed into the
algorithm to contain information that helps the algorithm distinguish its path
from entering and exiting the corridor. Recurrent Neural Networks RNNs are one
approach to embed memory, which allows backtracking out of dead-end corridors
[3]. However, the computation of this neural network is slow, and training can
be difficult.

The idea of accomplishing adaptation with frozen policy generated by tab-
ular Q-learning is illustrated in this study. This study aims to eliminate the
need for recurrent neural networks [4] and replace them with a more straightfor-
ward system that allows the agent’s fixed strategy to adjust to shifting reward
conditions.

The system includes an additional table as a memory that records the history
of the agent’s cell visits. The memory is accessed by the agent’s current location
and action. In addition, the state is expanded to include the agent’s present
location and the memory value for the neighbouring cell visit, where it tracks
the agent’s history of cell visits.

This memory significantly helped the tabular Q-learning find all the envi-
ronment’s exits. Therefore, by including memory as part of the state vector and
working with the tabular Q-learning architecture, it is possible to investigate the
potential exits of the environment with the flexibility to avoid separate training
Q-tables for each exit.

Our simple solution can solve all “perfect mazes”. A “perfect maze” is one in
which a single path can connect any two cells. Our result also extends to mazes
with loops. However, although our simple solution can solve exit points being
moved, it requires the maze structure and starting point to be fixed.

The structure of the rest of this paper is as follows: Section 2 consists of the
introduction to related research on memory usage to complete memory-based
tasks, followed by a discussion about the significance of memory in partial-
observable environments. Section 3 includes the knowledge of discrete reinforce-
ment learning and its application to the maze environment. Moreover, section
3 describes the memory modification we implemented and applied to the maze
environments, and its functionality was demonstrated with tabular Q-learning.
In addition, a proof of sufficiency for solving mazes using our method is included
in section 3. Section 4 includes details about the experiment setup and rein-
forcement learning agents we prepared to demonstrate in the environment. The
results are shown in section 5. This study will conclude with a discussion in
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section 6 about what we achieved and how this simple system can bypass using
complicated recurrent systems in environments with shifting reward conditions.

2 Related work

An extended memory management system, known as a memory-based learning
system [5], divides the input space into either static or dynamic sub-regions to
store and retrieve valuable information.

There are different key generalisation strategies used by memory-based learn-
ing systems, which are:

– Nearest-Neighbour searches are a form of a proximity search that is mainly
used in optimisation to find the point in a given set closest to a given point [6].

– Space decomposition methods are solutions to various problems and the
design of algorithms in which the basic idea is to decompose the problem
into sub-problems [7].

– Hierarchical clustering HCA [8] is a cluster analysis method that aims to
create a cluster hierarchy. Agglomerative strategies for hierarchical clustering
are a ”bottom-up” approach in which each observation starts in its own
cluster, and pairs of clusters are merged as one moves up the hierarchy.
All observations begin in one cluster in a divisive, and splits are performed
recursively as one moves down the hierarchy.

The system we introduce in this paper is not embedded in the neural network
and acts as an external memory. In comparison, Deep reinforcement learning
(DRL) includes the capability to learn optimal policy in an end-to-end manner
without relying on feature engineering [9].

However, in an environment where the state space is not fully shown, the DRL
algorithms require external or internal processes to compensate for their lack of
knowledge about whether the observation is complete enough [10]. Sensors can
alone solve this problem. However, there are many issues with sensors, including
sensor sensitivity limitation, noise and the quality of the data the sensors gather
[11].

Whether the structure of the environment changes or there is a change in the
reward conditions regime, any learning algorithm requires memory to adapt [12].

In previous studies, algorithms such as deep Q-learning were preferred in
solving complex mazes. For instance, in [13], they compared different policy-
picking algorithms for Q-learning to create a ratio of balance between exploration
and exploitation. Moreover, they suggested using softmax instead of e-greedy to
create that balance.

Similarly, in [14], they explored the same idea of maintaining the balance
in behaviour policy by adopting a Bayesian approach for uncertain informa-
tion. In conventional Q-learning, the uncertain observation information forces
the Q-learning to choose a random action that will lead to higher exploration;
however, the [14] authors used a Bayesian approach to compute a myopic ap-
proximation that maintained the balance between exploration and exploitation.
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This approach resulted in Q-value distribution manipulation that controlled the
agent’s behaviour. The work done in [14] is quite similar to our idea, where we
manipulated the dimension of our Q-values based on the problem description
instead, giving the agent broader control based on the action it took at each
state.

Architectures developed by [15] to tackle mazes combined convolutional neu-
ral net and auxiliary prediction to apply pixel control to the sensory data; the
skewed replay buffer was used in reward prediction ahead of time to predict
the rewards of the unobserved time step. In [15], authors created an unsuper-
vised reinforcement and auxiliary learning agent. The convolutional neural net-
work picked up pixels later used in an LSTM network to control the agent’s
movements. The incentives, such as images on the wall and 3-dimensional apple-
shaped exits, were used to motivate the agent to apply pixel control to the data
gathered by the observatory sensors [15].

Authors in [15] argued that adding memory to the agent is for remembering
elements from the past and applying that to future decisions. However, the size
of the trajectory to reach the exit directly affects memory. The [15] authors used
their solution with sensory hints planned on the maze to solve similar mazes
with sensory motors capturing the agent’s point of view. In comparison, in [16],
they tackled partially observable Markov decision problems (POMDPs) with
recurrent policy gradient implemented as a model-free reinforcement learning
method. Furthermore, in [16], they included a policy gradient for a recurrent
neural network; this was only possible by a back-propagation algorithm.

Furthermore, Authors in [16] mentioned discrete control in settings of long-
term dependency, a T-maze where the path leading to the T-junction was ran-
domised from 10 to 100 cells. The results show that the recurrent gradient policy
outperformed value-based methods.

Similarly, the [17] authors combined deep Q-learning with a recurrent neural
network where they have used a data structure to store a chain of states, and the
chain of states will be fed into the RNN to output the Q-values. Two different
Q-networks are used as the ”actual Q-values” and the predicted ones. Therefore,
the agent must estimate from estimation to perform like Q-learning [17].

Previous studies used RNN to solve memory-required tasks. However, RNNs
are computationally expensive, and their optimal hyperparameter tuning can
be time-consuming. This paper introduces a simplified maze environment to
demonstrate memory-required tasks and tackles it with standard tabular Q-
learning. With continuous learning, a standard tabular Q-learning can solve any
maze; however, if learning is halted and the policy is frozen, the agent will not
adapt to solve newly generated exits. We designed and implemented a simple
external memory to remember the agent’s cell visit history and avoid using
RNNs.
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3 Discrete Reinforcement Learning in a Maze
Environment

The maze we built is a standard discrete-valued reinforcement learning problem
where the discrete state space is denoted by S, and the discrete action space is
denoted by A.

The maze is represented by a matrix M of binary values 0 or 1. The matrix
(maze) M is of size height×width. Each matrix element represents a maze cell
(1=blocked or 0=open).

For example, the maze in Fig. 2b is represented by the matrix:

M =



1 1 1 1 1 1 1
1 0 1 0 0 0 1
1 0 1 1 1 0 1
1 0 1 0 0 0 1
1 0 1 1 1 0 1
1 0 0 0 0 0 1
1 1 1 1 1 1 1


At time step t = 0, the agent starts from a given fixed start point, e.g. as shown
in Fig. 2b. Then, at each time step t, the agent has state st ∈ S and chooses
action at ∈ A. Finally, the environment responds by moving the agent to a new
state st+1 and giving a real-valued reward rt.

The agent attempts to an open cell by applying a valid action at from A =
{north, south, east,west}. The new state’s positional values will not be updated
if the arriving cell’s M(y, x) returns the value of 1, indicating that the agent
collided with the wall.

The arriving cell’s value fromM(y, x) will determine the agent’s new position.
To illustrate this explicitly, we have the standard update equations for moving
around a discrete-cell maze:

(yt+1, xt+1)←



(yt − 1, xt) if at =North and M(yt − 1, xt) = 0

(yt + 1, xt) if at =South and M(yt + 1, xt) = 0

(yt, xt + 1) if at =East and M(yt, xt + 1) = 0

(yt, xt − 1) if at =West and M(yt, xt − 1) = 0

(yt, xt) otherwise

(1)

At every time step t, on taking action at, the agent receives an instantaneous
reward of:

rt = −1, (2)

regardless of whether the action led to bumping into a wall.
The episode terminates when the agent reaches the exit (where (yt, xt) =

(yexit, xexit)) or runs out of steps.
The agent repeatedly takes actions, accumulating rewards, until a terminal

state is reached (i.e. until the maze’s exit is found or the time expires). An
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episode is a state transition sequence from the start to the terminal state. The
total discounted reward accumulated by the agent is:

R =
∑
t

γtrt (3)

where 0 < γ ≤ 1 is a discount factor.
As purely negative reward is accumulated over the episode (via (2) and (3)),

it is to the agent’s advantage to get to the exit of the maze as quickly as possible
to maximise the total reward received.

Actions are chosen by a policy function π : S→ A. The learning objective is
to find a policy function that maximises the expectation of R.

A deterministic policy function π will always specify which unique direction
to move. Upon entering a dead-end corridor with a deterministic policy function,
it is impossible to backtrack out of that corridor. We define a memory-based
solution to this problem in the following subsection.

3.1 Maze environment with memory modification

For each maze cell (y, x), a memory vector c⃗(y,x) is defined and stored in a table
C with dimensions (height,width, 4). The memory vector c⃗(y,x) is represented in
(4) where for each direction, d ∈ {north, south, east,west}, the value of C(x, y, d)
holds a one if the agent has previously travelled from (y, x) in the direction d,
and a zero otherwise.

c⃗(y,x) =


C(y, x,north)
C(y, x, south)
C(y, x, east)
C(y, x,west)

 (4)

The table C is initialised with zeros. Then, as shown in (5), we update the
table’s vector value C(yt, xt, at) after the agent takes action at. Our table C
will retain the changed values throughout the episode, and when a new episode
begins, the table values will revert to 0.

C(yt, xt, at)← 1 (5)

In the above section, the agent’s state was described by two numbers, (yt, xt).
In the case of a maze environment with memory modification, we extended the
state to hold additional values so that the state is now described by:

st = (yt, xt, C(yt, xt,north), C(yt, xt, south), C(yt, xt, east), C(yt, xt,west)) (6)

In short, the state is described by:

st = (yt, xt, c⃗(yt,xt)) (7)
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The policy function without the memory modification was defined by π(yt, xt).
The policy function for the environment with memory arguments is now ex-
panded to hold (yt, xt, c⃗(yt,xt)). The policy function for the environment with
memory modification is described by:

at = π(yt, xt, c⃗(yt,xt)) (8)

The C table stores memory by remembering the corridors the agent pre-
viously explored. Entering a corridor from direction dt updates that direction
in C(yt, xt, dt) to 1. After reaching an already visited maze cell, the state is
represented differently while the agent reverses out of the corridor.

For example, if the agent only moved east in the corridor, the table C(yt, xt, east)
value in c⃗(yt,xt) is updated to hold 1. When the agent decides to exit the corridor,
the state representation will now show st = (yt, xt, 0, 0, 1, 0), which differs from
when it entered the corridor st′ = (yt′ , xt′ , 0, 0, 0, 0).

Comparatively, more straightforward solutions might be more appealing,
such as remembering if the agent visited the arriving cell before. However, that
would only require a table of shape (height,width). If the agent accesses the
same cell more than twice, the simpler, more appealing design will not function.
The agent can only explore two corridors due to the restriction imposed by the
binary value for each cell, and it will fail if the agent needs to return to the same
cell to explore more junction pathways.

3.2 Proof of sufficiency for solving mazes with memory modification

Different structures of binary cell mazes can provide different paths for the player
to take to reach its target. To traverse from one cell to its neighbouring cells, the
player must apply a valid action to reach the neighbouring unobstructed cells.

Tree graphs can represent a perfect maze in which every cell (tree nodes) can
be reached, consisting of just one direct route from one cell to any other (tree
branches); a perfect maze can be fully explored by an Euler tour (illustrated in
Fig. 1) [18].

In Fig. 1, we can observe a sequence of actions made by the Euler tour.
This sequence of numbers shows that the agent traverses down until it reaches
a dead-end, traverses back up to the cell where its path was divided, and then
chooses from the available unexplored paths. Recursively, the agent follows this
rule until it fully explores all the possible sub-paths, which leads to the agent
visiting every leaf node in the tree.

Hypothetically, suppose an exit is switched between the leaf nodes shown in
Fig. 1 at every episode reset where the agent starts at the root node. In that
case, the Euler tour can eventually find the exit by exploring every single leaf
of the tree. Similarly, in our proposed problem, a maze that can switch the exit
between two or more cells can be represented in Fig. 1, where each leaf can
contain the exit.

A fixed policy function with no further learning, which receives inputs (y, x),
cannot perform the series of actions shown in Fig. 1. For example, after finding
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the exit at the far left of the tree, the agent cannot backtrack entirely to its
branch-off nodes to explore other paths to other leaf nodes; the deterministic
status of the policies limits further exploration.

On the other hand, (y, x, c⃗(yt,xt)) input allows the agent to diversify states
by training them separately with the help of the extended state values. This
unparalleled access allows the agent to recursively backtrack and explore other
branches until there are no unexplored paths; this behaviour is very similar to
the Eulurean tree exploration shown in Fig. 1.

If the maze is not “perfect”, containing loops, it is possible to imagine two
different states and actions pair can reach a specific cell. For example, in Fig. 1,
we can connect any randomly selected two leaves in the tree graph and create
a looped maze. The fixed policy function will be stuck in the loop by entering
it. Upon reaching the branch off node where it starts the loop, the agent with
a fixed policy function cannot diversify the inputs (y, x), therefore, cannot exit
the loop section of the maze.

The difference between actions to reach the same state will allow our method
to update different table entries C(yt, xt, dt) every time it reaches the same cell
in the maze, allowing different inputs to be provided. Moreover, similar to our
explanation with perfect mazes, the agent will recursively explore down and then
upwards towards branch cells, proving that the agent will explore every single
leaf cell existing in the maze.

The above two sections demonstrate that it is possible for the greedy pol-
icy given by (11) to represent a full tour of the maze, which solves the maze
even when the exit location is randomised. This demonstration is in contrast to
the greedy policy in ordinary Q-learning. The Q-learning we mentioned in (10)
cannot solve mazes with randomised exit points without further learning.

Fig. 1: Euler tour of tree graph, taken from [18]

3.3 Standard Tabular Q-learning

Over several discrete time steps, an agent is set to interact with an environment.
For example, in standard reinforcement learning, this process is done at time t,
where the agent receives a set of observation data ot.
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The agent chooses the optimal policy at from the available action list. Then,
the action is applied to the environment, and the next state st+1 and reward rt
is returned.

Q-learning [2], or deep Q-leaning [19] are standard value-based reinforcement
learning algorithms.

The value function is expected to return feedback from state s at time-
step t. when actions are selected π(a|s), therefore, value function is calculated
V π(s) = E[Rt :∞|st = s, π].

If the agent takes an action at in state st and follows the optimal policy
π(s|s) the Qπ(s, a) = E[Rt:∞|st = s, at = a, π] is the expected value returned.

Q-learning uses the temporal difference (TD) to estimate the expected value.
The TD is the agent’s experience through episodes without prior knowledge of
the environment. Therefore, mainly Q-learning uses a table of Q[S,A] to hold
the Q-values where each estimates the expected value. Commonly, the Bellman
equation is used in returning the expected value Qπ(st, at) = E[Rt+1 + γRt+2 +
γ2Rt+3 + ...|st, at].

The update function uses the maximisation of the value function Q to return
expected future reward newQ(s,a) = Q(s,a)+α[R(s,a)+ γmaxQ′(s′, a′)−Q(s,a)].
An episode is a state transition sequence from the start to the terminal state.

Actions are chosen by a policy function π : S→ A. The learning objective is
to find a policy function that maximises the expectation of R. For example, in
Q-learning, [2]. With a tabular representation for the Q-function (Q(s, a)), after
each action, at is chosen from state st following the given policy π, after which
the agent is observed to move to a new state st+1 and to have received reward
rt, the Q table is updated by:

∆Q(st, at) = α
(
rt + γ

(
max
a′

Q(st+1, a
′)
)
−Q(st, at)

)
. (9)

The greedy policy on the tabular Q function is defined to choose action a
from state s by:

a = argmax
a′

Q(s, a′) (10)

3.4 Integrating memory in Tabular Q-learning

Integrating our memory in tabular Q-learning will use an ordinary Q-learning,
which uses the new state vector st = (yt, xt, c⃗(yt,xt)). The greedy policy on the
augmented Q-function is defined with an action at from state st by:

at = argmax
a′

Q(yt, xt, c⃗(yt,xt), a
′) (11)

a′ indicates all the possible actions available to the agent, and c⃗(yt,xt) returns all
the four directions neighbouring cell history of visits from (yt, xt) shown in (4).
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The Q-learning update interacting with our augmented memory maze envi-
ronment is shown in (12). In this case, The Q-learning algorithm accesses the
Q-table according to its current state st = (yt, xt, c⃗(yt,xt)).

∆Q(yt, xt, c⃗(yt,xt), at)

=αt(rt + γ
(
max
a′

Q(yt+1, xt+1, c⃗(yt+1,xt+1), a
′)
)
−Q(yt, xt, c⃗(yt,xt), at)), (12)

where α > 0 is the learning rate.
Equations (12), (5) and (11) show how an ordinary Q-learning interacts with

our new state vector.

3.5 Simplified wall-following algorithm

It can be argued that known algorithms such as the “wall-follower” algorithm [20]
can be used instead of memory-augmented tabular Q-learning. This method,
also known as the left-hand rule method, can solve any non-looped maze with
a guarantee of not getting lost and will reach a different exit if there is one.
However, this method does not solve the maze structures with loops.

If we want to train a Q-table to have a “wall-follower” algorithm behaviour,
we can modify the observation of the state to hold o⃗t = (w(west), w(east), w(north),
w(south), dentry); The w inputs are the sensory data which will return 1 if there
is a blocked cell in the specified direction and 0 otherwise. The dentry is the
agent’s direction entered the current cell.

In this representation, the policy is a function of the observation vector o⃗t.
The agent’s observation is limited to its surrounding walls and the direction in
which the agent entered the current cell; the only way to solve the maze is to
follow the wall, which is more exploitation than finding a solution by exploration.

Therefore we can train a Q-table with shapes of (2, 2, 2, 2, 4, 4) to represent
the state given to the “wall-follower” algorithm.

We include this kind of agent in the experiments below for comparison against
the memory-augmentation method.

4 Experiment Setup

Five distinct algorithms were intended to be compared to test on five different
mazes; in each case, the augmented memory is added to the algorithm, and the
results are compared. These algorithms are as follows:

– Conventional Q-learning algorithm.
– Proximal policy optimisation algorithm PPO.
– A synchronous, deterministic variant of Asynchronous Advantage Actor Critic

(A3C) A2C.
– Deep Q Network (DQN) builds on Fitted Q-Iteration (FQI), using a replay

buffer, a target network and gradient clipping.
– Conventional Q-learning trained to behave like a “wall-following” algorithm.
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The PPO, A2C and DQN were taken from [21], and the specific hyper-parameters
were set to their default values. The inputs to PPO, A2C and DQN will benefit
from our external memory, adding more details to their neural network input.

For the conventional Q-learning algorithm, two inputs are acquired from the
agent’s current position (y, x) in case of no memory augmentation. However, for
the memory augmented method, the input is expanded to contain six values to
additionally hold a vector c⃗(yt,xt) shown in (7).

For the reinforcement learning algorithms such as PPO, A2C and DQN, the
network architecture of Critic and Actor, where relevant for each algorithm,
consisted of a multi-layer fully-connected neural network. In case of no memory
augmentation, the observation will hold the position of the agent ot = (yt, xt),
where it will be pre-processed into a one-hot encoded form. The input for each
reinforcement learning algorithm included a one-hot encoded vector with the
shape of the maze height added to the maze width.

In case of memory augmentation, the state is expanded to hold a vector
c⃗(yt,xt) shown in (7) where contains four values in the range of 0 and 1 in addition
to the agent’s current position, therefore, after one-hot encode pre-processing,
the input will hold the sum of maze’s height and width added to eight extra
values for the memory augmented part of the observation.

Two hidden layer and 64 nodes are designed for each algorithm’s network
architecture. The PPO and A2C algorithms used the tanh activation function;
the DQN algorithm included the ReLU activation function in its network archi-
tecture.

The agent’s x and y coordinates are one-hot encoded. Also, each element of
the C⃗ shown in (4) is one hot encoded. Hence there are height + width + 4 ∗ 2
inputs to the neural network.

The last layer’s activation function for all reinforcement learning algorithms
was an identity activation function.

The learning rate was set to 0.01 and the discount factor was set to γ = 0.9
The epsilon-greedy policy [22] was used to apply randomness in choosing the
actions with a 0.1 chance to occur. The epsilon-greedy policy allows exploration
in training, which was removed in the validation phase of our experiments. Each
algorithm was given 500 time steps to find the exit in one episode. At the start
of each episode, the exit is moved to its next possible cell.

Five different maze structure environments were created; these environments
are shown in Fig. 2. The exit is indicated with a yellow circle and named “EXIT”.
The starting cell is drawn with a red square; the empty cross-hatched space
shows the maze wall where the agent cannot move into these areas. Each maze
environment contains two or four possible exit cells (exits) depending on the
maze’s structure.

Each maze has a set of possible exits, and one exit is chosen for each episode.
Hence when the agent explores the maze, there is exactly one exit it is looking
for. At the start of each different episode, the exit is rotated through the set of
possible exits for that maze, so each time the agent starts a new episode, the
exit will have moved from the last time it explored. For each episode, the agent
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has 500 time steps to find the exit before the time runs out. After experimenting
with all the possible exits, the total number of accumulated time steps to reach
each exit is recorded.

These environments shown in Fig. 2 hold a common feature where the agent
must decide to take one of the divided paths where only one can lead to the exit.
The agent starts on the red square cell and will have to output actions to move
into the allowed cells. In case of a collision with a wall, the agent will remain in
the same cell, and one step will count towards the total steps.

The experiment was created to run on 10 different trials; in each trial, the
agent was trained for 100,000 episodes, and the weights were updated after each
action was taken by the agent during each episode.

The agent must devise a movement strategy to find and visit all possible
environmental exits. For instance, in the small 3-cell maze shown in Fig. 2a, the
optimal number of steps to reach the exit cell on the right side of the maze is
1. After reaching the exit cell, the agent’s position is reset. Therefore, the total
time steps to reach the exit on the left side of the maze through the exit we
already visited is 3. To reach both exits, we get 4 as the optimal number of steps
to reach both exits.

In Fig. 2, five different test mazes are shown and can be named and described
in table 1. First, the table introduces each maze environment, followed by the
number of open cells and optimal steps to reach all the exits planned for the
maze.

Table 1: List of mazes followed by the number of cells capable of being traversed.
Maze Name Total Traversable Cells

Small Corridor Maze (Fig. 2a) 3

Long Corridor Maze (Fig. 2b) 18

T-shaped Maze (Fig. 2c) 9

Cross Maze (Fig. 2d) 9

Complex Looped Maze (Fig. 2e) 188

Off-policy and on-policy are the standard methods used in Q-learning; off-
policy was chosen for the Q-learning method because it changes Q-values inde-
pendently from its previous policies [2].

Since the “wall-following” Q-learning algorithm does not need to be trained
on each maze, we will only train it on the cross maze shown in Fig. 2d, and we
will validate it on the rest of the mazes defined in table 1.

5 Results

Learning algorithms such as tabular Q-learning, DQN, A2C, and PPO were
tested on each map represented in table 2; the agent performs well when it min-
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Fig. 2: Visual representation of the mazes purposed for the experiment.
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imises the accumulated steps. The results are compared against the A∗ searching
algorithm to reach all the exits in the maze.

Fig. 3 shows the path the tabular Q-learning method with memory took
to reach the exit. The white cells indicate the unvisited cells, and the red cells
correspond to the agent’s path; the cross-hatched areas indicate the blocked areas
where the agent cannot enter. Each maze’s exits will rotate during the 100,000
training iteration; the policies are frozen after one episode. A fresh evaluation
dedicated episode starts with the policies frozen and no epsilon-greedy.

Table 2: Performance of each algorithm at 100,000 episodes with a frozen policy
and no epsilon-greedy exploration. The errors indicate the standard error over
10 trials.

Maze Name A∗ Accumu-
lated Steps

Algorithm method Average total steps reaching all exits

With external memory Without external memory

Small
Corridor 4

Tabular Q-learning 4.0 ± 0.0 501.0 ± 0.0
PPO 77.22 ± 34.61 600.8 ± 124.47
A2C 361.33 ± 72.94 800.4 ± 81.48
DQN 445.88 ± 55.11 47.2 ± 10.83

Long
Corridor maze

30

Tabular Q-learning 30.4 ± 0.4 902.6 ± 64.93
PPO 215.0 ± 67.33 1000.0 ± 0.0
A2C 786.44 ± 84.44 1000.0 ± 0.0
DQN 1000.0 ± 0.0 948.4 ± 35.07

T-shaped maze 16

Tabular Q-learning 16.0 ± 0.0 703.6 ± 80.67
PPO 47.66 ± 8.51 1000.0 ± 0.0
A2C 230.22 ± 105.02 1000.0 ± 0.0
DQN 1000.0 ± 0.0 738.4 ± 93.82

Cross maze 32

Tabular Q-learning 32 ± 0.0 1701.2 ± 81.32
PPO 652.22 ± 162.91 1352.6 ± 149.4
A2C 1452.77 ± 49.97 1452.2 ± 156.6
DQN 1557.44 ± 55.32 887.0 ± 75.32

Complex
Looped maze

232

Tabular Q-learning 948.0 ± 52.0 1951.7 ± 48.3
PPO 2000.0 ± 0.0 2000.0 ± 0.0
A2C 1950.55 ± 49.44 2000.0 ± 0.0
DQN 2000.0 ± 0.0 1667.9 ± 77.10

The “wall-follower” results for each maze environment are shown in table 3.

6 Discussion

In table 2, we can observe each algorithm method’s average total steps to reach
all possible exits in each maze defined in table 1. The small corridor maze con-
sists of 3 open cells, and the agent starts in the middle of the three open cells.
To achieve an optimal accumulated step to reach both exits, the agent has to
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Fig. 3: Paths made by the Memory tabular Q-learning on the specified mazes.

devise a movement strategy to reach one exit, perform a return movement to
the centre, and move to the exit at the other end of the corridor. 4 is the opti-
mal accumulated step to reach both exits on the small corridor maze. It can be
observed that the tabular Q-learning without memory accumulated 501 steps;
this indicates that the agent did not find the second exit and ran out of time.

The accumulated total steps by the Q-learning with memory achieved better
performance than other algorithm methods such as PPO, A2C and DQN, where
the same memory architecture was used to help PPO, A2C and DQN algorithms.

The memory architecture we designed significantly helped tabular Q-learning
training for 100, 000 iterations. It can be seen in table 2 that the tabular Q-
learning with memory achieved 931.661 ± 0.678 average total steps to reach all
exits in the complex looped maze, which shows that a maze as big as the complex
looped maze requires more time to optimise.

Comparatively, PPO and A2C algorithms with our augmented memory per-
formed better than those without external memory. However, DQN’s perfor-
mance suffered from our augmented memory method. The state representation
st = (yt, xt, c⃗(yt,xt)) added unparalleled access to different state representations
due to C(yt, xt, dt) update method shown in (5).

The performance of PPO, A2C and DQN did not reach the optimal ac-
cumulated steps. It can be assumed that PPO, A2C and DQN needed further
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Table 3: Performance of “wall-follower” algorithm learned by Q-learning at
100,000 episodes. The errors indicate the standard error over 10 trials.

Maze Name A∗ Accumu-
lated Steps

Algorithm method
Average total of steps
to reach all exits

Small Corridor 4 Wall-following Q-learning 4 ± 0.0

Long Corridor
maze

30 Wall-following Q-learning 221 ± 0.0

T-shaped
maze

16 Wall-following Q-learning 42 ± 0.0

Cross maze 32 Wall-following Q-learning 32 ± 0.0

Complex
Looped maze

232 Wall-following Q-learning 1731 ± 0.0

adjustments, especially in their network structure, because these algorithms have
proven to be sensitive to hyper-parameters [23].

Table 3 shows that the tabular Q-learning agent learned to perform like a
“wall-follower” algorithm and solved perfect mazes. However, it can be seen that
the algorithm struggled with the complex looped maze as expected. Compara-
tively, our Q-learning with an external memory solution performed better and
reached all exits.

Moreover, suppose there are two potential exits for a maze. In that case,
reaching the potentially closer exit is more efficient. Our augmented memory
tabular Q-learning follows this rule, whereas the “wall-follower” behaviour does
not prioritise reaching the potentially more immediate exit first. The state rep-
resentation given to the “wall-following” algorithm reveals the solution to the
Q-table, and it will solve any given perfect maze with no loops. However, the
state representation given to tabular Q-learning with memory only reveals the
agent’s location and its neighbouring cells history of visit.

For the RL algorithms such as DQN, A2C and PPO, we attempted to hot-
one-encode the observation state into a large flattened maze representation.
Unfortunately, we did not get improved results compared to the state vector,
including the position of the agent and the memory we designed.

7 Conclusion

In deep learning, recurrent neural networks are essential when each piece of
information, through time, is needed to solve a problem. For example, in our
implemented environment, where mazes require the agent to turn back after
reaching a dead-end, the agent must have this information looped back to its
algorithm to be able to perform this movement strategy.

Recurrent neural networks can be computationally expensive and difficult
to train; other difficulties, such as gradient vanishing, can be faced while using
recurrent neural networks. In addition, it may become tedious to adjust all the
activation functions in processing long sequences.
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In this paper, we presented memory augmentation as a straightforward way
to add memory to work with maze-solving algorithms so that it rivals recur-
rent nodes without the difficulties of training them. Moreover, we showed that
this simple state representation significantly benefited the tabular Q-learning
algorithm, where it could perform better than the “wall-follower” generic maze
solver.

It will be helpful to change deep reinforcement learning algorithms such as
PPO, DQN and A2C network structure in the future and try out different update
methods. It will be helpful to integrate the solution we implemented in this
paper to solve other discrete space environments to understand the limitations
and advantages of this memory-augmented method.
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