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Abstract—In this paper, we propose a vehicular optical camera communication system that can meet low bit error rate (BER) and
ultra-low latency constraints. First, we formulate a sum spectral efficiency optimization problem that aims at finding the speed of
vehicles and the modulation order that maximizes the sum spectral efficiency subject to reliability and latency constraints. This problem
is mixed-integer programming with nonlinear constraints, and even for a small set of modulation orders, is NP-hard. To overcome the
entailed high computational and time complexity which prevents its solution with traditional methods, we first model the optimization
problem as a partially observable Markov decision process. We then solve it using an independent Q-learning framework, where each
vehicle acts as an independent agent. Since the state-action space is large we then adopt deep reinforcement learning (DRL) to solve
it efficiently. As the problem is constrained, we employ the Lagrange relaxation approach prior to solving it using the DRL framework.
Simulation results demonstrate that the proposed DRL-based optimization scheme can effectively learn how to maximize the sum
spectral efficiency while satisfying the BER and ultra-low latency constraints. The evaluation further shows that our scheme can
achieve superior performance compared to radio frequency-based vehicular communication systems and other vehicular OCC variants
of our scheme.

Index Terms—Vehicular communication, deep reinforcement learning, optical camera communication, spectral efficiency
maximization, Lagrangian relaxation, low latency
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1 INTRODUCTION

1.1 Background and Motivation

V EHICULAR communications are considered a key trans-
forming technology for enhancing intelligent trans-

portation systems (ITS) and overall road safety by ex-
ploiting communication between vehicles. Every year, data
sharing within vehicular networks is continuously increas-
ing, thus incurring enormous network overhead [1] [2].
As a result, the currently congested and saturated radio
frequency (RF) spectrum cannot accommodate the ever-
increasing data traffic. Recently, optical camera communi-
cation (OCC) has emerged as a potential technology for ITS
[3], [4] and as an alternative to RF because of its license-
free unlimited spectrum, longer lifespans, lower imple-
mentation cost, lower power consumption, and enhanced
security [5]. OCC systems belong to the family of visible
light communication (VLC) systems. In typical OCC sys-
tems, light-emitting diodes (LEDs) are typically used as
transmitters, and cameras are employed as receivers. OCC
overcomes the interference problems of conventional RF-
based communication systems because it offers line-of-sight
(LoS) and directed communication [6].

Another challenge of vehicular networks arises from the
fact that they are highly dynamic, while the vast amounts
of generated data (each vehicle can generate up to 750 MB
per second) should be delivered reliably within stringent
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time constraints to ensure safety. In recent years, various
technologies have been proposed in ITS using traditional
optimization methods, such as [7], [8] reflecting on delay
minimization and reliability guarantee to meet reliabil-
ity and latency requirements for static or slow-changing
vehicular networks. However, they cannot support ultra-
reliability and low latency conditions because of the addi-
tional delays that are introduced due to the need to com-
municate with servers and the extremely high complexity
of the studied problems as different decision variables are
simultaneously controlled. In [7], the vehicular network
transmission power is minimized by grouping vehicles into
clusters and modelling reliability as queuing delay violation
probability. In [8], a joint resource allocation and power
control technique is suggested to maximize the communi-
cation rate considering latency and reliability constraints.
However, the complexity of the system makes it difficult
to guarantee reliability and low latency. The complexity
arises when decision-making involves simultaneous con-
trol of various parameters, such as speed, distance, and
modulation scheme. Further, these schemes involve cen-
tralized communication with the base station, servers or
roadside units, where the complex problems are solved,
which introduces additional latency and makes it even more
difficult to meet reliability and low latency requirements.
Due to their intrinsic complexity and the time required
to solve them, these decision-making problems cannot be
solved using conventional distributed optimization meth-
ods. Fortunately, reinforcement learning (RL) approaches
can serve as an effective alternative solution to overcome the
complexity of such systems [9] because they can be applied
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distributively.
In this paper, we propose an OCC-based vehicular com-

munication system to maximize the sum spectral efficiency
while satisfying the latency requirements and respecting
reliability constraints. The studied problem can be mod-
elled as a Markov decision process (MDP). Although MDP
provides an efficient way to express our framework, tradi-
tional methods used to solve them, such as value-iteration,
require knowledge of the transition probability matrix that
is difficult to obtain in dynamic problems, such as the one
we examine in this paper. These limitations can be over-
come through Q-Learning [9]. However, Q-Learning has
slow convergence and cannot solve large-scale problems.
To address this limitation of the Q-Learning algorithm, we
use the deep RL (DRL). DRL approximates the state-action
value function by adjusting the weights of the employed
deep neural network.

Even though DRL has improved the scalability of RL,
training a centralized RL agent is still infeasible for large-
scale vehicle-to-vehicle (V2V) environments as the one con-
sidered in this paper. This is due to the fact that we need to
collect all the observation states from the vehicular network
and communicate them to an agent (e.g., base station),
which optimizes the policies of all the vehicles centrally.
After determining the policies, the central agent should
communicate them back to the vehicles. This centralized
decision-making is problematic as it causes higher laten-
cies due to communicating data back and forth, worsens
congestion in the network, and may lead to inefficient poli-
cies, particularly when the information is lost or delayed.
Furthermore, the joint state-action space of agents grows
exponentially with an increase in the number of vehicles.
To avoid the above problems, we formulate the problem as
a multi-agent RL (MARL), where each agent considers only
local observations and does not require global communi-
cation with a central agent. In particular, we adopt inde-
pendent Q-Learning [10], in which each local agent learns
its policy independently by modelling other agents as part
of the environment. It has been shown that independent
Q-Learning can lead to well-performing solutions though
there are no theoretical guarantees [11].

1.2 Our Contributions

In this paper, we propose a sum spectral efficiency maxi-
mization scheme in vehicular OCC that satisfies bit error
rate (BER) and latency constraints. In doing so, we deter-
mine the optimal modulation order and speed of the vehi-
cles using DRL. We consider a decentralized, independent
and MARL scheme in solving this problem. To the best of
our knowledge, we maximize sum spectral efficiency by
optimizing speed and modulation in this paper by applying
DRL for the first time in vehicular OCC. The major contri-
butions of this paper are summarized as follows:
• We propose a multi-vehicular deep reinforcement

learning-based approach for maximizing sum spectral
efficiency in vehicular OCC;

• We formulate the maximization problem under BER and
latency constraints considering a small set of modula-
tion schemes. As the optimization function is a non-
deterministic polynomial-time (NP) hard problem lead-
ing to a difficult search for the optimal solution, we model

the problem as a partially observable MDP (POMDP). We
design the reward function to satisfy systems’ require-
ments;

• We transform the considered constrained problem into
an unconstrained one following the Lagrangian relax-
ation method. This essentially simplifies the solution of
the complex problem. We, then, adopt an independent
learning framework and solve the sum spectral efficiency
maximization problem using deep Q-Learning;

• Finally, we evaluate the performance of the proposed
DRL-based optimization scheme through simulations.
The results show that DRL-based optimization algorithm
can effectively learn to maximize the sum spectral effi-
ciency while meeting the constraints. Additionally, our
comparisons demonstrate that our scheme significantly
outperforms other communication technologies, i.e., RF
systems as well as variants of our scheme.

The remainder of this paper is organized as follows.
We present the vehicular OCC system model with different
performance parameters in Section 3. Section 4 outlines the
proposed constrained problem formulation and RL-based
MDP formulation. The solution to the multi-agent problem
using deep Q-Learning is presented in Section 5. The simu-
lation setup and training procedure for the proposed DRL
algorithm are explained in Section 6. Section 7 presents sim-
ulation results using the proposed DRL-based optimization
scheme. Finally, concluding remarks are drawn in Section 8.

2 RELATED WORKS

The capabilities, potentials, and advantages of OCC systems
have already been surveyed in [3], [5], [6], [12]. The existing
works mainly target to increase the data rate, but they do
not consider the ultra-low latency and BER constraints that
we consider here. Based on variation in LED light intensity,
a flag image was generated via communication pixels with a
10 Mbps data rate [6]. In [5], the authors proposed an image
sensor-based VLC system, which achieved a 20 Mb/s/pixel
data rate without LED detection and 15 Mb/s/pixel data
rate with 16.6 ms real-time LED detection. In [3], the data
rate was further improved to 55 Mbps, where they achieved
a BER < 10−5. The BER performance of OCC systems was
investigated in [12], which experimentally demonstrated
that the proposed system can deliver a data rate of 150
bits/s across a range of up to 60 m using a single com-
mercially available RGB LED and a 50-frame/s camera. The
above-mentioned schemes demonstrated the great potential
of OCC systems; however, they did not consider mobility
and they were not optimized considering reliability and
latency constraints.

DRL has already been applied to solve various re-
source allocation problems [13]–[16] in vehicular networks
to address their time-varying nature, making it impos-
sible to use traditional optimization methods. In [13], a
deep reinforcement learning framework was developed
for spectral sharing in an RF-based centrally optimized
system where each V2V link acted as an agent. In [13],
the agents collectively interacted with the communication
environment, received a common reward, and learned to
improve spectrum and power allocation through MARL.
The authors in [14] employ a centralized decision-making
approach and distributed channel allocation using multi-
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agent deep reinforcement learning to maximize spectrum
efficiency in vehicular networks. However, they did not
analyze the system’s reliability and latency performance. In
[15], the authors addressed a resource provisioning problem
in vehicular clouds to dynamically meet resource demands
and stringent quality of service (QoS) requirements by min-
imizing overhead of reprocessing and the types and amount
of resources required. The authors in [16] studied a trans-
mission delay minimization problem in software-defined
vehicular networks, where the problem was formulated as
a POMDP and solved with an online distributed learning
algorithm.

The above-mentioned schemes face interference issues
as they use RF technology. In such systems, interference
or collision between signals occurs when multiple vehicles
exist in close vicinity. In RF systems, several techniques,
such as frequency planning methods or machine learning-
based interference cancellation approaches, can be em-
ployed to mitigate the encountered interference. Although
these methods are effective, they have high computational
complexity, making it challenging to reliably find the opti-
mal solutions. Different from these approaches, our scheme
is based on vehicular OCC which overcomes interference
problems as it can spatially separate and process differ-
ent transmitter sources independently on its image plane
[17]. This happens because it has millions of pixels, which
provides the freedom to handle multiple users. Moreover,
previous RF-based systems did not consider reliability and
latency constraints concurrently, which makes it difficult to
guarantee that the information is received reliably within
the shortest possible time.

To the best of our knowledge, optimizing the perfor-
mance of vehicular OCC using DRL has not yet been
investigated in the literature. Recently, several studies sug-
gested the use of RL in hybrid RF and photodiodes (PD)-
based VLC networks [18]–[20]. Specifically, RL for network
selection considering the traffic type and the possibility of
having learning records to improve the Q-Learning algo-
rithm was applied in [18]. An RL-based energy-efficient
resource management scheme to improve energy efficiency
was proposed in [19] and in [20], the authors implemented
MARL to determine online power allocation to enhance
the user’s QoS. The above-stated systems use traditional
Q-Learning, which is not suitable for high-dimensional
problems. More importantly, they did not consider any
reliability and low latency requirements. Moreover, they
used PD-based receivers, which face interference problems
when dealing with multiple vehicles.

3 PROPOSED VEHICULAR OCC MODELLING

In this section, we first present the considered vehicular
OCC system model. We then specify the performance-
defining metrics of the OCC in terms of the BER, achievable
rate, and observed transmission latency.

3.1 System Model

We consider a vehicular OCC system as shown in Fig. 1,
where each vehicle acts as an individual agent. Each vehicle
is equipped with a transmitting unit at the back consisting
of LEDs backlights and a vision camera set and a receiving
unit at the front having a high-speed camera (1000 frames

Fig. 1: Proposed system model for vehicular optical camera
communication.

per second (fps)).1 The function of the camera in the front
is twofold. First, it measures the forward distance. Second,
the camera acts as a receiver that decodes the transmitted
data from the LED transmitters of the front vehicle. The
camera at the back measures the backward distance using
a stereo-vision camera similarly to [21]. As shown in Fig.
1, each vehicle receives information from the front vehicle
and transmits information to the backward vehicles. This
information may include the vehicle’s moving intentions
(for example, braking, accelerating, changing lanes), emer-
gency information, and so on. Let B be the number of V2V
links at the back of each vehicle, where B = {1, 2, · · ·B}
is the set of V2V links. We express the distance with the
backward vehicles as db where b ∈ B and b represents
the index of the backward V2V link. In our system, the
number of vehicles that each vehicle interacts with equals
the number of vehicles with which the vehicle can establish
LoS links. This number implicitly depends on the density
and the decisions of each vehicle to accelerate (and maybe
overtake) or brake.

Our system employs an adaptive modulation scheme
that consists of M-ary quadrature amplitude modulation
(M-QAM) and time division multiple access (TDMA). The
transmitter contains arrays of LEDs that transmit at differ-
ent rates to different users under the adaptive modulation
scheme. To support transmission at different modulation
orders for different backward vehicles (links), we introduce
TDMA into our system, similar to [22], where specific time
slots are assigned to each vehicular link at the back. In this
way, different time slots are allocated to each V2V link for
either transmission or reception. However, since each link
of the vehicle transmits information only at specific times,
the sum spectral efficiency is divided by the number of
available vehicles, B, at the back.

M-QAM is used to modulate the signal in VLC [23]. M-
QAM is relatively easy to implement and offers very low
BER, high-speed, and flicker-free communication [12]. At
the transmitter, the data bit-streams are first mapped into
symbols by splitting the amplitude and phase into in-phase
and quadrature components, respectively. The resulting

1. If cameras of low frame rate were used, e.g., 30 fps, the data rate
per pixel would be limited to 15 bits per second (bps) or less to satisfy
the Nyquist frequency requirement, which is low for the considered
applications. Therefore, high-speed cameras should be utilized in the
receiver systems to achieve higher data rates or receive high-speed
optical signals.
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signal is then transmitted through the optical channel by
modulating the LED intensity. At the receiver, the camera
captures the modulated light waveform within its expo-
sure time. During this time, the image sensor captures the
intensity of the light coming in as different LED states,
e.g., on, off, and mid states. The original signal information
can be extracted from the detected intensity in these pixels
using an efficient M-QAM demodulation scheme [24]. In
[24], a simple mathematical formulation for encoding and
decoding the amplitude and phase of transmitted symbols
was proposed, where the modulated symbol is sampled
in three consecutive image frames by the image sensor.
The LED states are identified from the captured frames
and a lookup table is developed. The phase position is
then retrieved using the lookup table, and the reconstructed
phase is converted to radians so that it can be mapped to
M-QAM. Finally, the original signal is perfectly recovered
from the detected amplitude and phase.

3.2 Optical Channel Model

The transmitter and the camera receiver are assumed to
have a continuous LoS link, guaranteeing that the vehicles
can continuously communicate with one another without
interference. OCC has a flat-fading or diffuse channel, de-
pending on the channel characteristics. In general, the OCC
channel contains two different types of light propagation
components: (i) diffuse components arising from lights
being reflected off of other cars or reflective surfaces, and
(ii) LoS components resulting from direct light propagation
from the transmitter to the receiver. The diffuse light com-
ponent is neglected in this paper since it typically has far
less energy than the LoS component.

The LEDs follow a Lambertian radiation pattern and
can be modelled using a generalized Lambertian radiant
intensity [25]. According to [25], [26], the channel gain, Hb

t ,
of link b in time t between the transmitter and the receiver
is given by

Hb
t =

{
(m+1)A

2π(db
t)

2 cosm(ϕ) Ts(θ) g cos(θ), 0 ≤ θ ≤ θl

0, θ > θl
(1)

where m is the order of the Lambertian radiation pattern, A
is the area of the entrance pupil of the camera lens, dbt is the
agent’s distance from the backward vehicles at time t, ϕ is
the angle of irradiance with respect to the emitter, Ts(θ) is
the transmission efficiency of the optical filter, g is the gain
of the lens, θ is the angle of incidence (AoI) with respect
to the receiver axis, and θl denotes the field of view (FoV)
of the image sensor lens. m is derived as m = − ln(2)

ln(cos(Φ1/2))
,

where Φ1/2 is the LED semi-angle at half luminance. In this
paper, we consider fixed AoI, θ, following the analysis of
our previous conference paper [27]. In particular, we fix
the AoI to 60o, which can help our system to meet the
latency and reliability requirements. We made this design
decision as it is challenging to change the AoI continuously
in a practical scenario because it would introduce additional
delays caused by the need to change the AoI mechanically
in the vehicle.

We would like to note that in our paper, we neglect
the signal detection overhead of recognizing light sources
under mobile scenarios inspired by [28], where authors pro-
posed a statistical vehicle motion model in an image plane.

In this paper, the authors showed that the vehicle motion
along the vertical and horizontal axes of the image plane
is limited to one pixel in most cases, which is very small
compared to the entire image pixels in the captured image.
Moreover, the channel gain, and as a result, the signal-to-
noise ratio (SNR) at a pixel, remains constant as long as
the projected image of the transmitter LED occupies several
pixels. Thus, the vehicle motion and pixel illumination
model are used as guidelines for our system to overlook the
overhead of recognizing the desired light sources in mobile
environments. We have also neglected the frame-to-frame
time gap to detect the image frame using the camera. This
is because we have used a high-speed camera [5].

3.3 System Performance Parameters

In order to analyze our vehicular OCC system performance,
we adopt the SNR formula given in [26]. According to [26],
the received SNR, γb

t , of the link b at time t for a single
LED-camera communication can be expressed as2

γb =


ρk2P 2

qPnWf2l2(db)2
; if db < dc ,

ρk2P 2

qPnWfpss2(db)4
; if db ≥ dc ,

(2)

where k = (m+1)A
2π cosm(ϕ) Ts(θ) g cos(θ), ρ is the

receiver’s responsitivity, q is the electron charge, Pn is the
power in background light per unit area, P is the optical
transmit power, Wfps is the sampling rate of the camera in
fps, l is the diameter of a LED, f is the focal length and s is
the edge-length of a pixel.

Motivated by the trade-off among modulation order,
achieved BER, and spectral efficiency, we consider adaptive
modulation that permits us to adapt the modulation order
by satisfying the target BER requirement of the system. This
adaptive scheme can deal with the time-varying nature of
the channel while maintaining the desired link quality and
maximizing the rate for the given channel conditions [29].
Furthermore, the adaptive modulation scheme enables the
OCC system to transmit at high-speed under favourable
channel conditions, while the transmission rate decreases
when the channel conditions worsen. It is worth noting that
different users might have different transmission rates since
they do not have precisely the same SNR, and consequently,
the users have varying BERs. For the considered system, we
study uncoded M-QAM with the square constellation as an
example. Still, our scheme is general and other modulation
schemes can be employed. The BER of the optical wireless
channel at the receiver using the M-QAM scheme is evalu-
ated similarly to [23] as:

BERb =
2
(√

M b − 1
)

√
M b log2(M

b)
erfc

(√
3 γb log2(M

b)

2 (M b − 1)

)
, (3)

where M b is the available constellation points for each V2V
link b, e.g., M = 4, 8, 16, · · · and erfc(·) is the complemen-
tary error function. For a given M b, the spectral efficiency
of the M-QAM scheme can be expressed as:

SEb = log2(M
b). (4)

2. For notational simplicity, we drop t from the notation in the
remainder of the paper unless it is necessary; hence, we will adopt γb

instead of γb
t and so on. Also, it is clear from the context that distance

is our working variable.



5

It is worth noting that the adaptive modulation in our
system is adjusted as follows. Suppose there is any change
in the modulation order during communication. In such
case, the transmitter informs the receiver regarding the
employed modulation by appending a small overhead, e.g.,
some extra bits, to each transmitted packet. This overhead
can be neglected because, in practice, a small set of modula-
tion schemes is used, e.g., 6, in our system. This requires
only three bits to be appended to the transmitted data
for the receiver. Hence, in our system, the overhead for
notifying the modulation order is minimal compared with
the transmitted packet size, i.e., 5 kbits.

The channel capacity (measured in bits/s) of a camera-
based communication system depends on the employed
modulation scheme, as shown in [17] where the transmis-
sion rate of link b is expressed as

Cb =
(Wfps/3)NLEDswχ

2 tan
(
θl
2

)
· db

· log2(M b), (5)

where NLEDs is the number of LEDs at each row of the trans-
mitter, w is the image width (in case the rolling axis is along
the width of the image sensor), and χ is the size of LED
lights in cm2. We divide Wfps by three as the modulated
signal must be sampled at three times of sampling frames
by the camera, which is sufficient for decoding the original
M-QAM signal [24]. In other words, to perfectly reconstruct
the amplitude and phase, a modulated symbol is sampled
in three consecutive frames. Please note that the distance db

in (5) is affected by the relative speed of vehicle v, which
in turn affects the position of the vehicle on the road. Let
us assume a slotted time. The inter-vehicular distance at
current time t is adjusted using dt = dt−1 + vt ·∆t, where
dt−1 is the distance of the previous time instance and ∆t is
the time elapsed between time instants t and t − 1. Please
note that we have considered the rolling shutter camera
operation to calculate the channel capacity.

In the considered vehicular OCC system, the end-to-end
latency is dominated by the transmission latency and thus
we neglect the computational latency. This is due to the
fact that we are processing a small amount of data, i.e., the
decision information from transmitter to receiver, and thus,
the computational time will be short. Thus, the transmission
latency of the packet size, L, can be expressed similarly to
[27] as τ b = L

Cb .

4 PROPOSED CONSTRAINED AND MDP FORMU-
LATION

4.1 Proposed Constrained Problem Formulation

Considering the proposed framework and ultra-low la-
tency and BER requirements, we formulate an optimization
scheme that aims at maximizing the sum spectral efficiency
of the vehicular OCC system by selecting the optimal
modulation order from an available set and adjusting the
relative speed of the vehicle to the optimal value. The BER
and latency are constrained such that they meet the values
imposed by the system. Mathematically, our constrained

Fig. 2: An illustration of basic reinforcement learning frame-
work for V2V communications.
maximization problem is, hence, formulated as:

max
M,v

1

B

B∑
b=1

log2

(
M b
)
, (6)

s.t. BERb ≤ BERtgt, ∀b; (7)

τ b ≤ τmax, ∀b; (8)

M b ∈ M, ∀b; (9)

where M is the set of QAM modulation orders, BERtgt is the
maximum target BER, and τmax is the maximum affordable
latency. Constraints (7) and (8) guarantee that the BER and
latency thresholds are satisfied. The modulation scheme is
chosen from a small set of available M-QAM schemes, as
shown in (9).

4.2 MDP Formulation

The studied problem in (6) is mixed-integer programming
(MIP) with nonlinear constraints for BER (7) and delay
(8). This makes our problem NP-hard [30]. It is known
that MIP problems have high computational complexity
[31] and although it may be possible to solve them using
dynamic programming or exhaustive search techniques,
these methods cannot be used in dynamic systems as the
one we investigate in this paper since they are extremely
time-consuming or computationally demanding. As in our
problem, we simultaneously control the speed and modula-
tion for multiple links, the decision space is large. Due to the
entailed computational and time complexities in solving the
proposed problem, we first express the problem as an MDP
problem in the next subsection. This gives us the opportu-
nity to use other tools, such as deep RL, to solve the problem
with less complexity. Note that vehicular communication
must satisfy the maximum latency and BER requirements
to ensure that the information is received reliably within
the shortest time. We adopt an independent learning frame-
work, where each vehicle independently decides its action,
but they all affect the environment. It has been shown that
this leads to well-performing solutions without requiring
explicit communication [31]. Preceding to presenting our
solution, we first model the optimization problem in (6) as
an MDP in the next subsection.

4.2.1 Modelling of MDP

We model the proposed multi-agent RL problem as an MDP,
where each vehicle acts as an agent, and everything beyond
the particular vehicle is regarded as the environment. Every
vehicular agent interacts with the environment to have a
better understanding of it to decide its own policy. The
agents explore the environment and improve the spectral
efficiency maximization policies based on their observations
of the environmental state. We chose to use independent Q-
Learning [10] for our approach as it allows each local agent
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to learn its policy independently without requiring global
communication. While there are methods such as [32], [33]
that fall between independent and centralized learning,
they still require some communication which may result
in longer delays and still have significantly higher compu-
tational complexity compared to our independent learning
approach. Moreover, considering only local communication
significantly increases the state and action space (expo-
nentially with the number of neighbours, i.e., vehicles),
which may render the problem intractable. The deep Q-
network utilized in this paper scales well with the number
of vehicles.

The optimization problem (6) is modelled as an MDP
with a tuple (S , A, p, r, ζ) [9], where S is the set of all
possible states; A denotes the set of all possible actions;
p(st+1, rt|st, at) denotes the transition probability which
describes the probability that an agent selects an action
at ∈ A and transits to a new state st+1 ∈ S from the current
state st ∈ S ; while r represents the reward. The parameter
ζ ∈ [0, 1] is the discount factor, which gradually discounts
the effect of an action on future rewards. A discount factor
ζ = 0 provides a short-sighted goal that maximizes the
immediate reward. When ζ is close to 1, the agent focuses
more on the future reward, and the scheme becomes far-
sighted. In practice, a far-sighted approach is desirable as it
achieves better returns by focusing on future discounted
rewards. It is also notable that an algorithm with lower
discount factors converges faster, especially during early
learning. However, a small value of the discount factor may
lead to highly suboptimal policies that are too myopic.

We present a general RL framework in Fig. 2 consisting
of agents and environment. From this figure, we see that
at each time t, an agent observes a state, st ∈ S and
accordingly takes an action, at ∈ A based on the policy,
π and receives a reward, rt, from the environment. Next,
we express the state space S , action space A, and reward
function, r of the considered RL framework.

State Definition: In our system, the observed state from
the environment by each agent couples two components:
the backward distance vector, db

t = (d1t , · · · , dBt ) and the
modulation orders Mb

t = (M1
t , · · · ,MB

t ), selected from the
set, M = {4, 8, 16, 32, 64}, being the transmitting modula-
tion order for the backward vehicles. In summary, the state
is expressed as st =

{
db
t ,Mb

t

}
.

Action Definition: At each time t, the agent takes an ac-
tion at, a decision regarding the relative speed of the agent
(i.e., vehicle), vt and selecting modulation order, Mb

t ∈ M,
based on the current state, st by following a policy π.
Overall, the action space is summarized as at =

{
vt,Mb

t

}
.

Reward Definition: At each time slot t, when the agent
takes an action at in state st, it will immediately receive
a reward rt. Note that, an effective reward framework is
imperative for the learning algorithm to achieve the desired
goal, which is achieved through exploration. Therefore, the
reward function that guides the overall learning should be
consistent with the objective.3 First, we express the reward

3. From hereon, we will use backward distance and distance inter-
changeably though it indicates the same meaning.

related to distance as follows:

rd,i
t =

{
−1× (dstop − dbt), dbt < dstop ,

1
db
t−dstop

, dbt > dstop ,
(10)

where i is the index of the agent. Recall that, dbt represents
the backward distance of the vehicle; however, in designing
our reward, we only consider the vehicle behind residing
in the same lane on the road. The priority is to avoid
collision with the vehicle in the same lane. This is the
decisive vehicle because it has the possibility of coming
closer to the agent vehicle in the following time step or
in the near future. dstop is the stopping distance, which is
equal to the sum of the distance covered by the vehicle
to travel after the brakes are activated and the distance
covered by the driver’s reaction time after observing a
situation [34]. In our system, each vehicle performs the same
process individually. As a result, for notational simplicity,
we drop i hereafter. Since our objective is to maximize the
sum spectral efficiency, we design our reward function as a
weighted sum of a reward related to the backward distance
and the sum spectral efficiency (6). As the goal of RL is to
maximize the reward, it will conclusively maximize the sum
spectral efficiency while maintaining a safe distance. Hence,
considering the objective function (6), the overall reward,
Rt, can be expressed as

Rt = ωd rd
t + ωr

1

B

B∑
b=1

log2

(
M b

t

)
, (11)

where ωd and ωr are positive weights that balance distance
and sum spectral efficiency rewards. The weights are ad-
justed based on the system requirements. It sets the priority
depending on its distance and modulation scheme changes.

5 PROPOSED SOLUTION

5.1 Constrained MDP Formulation

The goal of RL is to find the optimal policy that maximizes
the expected return from the state st, whereas the return, Gt,
is defined as the cumulative discounted reward, as follows:

Gt =
∞∑
j=0

ζjRt+j+1, 0 ≤ ζ ≤ 1. (12)

In our problem, an RL agent aims at determining the
optimal policy, i.e., speed and modulation order, while
respecting BER and latency constraints. This can be formally
expressed as

max E [Gt (st, at)] , ∀t (13)

s.t. BERb
t ≤ BERtgt, ∀t; (14)

τ bt ≤ τmax, ∀t; (15)

5.2 The Lagrangian Approach

According to [35], constrained MDP problems can be solved
by recasting them as unconstrained ones via the Lagrange
relaxation method. Hence, we reformulate the constrained
optimization problem in (13) - (15) by introducing Lagrange
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multipliers associated with the BER and latency constraints,
cλ,ν(st, at), as:

cλ,ν(st, at) = Rt (st, at)−
B∑

b=1

λb · (BERb
t − BERtgt)

−
B∑

b=1

νb · (τ bt − τmax), (16)

where λ = (λ1, λ2 · · · , λb) and ν = (ν1, ν2, · · · , νb) are
vectors representing the Lagrange multipliers correspond-
ing to the constraints in (14) and (15), respectively. The
optimal value of the constrained MDP problem can be
computed as [36]:

Lπ∗,λ∗,ν∗

δ (s) =min
π∈ϕ

max
λ,ν≥0

V π,λ,ν(s)−
B∑

b=1

λbδ1 −
B∑

b=1

νbδ2

= max
λ,ν≥0

min
π∈ϕ

V π,λ,ν(s)−
B∑

b=1

λbδ1 −
B∑

b=1

νbδ2,

(17)

where δ = {δ1, δ2}, with δ1 = BERtgt and δ2 = τmax. ϕ
denotes the set of all possible stationary policies,

V π,λ,ν(s) = E

[ ∞∑
t=0

ζcλ,ν (st, π (st)) | s0 = s

]
. (18)

A policy π∗ is optimal for the constrained MDP, if and
only if

Lπ∗,λ∗,ν∗

δ (s) = max
λ,ν≥0

V π∗,λ,ν(s)−
B∑

b=1

λbδ1 −
B∑

b=1

νbδ2.

(19)

For a fixed λ and ν, the rightmost maximization of (17)
is equivalent to solving the following dynamic program-
ming equation:

V ∗,λ,ν(st) = min
at∈A

cλ,ν(st, at)

+ζ
∑

st+1∈S
p(st+1 | st, at)V ∗,λ,ν(st+1)

 ,∀s ∈ S,

(20)

where V ∗,λ,ν : S 7→ R is the optimal state-value function
and st+1 is the state at time slot t+ 1.

We also define optimal action-value function Q∗,λ,ν :
S × A 7→ R which represents the Q-value of action at in a
given state st.

Q∗,λ,ν(st, at) = cλ,ν(st, at)

+ ζ
∑

st+1∈S
p(st+1 | st, at)V ∗,λ,ν(st+1), (21)

where V ∗,λ,ν(st+1) = maxat∈A Q∗,λ,ν(st+1, at),∀s ∈ S. In
words, Q∗,λν(st, at), is the infinite discounted cost achieved
after taking action at in state st and therefore, following the
optimal policy π∗,λ,ν , which is given by

π∗,λ,ν(st) = arg max
at∈A

Q∗,λ,ν(st, at),∀s ∈ S. (22)

4In practice, the optimal policy, π∗, cannot be deter-
mined using value-iteration method [9] as it requires tran-
sition probabilities to be known beforehand. For the con-
sidered problem, continuous computation of the transition
probability matrix is necessary, which is computationally
demanding. To solve this problem, we adopt a model-free
RL approach known as Q-Learning, which learns Q∗ and π∗

online, without requiring the model of the environment and
computing the transition probability matrix. Q-Learning
uses the Qt(st, at) values instead of the value function in
(20). Qt(st, at) represents how good it is to take action at
when starting from state st, and thereafter follow the policy
π. To determine the optimal policy π∗, the Q-Learning al-
gorithm employs the following recursive formula to update
the Qt(st, at) values:

Qt+1(st, at) =(1− αt)Qt(st, at) + αt

[
ct(st, at)

+ζ max
at+1∈A

Qt(st+1, at+1)

]
,

(23)

where αt ∈ [0, 1] is a time-varying learning rate and at+1 is
the greedy action in state st+1 at time slot t+1. The learning
rate refers to the rate at which newly updated information
overrides the old one.

Q-Learning can select actions using policies such as the
ϵ-greedy, where ϵ ∈ [0, 1] [37]. It has been shown in [36]
that the Q-Learning algorithm will eventually converge to
the optimal Q, Q∗(st, at) with probability 1 when all the
state-action pairs are visited often, and the learning rate αt

respects the following conditions:

αt ∈ [0, 1],
∞∑
t=0

αt = ∞,
∞∑
t=0

(αt)
2
< ∞. (24)

We discuss the learning of the optimal λ and ν in Section
5.3.2.

5.3 Deep Q-Learning

Q-Learning is a well-known method [9] that is used to
solve problems expressed as MDP. The convergence speed
of this algorithm depends on the state-action space size.
Q-Learning converges faster for small state-action spaces
since the agent can quickly explore the state-action pairs
and determine the optimal policy. For larger state-action
spaces, the convergence is slow which makes the deter-
mination of the optimal actions not feasible within the
stringent time constraints imposed by the dynamic nature
of the environment in problems like the one we study here.
Although some linear function approximation approaches
exist for solving large-scale RL problems, their capabilities
are limited to medium-scale problems. In high-dimensional
and complex systems, conventional RL methods cannot
learn the informative features of the environment quickly,
despite employing effective approximation functions. This
is due to the fact that most of the state-action pairs are
rarely visited, and thus the corresponding Q-values are
not updated regularly, leading to a much longer time to

4. For notational simplicity, we drop the Lagrangian multipliers from
the notation in the remainder of the paper unless it is necessary,
for example, we will write c(st, at), Q∗(st), instead of cλ,ν(st, at),
Q∗,λ,ν(st), respectively.
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converge. More importantly, distance and speed are contin-
uous values that lead to a large state-action space; hence,
the tabular Q-learning algorithm cannot be used because it
works with discrete values. Discretization may be applied,
but this affects the quality of the solution.

These issues, however, can be overcome by using deep
learning-based function approximators, in which deep neu-
ral networks (DNN) are trained to learn the best policy. In
a deep Q-Network (DQN), a DNN function approximator
with weights θ is employed as Q-network, and then Q-
Learning is combined with deep learning. Once the weights
are determined, the Q-values, Q(s, a), will be the DNN
outputs. DNN addresses sophisticated mappings between
channel information and desired output via large amounts
of training data, which are then used to calculate Q-values.

5.3.1 Target Network

In order to stabilize the learning of DQN, we follow the
target network approach. The DQN is composed of two
networks: the main network, which approximates the Q-
function, and the target network, which serves as a target
for updating the main network. In the training phase, the
main network parameters β are adjusted after every action,
and target network parameters β− are updated after a
certain period of time. The target network is not updated
after each iteration because it adjusts the main network up-
dates to control the value estimations. If both networks are
updated simultaneously, the change in the main network
would be exaggerated due to the feedback loop from the
target network, resulting in an unstable network. To ensure
stability in learning, the neural network aims to minimize
the loss function, L(β), which is expressed as

L(β) = E [yt −Q (st, at;β)]
2
, (25)

where yt = c(st, at)+ ζmaxat+1∈A Q (st+1, at+1;β−) is the
target for each iteration. Note that, β− are held fixed when
optimizing the loss function L(β).

5.3.2 Optimal Lagrange Multipliers

The optimal value of the Lagrange multipliers λb, νb in
(16) depend on the BER constraint, BERtgt and latency con-
straint, τmax, respectively and can be learned online using a
stochastic sub-gradient method as presented in [38]

λb
t+1 = Λ

[
λb
t +ϖt(BERb

t − BERtgt)
]
, (26)

νbt+1 = Λ
[
νbt +ϖt(τ

b
t − τmax)

]
, (27)

where we apply the projection operator Λ in order to project
λb and νb onto [0, λmax] and [0, νmax]. To ensure the bound-
edness of λmax and νmax, we consider λmax, νmax > 0 to be
large enough. ϖt corresponds to a time-varying learning
rate, which obeys the same conditions as αt in (24). The
following additional conditions must be jointly satisfied by
αt and ϖt to guarantee the convergence of (26) and (27) to
λ∗ and ν∗, respectively:

∞∑
t=0

(αt +ϖt) < ∞ and lim
t→∞

ϖt

αt
→ 0. (28)
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Fig. 3: Proposed simulation framework combining SUMO
simulator, middleware and DRL agent for vehicular com-
munication.

5.4 Complexity Discussion

In practice, convergence in finding the optimal value of
BER and latency constraints is improved with the cost of
increased complexity in finding λb and νb. The optimal
constraint values can be determined by selecting constraints
that are frequently violated during the sub-gradient method
in (26) and (27). Additionally, the time complexity of the
running process depends on the size of the state-action
space and the structure of the neural networks. Please
note that, a key distinction between RL and the conven-
tional stochastic non-convex method is the inherent com-
putational costs to link the bias in the search direction,
which is determined by the technique utilized in the DRL
framework. Moreover, discretization can affect the quality
of the solution. If the discretization is too coarse, it may
result in an inefficient sub-optimal solution; if it is too fine,
it will take an enormous amount of time to find a solution
with no guarantee of optimality. Therefore, the challenges
are balancing the trade-off between choosing the optimal
gradient methods, precise generalization or quantization
approaches, and function parameterization in RL.

6 SIMULATION SETUP

This section describes the implementation details of our
proposed DRL-based vehicular OCC scheme. Specifically,
we build the simulation environment upon microscopic
traffic simulator Simulation of Urban Mobility (SUMO) [39]
and DRL framework within SUMO.

6.1 SUMO Framework

Our simulation framework maintains the connection be-
tween the SUMO and DRL agent using Traffic Control
Interface (TraCI). To simulate the proposed vehicular frame-
work in a more practical scenario, we convert the proposed
environment into a corresponding SUMO map. Each vehicle
is considered an agent and modelled accordingly to test the
proposed DRL method in the integrated environment. The
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Algorithm 1 DQN Training Algorithm

Initialization: Initialize SUMO environment, DQN pa-
rameters, replay memory according to system require-
ments.
Output: Action-value function, loss (25).
for each episode do

Update vehicle speed and modulation order
for each link, b do

Observe state st
Choose action at according to the ϵ-greedy policy
Execute action at, observe reward rt and next state
st+1

Store transitions (st, at, rt+1, st+1) in the replay
memory

end for
Agent takes actions and receive reward rt using (11).
Update Lagrange multipliers λ and ν using sub-
gradient method as in (26) and (27), respectively.

end for
Sample a mini-batch from the replay memory.
Optimize error between Q-network and target Q, defined
in (25), using RMSProp optimizer gradient descent.

vehicles enter randomly in SUMO environment and move
or leave the network following SUMO mobility models.

As shown in Fig. 3, the proposed simulation framework
consists of three parts: firstly, SUMO, which is the simulator
environment for creating traffic scenarios; secondly, the
middleware that connects the SUMO environment with the
DRL agents; and finally, the DRL agents, which maintain
and update the network policies and execute actions for
the simulation. After the training is initialized, the SUMO
simulator is loaded, progressed, and reset with required
information such as the transportation network and vehi-
cles via TraCI. During the simulation, TraCI interacts with
the SUMO environment and extracts the data from SUMO
to produce observations for state space and aggregate re-
wards. Moreover, TraCI retrieves different features from the
network, e.g., the number of vehicles on each road, the
speed of the vehicle, and the current position of the agent.
Based on the current observations, the DRL agent evalu-
ates the current traffic environment and assigns an action
based on the policy of the neural network. Accordingly, the
agent updates the state and moves to the next step in the
SUMO environment and this process continues until all the
simulation steps finish. The reward is then computed and
transferred to the DRL agent for optimization at the end
of each simulation run. The objective is to train the policy
network that ensures higher communication quality in the
form of sum spectral efficiency, delay, and BER.

We have modified the SUMO environment according
to the requirement of our proposed multi-agent vehicular
system. We illustrate a screenshot of the simulated vehicular
model represented on SUMO GUI interface in Fig. 4. As
shown in this figure, we have three lanes, where vehicles
move at different velocities and each vehicular agent has
potentially multiple vehicles in front and back. Please recall
that the agent must satisfy the constraints of the system to
generate a higher reward and minimize the loss.

TABLE 1: List of DRL hyper-parameters and their values

Parameter, Notation Value
Mini-batch size 32
Replay memory size 100000
Number of hidden layer (Neurons) 1(250)
Exploration rate, ϵ 0.05
Discount factor, ζ 0.98
Activation function ReLU
Optimizer RMSProp
Learning rate (used by RMSProp) 0.001
Gradient momentum (used by RMSProp) 0.95

6.2 DNN Settings

6.2.1 Network Architecture

This subsection provides the details of the employed DQN
architecture as well as the training parameters we em-
ployed. The DQN consists of three fully connected layers,
including an input layer, a hidden layer, and an output
layer. Recall that distance and modulation order define the
state space; hence, the input layer consists of M b+db nodes.
The output layer consists of M b + v nodes, as we have
M b + v actions. The hidden layer has 250 neurons. We
use rectified linear unit (ReLU) as the activation function
[37], defined as f(x) = max(0, x). We adopt root mean
square propagation (RMSProp) optimizer [40] as the train-
ing algorithm to minimize the loss function and update
DQN network parameters. We set the initial learning rate
α to 0.001. It is known that a large learning rate leads
to fast convergence, but at the same time, may incur a
poor convergent point with unsatisfactory performance,
e.g., local minima, saddle point. On the contrary, intensive
training computations are required for a small α as it results
in slow convergence. Therefore, an appropriate α should
carefully be chosen. In our case, the RMSProp optimizer is
used to vary the learning rate over time. We use TensorFlow
[41] in our simulations to implement deep reinforcement
learning framework. We implement ϵ-greedy policy to bal-
ance between exploration and exploitation while avoiding
overfitting. According to ϵ-greedy policy, the action with
maximum Qt(st, at) value is chosen with probability 1 − ϵ
while a random action is selected with probability ϵ.

6.2.2 Training Procedure

The training procedure of our proposed DQN algorithm is
summarized in Algorithm 1. The input of the algorithm is
the current observations (distance and modulation scheme),
and the output is the actions (speed and modulation
scheme) chosen by the vehicle. The agents map the actions
with the corresponding action-value functions, i.e., Q-value.
We train the DQN algorithm for multiple episodes, and at
each training step, all the agents execute the ϵ-greedy policy
to explore the state-action space. Following the environment
transition due to channel variation and actions taken by
all agents, each agent observes and stores the transition
tuple, (st, at, rt+1, st+1), in the replay memory. At each
episode, a uniformly sampled mini-batch of experiences is
taken from the memory for updating β parameters of (25)
using stochastic gradient descent methods and the loss is
estimated using (25).

For the simulations, we train the DQN for 10000
episodes. The exploration rate, ϵ is set to 0.05. The tar-
get Q-network parameters are updated every 400 learning
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Fig. 4: Illustration of proposed scenario in SUMO GUI interface.

TABLE 2: Vehicular OCC modelling parameters

Parameter, Notation Value
Angle of irradiance w.r.t. the emitter, ϕ 70o

AoI w.r.t. the receiver axis, θ 60o

FOV of the camera lens, θl 90o

Image sensor physical area, A 10 cm2

Transmission efficiency of optical filter, Ts 1
Concentrator/lens gain, g 3
Optical transmitting power, P 1.2 Watts
Constellation size, M 4, 8, 16, 32, 64
Camera-frame rate, Wfps 1000 fps
Number of LEDs at each row, NLEDs 30
Packet size, L 5 kbits
Size of the LED, χ 15.5 × 5.5 cm2

Resolution of image, w 512 × 512 pixels

steps, where each episode contains 100 steps. We choose
a discount factor, ζ = 0.98. For our simulation run, we
use a track size of 180 m, and we measure the density of
vehicles as the number of vehicles per 180 m. The total
replay memory size for storing the transactions is 100000,
and the mini-batch for training is 32. The training and
testing parameters of the DRL are presented in Table 1.

6.2.3 Normalization

The goal of normalization is to bring the different sub-
rewards corresponding to delay and spectral efficiency in
(16) to be on a similar scale. This normalization improves
the performance and provides training stability of the NN
model. Specifically, we normalize the reward function (11),
BER and latency constraints of (16) to keep the scale be-
tween 0 and 1. Please note that, we perform quantization on
the continuous values of distance and speed of the vehicle to
convert them into discrete values. For example, we quantize
the values of distance into step length of 1 m and the speed
into 0.5 ms−1 step.

7 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
multi-agent RL-based sum spectral efficiency maximization
scheme for vehicular OCC. The simulation parameters for
the OCC system model are listed in Table 2.

7.1 Overview of Comparison Schemes

We investigate the performance of the proposed multi-
agent DRL-based vehicular scheme, termed hereafter as the
proposed scheme against different methods for comparison.
We present a brief summary of all the schemes under
comparison below:
• Proposed scheme: By the proposed scheme, we refer to

our multi-agent DRL-based vehicular OCC system, where
each agent performs independent learning considering all
other vehicles as environment. In this case, we employ the
settings as we discuss in Sections 6.2.1 and 6.2.2. We set
the discount factor to 0.98.

• Greedy: This method is a variant of our scheme, where
we set the discount factor to ζ = 0 in (25), while we keep
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Fig. 5: Convergence of loss function for ϵ = 0.05 and α =
0.001.

all other parameters of the systems as reported in Table
1. In this scenario, the agent chooses the action which
maximizes only the immediate reward.

• Far-sighted: This method is a variant of our scheme,
where we set the discount factor to ζ = 1 in (25), while
we keep all other parameters of the systems as reported
in Table 1. This scheme takes future rewards into account
more strongly and ignores immediate rewards.

• Random: This is a scheme, where the actions are chosen
randomly for all the vehicles at each time slot. In this case,
the system parameters are not optimized and the agent
chooses speed and modulation schemes randomly.

• RF-based MARL [13]: This is a multi-agent RL based
resource allocation scheme presented in [13]. This method
is based on RF technology. For this scheme, we adapt
the hyper-parameters according to our proposed scheme
while keeping the environment unchanged. This scheme
considers centralized learning and distributed implemen-
tation. The system performance-related reward is avail-
able to each individual agent through a centralized base
station in the cellular network. Then the agent adjusts its
action towards the optimal policy by updating its DQN
and utilises its local observation and trained DQN to
select the best action. Finally, the agent communicates the
updated DQN towards the base station.

• RF-based SARL [13]: This is a single agent RL based
scheme proposed in [13], specified as single-agent rein-
forcement learning (SARL), where at each time only an
agent, i.e., V2V link, updates its action based on the lo-
cally observed information, whereas other agents’ action
remains unchanged. A single DQN policy is shared over
the vehicular network for all the vehicles.

We would like to note that we have not considered
some existing methods, such as [7], [8], as baselines for
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our proposed vehicular OCC problem because they rely on
traditional optimization schemes and centralized commu-
nication, which cannot guarantee reliable and low-latency
communication in fast-varying environments. Moreover,
the extremely high complexity of our studied problem of si-
multaneously controlling multiple decision variables makes
them inappropriate. Instead, we compared our proposed
approach with an RF-based DRL scheme [13], which is
regarded as state-of-the-art and shares more similarities
with our proposed multi-agent vehicular problem.

7.2 Simulation Results

The convergence trend of the training algorithm confirms
the suitability of the proposed scheme. To this end, we
investigate the convergence of the proposed algorithm.
First, we perform an ablation study to determine the weight
values corresponding to distance and rate rewards in (11).
In doing so, we examine our algorithm for different weight
settings of distance and rate rewards, but for simplicity of
representation, we only demonstrate four settings, includ-
ing ωd = 0.2 and ωr = 0.8, ωd = 0.4 and ωr = 0.6, ωd = 0.6
and ωr = 0.4, ωd = 0.8 and ωr = 0.2, as shown in Fig.
5. We observe that we achieve lower loss when we allocate
higher weight value to the spectral efficiency component.
By observing Fig. 5, we can see that our scheme converges
at around 8000 episodes for ωd = 0.2 and ωr = 0.8. On
the contrary, other weight sets require longer times for
convergence and show frequent variations in the loss and
offer higher loss than ωd = 0.2 and ωr = 0.8 set. So, we
adopt this weight setting for the rest of our evaluation.

We then present the rewards per training episode to ana-
lyze the convergence behaviour of the multi-agent vehicular
OCC system at three different discount factors, i.e., the
proposed scheme (ζ = 0.98), greedy (ζ = 0) and far-sighted
(ζ = 1). The results are depicted in Fig. 6. Please note that
for ease of visualization, we present the reward until 5000
episodes as they follow the same trend after that. Based
on this figure, we observe that the greedy and far-sighted
approaches achieve better performance than the proposed
scheme until 1500 episodes. However, as training pro-
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gresses, the reward for the proposed scheme improves and
reaches to lower loss. Instead, the rewards for greedy and
far-sighted schemes vary throughout the training episodes.
We can conclude that the proposed scheme achieves higher
rewards than other variants of our scheme.

There are various gradient descent optimizers that vary
the learning rate adaptively to minimize the loss in the
DQN. Here, we investigate the loss performance of two
commonly used optimizers, RMSProp and adaptive mo-
ment estimation (Adam) for 10000 episodes. The results are
illustrated in Fig. 7. This figure shows that the RMSProp
optimizer achieves lower loss than the Adam optimizer
over the training period. In particular, the Adam optimizer
does not converge within 10000 episodes, whereas the RM-
SProp converges around 7000 episodes. Therefore, we adopt
RMSProp optimizer in our framework.

To justify the superiority of the proposed multi-agent
DRL-based vehicular OCC scheme, we compare its per-
formance with MARL and SARL methods presented in
[13] and a random scheme. We utilize the same DQN
parameter to optimize the problem in [13]. For example, we
implement a single hidden layer with 250 neurons instead
of three hidden layers, a fixed discount factor, and 10000
training episodes. In addition, we formulate the spectral
efficiency and latency according to our formulation. Though
the system proposed in [13] did not consider latency, we
estimated it to investigate how the latency requirements are
satisfied. As the MARL and SARL methods require base
stations to communicate with each other, they involve up-
link and downlink latency in addition to processing latency.
Whereas our system has only transmission latency as it is
a decentralized scheme, RF-based MARL and SARL in [13]
require centralized communication, which incurs additional
latency.

Fig. 8 shows the maximized sum spectral efficiency
performance with regard to the density of vehicles for all
schemes under comparison. This figure shows that for all
techniques employing our suggested framework, including
the greedy, far-sighted, proposed scheme, and the random
scheme, the sum spectral efficiency increases with an in-
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crease in density of vehicles. On the contrary, the perfor-
mance drops with increasing density of vehicles for RF-
based MARL [13] and SARL systems [13]. The reason for
the lower sum spectral efficiency in our proposed scheme
with lower vehicle density is due to the increased distance
between vehicles, which may weaken transmission links
and limit the ability to communicate using higher mod-
ulation orders. In contrast, RF-based schemes experience
less interference with fewer vehicles, resulting in higher
sum spectral efficiency. However, as the density of vehi-
cles increases, interference also increases, which negatively
affects the performance of RF systems, as shown in Fig.
8. In our proposed OCC system, the increased density of
vehicles leads to the vehicles being closer to each other
and this improves the quality of the communication links.
Hence, higher sum spectral efficiency is achieved. The same
trend is noticed for the random scheme as for this scheme,
which is a variant of our scheme, also the transmission link
quality improves when the density of vehicles increases as
the distance between the vehicles becomes smaller. This
happens even if a suboptimal action is chosen and on
average there are larger spectral gains than MARL and
SARL. This is why the random scheme outperforms the
MARL and SARL schemes when the density of vehicles
increases. We would like to recall that the key difference
between the proposed scheme and the random scheme is
that in the latter scheme, the agent selects actions randomly
(selection of speed and modulation schemes) for all vehicles
at each time slot, whereas the proposed scheme decides
the optimal actions using the proposed DRL framework.
From the Fig. 8, we see that with a density of vehicles of 16
vehicles per 180 m, the proposed algorithm achieves rates
that are approximately 2.4 times better than those of the
MARL, 2.9 times better than those of the SARL, and roughly
1.6 times better than those of the random scheme. When
vehicle density is 6 vehicles per 180m, however, the sum
spectral efficiency is reduced by 0.73 times for MARL and
0.82 times for SARL. We might infer from this comparison
that our OCC system operates better in urban settings or
highways with dense traffic where the vehicle density is
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Fig. 9: Comparison of average latency versus number of
vehicles with different schemes for ϵ = 0.05 and α = 0.001.

always higher.
In Fig. 9, we exhibit the comparative findings of average

latency versus vehicle density per 180m, which demonstrate
that as the number of vehicles increases, the average la-
tency decreases for all variants of our scheme utilizing the
proposed algorithm. While it follows the opposite trend for
the SARL and MARL schemes. This is because when the
density of vehicles increases, the distance between vehicles
reduces, and thus the experienced delay decreases. More
significantly, the interference gets worse as the density of
the vehicles rises. The centralized RF-based system involves
latency as well because it needs to communicate with the
base station and gets feedback. As a result, the latency
increases with the increase of vehicle density. For our pro-
posed scheme, there is no interference, which improves the
spectral efficiency and hence, the latency with the increase
of vehicle density. The random scheme follows a similar
trend as the proposed scheme as the communication quality
improves and the inter-vehicular distance reduces when
the density of vehicles increases. As a result, the random
scheme provides more significant latency benefits and per-
forms better than the MARL and SARL schemes at higher
vehicle densities. Our scheme achieves the lowest average
latency of 4.5 ms and the maximum of 8.2 ms when the
density of vehicles is 16 and 6, respectively. Whereas for
MARL, SARL and the random scheme, the average latency
is 8.5 ms and 14.2 ms, 7.1 ms and 12.2 ms, 12.9 ms and
9.2 ms, respectively, when the number of vehicles is 6 and
16 vehicles per 180m. From this comparison, it is seen that
our proposed algorithm achieves lower latency compared
to other schemes.

To explore whether the proposed scheme can maximize
the sum spectral efficiency while also respecting the latency
and BER constraints, we present the cumulative distribution
function (CDF) of BER and latency for the schemes under
comparison. First, we compare the CDF of the observed
latency considering the maximum latency of all available
links at each time slot for 10000 episodes in Fig. 10. From
the figure, we observe that the proposed scheme can al-
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Fig. 10: CDF of observed latency while considering the
maximum latency of all the available links behind the agent
for ϵ = 0.05 and learning rate α = 0.001.

ways satisfy the latency requirement of 10 ms, whereas
the greedy, far-sighted and random methods, satisfy the
constraint only 50%, 78%, and 27% of the time, respectively.
At the same time, the RF-based MARL and SARL schemes
meet the latency requirements for 29%, and 20% of the time,
respectively.

Finally, Fig. 11 illustrates the comparison of CDF of
the observed BER for different schemes under comparison
when the schemes have been optimized for 10000 episodes.
In doing so, we examine only the maximum observed BER
of all available links at each time slot, which will respect the
minimum BER. From this figure, we note that our algorithm
always satisfies the BER constraints of 10−4. We can also
see that the other algorithms violate the BER constraints
most of the time. Specifically, far-sighted schemes satisfy
BER requirements a maximum of 40% of the time, whereas
greedy and random schemes meet 27% and 8% of the time,
respectively. Similarly to what we observed in Fig. 10, the
proposed method also respects the BER requirement when
other schemes satisfy it only for some period of time.

8 CONCLUSION

In this paper, we present a DRL-based sum spectral effi-
ciency optimization scheme for a multiple vehicular OCC
scenario while respecting BER and latency requirements.
Firstly, we model the OCC channel and several performance
parameters. Then, we formulate a sum spectral efficiency
maximization problem considering a small set of modu-
lation orders, as well as the BER and latency constraints.
To overcome the fact that the studied problem is NP-hard,
we first formulate the optimization problem as an MDP.
We design the reward function considering the objective
function and the problem constraints. We then convert
the constrained problem into an unconstrained problem
through the Lagrangian relaxation method by relaxing the
BER and latency constraints. To solve the problem, we
employ deep Q-Learning to deal with large state-action
spaces. We verify the performance of our proposed scheme
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Fig. 11: CDF of BER while considering the maximum BER of
all the available links behind the agent vehicle for ϵ = 0.05.

through extensive simulations and compare it with various
variants of our scheme as well as schemes based on RF
communications. Our system achieves better sum spectral
efficiency and lower average latency compared to all the
schemes under comparison. By observing the CDF of the
experienced latency and BER, we can conclude that our
system can satisfy ultra-low latency communication and
BER constraints, while the rest of the schemes fail to meet
the constraints for large periods of time.
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