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Abstract— The application of machine learning-based
tele-rehabilitation faces the challenge of limited availability
of data. To overcome this challenge, data augmentation
techniques are commonly employed to generate synthetic
data that reflect the configurations of real data. One such
promising data augmentation technique is the Generative
Adversarial Network (GAN). However, GANs have been
found to suffer from mode collapse, a common issue where
the generated data fails to capture all the relevant infor-
mation from the original dataset. In this paper, we aim
to address the problem of mode collapse in GAN-based
data augmentation techniques for post-stroke assessment.
We applied the GAN to generate synthetic data for two
post-stroke rehabilitation datasets and observed that the
original GAN suffered from mode collapse, as expected.
To address this issue, we propose a Time Series Siamese
GAN (TS-SGAN) that incorporates a Siamese network
and an additional discriminator. Our analysis, using the
longest common sub-sequence (LCSS), demonstrates that
TS-SGAN generates data uniformly for all elements of two
testing datasets, in contrast to the original GAN. To fur-
ther evaluate the effectiveness of TS-SGAN, we encode
the generated dataset into images using Gramian Angular
Field and classify them using ResNet-18. Our results show
that TS-SGAN achieves a significant accuracy increase of
classification accuracy (35.2%-42.07%) for both selected
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datasets. This represents a substantial improvement over
the original GAN.

Index Terms— Generative adversarial networks, mode
collapse, stroke rehabilitation, time series.

I. INTRODUCTION

STROKE is a significant cause of long-term disability
globally, affecting millions of people with stroke-related

impairments [1]. Post-stroke rehabilitation is critical to aid
recovery and enhance functional outcomes [2], [3]. Recently,
wearable sensors and machine learning techniques have
emerged as promising tools in post-stroke rehabilitation. Wear-
able sensors can provide continuous and objective monitoring
of a patient’s daily activities, physical function, and movement
patterns [4], [5]. Machine learning algorithms can then analyse
and interpret the data collected from wearable sensors to
provide personalized feedback, decision-making support, and
optimise rehabilitation interventions [6]. The integration of
machine learning and wearable sensors has the potential to
transform post-stroke rehabilitation by offering personalised,
adaptable, and cost-effective solutions to patients, caregivers,
and healthcare providers [7].

Machine learning-based post-stroke tele-rehabilitation
assessment systems can be broadly categorised into two
types based on their objectives: clinical assessment emulation
and activity recognition. Clinical assessment emulation
systems are designed to quantify the level of correctness in
executing the prescribed exercises. On the other hand, activity
recognition systems aim to identify specific rehabilitation
movements performed by patients and differentiate between
them for recording and monitoring purposes [8]. To design
an effective and accurate machine learning system, the
availability and quality of data are the crucial factors [9].
Data serves as the primary resource used by the system to
learn and extract features. Therefore, one major limitation in
the development of a performing system is the lack of data
or low-quality data [10].

The data obtained from sensors are called time series
(TS) [11]. TS data is organised in a sequential time-dependent
manner. If it varies just on one axis, it is called a univariate

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-3535-1367
https://orcid.org/0000-0001-6699-8721
https://orcid.org/0000-0002-1030-8311
https://orcid.org/0000-0002-1446-5744
https://orcid.org/0000-0002-6412-8519


BOUKHENNOUFA et al.: NOVEL MODEL TO GENERATE HETEROGENEOUS AND REALISTIC TS DATA 2677

TS; if it varies on multiple axes, it is called a multivariate
TS [12]. The more available and good-quality the TS is,
the better the assessment algorithms perform. Unfortunately,
in healthcare applications in general, or stroke rehabilitation
application in particular, it is not always possible to have
sufficient data due to the condition of the patients that does not
always allow them to attend a testing session [13]. A potential
solution to address this issue is to generate synthetic data,
(artificial or dummy) that possess adequate information to
mimic the real-world data gathered under naturalistic circum-
stances. This procedure, known as data augmentation or the
creation of surrogate data, involves producing synthetic data
from real data. It is essential that the synthetic data accurately
reflect the statistical distribution of the original dataset and be
realistic. In essence, the generated data should bear sufficient
resemblance to the authentic data to enable their use in training
the machine learning models without introducing biases or
errors.

In computer vision, data augmentation is already an estab-
lished processing step [14]. In addition to the fact that it
helps understand the configuration of the collected data it also
assists with the model generalisation capability by decreasing
over fitting and increasing the characterisation boundary of
the trained models [15]. In the TS domain, most data aug-
mentation techniques involve random transformations such as
introducing random noise on the data, scaling and slicing
both in the time and frequency domains [16]. The issue with
this random transformation is that, there is a plethora of TS
having different properties and sequential patterns, and each
dataset has its own characteristics. e.g. what may be applied
to the data collected from accelerometer can not be applied
to electroencephalogram data. But with the advances made in
machine learning domain, new models have been introduced
that allow a personalised spawning of data that takes into
account the input dataset characteristics. This is known as
Generative Adversarial Networks (GANs).

GAN is a type of deep learning model which captures the
inner probabilistic distribution of actual data and generates
new data that are comparable to the original [17]. Many GAN
architectures have been proposed over the years for manip-
ulating the data. It can be either distance based [18], latent
space based [19], or through changing the configuration [20].
One limitation of GAN is seen as mode collapse, when the
generated data fail to take into account all the elements of
the real dataset [21]. In other words, the generator spawns the
data for few modes while omitting other elements. This results
in an a synthetic dataset without learning all the information
from the real one.

The present study aims to address the aforementioned issue
by utilising two distinct real-world datasets representative
of post-stroke tele-rehabilitation. These datasets include a
clinical assessment emulation of exercises belonging to the
Action Research Arm Test (ARAT), which exhibits a highly
unbalanced distribution and limited data availability, thus high-
lighting the necessity of data augmentation. The second dataset
pertains to activity recognition and encompasses 18 diverse
daily activities. In order to augment the datasets, a GAN
architecture is initially employed. However, it is observed that

TABLE I
NUMBER OF TS SEGMENTS PER CLASS IN THE ARAT DATASET

the generated data is afflicted by mode collapse. Therefore,
a novel model is proposed which employs objective metrics
to alleviate the issue of mode collapse and enhance the quality
of the generated data.

The contributions of this work are summarised as follows:
• We propose a new GAN model by coupling it with a

Siamese network (SN), to add another layer that allows
to generate more heterogeneous data.

• The resulting model generates more diverse TS than the
original GAN, as proved using the longest common sub-
sequence (LCSS). Classifying the original data using the
generated TS increased from 63% in the original GAN
to 98.2% in the proposed model, for the first dataset and
from 48% to 90.8% in the second.

• Encoding TS into images permitted to increase the classi-
fication performance, thus improving the post-stroke tele-
rehabilitation assessment.

The remainder of the paper is organised as follows: firstly
in Section II we introduce the dataset, then in Section III
we show the results from the GAN model, followed by those
from our proposed model in Section IV and demonstrate the
effectiveness of our approach. Thereafter giving an overall
results summary in Section IV-D and conclude the paper in
Section V.

II. DATASETS

This study utilises two datasets that belong to the
post-stroke rehabilitation categories. Section II-A examines an
ARAT-based dataset introduced by Lee et al. in [22]. Section
II-B explores the WISDM Smartphone and Smart-watch
Activity and Biometrics Dataset proposed by Weiss in [23].

A. ARAT Dataset
The dataset includes ARAT motions [24], which are rated

on a four-point scale. A score of 3 indicates satisfactory
completion within 5 seconds, while a score of 0 denotes
non-completion due to factors such as inability to grasp
the cube or use fingers to manipulate it. The score also
considers the time taken to complete the task, where a score of
2 indicates completion with difficulty or taking an abnormally
long time, and a score of 1 represents partial completion. The
trial involved 34 stroke patients undergoing rehabilitation over
a 60-day period in a hospital setting. Each patient performed
a set of ARAT motions up to three times in a single session,
with data continuously recorded and manually segmented into
individual trials. Notably, the scores were awarded on a session
basis, suggesting averaging over trials, and multiple thera-
pists scored the sessions, introducing score variability despite
briefings. Each class used in this study comprises a distinct
number of segments, and the length of each segment varies,
as presented in Table I. The data acquisition is sampled
at 30 Hz.
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Fig. 1. Some of the original TS segments for the datasets.

TABLE II
ACTIVITY RECOGNITION DATASET LABELS

As depicted in Table I, the dataset is unbalanced and con-
tains an insignificant number of segments for contemporary
algorithm analysis such as deep learning. This feature renders
the dataset an excellent candidate for the exploration of gen-
erating synthetic data. Furthermore, the dataset is comprised
of naturalistic data recorded in a real-life scenario, thereby
offering added value to its application in real-world scenarios.
The segments are multivariate TS chunks of varying lengths,
derived from triaxial acceleration as previously mentioned.
Each TS in a particular class has dimensions of n × 3 ×

t , where n represents the number of segments in that class,
3 indicates the number of axes (X, Y, Z), and t denotes the
sequence length.

B. Activity Recognition Dataset
This dataset was created in late 2019 and comprises various

complex daily activities that includes 18 activities, as shown in
Table II, which were performed by 51 distinct participants for
a duration of three minutes. The data was collected using two
IMU sensors, namely triaxial accelerometer and triaxial gyro-
scope, which were connected to a smartwatch and smartphone,
respectively. The smartwatch was worn on the participant’s
dominant hand, while the smartphone was placed on the
waist. Both sensors recorded data at a frequency of 20 Hz.
Each line of the dataset contains three axes acceleration data,
three axes gyroscope data, and the activity abbreviation that

was performed. As per findings in our previous works [25],
[26], we only utilised data from the smartwatch, as the
smartphone data did not contribute to improving classification
accuracy. The dataset was segmented into 10-second chunks
corresponding to 200 readings using non-overlapping sliding
windows, and every segment of data was labeled with the most
recurring activity label. The resulting dataset structure was
16854 × 6 × 200 where 16854 represents the total number
of TS segments, 6 represents the number of axes (tri-axial
gyro + triaxial acceleration), and 200 represents the length of
the segments.

Figure 1 displays samples from each dataset, Figure 1a
display some segments from each ARAT class and Figure 1b
shows segments from four of the activity recognition datasets.
Time axis “sample” refers to the acquisition index knowing
that the first dataset has 30 acquisitions per second while the
2nd has 20.

III. 2D SYSTEMS

In this section, we present the process of generating syn-
thetic data from the original dataset using a GAN. The aim
is to produce data that satisfies two key conditions: first, the
generated data must be realistic and accurately represent the
statistical distribution of the original dataset. Second, it should
not suffer from mode collapse. We describe the proposed GAN
structure in detail and demonstrate the generated synthetic data
in the following sections.

A. GAN
The proposed GAN is composed of two parts: the first part

encompasses a generator that takes as its input random noise
vectors z and generates dummy data while the second part “the
discriminator” takes the real TS data and the dummy TS data
generated by the generator as input, and outputs a number
that is corresponding to the probability of the input being
real. The GAN employs the Nash equilibrium game principle
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TABLE III
ARCHITECTURE OF THE PROPOSED GANS FOR THE TWO DATASETS

[27], which assumes two players. The generator tries to learn
the real TS data distribution whereas the discriminator tries
to accurately guess whether the fed data is from the original
dataset or from the generator. To be victorious in the game,
the two players shall compete repeatedly to improve both
the generation (maximise resemblance) and the discrimination
(minimising the difference).

Mathematically, let x be a TS window from the dataset
distribution pX , and z be a random vector. We only consider
that z is from a uniform distribution with a support of [−1, 1],
Let G and D be the generative and discriminative models, the
generative model takes z as input and outputs the TS data,
G(z), that has the same support as x. Denote the distribution
of G(z) as pG . The discriminative model approximate the
probability that the input TS data is drawn from pX . Ideally,
d(x) = 1 if x ∼ pX and D(x) = 0 if x ∼ pG . The generative
and discriminative models can be trained together by solving
Equation (1) below:

min
G

max
D

V (D, G) = Ex∼preal(x)[log D(x)]

+ Ez∼pz(z)[log(1 − D(G(z))]. (1)

In our work, the architecture for the two parts only com-
prised of fully connected layers. Depending on the dataset,
two architectures were proposed:

The first dataset utilises a generator with five layers, begin-
ning with an input-layer that corresponds to the latent vector z
of 32 elements. This is followed by a fully-connected layer of
256 nodes, and three additional fully-connected layers of 512,
1024, and 699 nodes, respectively. Each layer is equipped with
a Leaky ReLU activation function and batch normalisation is
applied. Finally, the last layer is reshaped to a 3 × 233 node
configuration that matches the architecture of the input data.
The discriminator, on the other hand, takes as input either
real or artificial data that is first reshaped to an 899-node fully
connected layer. This layer then passes through two additional
fully-connected layers of 512 and 256 nodes, respectively, both
of which are equipped with leaky ReLU activation functions

and batch normalisation. The output node is a single node
with a Sigmoid activation function, responsible for indicating
whether the data is real or artificial.

For the second dataset, the same architectures are used, with
only differences being a latent vector size of 128 nodes and the
inclusion of an additional fully-connected layer of 2056 nodes
after the 1024-layer. This is followed by a 1200 node layer
that is reshaped to 6 × 200 instead of the 899-node layer in
the previous dataset. The discriminator for this dataset begins
with a 6 × 200 input that is flattened to 1200 nodes, followed
by three additional fully-connected layers of 512, and 256,
128 nodes, respectively.

The architectural details of these setups are summarised in
Table III.

B. Generated Data From the GAN Model
1) ARAT Dataset: It has been observed in Section II-A

that the dataset is imbalanced and has a limited number
of TS segments. This makes training of the deep neural
networks challenging. To address this issue without the need
for additional data collection, a GAN-based data augmentation
technique has been proposed to generate synthetic data. This
approach can help overcome the problem of imbalanced data,
and its applicability may extend to other TS-related research
studies.

As TS segments have varying lengths, direct application
of deep learning algorithms is not feasible. These algorithms
require input streams of equal length, which can be achieved
by padding the segments with zeros to match the length of
the longest segment which is 233 samples (time acquisition).
This approach is a well-established technique in TS analysis
and has been used in several studies as a simple and effec-
tive way to achieve equal-length input data [28]. Moreover,
in [29], zero-padding was used in their GAN-based approach
for generating synthetic TS data to handle variable-length
TS data.

After padding, the segments were normalised to the range
of [0, 1]. Unlike image generation, where the label of the



2680 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

Fig. 2. Some of the generated TS segments for the datasets.

generated image can be visually recognised, in the TS domain,
it is difficult to associate each generated window of data
with its corresponding real-domain counterpart. Therefore,
a separate GAN has been trained on each class of the data,
with each class trained separately, and the data for each class
generated independently.

Generating synthetic data separately for each class also
avoids potential biases that could arise from the padding
process. By training the GAN separately for each class, the
generated data will have the same padding and distribution as
the original data for that class. This is important because the
padding process may introduce a bias in the generated data if
performed on the entire dataset together.

After conducting multiple trials with different latent vec-
tor sizes, a size of 32 data points was determined to be
the most suitable. The criterion for determining the optimal
latent vector size was based on the quality of the generated
data, as increasing the latent vector size beyond 32 did not
significantly improve it.

Adam optimiser [30] with a momentum of 0.5 and learn-
ing rate of 2 × 10−4 are empirically selected for both
the generator and discriminator red by testing various GAN
models and trials, and binary cross-entropy was used for their
compilation. The selection of learning rate was empirical and
involved testing various values. The aim was to identify a
value that would strike a balance between convergence speed
and over fitting avoidance. The choice of using the Adam
optimizer with a momentum of 0.5 and binary cross-entropy
for compilation is a common practice in many GAN archi-
tectures. This decision was also informed by empirical
testing.

For each class 640 epochs were required for training. This
number was selected by monitoring the degradation of the
discriminator loss. Moreover, Google Colab with 32 GB RAM
and a Nvidia T4 GPU was used, moreover, the code was
developed in Keras and TensorFlow.

Figure 2a showcases several synthetic TS segments gen-
erated from different ARAT categories using the proposed
GAN model. The generated data share the same n × 3 ×

t dimensional structure as the input data, with X , Y , and Z
axes representing triaxial data. The generated TS segments

exhibit curvature patterns similar to those observed in the real
data segments, as can be seen in the plot. The GAN model
can generate multivariate TS data from any input segment,
as evidenced by the triaxial data generated by the model.
Furthermore, the model has learned to generate the zeros
that were padded to the segments to achieve equi-length time
windows, as demonstrated in the rightmost plot of Figure 2a.
A thresholding method was employed to determine the end
of the signal, where the amplitude decreases below a specific
level. This method involved identifying three consecutive data
points with amplitudes equal to or less than a threshold value
of 0.05 on all axes.

However, during experimentation, the GAN model did seem
from visual inspection to exhibit mode collapse, which caused
it to generate synthetic data for some portions of the input
segments while neglecting others.

2) Activity Recognition Dataset: In accordance with the
methodology outlined in Section II-B, the dataset was par-
titioned into 10-second segments consisting of 200 readings
each using non-overlapping sliding windows. Subsequently,
each data segment was labelled with the activity label that
appeared most frequently, resulting in a structured dataset of
dimensions 16854 × 6 × 200. In order to generate synthetic
data from this dataset, a GAN model was employed as detailed
in Section III-A. Prior to applying the GAN, the TS segments
were normalised. The hyperparameters used in the GAN
training process were similar to those employed previously,
with a latent vector size of 128, the Adam optimizer with a
momentum of 0.5 and learning rate of 5 × 10−4, and binary
cross-entropy. The GAN training process was repeated for a
total of 20k epochs. Figure 2b displays the TS segments gen-
erated by the GAN model, with each class visually identified
through comparison with the real dataset. It is worth noting
that the generated data appear to exhibit curvature patterns that
resemble those observed in the real data segments. However,
it is also observed that some classes of the generated segments
appear to have been omitted, indicating a potential occurrence
of mode collapse.

While visual inspection can be informative, it is not suffi-
cient to draw accurate conclusions. Further required analysis
is presented below.
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C. Analysis of GAN Generated Data

We verify the effect of mode collapse on both datasets using
two techniques:

1) A similarity study is conducted between the generated
segments and the original ones. This is achieved by cor-
relating the generated signal with every original signal
and calculating the similarity between them using an
objective method. The original signal with the highest
similarity is considered the parent signal that spawned
the segment. To ensure the robustness of the objective
method against noise or small vibrations, we consider
either Dynamic Time Warping or the LCSS [31]. LCSS
has been proven to be more resilient under noisy condi-
tions and can work with data of different lengths, hence,
it has been chosen for this study. Then, the number
of generated data for each class is computed to show
the distribution of the generated dataset over the parent
classes.

2) The generated data is used to train a classifier, and
its performance is evaluated on the real dataset used
as a validation set. Classification and other metrics are
computed to show whether the generated data con-
tains sufficient information to differentiate between the
classes of the original dataset. Before classification, the
TS data is encoded into images using Gramian Angular
Field (GMAF) and fed into a ResNet-18 classifier. This
pipeline has been shown to yield promising results
for TS classification of the same dataset in previous
works [25], [26], [32].

1) LCSS Algorithm: One of the very first applications of
LCSS algorithm has been for string matching [33]. Later
contributions worked on the extension of LCSS and it has
been widely used for measuring the similarity of two TS
with different lengths focusing on similar parts between two
TS [33], [34], [35].

The basic core method of LCSS is dynamic programming
that applies similarity-based searching from machine region
both in time and space to keep away from distant or degener-
ating regions.

For LCSS operation, let’s define a and b as finite discrete
TS. a p

1 is associated with the first TS as a with a discrete
time index varying between 1 and p. In a similar manner, bq

1
is associated with the second TS b with a discrete time index
varying between 1 and q . Additionally, ai , bi represent the
i th sample of TS a and b, respectively. A recursive algorithm
has been formulated to provide a solution to the LCSS [31]
as given in Equation (2):

LCSSδ,ϵ(a
p
1 , bq

1)

=



0 if p < 1 or q < 1,

1+LCSSδ,ϵ(a
p−1
1 , bq−1

1 ) if

{
dL P (ap, bq)<ϵ and
| p − q |< δ,

Max

{
LCSSδ,ϵ(a

p−1
1 , bq

1)

LCSSδ,ϵ(a
p
1 , bq−1

1 )
otherwise

(2)

where p and q represent the lengths of TS a and b, respec-
tively, meanwhile, dL P (ap − bq ) take any L P -norm of the
(ap − bq ).

Two parameters are used in LCSS to introduce flexibility
in controlling the matching regions in time (δ) or space (ϵ).
In the end, the similarity of the two times-series is measured
using the output of the LCSS including a normalising factor
associated with the lengths of input times-series as shown in:

Sδ,ϵ(a, b) =
LCSSδ,ϵ(a

p
1 , bq

1)

min(p, q)
(3)

Based on the above definition, the returned values by the
LCSS vary from 0 to 1, the highest value is related to a
situation when the two TS fully match, and vice-versa. The
values of δ and ϵ are taken from the work in [31], which
concluded that their best values are:

ϵ = 0.5 × (min(std(a), std(b)) (4)

where std is the standard deviation of a and b,

δ = round(0.1 × n) (5)

where n is min(length(a, b))

Figure 3 shows two different generated signals (blue) and
their associated parent signal (red) and the corresponding
similarity of 0.93 and 0.71 using the LCSS algorithm.

2) GMAF: The Gramian matrix is a matrix-based encoding
method that converts TS data into images by using polar
coordinates as a representation of the data. Each component
of this matrix is either the addition of the sines of the polar
angles (GASF) or the difference of their cosines (GADF). The
time increases as the location shifts from the top left to the
bottom right, thus maintaining the temporal dependence of the
TS. This feature allows the polar-coordinates to be converted
using the transformation principle back to the original TS data.

In this work, the used GASF are summerised as follows:
• First, using the linear standardisation equation, re-scale

the data to the range [0, 1] (or [−1, 1]). 6:

x̂i =
xi − min(X)

max(X) − min(X)
, (6)

• After that, using equations 7 and 8, the data is translated
into its polar coordinates form.

φ = arccos(x̂i ), −1 ≤ x̂i ≤ 1, x̂i ∈ X, (7)

r =
ti
N

, ti ∈ N. (8)

• Finally, we sum the cosines of the polar angles to get
GASF representation as follows:

G ASF = cos(φi + φ j )

= X̂ T
· X̂ −

√
I − X̂2

T

·

√
I − X̂2 (9)

where X represents the components of the TS X , I is the unit
vector following the transformation to polar coordinates, and
t is the time stamp index. Figure 4 shows the GMAF encoded
images for the three axes of segments from ARAT 0, ARAT
1, ARAT 2 and ARAT 3 categories.
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Fig. 3. LCSS applied to two spawned TS data.

TABLE IV
THE NUMBER OF GENERATED SEGMENTS PER CLASS SEEN BY LCSS

ALGORITHM FOR GAN FOR ARAT 0

TABLE V
THE NUMBER OF GENERATED SEGMENTS PER CLASS SEEN BY LCSS

ALGORITHM FOR GAN FOR ARAT 1

Fig. 4. An encoding example of an ARAT 0 TS segment into its GASF.

3) Results for the ARAT Dataset: For the ARAT dataset,
1500 segments are generated for each ARAT category.
To determine the parent segment for each generated segment,
LCSS, as described in Section 2, is used to find the segment
with the highest similarity, as explained in Subsection III-C.
The results for each ARAT class are presented in Tables IV,
V, VI, and VII respectively. These tables highlight the bias
in the generation of the data. For instance, Table IV indicates
that 97.3% of the generated data corresponds to segment 3,
whereas segments 1 and 2 only account for 1.53% and 1.2%,
respectively. A similar bias is observed in other classes where
certain segments are not generated at all, indicating mode
collapse.

After this, we use the total generated dataset of 6000 seg-
ments (1500 for each class) to train the classifier described in
Section 2. The resulting dataset after the data encoding was
6000 × 3 × 233 × 233 (three channels 233 × 233 images).
Figure 4 shows GMAF encoded images for ARAT 0 segment.

The images were fed to a pre-trained ResNet-18, and the
training process followed cyclical learning rate as suggested
by Smith in [36], which has been proven effective in previous

studies [25], [26], [32], [37]. The model was trained for
20 epochs using the dataset, and the original data encodings
were used as a validation set. Two metrics were employed for
evaluating the performance of the model: Accuracy and F1-
score weighted by class. The latter metric was chosen as it
takes into account the performance of each class.

The F1-score weighted by class is calculated using the
following equation:

F1weighted =

∑n
i=1 wi F1i∑n

i=1 wi

where n represents the total number of classes, wi is the weight
assigned to class i , and F1i is the F1-score for class i . The
weights wi are defined based on the class distribution in the
validation dataset.

Based on the results obtained, it was found that the clas-
sification accuracy of the model is 63%, indicating that the
model is struggling to accurately classify some of the classes.
This is further supported by the F1-score weighted by class of
0.58. These results suggest that the generated dataset used for
training the model did not provide sufficient information about
the original dataset used for validation and metric computation.
The observed mode collapse in the generated dataset may have
led to the poor performance of the model on some classes.

4) Results for the Activity Recognition Dataset: The second
dataset was processed in a similar manner as the first one.
A total of 90000 TS (TS) segments were generated using the
GAN, and the LCSS method was used to find the similarities
with the parent segments. The results are presented in the
distribution bar chart shown in Figure 5.

From the chart, it is evident that the generated data suf-
fers from a significant bias, with some classes having over
20000 segments while some others have none. This generated
dataset was then used to train the same classifier used for the
first dataset. A training dataset of 90000 × 6 × 200 × 200 (six
channels of 200 × 200 images) was used, with 800 segments
from each class taken as a validation set, resulting in a total
of 14400 segments. The trained model achieved an accuracy
of 48.73% and an F1-score weighted by class of 0.45. These
results indicate that, similar to the first dataset, the model is
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TABLE VI
THE NUMBER OF GENERATED SEGMENTS PER CLASS SEEN BY LCSS ALGORITHM FOR GAN OR ARAT 2

TABLE VII
THE NUMBER OF GENERATED SEGMENTS PER CLASS SEEN BY LCSS ALGORITHM FOR GAN FOR ARAT 3

experiencing mode collapse and that not all the information
has been captured while generating the synthetic data.

To address this issue, we propose incorporating a SN into
the GAN architecture, which is described in Section IV-A

IV. TS-SGAN TO TREAT MODE COLLAPSE

The data generated from the GAN in Section III suffers
from mode collapse which results on the data not being
heterogeneous. We propose to solve this by adding a SN,
this was inspired by the work in computer vision of Allahyani
et al. in [38] and adapting it into the TS domain.

In [39] the SN was initially introduced for the use in
the tasks involving face and signature verification. Two
sub-networks with common weights make up SN [40].
SN compares the characteristics from the pair networks using
Euclidean distance while learning the features from each sub-
network. As a result, during the training, the network aims to
increase distance between feature pairs (latent data) when they
are from separate classes while reducing it when they are from
the same class. SNs have been normally employed frequently
for the re-identification task because of this attribute as the
job’s objective is to determine how similar two sequences are
to one another [41], [42]. The associated verification loss as
given in Equation (10).

Lossver (L i , L j )=


1
2
∥L i − L j∥

2 i = j

1
2

max(m − ∥L i − L j∥, 0)2 i ̸= j,

(10)

where m is the margin, and L i and L j are the latent data for
the i th and j th TS data sequence. They correspond the output
of the last layers on the i th and j th branch before being fed
into the similarity metric function.

A. TS-SGAN
Our suggested method for reducing the mode collapse prob-

lem is to combine the SN with the modelled GAN architecture
to construct a time-series Siamese GAN (TS-SGAN). This
will add an additional layer that will learn to differentiate
between the different segments of the input layer and try to
spawn more heterogeneous data. As shown in Figure 6, the
TS-SGAN is divided into two components; the first component
consists of a generator G and a discriminator D1, which

Fig. 5. Distribution of the GAN generated data per classes.

are the fundamental configuration in every GAN design. G
produces artificial data X̂ using random noise vectors z as
input. The discriminator D1 accepts its inputs from the real
data X and the created data X̂ so that the networks outputs
a probability of the data to be real. The second part of the
network is to be responsible about the heterogeneity of the
generated data. It is made up of a SN and a D2 discriminator.
The SN in the TS-SGAN architecture finds similarity in a
batch of data, it generates the similarity of the entire batch
for real data (S) as well as the created data Ŝ; this serves
as an additional layer to spot mode collapse. The inputs to
D2 are S and Ŝ. If the data in the batch are heterogeneous,
the D2 identifies the similarity as true similarity. In any other
case, the D2 identifies it as bogus similarity thus indicating
mode collapse.

In order to implement the TS-SGAN, we need to merge
the function inherited from the GAN as well as the function
responsible for the heterogeneity of the output data. The first
part was demystified in Section III and given by Equation
(1). The latter one, which is responsible for treating mode
collapse by varying the GAN output a heterogeneity principle
for both G and D2, The role of D2 is to discriminate between
the heterogeneity in the real TS data and the heterogeneity in
the created one. Very similar to the Nash equilibrium game
principle between G and D1 to generate realistic Ts data,
we can view the Nash equilibrium between G and D2 as a
mean to generate heterogeneous data [43].
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Fig. 6. Siamese GAN flowchart.

TABLE VIII
SIAMESE NETWORK AND DISCRIMINATOR 2 ARCHITECTURES

The SN in the TS-SGAN takes a pair of real data denoted
as preal and outputs their similarity S. Simultaneously, it takes
another pair from the generated data denoted as pfake which
also generates their similarity Ŝ. The role of D2, then, is to
discriminate between the heterogeneity of preal and pfake.
Finally, G role is to generate pfake TS data that possesses preal
heterogeneity. Consequently, G in this part, tries to minimise
the coast function while D2 tends to maximise it. The process
is given in Equation (11).

min
G

max
D2

V (D2, G)

= Ex1,x2∼preal [log D2(SN (x1, x2))]

+ Ez1,z2∼pz(z)[log(1 − D2(SN (G(z1), G(Z2))))]. (11)

The architecture of the heterogeneity part of our proposed
TS-SGAN is shown in Table VIII. The SN comprises of two
2D CNN layers with a 3 × 3 kernel including similar padding
and tanh activation function with successively 4 and 16 chan-
nels, followed by a flatten function before outputting the sim-
ilarity value. D2 comprises a simple MLP layer of 128 nodes
with the output node responsible for generating either bogus
for mode collapse or real for the heterogeneous data.

Coupling this last part with the GAN part from Section III
gives us the TS-SGAN architecture. The corresponding overall
Loss function of the TS-SGAN is given in Equation (12).

min
G

max
D1,D2

V (D1, D2, G)

= Ex∼preal(x)[log D1(x)]

+ Ez∼pz(z)[log(1 − D1(G(z))]
+ Ex1,x2∼preal [log D2(SN (x1, x2))]

+ Ez1,z2∼pz(z)[log(1 − D2(SN (G(z1), G(Z2))))]. (12)

B. Algorithmic Process
Figure 6 shows the flowchart of the proposed TS-SGAN,

as discussed earlier, it comprises G and D1 for the GAN
part responsible for generating realistic data, and SN and
D2 responsible for generating heterogeneous data. G takes
the latent data vector Z as input and outputs the bogus TS
data, while, D1 takes instances of real TS data and the bogus
TS data, and outputs the probability that the input is real. The
SN takes two batches from a dataset DTS that contains both
bogus X̂ and real data X and outputs the similarity between
them (Ŝ for bogus data and S for real data). Finally D2, takes
S and Ŝ and produce the probability of heterogeneity.

Hence, the steps to produce heterogeneous and realistic data
using the TS-SGAN are:

• The SN is trained on the real dataset, to learn differentiate
between the segments.

• A batch of latent data z is fed to G in order to generate
bogus data X̂ .

• Real data is divided into two parts X1 and X2 and are
fed to SN in order to produce S.

• Bogus data is divided into two parts X̂1 and X̂2 and are
fed to SN in order to produce Ŝ.

• D2 takes S and Ŝ to produces heterogeneity probability
and D1 takes X and X̂ to produces how real probability.

• The process is repeated until pbogus converges to preal,
and the parameters of SN, G, D1 and D2 are updated
according to the loss function provided in Equation (12).

The pseudo-code of the TS-SGAN is given in Algorithm 1.

C. Experimental Results
In this section, we present the experimental results of

our proposed TS-SGAN model, which was trained using the
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Algorithm 1 TS-SGAN Algorithm to Produce Realis-
tic Heterogeneous TS Data
Input : Dataset of real TS data and the number

of iterations as I for SN.

Output : G that produces realistic and
heterogeneous TS data.

Parameters: δ, θ , 0 which are parameters of the
architectures D1, D2, G, are
consecutively initialised.

Sample of noise data [Z1 . . . ..Zm].

Sample of bogus TS data [X̂1 . . . ..X̂m].

DTS sample containing both bogusX̂ and real data X.

while iterations < I do
Train SN on DTS (X̂ ∪ X )

end

while X̂ not converge to X do
Generate Z [Z1 . . . ..Zn]

G(Z) random batch of latent TS data [X̂1 . . . ..X̂n]

X random batch of real TS data [X1 . . . ..Xn]

Split latent TS in two:
X̂1 = [X̂1 . . . ..X̂ n

2
], X̂2 = [X̂ n

2
. . . . . . X̂n]

Split real TS in two:
X1

= [X1 . . . ..X n
2
], X2

= [X n
2
. . . . . . Xn]

S = SN (X1, X2), Ŝ = SN (X̂1, X̂2)

Update δ, θ , 0 using Equation (12).
end

procedure described in Section IV-A and Section IV-B. Specif-
ically, the pre-processing and configuration used for training
the GAN were also used for training TS-SGAN. Moreover,
the same analysis that was conducted in Section III-C, which
involved finding the parent segment for the generated data
using LCSS and training the same classifier on the generated
data, followed by using the real data as a validation set.

1) ARAT Dataset: Initially, the SN was trained for 32 epochs
to acquire the ability to distinguish between the distinct seg-
ments contained in the dataset. After that, the hyperparameters
employed in Section III-C3 for GAN training were utilised,
to train the GAN namely, 640 epochs, the Adam optimizer
with a momentum of 0.5, binary cross-entropy loss function,
a latent vector size of 32, and a learning rate of 2 × 10−4.

Upon conducting a visual inspection of the generated data,
it was observed that the spawned time chunks exhibited a
comparable quality to those generated by the model trained
in Section III-A. Notably, the model learned to generate the
padded zeroes that were added to ensure uniform signal length,
which is a consequence of retaining the GAN component of
TS-SGAN. However, it is evident that the TS-SGAN model
effectively incorporates all dataset segments in generating
novel data. Furthermore, a thorough visual examination reveals

TABLE IX
THE NUMBER OF GENERATED SEGMENTS PER CLASS SEEN BY LCSS

ALGORITHM FOR GAN AND TS-SGAN FOR ARAT 0

TABLE X
THE NUMBER OF GENERATED SEGMENTS PER CLASS SEEN BY LCSS

ALGORITHM FOR GAN AND TS-SGAN FOR ARAT 1

Fig. 7. Distribution of the TS-SGAN generated data for different classes.

that the model does not suffer from mode collapse, this is
substantiated below.

Following the same procedure used in Section III-A,
we generate 1500 segment per class, results are shown in
Tables IX, X, XI, and XII respectively.

The tables clearly demonstrate that the TS-SGAN-generated
data are uniformly distributed across various segments and
classes of the dataset, which was not the case with the GAN-
generated data. Furthermore, training the same classifier as
in Section III-C3 on the TS-SGAN-generated data yields an
accuracy of 98.2% and a weighted F1-score of 0.99, surpassing
the GAN model’s performance by 35% in accuracy and 0.41 in
F1-score per class. These results indicate that the TS-SGAN
model is not prone to mode collapse and effectively captures
all relevant information while generating synthetic data for this
dataset.

2) Activity Recognition Dataset: Initially, the SN was trained
on the authentic dataset consisting of 14400 segments, for a
total of 150 epochs, with the aim of acquiring the ability to
distinguish between the various classes.

Subsequently, utilising the identical parameters from
Section III-C4, the TS-SGAN was trained, and 90000 seg-
ments were generated. The class distribution per partition is
illustrated in Figure 7. It is observed that akin to the findings
obtained for the ARAT dataset, the TS-SGAN-generated data
is uniformly distributed among the classes, as opposed to what
was observed for the GAN-generated data.

Furthermore, upon training the previously established clas-
sifier on the generated data and then using the authentic data
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TABLE XI
THE NUMBER OF GENERATED SEGMENTS PER CLASS SEEN BY LCSS ALGORITHM FOR GAN AND TS-SGAN FOR ARAT 2

TABLE XII
THE NUMBER OF GENERATED SEGMENTS PER CLASS SEEN BY LCSS ALGORITHM FOR GAN AND TS-SGAN FOR ARAT 3

as a validation set, an accuracy of 90.8% with an F1-score
per class of 0.90 was obtained. This represents a substantial
improvement of 42.07% in accuracy and 0.45 in F1-score as
compared to the GAN-generated data.

D. Results Summary
In this study, we introduce a framework for generating

realistic and heterogeneous multivariate TS data. Our approach
leverages two datasets related to post-stroke rehabilitation
assessment: (1) a small, unbalanced dataset containing data
for a popular rehabilitation assessment scale, and (2) a larger
activity recognition dataset. We generated data that closely
resembled the original data and contained enough information
to enable near-perfect classification by a classifier.

Initially, we employed a vanilla GAN to generate the
multivariate TS data. We trained the model separately on each
category in the first dataset, as it is not feasible to predict the
label from visual inspection of the signal. In the case of the
second dataset, we trained the model on the entire dataset, as it
was easier to distinguish between classes. While the generated
data met the realism criteria, further inspection revealed that
many segments from the dataset were not included in the gen-
erated data. This observation suggested that the model suffered
from mode collapse, failing to capture the heterogeneity of the
true distribution. To confirm this hypothesis, we used the LCSS
algorithm to compute the similarity between the generated data
and the original segments. Results on both datasets confirmed
the presence of mode collapse. Additionally, we trained a
classifier on the generated data and evaluated it using the real
data as a validation set, and the classification results were poor
due to mode collapse.

To address the issue of mode collapse, we proposed a new
method using the TS-SGAN. This involved adding a layer
that learns the heterogeneity between different input structures
and uses this information to characterise all modes, enabling
the generator to spawn more diverse data. We achieved this
by adding an SN that first discriminates between the dataset
elements and then generates similarity, which is sent to a
second discriminator in the network. The resulting generator
did not suffer from mode collapse, and the generated data were
heterogeneous, as evidenced by the distribution of the gener-
ated data across both datasets and the excellent classification
results when training the classifier on the newly generated data.

This study lays the groundwork for future research endeav-
ours. Our intention is to extend the application of the
TS-SGAN model to other types of GAN architectures, such as

conditional GANs and cycle GANs, and assess their efficacy
on various TS datasets. While our focus has been on post-
stroke rehabilitation, we believe that this model has the poten-
tial to be applied to other TS domains with further research and
development. Additionally, conducting a thorough analysis of
the generated data, including their variability, and performing
comprehensive comparisons with the original datasets, could
serve as valuable groundwork for future research.

V. CONCLUSION

In the field of post-stroke tele-rehabilitation assessment, the
collection of large amounts of data from wearable sensors
is crucial. This data should be both realistic and diverse
in order to facilitate the development of effective models
for assessing patients’ actions. Data augmentation in the TS
domain is an important step towards the development of more
efficient assessment models that can generalise better to real-
life circumstances. While GANs have been shown to generate
meaningful data, they are prone to mode collapse, limiting
their effectiveness. In this paper, we proposed a new model
called TS-SGAN, which addresses the mode collapse issue of
vanilla GANs by incorporating a second discriminator and a
SN. The resulting model was able to generate more diverse and
realistic data, which improved the classification performance
of the activity recognition dataset from 48.73% to 90.8%
and from 63% to 98.2% for the ARAT dataset. These results
demonstrate the potential of the TS-SGAN model to enhance
the quality of TS data and improve the accuracy of classifica-
tion models in post-stroke tele-rehabilitation assessment.
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