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ABSTRACT
We develop tests for predictability that are robust to both the magnitude of the initial condition and
the degree of persistence of the predictor. While the popular Bonferroni Q test of Campbell and Yogo
displays excellent power properties for strongly persistent predictors with an asymptotically negligible
initial condition, it can suffer from severe size distortions and power losses when either the initial condition
is asymptotically non-negligible or the predictor is weakly persistent. The Bonferroni t test of Cavanagh,
Elliott, and Stock, although displaying power well below that of the Bonferroni Q test for strongly persistent
predictors with an asymptotically negligible initial condition, displays superior size control and power when
the initial condition is asymptotically nonnegligible. In the case where the predictor is weakly persistent,
a conventional regression t test comparing to standard normal quantiles is known to be asymptotically
optimal under Gaussianity. Based on these properties, we propose two asymptotically size controlled hybrid
tests that are functions of the Bonferroni Q, Bonferroni t, and conventional t tests. Our proposed hybrid tests
exhibit very good power regardless of the magnitude of the initial condition or the persistence degree of
the predictor. An empirical application to the data originally analyzed by Campbell and Yogo shows our new
hybrid tests are much more likely to find evidence of predictability than the Bonferroni Q test when the initial
condition of the predictor is estimated to be large in magnitude.
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1. Introduction and Motivation

Testing for the predictability of asset returns has been the sub-
ject of numerous studies in the applied economics and finance
literature, assessing the predictive strength of a range of can-
didate predictor variables, including valuation ratios, interest
rates and other financial and macroeconomic variables. Fama
(1981) examines the predictability of stock returns using various
candidate predictors including interest rates, industrial produc-
tion, GNP and capital stock and expenditure, while Campbell
and Yogo (2006) [CY, hereafter] consider candidate predictors
that include the dividend and earnings price ratios, the three-
month T-bill rate and the long-short yield spread. The standard
approaches to determining whether returns are predictable are
based on a simple linear predictive regression model with a
constant and lagged putative predictor, which we denote as xt−1,
with slope coefficient β .

A common finding in empirical studies into return pre-
dictability is that the putative predictor is often both strongly
persistent and endogenous, with a nonzero (often strongly neg-
ative) correlation between the errors in the predictive regres-
sion and the innovations driving the predictor process; see,
inter alia, CY and Welch and Goyal (2008). In this situation
Cavanagh, Elliott, and Stock (1995) [CES, hereafter] show that
the standard t test on the estimate of β suffers from severe size
distortions that are a function of both the degree of persistence
and the endogeneity of the predictor. This finding has motivated
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the development of numerous tests for predictability that are
designed to allow for both strong persistence in the predictor
series xt , modeled by a first order autoregression with a local-
to-unity coefficient ρ = 1 − c/T (where c is an unknown
finite constant and T is the sample size), and also predictor
endogeneity. Arguably the most commonly employed test of this
type is the Q test proposed by CY and it is this test that we will
concentrate on in this article.1

In brief, the Bonferroni Q test procedure of CY is based
around computing a confidence interval for β using what is
essentially a t-statistic obtained from the predictive regression
augmented by the covariate (xt − ρxt−1). When xt is (near)-
integrated, the local offset c in ρ is not consistently estimable,
rendering the confidence interval calculation infeasible in prac-
tice. To overcome this problem, CY use a Bonferroni procedure,
originally proposed in CES, whereby a confidence interval for
ρ is first constructed by inverting the quasi-GLS demeaned
Dickey-Fuller (ADF-GLS) unit root test of Elliott, Rothenberg,

1Another strand of the literature focuses on instrumental variable estimation
using an instrument which is less persistent than a local-to-unity process;
see, inter alia, Kostakis, Magdalinos, and Stamatogiannis (2015) and Bre-
itung and Demetrescu (2015). These tests are valid regardless of whether
the predictor is weakly or strongly persistent, but are less powerful than
the Q test when the predictor is strongly persistent, a significant drawback
given a large number of the candidate predictors used in empirical work
appear strongly persistent.
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and Stock (1996) applied to the predictor, xt . The bounds
associated with this confidence interval for ρ are then used to
deliver a feasible confidence interval for β .

For strongly persistent predictors, CY show that the Bon-
ferroni Q test procedure has well controlled size and good
power properties regardless of the value of the noncentrality
parameter c and the degree of endogeneity of the predictor.
These excellent empirical properties are, however, predicated
on a key assumption that the initial condition of the predictor
series, defined as the deviation of the initial value of the series
from its underlying mean, is asymptotically negligible. In the
context of stationary but near-integrated predictors, where the
data are of order Op(T1/2), this assumption is only tenable if
the beginning of the sample coincides with the beginning of the
process. In practice this assumption is likely to be implausible;
the predictors commonly considered will have been running for
quite some time prior to the start of the observed sample. Con-
sequently, it seems more plausible to allow the initial condition
to be asymptotically nonnegligible (relative to the rest of the data
on the predictor) and, as we will show, where this is the case it
will influence the large sample properties of the Bonferroni Q
test procedure. Exploring this issue forms the main focus of our
article.

The Bonferroni Q procedure of CY relies on use of the ADF-
GLS statistic to construct a confidence interval for ρ. Müller
and Elliott (2003) show that the power of the ADF-GLS test
against stationary alternatives is highly sensitive to the value of
the initial condition. When the initial condition is of op(T1/2),
and hence asymptotically negligible, Müller and Elliott (2003)
demonstrate that the ADF-GLS test has excellent power proper-
ties when ρ is near-integrated. However, where the initial con-
dition is asymptotically nonnegligible, they show that the local
alternative distribution of the ADF-GLS statistic is shifted to the
right, relative to the asymptotically negligible initial condition
case, leading to a reduction in relative power against left tailed
alternatives, with this reduction more pronounced the larger
is the absolute value of the initial condition. In the current
predictive regression context, this leads to a rightwards shift in
the confidence interval for ρ, and subsequently, a leftwards shift

in the confidence interval for β . Performing a right tailed test
for predictability using the Bonferroni Q test, when a negative
correlation exists between the innovations to returns and the
predictor, entails examining whether the lower bound of the
confidence interval for β exceeds zero, and so a leftward shift
in this confidence interval induced by a large initial condition
would be expected to result in a Q test that is undersized and
lacking in power. Likewise, when performing a left tailed Q test,
large values of the initial condition are anticipated to lead to
oversizing in the Bonferroni Q test.

To illustrate, we now report results of a brief motivating
empirical application to demonstrate the impact that initial
conditions of different magnitudes can have on the Bonferroni
Q test. Specifically, we examine 5%-level right tailed tests for
predictability of the returns of the NYSE/AMEX value-weighted
index from the Center for Research in Security Prices (CRSP)
using the earnings-price ratio as a predictor, for the same
monthly data from 1926M12 to 1994M12 as used in CY (T =
817). Based on the full sample of data, CY find that the earnings-
price ratio is a significant predictor of returns. We repeat this
exercise, but instead perform the Q test on data from t =
ts, . . . , T across multiple start dates ts =1926M12,…,1945M12.
The results of this exercise are summarized in Figure 1. The
red and green highlighted line plots, for each start date ts,
the lower bound of the confidence interval for β calculated
from the right tailed Bonferroni Q test performed at the 5%
nominal (asymptotic) level, with a lower bound above zero
signaling a rejection (green highlights) and a lower bound
below zero signaling nonrejection (red highlights). The blue
line plots an estimate of the magnitude of the initial con-
dition of the predictor variable relative to the variance for
each subsample, |θ̂ | (subsequently defined in (15)), using the
method proposed by Harvey and Leybourne (2005), and the
grey shaded regions further highlight those start dates ts for
which the Bonferroni Q test fails to reject the null of no
predictability.

It is apparent that while the null hypothesis of β = 0 is
rejected by the Bonferroni Q test for the full sample (as indicated
by the green highlighted line at ts=1926M12), and for a majority

Figure 1. Lower bound of confidence interval of Bonferroni Q test and |θ̂ |.
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of other subsamples considered, there are a substantial number
of start dates for which the Q test fails to find predictability. In
general, it can be seen that for subsamples where the estimate of
the relative magnitude of the initial condition is small in absolute
value, the Q test rejects the null of no predictability, whereas in
subsamples where this estimate is large in absolute value the Q
test often fails to reject the null. These findings are in line with
our conjecture that large initial conditions in the predictor will
cause right tailed predictability tests to exhibit lower rejection
frequencies. This is an important finding and suggests that the
magnitude of the initial condition of the predictor is indeed
an important consideration when applying the Bonferroni Q
test to empirical data. Failing to account for the impact of the
initial condition on this testing strategy can lead to different
conclusions based on the particular subsample of data chosen,
which is clearly an undesirable feature.

Motivated by these empirical findings, our aim in this article
is to develop tests for predictability that offer a far greater degree
of robustness to the initial condition of the predictor series
than extant tests. It is important to stress that no CY/CES-
type test can be invariant, even asymptotically, to an asymptot-
ically nonnegligible initial condition (unless c = 0), because
the magnitude of the initial condition features in the limiting
distribution of both the unit root and predictive regression
statistics used in the construction of the Bonferroni confidence
intervals for ρ and β . The tests we develop are constructed
so that their asymptotic size is controlled across the predic-
tor’s initial condition magnitude, degree of persistence and
endogeneity, while also retaining most of the excellent power
properties afforded by the Bonferroni Q test in the case where
the initial condition is asymptotically negligible. Specifically,
we propose hybrid test procedures based on the Bonferroni Q
test of CY, the Bonferroni t test of CES, and a conventional
predictive regression t test. While CY show that the Bonferroni
t test displays poor power properties relative to the Bonfer-
roni Q test when the predictor is driven by a local-to-unity
process with an asymptotically negligible initial condition, we
show that the size and power of the Bonferroni t test has the
attractive feature of being relatively unaffected by whether the
initial condition is asymptotically negligible or nonnegligible.
This is, in part, because the Bonferroni t test of CES bases
its confidence interval for ρ on the OLS demeaned Dickey-
Fuller statistic (ADF-OLS), rather than the ADF-GLS statistic,
and it is known from Müller and Elliott (2003) that ADF-
OLS is considerably more robust than ADF-GLS to the initial
condition.

We propose two approaches designed for strongly persistent
predictors. The first is based on a union-of-rejections strategy
in which the null of no predictability is rejected if either the
Bonferroni Q test or Bonferroni t test rejects. Such a strategy
is common in the time series econometrics literature, following
Harvey, Leybourne, and Taylor (2009) in the context of unit
root testing. The second uses the estimate of the magnitude of
the initial condition relative to the variance proposed in Harvey
and Leybourne (2005) to construct a weighted average of the
Bonferroni Q and t tests, calibrated such that greater weight
is placed on the Bonferroni Q test (t test) when the estimated
magnitude of the initial condition is small (large). We will show
that both of these combined tests are able to control asymptotic

size in the local-to-unity environment, regardless of the value
of the initial condition, maintain power close to that of the
Bonferroni Q test when the initial condition is small, and achieve
power close to that of the Bonferroni t test when the magnitude
of the initial condition is large.

While our primary analysis concerns a strongly persistent
predictor (as in CY), it is also important to note that both
the Bonferroni Q test of CY and Bonferroni t test of CES are
(asymptotically) invalid if the predictor is weakly persistent
(|ρ| < 1), with the confidence interval provided by inverting the
ADF-GLS and ADF-OLS tests having zero asymptotic coverage
for weakly persistent series. To ensure that our proposed test
procedures are also robust to the possibility of weak persis-
tence in the predictor, we adopt a hybrid testing approach,
based on a similar switching strategy to those developed by
Elliott, Müller, and Watson (2015) [EMW, hereafter] and Har-
vey, Leybourne, and Taylor (2021), whereby a conventional
regression t test with standard normal critical values is imple-
mented, rather than one of the combined tests outlined above,
when there is sufficiently strong evidence to suggest that the
predictor is weakly persistent, this test being asymptotically
optimal (among feasible tests) under Gaussianity when the pre-
dictor is weakly dependent; see Jansson and Moreira (2006,
p. 704).

The article is organized as follows. The predictive regression
model and assumptions are detailed in Section 2. In Section 3,
the Bonferroni Q test of CY and Bonferroni t test of CES are
introduced and the asymptotic behavior of these tests is exam-
ined when the initial condition is asymptotically nonnegligible.
Our proposed hybrid test procedures are outlined in Section 4,
and their local asymptotic power is compared with those of
the CY and CES tests. Section 5 reports results of an empirical
application of our proposed hybrid test procedures to the dataset
considered in CY. An on-line supplementary appendix provides
additional local asymptotic power simulations, finite sample size
and power simulations, additional empirical results, and a proof
of our main technical result.

2. The Predictive Regression Model and Assumptions

We consider the following predictive regression model

rt = α + βxt−1 + ut , t = 1, . . . , T (1)

where rt denotes the (excess) return in period t, and xt−1 denotes
a putative predictor observed at time t − 1. We assume the
process for xt is given by

xt = μ + wt , t = 0, . . . , T (2)

wt = ρwt−1 + vt , t = 1, . . . , T (3)

and make the following assumptions concerning the shocks ut
and vt .

Assumption 1. We assume that ψ(L)vt = et where ψ(L) :=∑p−1
i=0 ψiLi with ψ0 = 1 and ψ(1) �= 0, with the roots of ψ(L)

assumed to be less than one in absolute value. We assume that
zt := (ut , et)

′ is a bivariate martingale difference sequence with
respect to the natural filtration Ft := σ {zs, s ≤ t} satisfying the
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following conditions: (i) E[ztz′
t] =

[
σ 2

u σue
σue σ 2

e

]
, (ii) supt E[u4

t ] <

∞, and (iii) supt E[e4
t ] < ∞. For future reference, we define

ω2
v := limT→∞ T−1E(

∑T
t=1 vt)2 = σ 2

e /ψ(1)2 to be the long
run variance of the error process {vt}, and δ := σue/σuσe as the
correlation between the innovations {ut} and {et}.

Remark 2.1. The conditions in Assumption 1 coincide with the
most general set of assumptions considered in CY (see pp. 56–
57 of CY). The assumptions placed on zt allow the sequence
of innovations to be conditionally heteroscedastic but imposes
unconditional homoscedasticity. Notice that the MDS aspect of
Assumption 1 implies the standard assumption made in this
literature that the unpredictable component of returns, ut , is
serially uncorrelated. Assumption 1 allows the dynamics of the
predictor variable to be captured by an AR(p), with the degree
of persistence of the predictor (strong or weak) controlled by the
parameter ρ in (3), as will be formalized in Assumptions S.1, S.2,
S.3, and W.

As discussed in Section 1, our focus is on tests of the null
hypothesis that (rt − α) is a MDS and, hence, that rt is not
predictable by xt−1; that is, H0 : β = β0 = 0 in (1).2 Our aim
is to develop tests that offer reliable size and good power under
different assumptions regarding the degree of persistence in the
predictor variable xt , and under different assumptions regarding
the order of magnitude of the initial condition of xt , given by
w0 = x0 − μ. We therefore allow the predictor process {xt} in
(2) to satisfy one of the following four assumptions.

Assumption S.1. The predictor {xt} is strongly persistent, with
the autoregressive parameter ρ in (3) given by ρ = 1− c/T with
c = 0. The initial condition w0 is unrestricted.

Assumption S.2. The predictor {xt} is strongly persistent, with ρ

in (3) given by ρ = 1−c/T with c a finite nonzero constant. The
initial condition is given by w0 = op(T1/2).

Assumption S.3. The predictor {xt} is strongly persistent, with ρ

in (3) given by ρ = 1− c/T with c a finite positive constant. The
initial condition is given by w0 = θσw where σ 2

w denotes the
short run variance of the process {wt} and θ ∼ N(μθ I(σ 2

θ =
0), σ 2

θ ), where I(.) denotes the indicator function that takes a
value of 1 when its argument is true, 0 otherwise. When σ 2

θ > 0
we further assume that the random variable θ is independent of
zt for all t.

Assumption W. The predictor {xt} is weakly persistent. The
parameter ρ in (3) is fixed and bounded away from unity, |ρ| <

1. The initial condition is given by w0 = Op(1).

Remark 2.2. Under Assumption S.1, xt is a pure unit root (or
I(1)) process. No restrictions need to be placed on the initial
condition here because all of the testing procedures discussed
in this article are exact invariant to w0 in the pure unit root
case. Under Assumptions S.2 and S.3, xt is specified to follow a

2The methods which we outline in this article could equally well be used
to test the generic null hypothesis that β = β0 in (1), but as the focus in
equity forecasting is on testing the null hypothesis of a zero coefficient on
the lagged predictor we will restrict our attention to β0 = 0.

(strongly persistent) local-to-unity process, with the degree of
persistence of the process controlled by c. For c > 0, xt is a
stationary but near-integrated process, while for c < 0, xt is a
(locally) explosive process. Assumption S.2 specifies the initial
condition of xt to be asymptotically negligible, while Assump-
tion S.3, in the context of stationary near-integrated predictors
(c > 0), sets the initial condition of xt to be proportional
to the standard deviation of the stationary process {wt} (as in
Müller and Elliott 2003); this implies σ 2

w = ω2
vT/2c + o(T)

and hence that w0 is of Op(T1/2), that is, the initial condition
is asymptotically nonnegligible. Here, θ controls the magnitude
of the initial condition (relative to σw). If σ 2

θ = 0 then the
initial condition is fixed and is given by w0 = μθσw. On the
other hand, if σ 2

θ > 0 then the initial condition is random with
w0 ∼ N(0, σ 2

θ σ 2
w).

Remark 2.3. Under Assumption S.2, we allow for the possibility
of explosive predictors, c < 0, as in CY. However, it is important
to initialize an explosive predictor at an asymptotically negligible
initial value, because otherwise the behavior of the predictor
becomes dominated by the initialization (increasingly so over
time), something which is unlikely to be credible for macroe-
conomic and financial variables. Hence, we do not consider
asymptotically nonnegligible initial conditions in the explosive
case.

Remark 2.4. Under Assumption W, xt follows a stationary pro-
cess and the initial condition is, correspondingly, assumed to be
of Op(1), as would arise if, for example, the initial condition was
proportional to σ 2

w in the case |ρ| < 1.

In practice, when the putative predictor is near-integrated
with c > 0 it is difficult to know which of Assumptions S.2
and S.3 is the more appropriate, as the initial condition w0
is unobserved (as distinct from the initial observation x0) and
we would not know, a priori, whether the initial condition is
“large” or “small.” As discussed in Section 1, an argument could
be made for Assumption S.3 to hold in the strongly persistent
case on the basis that the initial condition derives from the
first sample observation on the predictor and so should be
specified to have the same stochastic order as the rest of the
sample data. As we will show, the local asymptotic powers of
predictability tests depend on which of Assumptions S.2 and
S.3 holds, and, under Assumption S.3, on the magnitude of
the initial condition. Hence, it is important to consider the
behavior of predictive regression tests under different initial
condition assumptions and magnitudes with near-integrated
predictors.

3. Behavior of Bonferroni Q and t Tests under
Assumption S.3

3.1. Bonferroni Q and t Tests

CY and CES propose testing for predictability based on Bon-
ferroni procedures that make use of confidence intervals for the
unknown autoregressive parameter ρ = 1 − c/T, with these
confidence intervals constructed by inverting unit root tests.
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Table 1. Parameters to deliver one-sided tests with maximum 5% asymptotic size.

QGLS tOLS U W1 W2 QOLS tOLS U W1 W2

δ αQ
1 ᾱQ

1 αt
1 ᾱt

1 ξ ξ ξ δ αQ
1 ᾱQ

1 αt
1 ᾱt

1 ξ ξ ξ

−0.999 0.050 0.055 0.020 0.035 0.28 0.85 0.55 −0.500 0.080 0.280 0.060 0.035 0.28 0.60 0.45
−0.975 0.055 0.080 0.025 0.035 0.28 0.85 0.56 −0.475 0.085 0.285 0.050 0.035 0.20 0.58 0.36
−0.950 0.055 0.100 0.025 0.040 0.38 0.75 0.50 −0.450 0.085 0.295 0.055 0.040 0.21 0.56 0.36
−0.925 0.055 0.115 0.025 0.040 0.34 0.73 0.50 −0.425 0.090 0.310 0.035 0.040 0.21 0.56 0.36
−0.900 0.060 0.130 0.025 0.035 0.34 0.71 0.46 −0.400 0.090 0.320 0.060 0.040 0.21 0.53 0.36
−0.875 0.060 0.140 0.025 0.035 0.32 0.72 0.45 −0.375 0.095 0.330 0.040 0.040 0.18 0.45 0.36
−0.850 0.060 0.150 0.025 0.035 0.30 0.71 0.43 −0.350 0.100 0.345 0.030 0.040 0.18 0.45 0.36
−0.825 0.060 0.160 0.025 0.035 0.35 0.71 0.46 −0.325 0.100 0.355 0.015 0.045 0.18 0.43 0.32
−0.800 0.065 0.170 0.025 0.035 0.33 0.71 0.46 −0.300 0.105 0.360 0.010 0.050 0.18 0.41 0.26
−0.775 0.065 0.180 0.030 0.035 0.36 0.72 0.56 −0.275 0.110 0.370 0.005 0.040 0.18 0.41 0.25
−0.750 0.065 0.190 0.025 0.035 0.36 0.72 0.56 −0.250 0.115 0.375 0.005 0.035 0.18 0.41 0.25
−0.725 0.065 0.195 0.025 0.035 0.36 0.71 0.57 −0.225 0.125 0.380 0.005 0.025 0.18 0.35 0.23
−0.700 0.070 0.205 0.025 0.035 0.37 0.71 0.57 −0.200 0.130 0.390 0.005 0.025 0.10 0.33 0.21
−0.675 0.070 0.215 0.025 0.035 0.34 0.71 0.57 −0.175 0.140 0.395 0.005 0.010 0.10 0.33 0.21
−0.650 0.070 0.225 0.025 0.035 0.34 0.67 0.55 −0.150 0.150 0.400 0.005 0.010 0.10 0.33 0.21
−0.625 0.075 0.230 0.025 0.035 0.34 0.67 0.51 −0.125 0.160 0.405 0.005 0.010 0.10 0.33 0.21
−0.600 0.075 0.240 0.030 0.035 0.34 0.65 0.51 −0.100 0.175 0.415 0.005 0.005 0.10 0.33 0.21
−0.575 0.075 0.250 0.035 0.035 0.32 0.65 0.45 −0.075 0.190 0.420 0.005 0.005 0.10 0.33 0.21
−0.550 0.080 0.260 0.035 0.035 0.30 0.65 0.45 −0.050 0.215 0.425 0.005 0.005 0.10 0.33 0.21
−0.525 0.080 0.270 0.045 0.035 0.28 0.65 0.45 −0.025 0.250 0.435 0.005 0.005 0.10 0.33 0.21

NOTE:
αQ

1 =Significance level used when inverting ADF-GLS to obtain lower bound of confidence interval for ρ for left tailed QGLS test.

αQ
1 =Significance level used when inverting ADF-GLS to obtain upper bound of confidence interval for ρ for right tailed QGLS test.

αt
1=Significance level used when inverting ADF-OLS for left tailed tOLS test.

αt
1=Significance level used when inverting ADF-OLS for right tailed tOLS test.

ξ=Scaling applied to ᾱQ
1 and ᾱt

1 in constituent QGLS and tOLS tests, respectively, when applying right tailed U and Wi tests, i = 1, 2.

CY propose the following (infeasible) statistic for testing the
null β = β0:

Q(β0, ρ) :=

∑T
t=1 xμ

t−1

[
rt − β0xt−1 − σue

σeωv
(xt − ρxt−1)

]
+T

2
σue
σeωv

(ω2
v − σ 2

v )√
σ 2

u (1 − δ2)
∑T

t=1(xμ
t−1)

2

= Q(0, ρ) − β0
√

1/{s2(1 − δ2)}
where s2 := σ 2

u /
∑T

t=1(xμ
t−1)

2, σ 2
v denotes the short run vari-

ance of vt and xμ
t−1 := xt−1 − T−1 ∑T

s=1 xs−1. A confidence
interval for β can then be derived based on the quantity Q(β , ρ).
Under the assumptions of CY, Q(β , ρ) follows a standard normal
distribution, resulting in the 100(1 − α)% confidence interval
[β(ρ, α), β(ρ, α)] where

β(ρ, α) = {Q(0, ρ) + zα/2}s
√

1 − δ2,

β(ρ, α) = {Q(0, ρ) − zα/2}s
√

1 − δ2

with zα/2 denoting the α/2 quantile of the standard normal
distribution. To overcome the fact that ρ = 1 − c/T is
unknown and c cannot be consistently estimated, CY propose
using a confidence interval for ρ obtained by inverting the
quasi-GLS demeaned ADF-GLS t-ratio based unit root test of
Elliott, Rothenberg, and Stock (1996) applied to xt (allowing for
p − 1 lagged difference terms, as per Assumption 1), using pre-
computed (asymptotic) confidence belts. In order to prevent the
resulting confidence interval for β from suffering excess cover-
age, CY further propose a refinement whereby the significance
level used to obtain the confidence interval for ρ is adapted to
upper and lower bounds separately, and also according to the

value of δ. Values of this significance level are chosen numeri-
cally to minimize over-coverage associated with the confidence
interval for β , while ensuring that the overall Bonferroni test
size does not exceed a chosen level across a specified range
of c. Denoting the significance levels for the lower and upper
confidence bounds for ρ by α

Q
1 and α

Q
1 , respectively, the confi-

dence interval for ρ can be written as [ρ(α
Q
1 ), ρ(α

Q
1 )], and the

resulting 100(1 − α2)% confidence interval for β is obtained as
[β(ρ(α

Q
1 ), α2), β(ρ(α

Q
1 ), α2)] where

β(ρ(α
Q
1 ), α2) = {Q(0, ρ(α

Q
1 )) + zα2/2}s

√
1 − δ2, (4)

β(ρ(α
Q
1 ), α2) = {Q(0, ρ(α

Q
1 )) − zα2/2}s

√
1 − δ2. (5)

For a given value of δ the one-sided tests for predictability con-
structed in this manner will have an asymptotic size of exactly
α2/2 for some value of c while remaining slightly undersized for
other values of c. Consequently, two-sided tests will have size of
at most α2 across the specified range of c. CY calibrate this pro-
cedure by fixing α2 = 0.1 and considering c ∈ [−5, 50] such that
their resulting one-sided tests have a maximum (asymptotic)
size of 5%. The appropriate values of α

Q
1 and α

Q
1 are reproduced

in Table 1 for convenience. We will denote the predictability test
based on this confidence interval as QGLS in what follows.

Remark 3.1. The appropriate values of α
Q
1 and α

Q
1 reported in

Table 1 are only provided for δ < 0. For δ > 0, CY note
that replacing xt in (1) with −xt flips the sign of both β and δ.
Therefore, an equivalent right (left) tailed test for predictability
when δ > 0 can be performed as a left (right) tailed test for
predictability based on (1) with xt replaced by −xt using the
values of α

Q
1 and α

Q
1 appropriate for a negative value of δ. This

also holds for the Bonferroni t test discussed below.
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Remark 3.2. If w0 = 0, the infeasible test based on Q(0, ρ) is,
under Gaussianity, a (conditionally) uniformly most powerful
test where ρ is known (see CY, p.32). However, the correspond-
ing feasible Bonferroni-based QGLS test does not possess any
formal optimality property. Imposing the assumption that w0 =
0, EMW propose a near-optimal test for a strongly persistent
predictor which is based on a weighted average (local asymp-
totic) power criterion. EMW impose the additional condition,
not required for QGLS, that c ≥ 0 (equivalently, ρ ≤ 1) disal-
lowing locally explosive predictors. CY p.54 provide a discussion
on why it might not be sensible to restrict c to be nonnegative;
indeed many of the predictors in CY’s empirical application
have confidence intervals for ρ that contain values above 1.
EMW find that their test generally displays higher asymptotic
local power than the CY test, although the converse can be true
particularly for the case of most practical interest where δ is large
and negative. Harvey, Leybourne, and Taylor (2021) find that
the EMW test has uncontrolled size, even asymptotically, when
c < 0. A version of the EMW test allowing for a locally explosive
predictor would therefore likely have much lower power than the
CY test.

The CES approach is based on the estimator of β obtained
from OLS estimation of (1), denoted β̂ , and the corresponding
(infeasible) t-statistic for testing the null β = β0 = 0:

t := β̂√
σ 2

u /
∑T

t=1 xμ2
t−1

.

The limiting null distribution of t in the local-to-unity set-
ting is a function of the unknown parameter c, but CES pro-
pose construction of a confidence interval for β by making
use of confidence intervals for c obtained by inverting the
standard OLS-demeaned ADF-OLS t-ratio based unit root test
(again allowing for p − 1 lagged differences), again using pre-
computed confidence belts. Specifically, for a given value of δ,
the CES 100(1 − α2)% confidence interval for β is obtained as
[β(αt

1, α2), β(αt
1, α2)] where

β(αt
1, α2) = β̂ −

{
max

c(αt
1)≤c≤c(αt

1)
dc,1−α2/2

}
s, (6)

β(αt
1, α2) = β̂ −

{
min

c(αt
1)≤c≤c(αt

1)
dc,α2/2

}
s (7)

and where dc,η denotes the η-level critical value of the limiting
null distribution of t for a given value of c. The significance
levels used to obtain the c confidence intervals, αt

1 and αt
1,

are selected numerically to ensure that the implied one-sided
tests for predictability constructed in this manner will have an
asymptotic size of exactly α2/2 for some value of c ∈ [−5, 50]
while remaining slightly undersized for other values of c. For
α2 = 0.1, the appropriate values of αt

1 and αt
1 are those of CY,

and are reported in Table 1.We will denote the predictability test
based on this confidence interval as tOLS in what follows.

For full details on the practical implementation of the
QGLS and tOLS procedures, including consistent estimation
of the parameters σe, σu, σv, σue, ωv, and δ, implementation
of the ADF-GLS and ADF-OLS unit root tests, and the pre-
computed confidence belts, see CY, CES, and the corresponding

supplementary material to CY available at https://scholar.
harvard.edu/campbell/publications/implementing-econometric-
methods-efficient-tests-stock-return-predictability-0. The
confidence belts and code for the procedures are available
from Motohiro Yogo’s website: https://sites.google.com/site/
motohiroyogo/research/asset-pricing.

3.2. Asymptotic Behavior

We now consider the large sample behavior of the QGLS and
tOLS tests when Assumption S.3 holds, that is, the case where the
predictor is a strongly persistent near-integrated process with
c > 0 and an initial condition that is of Op(T1/2). In this case the
limiting distributions of the statistics will be shown to depend
on the magnitude of the initial condition. We will quantify this
dependence, investigating the impact of the initial condition on
the asymptotic size and local power of the tests.

The first step in doing so is to establish the limiting distribu-
tions of the statistics Q(0, ρ̃) and t, where ρ̃ = 1 − c̃/T for an
arbitrary c̃. These results are presented in Proposition 1.

Proposition 1. Let the data on (rt , xt) be generated accord-
ing to (1)–(3). Let We,c(s) be a standard Ornstein-Uhlenbeck
process on [0, 1] defined by the stochastic differential equa-
tion dWe,c(s) = −cWe,c(s)ds + dWe(s), with initial condition
We,c(0) = 0, and where We(s) is a standard Weiner process.
If Assumptions 1 and S.3 hold then under the local alternative
Hb : β = T−1b,

(a) Q(0, ρ̃)
w→ bωvκθ

c
σu

√
1 − δ2

+ δ(c − c̃)κθ
c√

1 − δ2
+ Z (8)

(b) t w→ bωvκθ
c

σu
+ δ

τ θ
c

κθ
c

+
√

1 − δ2Z := t∞ (9)

where “ w→” denotes weak convergence, κθ
c := (

∫ 1
0 Kμ

c,θ (s)2ds)1/2

and τ θ
c := ∫ 1

0 Kμ
c,θ (s)dWe(s) with Kμ

c,θ (s) := Kc,θ (s) −∫ 1
0 Kc,θ (r)dr and

Kc,θ (r) := θ(e−rc − 1)(2c)−1/2 + We,c(r) (10)

and where Z := (∫
Kμ

c,θ (r)2dr
)−1/2 ∫

Kμ
c,θ (s)dW̃u(s) ∼ N(0, 1),

where W̃u(·) is a standard Wiener process distributed indepen-
dently of We(·).

Remark 3.3. Observe that when θ = 0, Kc,θ (r) in (10) reduces
to We,c(r) and hence the limiting distributions for Q(0, ρ̃) and
t given in Proposition 1 under Assumption S.3 simplify to
the limits given in CY and CES under Assumption S.2. It fol-
lows, therefore, that asymptotic analysis of the tests under the
Assumption S.2 case of w0 = op(T1/2) can be subsumed under
the Assumption S.3 case of w0 = Op(T1/2), on setting θ =
0. Similarly, the limiting distributions of Q(0, ρ̃) and t under
the c = 0 case of Assumption S.1 can also be obtained from
Proposition 1 by replacing K0,θ (r) with We(r).

Remark 3.4. Where θ �= 0 it is seen from the representations
in (8) and (9) that for near-integrated predictors with c > 0
the asymptotic distributions of both the Q(0, ρ̃) and t statistics

https://scholar.harvard.edu/campbell/publications/implementing-econometric-methods-efficient-tests-stock-return-predictability-0
https://scholar.harvard.edu/campbell/publications/implementing-econometric-methods-efficient-tests-stock-return-predictability-0
https://scholar.harvard.edu/campbell/publications/implementing-econometric-methods-efficient-tests-stock-return-predictability-0
https://sites.google.com/site/motohiroyogo/research/asset-pricing
https://sites.google.com/site/motohiroyogo/research/asset-pricing
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depend on θ under both the null hypothesis and local alterna-
tives. Where the initial condition is fixed (σ 2

θ = 0) it follows,
using the arguments made on p. 102 of Harvey and Leybourne
(2005), that these limiting distributions are invariant to the sign
of μθ .

Remark 3.5. Representations for the limiting null distributions
of the Q(0, ρ̃) and t statistics obtain on setting b = 0 in the
expressions in (8) and (9), respectively. Notice, therefore, that
Q(0, ρ) (the Q statistic calculated at the true ρ) has a standard
normal limiting null distribution, although its asymptotic local
power function does still depend on θ . Notice also that the local
power offset in the limit of Q(0, ρ̃) is independent of the value
of c̃ .

We now evaluate the local asymptotic power of the QGLS

and tOLS tests under Assumptions S.1–S.3. To do so we will
additionally require the limiting distributions of ADF-GLS and
ADF-OLS. These are given by (see, e.g., Harvey, Leybourne, and
Taylor 2009):

ADF-GLS w→ Kc,θ (1)2 − 1

2
√∫ 1

0 Kc,θ (s)2ds
, (11)

ADF-OLS w→ Kμ
c,θ (1)2 − Kμ

c,θ (0)2 − 1
2κθ

c
. (12)

The method for simulating the local asymptotic power proceeds
as follows, where we outline the procedure for the illustrative
case of right tailed testing; left tailed testing proceeds in the
same manner with the obvious modifications. All simulations
of limiting distributions we report were performed in Gauss
8.0 using direct simulation with 5000 Monte Carlo replications,
with Wiener processes approximated using NIID(0,1) random
variates and integrals approximated by normalized sums of 1000
steps.

For QGLS, we first simulate draws from the limiting distri-
butions of ADF-GLS using (11). These values are then used
to obtain the lower bound of the confidence interval for c,
which we denote c(αQ

1 ), using the pre-computed confidence
belts discussed in Section 3.1, implemented using the values
of α

Q
1 appropriate for δ obtained from Table 1. Note that this

value of c corresponds to the upper bound of the confidence
interval for ρ, that is, ρ(ᾱ

Q
1 ) = 1 − c(ᾱQ

1 )/T. Of course,
testing in the right tail is equivalent to determining whether
β(ρ(α

Q
1 ), α2) > 0, and the asymptotic local power function

associated with Q(0, ρ(ᾱ
Q
1 )) is given by E[�(h(α

Q
1 , α2))] where

�(.) denotes one minus the standard normal cdf and

h(α
Q
1 , α2) := z1−α2/2 − bωvκθ

c
σu

√
1 − δ2

− δ(c − c(αQ
1 ))κθ

c√
1 − δ2

. (13)

Next we simulate a draw from κθ
c and construct h(α

Q
1 , α2) in

(13). Finally, we evaluate whether a simulated draw from a
standard normal exceeds this value of h(α

Q
1 , α2). The limiting

power is then obtained as the average of these exceedances across
replications.

For tOLS, in each simulation replication we first simulate a
draw from the limiting distributions of ADF-OLS using (12),

and then obtain [c(αt
1), c(αt

1)] using the corresponding pre-
computed confidence belts for the values of αt

1 appropriate for
δ obtained from Table 1. Then we simulate the limit of t using
the result in Proposition 1(b), and compare this with the critical
value maxc(αt

1)≤c≤c(αt
1)

dc,1−α2/2. The limiting power is again cal-
culated as the average of these exceedances across replications.
Note that the pre-computed confidence belts and Bonferroni
refinement significance tables that are used here for QGLS and
tOLS are those designed for Assumptions S.1 and S.2.

In what follows we set σu = ωv = 1 without loss of
generality (as these parameters can be consistently estimated)
and employ the commonly used setting of δ = −0.95. We
report results for a fixed initial condition generated according
to Assumption S.3 with θ = μθ = {0, 1, 3}, covering cases
of an asymptotically negligible initial condition (μθ = 0)
and asymptotically nonnegligible initial conditions of increasing
magnitude (μθ = 1 and μθ = 3). Results for random initial
conditions (available on request) were found to be qualitatively
similar and hence are not reported. We consider the local-to-
unity values c = {0, 2, 5, 20} (results for the additional cases
c = {10, 50}, and for δ = −0.75, are reported in the supple-
mentary appendix) with local power curves generated across a
grid of 50 values of b from 0 to a relevant value that depends
on c and whether right or left tailed tests are being conducted.
Recall that when c = 0, the tests are exact invariant to w0
and so only one set of power results is required. Additional
asymptotic size simulations covering c = {0, 2, 5, 10, 20, 50},
δ ∈ {−0.95, −0.75, −0.50, −0.25} and μθ ∈ {0, 1, 3} can be
found in Tables A.1–A.3 in the supplementary appendix. All
tests are performed as one-sided (asymptotic) 5% tests. Results
are only reported for δ < 0 as the size and power for right
(left) tailed tests for predictability when δ > 0 are identical
to left (right) tailed tests for predictability when δ < 0; see
Remark 3.1.

3.3. Asymptotic Size and Local Power of Right Tailed Tests
when δ < 0

Figure 2 graphs the asymptotic size and local power of the right
tailed Bonferroni-based tests for predictability; also graphed are
the corresponding quantities for the right-tailed hybrid tests that
we will subsequently develop in Section 4 (discussion of which
we will defer until Section 4.6). When c = 0, the results in panel
(a) show that neither test’s power profile dominates the other
across all b. Consider next the case where c > 0 and μθ = 0,
such that the initial condition is asymptotically negligible. It
is apparent from the results in panels (b), (e), and (h) that in
this scenario both tests are asymptotically size-controlled (as
expected) and that the best overall local power performance is
displayed by QGLS. The local power of this test offers substantial
power gains relative to tOLS for c = 2, 5, and only ever falls
very slightly below that of tOLS for small values of b when c =
20. The additional results for c = {10, 50} reported in the
supplement (see Figure A.1) show that QGLS is again arguably
the best procedure, unless c = 50 where it lacks power relative
to tOLS.

We next turn our attention to the case where the initial
condition of the predictor is asymptotically nonnegligible, with
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Figure 2. Asymptotic local power of right tailed tests, δ = −0.95.

μθ = 1. We see from the results in panels (c), (f), and (i) of
Figure 2 that both tests remain asymptotically size-controlled
for an initial condition of this magnitude, but we observe a
reduction in local power for QGLS relative to the case of μθ = 0,
with this effect more pronounced the greater is the value of c.
Indeed, the power of tOLS falls only slightly below that of QGLS

for c = 2, 5, while greatly exceeding it for the larger value of
c = 20. Overall, the best local power performance across all
values of c considered in this case is that associated with tOLS.

Turning to panels (d), (g), and (j) of Figure 2 we see that
a larger initial condition, with μθ = 3, induces a dramatic
reduction in asymptotic local power for QGLS, with this test
exhibiting severe undersize and a power profile that is far below
that of tOLS. The better overall performance for μθ = 3 is
clearly seen to be displayed by tOLS which is asymptotically size
controlled and avoids the extreme under sizing seen with QGLS

when the initial condition is large, and subsequently displays by
far the better overall local power profile. Finally, we also note
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that from the additional results in the supplementary appendix
for μθ = 1, 3 and c = 10, 50, similar comments apply, lending
further support to tOLS being the preferred test for larger initial
conditions (see Figures A.2 and A.3).

In summary, if performing right-tailed tests for predictability
with δ < 0 when using strongly persistent data, one should
ideally perform the QGLS test when μθ = 0, while for larger μθ ,
the tOLS test is preferable. This is an important observation that
will subsequently guide the construction of our proposed hybrid
predictability tests. Note that the same comments apply to left

tailed tests for predictability with strongly persistent data and
δ > 0, given the equivalences between the procedures discussed
in Remark 3.1.

3.4. Asymptotic Size and Local Power of Left Tailed Tests
when δ < 0

Figure 3 reports the asymptotic size and local power of left tailed
tests for predictability. In panel (a), where c = 0, it is clear that
QGLS is the better performing test. However, when c > 0 with

Figure 3. Asymptotic local power of left tailed Bonferroni t and Q tests, δ = −0.95.
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μθ = 0, we see from panels (b), (e), and (h) that the local power
of QGLS dominates that of tOLS only for c = 2, with the power
of this test subsequently beginning to fall below that of tOLS as
the value of c increases. Turning to the cases where the initial
condition of the predictor is asymptotically nonnegligible, it is
immediately apparent that the QGLS test is not at all suitable, with
significant asymptotic oversize displayed, increasingly so as both
c and μθ increase. Here, the better performing test is tOLS, with
an attractive local power profile displayed across the scenarios
considered.

In summary, if performing left tailed tests for predictability
with δ < 0 when using strongly persistent data, one should
perform the tOLS test, with this test displaying the better overall
asymptotic size and local power profile across the scenarios
considered. While the QGLS test can have local power above that
of the tOLS test for c = 0 and the smaller values of c > 0 when
μθ = 0, the (often severe) oversize of this test when c > 0 and
μθ �= 0 renders it of little use empirically in this testing scenario.
The same comments apply to right tailed tests for predictability
with strongly persistent data and δ > 0.

4. Hybrid Tests

It is clear from the previous section that, under strong persis-
tence when δ < 0, tOLS should always be used for left tailed
testing. The situation is, however, more complicated for right
tailed testing. Here QGLS is the best overall test among those
considered when c > 0 and θ = 0, while tOLS is better for larger
θ when c > 0, with little to choose between them when c = 0. To
that end, for right tailed testing, we first propose combined tests
for predictability, designed to exploit the superior performance
of the QGLS and tOLS tests for different initial value magnitudes
when c > 0. We will then discuss our full hybrid tests which
switch to a standard t test if there is sufficient evidence the
predictor is weakly stationary.

4.1. A Union-of-Rejections Strategy

Our first proposed combined testing procedure follows the
approach taken in the context of unit root testing by Harvey,
Leybourne, and Taylor (2009), and is based on a union-of-
rejections strategy. Here we reject the null hypothesis of β = 0
in favor of the alternative hypothesis that β > 0 if either of the
QGLS or tOLS tests reject in the right tail. This strategy is designed
to capture the excellent power properties of the QGLS test when
c > 0 and θ = 0, and the superior size and power properties of
the tOLS test when c > 0 and θ is large.

A simple union-of-rejections test based on setting α2 = 0.1
in connection with both of the QGLS and tOLS tests was found
to have a maximum asymptotic size in excess of 5% for some
values of c and θ , as would be expected given that the procedure
is combining rejections from two tests that are not perfectly
correlated and that the calibration for the tests of CY and CES
are based on the assumption that θ = 0.

For a union-of-rejections test to have maximum asymptotic
size of α2/2 we therefore need to modify the significance levels
at which the initial confidence belts for ρ are constructed for
both the ADF-GLS and ADF-OLS tests. Recalling that the lower

bound of the confidence interval for β obtained from the QGLS

and tOLS tests are given by β(ρ(α
Q
1 ), α2) and β(αt

1, α2), respec-
tively, then our proposed union-of-rejections test, U, is formally
defined by the decision rule:

U : Reject H0 if U := max
(
β(ρ(ξ ᾱ

Q
1 ), α2), β(ξαt

1, α2)
)

> 0.
(14)

Here ξ is a scaling parameter (ξ < 1) chosen such that, for a
given value of δ, the asymptotic size of U is no greater than α2/2
across a specified range of values of c and initial conditions. The
local limiting behavior of U will be detailed in Section 4.3.

4.2. A Data-Based Weighting Strategy

The union-of-rejections approach outlined above is designed
to capture the desirable properties of QGLS when θ = 0 and
those of tOLS when θ is large. This approach, however, does not
incorporate any information from the sample data relating to the
magnitude of the initial condition and essentially places equal
weight on QGLS and tOLS. One way in which sample information
can be incorporated is to form a test based on a statistic which is
constructed as a data-based weighted average of QGLS and tOLS,
where the weights used are functions based around an estimate
of the initial condition (relative) magnitude, θ . The weighted
tests we will propose are not based on an optimal choice of
weights; doing so is infeasible in practice as it would effectively
require knowledge of c and θ .3

Basing the weights on a data-based estimate of the initial
condition has been shown to work well in the unit root testing
context by Harvey and Leybourne (2005). They construct a test
where greater weight is placed on the ADF-GLS (ADF-OLS) test
when θ is estimated to be small (large).4 They propose using the
following estimate of |θ |,

|θ̂ | := |x0 − μ̂|/σ̂w (15)

where μ̂ := T−1 ∑T
t=1 xt and σ̂ 2

w := T−1 ∑T
t=1(xt − μ̂)2.

Under Assumption S.3, Harvey and Leybourne (2005, p. 102)
show that |θ̂ | is not consistent for |θ | but has a well-defined
limiting distribution that depends only on c and θ . However,
based on simulating the limiting distribution of |θ̂ |, Harvey and
Leybourne (2005) argue that a monotonic relationship holds
between |θ̂ | and |θ | so that, other things being equal, high (low)

3It might be possible, though beyond the scope of this article, to extend the
EMW statistic discussed in Remark 3.2 to a family of such statistics based
on maximizing weighted average power over different initial conditions,
similarly to what is done in the unit root testing context by Müller and Elliott
(2003). Based on this family of unit root statistics, Elliott and Müller (2006)
develop an (asymptotically) admissible unit root test that, for a given value
of c, has roughly constant power over a wide range of initial conditions. The
predictability testing problem considered here is, however, more compli-
cated as θ features in the limit null distributions of predictability statistics,
while it does not for unit root statistics. The asymptotic size of such EMW-
type tests would therefore need to be controlled over both c and θ .

4Harvey, Leybourne, and Taylor (2009) show that both the weighted unit test
of Harvey and Leybourne (2005) and a union of rejections test based on the
ADF-OLS and ADF-GLS statistics have superior asymptotic local power to
the test of Elliott and Müller (2006) for either large or small initial conditions,
whereas the latter is more powerful for intermediate sized initial conditions.
Finite sample simulations in Harvey, Leybourne, and Taylor (2009) suggest
the Elliott and Müller (2006) test is badly undersized with correspondingly
poor power.
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values of |θ̂ | are associated with high (low) values of |θ |. As
such, |θ̂ | embodies fundamental information about |μθ | in the
fixed initial value case and σθ in the random case. Using |θ̂ |,
Harvey and Leybourne (2005) propose use of the following
weight function

λγ (|θ̂ |) := exp(−γ |θ̂ |) (16)

where γ > 0 is a user-chosen parameter. This function has the
property that, for a given value of γ , as |θ̂ | increases in magni-
tude, so λγ (|θ̂ |) moves closer to zero, while as |θ̂ | approaches
zero, so λγ (|θ̂ |) approaches one. We can, in a similar manner,
make use of this λγ (|θ̂ |) function to construct a weighted aver-
age of the information from the QGLS and tOLS tests. Specifically,
our proposed weighted test is defined by the decision rule

Wγ : Reject H0 if Wγ > 0 (17)

where Wγ is a weighted average of the confidence interval
bounds associated with QGLS and tOLS, viz:

Wγ := λγ (|θ̂ |)β(ρ̄(ξα
Q
1 ), α2)+(1−λγ (|θ̂ |))β(ξαt

1, α2). (18)

In (18), the parameter ξ < 1 again allows us to control the
maximum asymptotic size of Wγ in (17) at some desired level,
α2/2.

4.3. Asymptotic Behavior of U and Wγ under Strong
Persistence

In Corollary 1, whose proof follows directly from Proposition 1,
we now detail the local limiting behavior of U and Wγ under
Assumption S.3. The corresponding limiting behavior of U and
Wγ under Assumptions S.1 and S.2 can also be obtained from
these representations, as detailed in Remark 3.3.

Corollary 1. Let data be generated according to (1)–(3) and let
Assumptions 1 and S.3 hold. Then under the local alternative
β = b/T,

U w→ max
(
βQ,∞, β t,∞)

(19)

Wγ

w→ exp(−γ Aθ
c )βQ,∞ + {

1 − exp(−γ Aθ
c )

}
β t,∞ (20)

where Aθ
c := (

∫ 1
0 Kμ

c,θ (r)2dr)−1/2(| − ∫ 1
0 Kc,θ (r)dr|) with Kμ

c,θ (s)
and Kc,θ (s) as defined in Proposition 1 and

βQ,∞ := Z − h(ξα
Q
1 , α2)

β t,∞ := t∞ − max
c(ξαt

1)≤c≤c(ξαt
1)

dc,1−α2/2

where h(·) and t∞ are as defined in (13) and (9), respectively,
and Z is a standard normal random variable that is independent
of We(s).

Remark 4.1. As noted above, Wγ is a function of γ . In what
follows we will report numerical and empirical results for tests
based on γ = 1 and γ = 2. Increasing γ implicitly places more
weight on the tOLS test relative to the QGLS test.

To control the asymptotic size of U and Wγ , γ = 1, 2, values
of ξ were chosen such that the asymptotic size of each test was no

greater than 5% over a grid of values of c ∈ [−5, 50], operating
under Assumptions S.1, S.2, and S.3 for c = 0, c < 0 and c > 0,
respectively. When c > 0, we further ensure asymptotic size
is controlled across both fixed and random initial conditions
using grids of values of μθ ∈ [0, 3] and σθ ∈ [0, 3]. The
required ξ values, obtained by simulation of the relevant limiting
distributions, are reported in Table 1.

4.4. Allowing for Weakly Persistent Predictors

Under Assumption W, such that the predictor is weakly per-
sistent, the Bonferroni Q and t tests discussed in Section 3 are
asymptotically invalid. Moreover, in our Monte Carlo exercise
reported in Tables A.4–A.6 in the supplementary appendix,
we find that although the finite sample size of the tOLS test
remains reasonably well controlled for small values of ρ, the
QGLS test suffers from severe oversize in this case when testing
for predictability in either tail with δ < 0. The behavior of
QGLS therefore renders the combined tests U and Wγ unreliable
for use with weakly persistent predictors. Moreover, where the
predictor is weakly persistent, the conventional regression t test
using standard normal critical values is asymptotically optimal
(among feasible tests) under Gaussianity; see Jansson and Mor-
eira (2006, p. 704).

Based on the foregoing observations, we propose a hybrid
testing approach, similar in spirit to that used in EMW and
Harvey, Leybourne, and Taylor (2021), whereby we switch from
the use of the Bonferroni-based combined tests U and Wγ to
a standard t test, compared with normal critical values, if the
data provide sufficient evidence that the predictor is weakly
persistent. To that end, and following Harvey, Leybourne, and
Taylor (2021), we propose using the Dickey-Fuller normal-
ized bias coefficient unit root statistic, defined by ADFφ :=
(Tφ̂)/(1 − ∑p−1

i=1 ψ̂i), where φ̂ and ψ̂i, i = 1, . . . , p − 1 are
obtained by OLS estimation of

�xt = π + φxt−1 +
∑p−1

i=1
ψi�xt−i + et . (21)

In practice, p can be chosen by any consistent method; we use the
BIC in our finite sample simulations and empirical application.
Under Assumptions S.1–S.3, ADFφ = Op(1), while under
Assumption W ADFφ diverges to minus infinity at a rate faster
than T1/2. Employing any fixed critical value for ADFφ would
therefore ensure that, at least in large samples, the conventional
t test would always be selected under weak persistence. However,
use of a fixed critical value can result in the conventional t test
also being selected under strong persistence. To control for this
we therefore implement our switching rule with a diverging
critical value, −κφT1/2, κφ > 0, so that the conventional
t test is used whenever ADFφ < −κφT1/2. The divergence
rate of ADFφ ensures that, in large samples, the conventional
t test will be performed for weakly persistent predictors, while
the Bonferroni type tests are performed for strongly persistent
predictors. Although this decision rule is valid for any positive
value of κφ , we found that a choice of κφ = 4.5 led to the best
overall finite sample size control for the hybrid procedures and
so we set κφ = 4.5 in our finite sample simulations and empirical
application.
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4.5. Proposed Hybrid Testing Procedures

On the basis of the preceding results, we now formally detail
our two new hybrid testing procedures which we denote Uhyb

and Whyb
γ , γ = 1, 2, in what follows. We outline these based on

the assumption that δ < 0, with δ > 0 subsequently discussed
in Remark 4.3. Our proposed decision rules for one-sided tests
performed at the α/2 nominal asymptotic level can be written
as follows, where we, again, denote the α quantile of the normal
distribution as zα .

Decision Rule for Hybrid Test Procedures (δ < 0)

• Right Tailed Tests:

– Decision Rule for Uhyb:

∗ If ADFφ < −κφT1/2: Reject H0 if t > z1−α/2
∗ If ADFφ ≥ −κφT1/2: Reject H0 if U > 0 (see

Equation 14)

– Decision Rule for Whyb
γ :

∗ If ADFφ < −κφT1/2: Reject H0 if t > z1−α/2
∗ If ADFφ ≥ −κφT1/2: Reject H0 if Wγ > 0 (see

Equation 18)

• Left Tailed Tests:

– Decision Rule for Uhyb and Whyb
γ :

∗ If ADFφ < −κφT1/2: Reject H0 if t < zα/2
∗ If ADFφ ≥ − κφT1/2: Reject H0 if β(αt

1, α2)< 0
(see Equation 7)

Remark 4.2. Notice that the decision rules for Uhyb and Whyb
γ

are identical for left-tailed tests when δ < 0 as here inference is
always based on either the Bonferroni tOLS test or on a conven-
tional regression t test.

Remark 4.3. When δ > 0, we make use of the result in
Remark 3.1 and suggest replacing the predictor xt in (1) with
−xt , thereby flipping the sign of δ such that our recommended
procedures for negative values of δ can then be applied. In this
instance, however, it should be noted that the sign of β will also
flip, so that if one were interested in a right (left) tailed test for
predictability one should instead perform a left (right) tailed test
for predictability in the transformed predictive regression that
contains −xt as a regressor. In practice, the true value of δ will
be unknown, but the appropriate approach can be determined
according to the sign of the consistent estimator, δ̂.

Remark 4.4. The switching decision rule outlined above can also
be applied to the original QGLS test of CY when implemented
as a right-tailed test with negative δ, or as a left-tailed test with
positive δ. Here one uses the Bonferroni QGLS test as outlined in
CY, unless ADFφ < −κφT1/2 in which case the conventional
t test is used. This hybrid switching-based testing procedure
is asymptotically valid for both weakly and strongly persistent

predictors, generated according to Assumption W or any of
Assumptions S.1–S.3, respectively. It should be stressed however
that this procedure would suffer from the same undersizing
and low power as the original QGLS test for strongly persistent
predictors with asymptotically nonnegligible initial conditions
generated according to Assumption S.3. Moreover, it could not
be validly implemented as a left-tailed test with negative δ, or as a
right-tailed test with positive δ, because of the uncontrolled size
of the QGLS test in those settings.

Remark 4.5. While the definitions of the hybrid Uhyb and Whyb
γ

procedures given above are framed in terms of one-sided tests
for predictability, in principle each of these procedures can also
be used to perform two-sided tests for predictability. For a given
test, if the right tailed and left tailed versions of the test are
constructed such that they have nominal size no greater than
α/2, then combining inference from the two individual one-
sided tests for predictability will lead to an overall two-sided test
for predictability that will have nominal size no greater than α.

4.6. Asymptotic Size and Local Power of Hybrid Procedures

In this section we report results of a Monte Carlo simulation
study in which we examine the asymptotic size and local power
of our proposed Uhyb and Whyb

γ tests relative to the QGLS and
tOLS procedures. We report results for the same constellation
of settings as in Section 3.2 (additional simulations exploring
the case where δ = −0.75, as well as a larger range of values
of c, together with additional asymptotic size simulations are
provided in Figures A.1–A.6 and Tables A.1–A.3 in the supple-
mentary appendix). We place our focus on right tailed tests for
predictability given that the construction of the Uhyb and Whyb

γ

procedures implies that they will have identical local asymptotic
power functions to tOLS when performing left tailed tests for
predictability. The results are reported in Figure 2.

First, we note that when c = 0, the hybrid tests perform very
well, being size controlled (see also Tables A.1–A.3) and arguably
as powerful as any of the individual tests, with power exceeding
that of the other procedures for small b and only slightly below
the power of the best individual procedure for larger b.

For c > 0, consider first the case where μθ = 0 such that
the initial condition is asymptotically negligible. As would be
expected, the new hybrid procedures are asymptotically size-
controlled across the different values of c (again see also Tables
A.1–A.3). In terms of asymptotic local power, again as expected,
QGLS remains the best procedure in terms of overall power
across the values of c considered, with Whyb

1 the next best per-
forming procedure with power only marginally lower than QGLS,
while having uniformly higher power than all other procedures
for c = 2, 5 and one of the better overall power profiles for c =
20. The Uhyb procedure has power that is overall not far behind
that of Whyb

1 , with Whyb
2 displaying marginally lower power

overall than Uhyb. Moreover, as the results of the supplementary
Figure A.1 shows, by c = 50 the Uhyb procedure becomes more
powerful than Whyb

1 (and Whyb
2 ), being relatively unaffected by

the drop off in power associated with QGLS, instead displaying
the same power levels as the now better-performing tOLS test.
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Next we consider the asymptotically nonnegligible initial
condition cases of μθ = 1, 3 when c > 0. We first observe
that the three hybrid procedures retain asymptotic size control
in these cases (again see also Tables A.1–A.3). For μθ = 1 we see
that, across all values of c considered, the best hybrid procedure
in terms of overall local power performance is clearly Uhyb,
with power levels either a little greater or a little below those of
tOLS. While Whyb

1 and Whyb
2 display decent power performance

for lower values of c, they do exhibit a significant shortfall in
power relative to Uhyb for c = 20, although they are still far
more powerful than QGLS in this instance. For c = 20 we also
see that Whyb

2 outperforms Whyb
1 as anticipated, given that the

former places lower weight on the less powerful QGLS test than
the latter. When μθ = 3, Uhyb is again the best performing
hybrid procedure, although we now see that the powers of Whyb

1
and Whyb

2 are much closer to those of Uhyb, particularly so
for Whyb

2 . The Uhyb procedure is again competitive with the
best of the individual tests, tOLS, in this case. Similar comments
apply to the supplemental results for the additional values of c
(Figures A.2 and A.3), with the c = 50 case representing a more
exaggerated version of the c = 20 results. Finally, we note that
the supplementary results for δ = −0.75 follow much the same
pattern as for δ = −0.95, albeit with the power differentials
between the tests being somewhat less pronounced.

Overall, across asymptotically negligible and nonnegligible
initial conditions, for right tailed tests for predictability we argue
that the best overall asymptotic local power performance is dis-
played by the new hybrid procedure Uhyb, with the performance
of Whyb

1 and Whyb
2 not far behind. Importantly, while the QGLS

and tOLS tests are arguably the best performing individual tests
for μθ = 0 and μθ = 1, 3, respectively, these approaches do
not deliver the best power profiles across the full range of initial
condition magnitudes, with QGLS and tOLS performing relatively
poorly for μθ = 1, 3 and μθ = 0, respectively. The value of
the new procedures is therefore clearly evident in the practical
situation of dealing with a strongly persistent predictor where
the magnitude of the initial condition is unknown.

Additional Monte Carlo results, reported in Tables A.4–A.6
and Figures A.7–A.18 in the supplementary appendix, under
each of Assumption S.1, Assumption S.2 with w0 ∼ N(0, 1), and
Assumption S.3 with σ 2

θ = 0 and μθ = 1, 3, show that, for a
strongly persistent predictor, the attractive large sample size and
power properties of our hybrid test procedures hold even for a
relatively modest sample size (T = 250). These simulations also
show that the hybrid tests have well controlled size and strong
power properties in the case where c is large (c ≥ 100), such
that the predictor may reasonably be characterized as weakly
persistent, because they switch into the standard t test with
sufficiently high probability to avoid the severe distortions from
nominal size which occur for the QGLS test and/or moderate size
distortions seen for the tOLS tests.

5. Empirical Application

We now report results of an empirical exercise in which we
revisit the dataset originally analyzed in CY to further illustrate
the sensitivity of their QGLS test to the value of the initial

condition of the predictor, and to explore to what extent our
proposed hybrid tests, Uhyb and Whyb

γ , are able to overcome
these shortcomings.

As a preliminary analysis we applied the QGLS, tOLS, Uhyb and
Whyb

γ test procedures to the same empirical returns/predictor
pairings considered in CY, but rather than applying the proce-
dures to only the full sample of data, we applied them recursively
across all possible start dates, ts, subject to a minimum sample
size of 50 observations. We examine predictability of returns for
both the S&P500 and CRSP indices. The predictors considered
are the earnings-price ratio (e − p), the dividend price ratio
(d −p), the three-month T-Bill rate (r3) and the long-short yield
spread (y − r1). Full data descriptions are provided in CY.5 All
tests are performed as one-sided tests at the nominal 5% level. All
unit root statistics used to construct the tests for predictability
were, following CY, estimated using a lag length chosen by the
BIC applied to the ADF-OLS regression with pmax = 5.

Table 2 provides a summary of these results including the
full sample estimates of the correlation parameter, δ̂, and the
Dickey-Fuller normalized bias coefficient unit root test statistic
(critical value in parentheses), along with the proportion of start
dates for which each test rejects the null of no predictability
(entries in bold highlight the procedure with the largest pro-
portion of rejections). Results for annual CRSP 1952–2002 are
omitted as this dataset contains only 51 observations. All tests
are performed as right tailed tests, excepting those for CRSP
returns from 1952 to 2002 using r3 as a predictor which are
performed as left tailed tests (CY find the coefficient on the
predictor in these examples to be significantly negative). It can
be noted that for a majority of return/predictor pairings the
estimate of the correlation parameter, δ̂, is found to be large
and negative, adding further motivation to our choice of δ =
−0.95 in the simulations of Sections 3.2 and 4.6. There were
only five subsample regressions in the entire exercise for which
the Dickey-Fuller normalized bias statistic was found to be less
than −4.5T1/2, all of which were for quarterly CRSP data for the
sample 1952–2002 with either r3 or y − r1 used as the predictor,
such that our hybrid tests are performed assuming that the data
is strongly persistent in a vast majority of cases.

When using data from 1880 to 2002 for the S&P500 or
from 1926 to 2002 for the CRSP index we see that the QGLS

test rejects marginally more often across start dates than either
Uhyb or Whyb

γ , although the reverse is often true when using
S&P500 data from 1880 to 1994 or CRSP data from 1926-
1994. In general the Whyb

1 procedure rejects more often than
either Uhyb or Whyb

2 . The tOLS test generally has a much lower
overall rejection frequency than all other tests. There is very little
difference in rejection rates between the procedures when using
data on the CRSP index from 1952 to 2002, with no evidence
of predictability found for any start date by any procedure when
using d −p or e−p as a predictor. That there is little variation in
rejection rates across procedures when using either r3 or y − r1
as a predictor is unsurprising given that the δ̂ values are close to

5Implementation code is available from https://rtaylor-essex.droppages.com/
esrc2/default.htm and the data can be obtained from https://sites.google.
com/site/motohiroyogo/research/asset-pricing. Graphs of the returns series
and predictors forming the dataset are given in section A.3 of the Supple-
mentary appendix.

https://rtaylor-essex.droppages.com/esrc2/default.htm
https://rtaylor-essex.droppages.com/esrc2/default.htm
https://sites.google.com/site/motohiroyogo/research/asset-pricing
https://sites.google.com/site/motohiroyogo/research/asset-pricing
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Table 2. Empirical application summary.

Rejection frequency

Series Predictor δ̂ ADFφ (cv) tOLS QGLS Uhyb Whyb
1 Whyb

2

S&P: 1880-2002, CRSP: 1926-2002

S&P 500 d − p −0.845 −5.76(−49.91) 8.1% 23.0% 16.2% 20.3% 14.9%
e − p −0.962 −16.97(−49.91) 5.4% 68.9% 39.2% 56.8% 35.1%

Annual CRSP d − p −0.721 −5.22(−39.49) 67.9% 85.7% 71.4% 75.0% 75.0%
e − p −0.957 −11.17(−39.49) 14.3% 46.4% 39.3% 42.9% 25.0%

Quarterly CRSP d − p −0.942 −11.15(−78.59) 6.6% 22.3% 19.9% 21.5% 14.8%
e − p −0.986 −12.87(−78.59) 3.9% 15.2% 8.6% 14.1% 10.5%

Monthly CRSP d − p −0.950 −12.06(−135.97) 6.6% 18.9% 15.0% 17.2% 11.5%
e − p −0.987 −10.46(−135.97) 2.4% 11.8% 4.1% 8.9% 4.9%

S&P: 1880-1994, CRSP: 1926-1994
S&P 500 d − p −0.835 −14.91(−48.26) 28.8% 33.3% 22.7% 25.8% 22.7%

e − p −0.958 −23.72(−48.26) 92.4% 90.9% 98.5% 100.0% 97.0%
Annual CRSP d − p −0.693 −11.63(−37.38) 100.0% 100.0% 100.0% 100.0% 100.0%

e − p −0.959 −16.45(−37.38) 90.0% 90.0% 100.0% 100.0% 100.0%
Quarterly CRSP d − p −0.941 −19.65(−74.35) 36.2% 41.1% 36.2% 40.2% 36.2%

e − p −0.988 −18.80(−74.35) 31.7% 31.7% 35.3% 38.4% 34.4%
Monthly CRSP d − p −0.948 −21.18(−128.62) 25.7% 29.0% 29.9% 32.0% 29.2%

e − p −0.983 −18.53(−128.62) 27.3% 26.6% 30.2% 33.6% 29.6%

CRSP: 1952-2002
Quarterly CRSP d − p −0.977 −5.39(−64.27) 0.0% 0.0% 0.0% 0.0% 0.0%

e − p −0.980 −5.59(−64.27) 0.0% 0.0% 0.0% 0.0% 0.0%
r3 −0.095 −10.83(−64.27) 4.5% 5.2% 4.5% 4.5% 4.5%
y − r1 −0.100 −25.92(−64.27) 50.3% 49.0% 50.3% 46.5% 46.5%

Monthly CRSP d − p −0.967 −5.32(−111.32) 0.0% 0.0% 0.0% 0.0% 0.0%
e − p −0.982 −4.87(−111.32) 0.0% 0.0% 0.0% 0.0% 0.0%
r3 −0.071 −12.43(−111.32) 14.6% 14.7% 14.6% 14.6% 14.6%
y − r1 −0.066 −45.70(−111.32) 48.1% 47.6% 48.1% 48.0% 48.1%

zero, with unreported simulations showing that all tests share a
very similar power profile for δ = 0. Consequently, we do not
consider the 1952–2002 CRSP data further.

The information in Table 2 only gives us a broad overview
of the behavior of the procedures when applied across various
start dates, so we now revisit our empirical case study from
Section 1 and provide a more detailed analysis and discussion
of the variability in test rejections in relation to the value of
the initial condition for the CRSP data from 1926 to 1994 for
the earnings-price ratio predictor, e − p. Corresponding results
and discussion for other returns/predictor pairings are explored
in the supplementary appendix. Given that that there is little
evidence of e − p being a significant predictor of returns in the
post-war period based on the predictive regressions using the
1952-2002 CRSP data summarized in Table 2, we consider start
dates, ts, for the predictive regressions up to and including the
end of 1945. For these data series, we now examine each proce-
dure QGLS, tOLS, Uhyb, Whyb

1 , and Whyb
2 in detail, investigating

the pattern of rejections relative to the magnitude of the initial
condition across start dates up to and including the end of 1945.

Figure 4 reports the lower bound of the confidence interval
for β for each procedure for the quarterly CRSP returns data
when using the earnings-price ratio as a predictor, with green
highlights indicating rejection, and red highlights non-rejection
(the grey shaded regions further highlight regions of nonrejec-
tion), with the blue line plotting |θ̂ |. Also reported in the subfig-
ure legends for each test is the percentage of start dates for which
each procedure rejects across the range of start dates considered
in the figure. For this series we see from Figure 4(a) that while
the QGLS test rejects for 77% of start dates considered, there is a

large window of start dates from ts = 1931Q3 through to ts =
1935Q1, as well as the start dates ts = 1942Q1 and ts = 1942Q2,
for which the QGLS test fails to reject the null of no predictability.
It is clearly seen that these start dates are associated with many of
the largest values of |θ̂ | for this predictor. As a consequence of the
numerous large values of |θ̂ |, the tOLS test (Figure 4(b)) actually
rejects with greater frequency than the QGLS test, although the
tOLS test does fail to reject for a number of later start dates
where |θ̂ | is small. The Whyb

1 procedure (Figure 4(d)), on the
other hand, rejects for each and every start date, and the Uhyb

(Figure 4(c)) and Whyb
2 (Figure 4(e)) procedures reject for 96%

and 97% of start dates, respectively, with greater consistency
displayed by these procedures across the varying magnitudes of
|θ̂ | than either the QGLS or tOLS tests.

Figure 5 reports results for the monthly CRSP returns when
using the e − p predictor which is the empirical example we
originally examined for QGLS in Figure 1 in the Introduction.
For this example we observe a stark difference between QGLS

and all other tests, with the overall rejection frequency of QGLS

standing at 74%, that for tOLS at 90%, and our proposed tests at
93% or above. The QGLS test fails to reject for two large windows
of start dates from ts = 1928M10 through to ts = 1929M9
and ts = 1931M8 through to ts = 1935M4, whereas all other
test procedures reject for every possible start date in these two
windows (with the exception of Whyb

1 for ts =1931M8). In both
instances these windows of start dates for which QGLS fails to
reject are associated with large values of |θ̂ |, with the longer run
of nonrejections associated with a period in which |θ̂ | is very
large indeed. While the rejection frequency for the tOLS test is
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Figure 4. Lower bound of confidence interval and estimated magnitude of initial condition—Quarterly CRSP 1926-1994 (Predictor = e − p).

not far behind that of our proposed tests we note that tOLS fails
to reject for ts =1930M10 through to ts =1931M4, start dates
for which all other tests continue to reject, and is also less likely
to reject than all other tests for a number of later start dates. In
all instances these start dates coincide with very small estimates
of |θ̂ |.

Overall our findings for these series show that the Uhyb and
Whyb

γ , γ = 1, 2, procedures reject more often than both the
QGLS and tOLS tests across the range of start dates considered
which show large variation in an estimate of the size of the
initial condition. A large initial condition can have a negative
impact on the capacity for QGLS to reject, whereas a small initial
condition results in tOLS rejecting less frequently than the other
tests. That our proposed tests are able to reject more consistently
than both QGLS and tOLS tests tallies with our asymptotic and
finite sample simulation results, and reinforces our conclusion
that the hybrid procedures can deliver more consistent power

across large and small magnitudes of the predictor’s initial
condition.

6. Conclusions

We have demonstrated that the Bonferroni Q test of CY, while
displaying excellent power when testing for predictability when
a predictor is strongly persistent with an asymptotically negli-
gible initial condition, suffers from severe size distortions and
power losses when either the initial condition of the predictor is
asymptotically nonnegligible or the predictor is weakly persis-
tent. We subsequently proposed two new hybrid testing proce-
dures, both of which are functions of the Bonferroni Q test of CY,
the Bonferroni t test of CES, and the conventional t test. We have
shown that the asymptotic local power of our proposed hybrid
tests is close to that of the Bonferroni Q test when the initial
condition is asymptotically negligible, and far superior when the
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Figure 5. Lower bound of confidence interval and estimated magnitude of initial condition—Monthly CRSP 1926–1994 (Predictor = e − p).

initial condition is asymptotically nonnegligible. An extensive
Monte Carlo simulation exercise provided in the supplemen-
tary appendix examining the finite sample size and power of
the hybrid procedures shows that they are able to control size
regardless of both the degree of persistence and magnitude of
the initial condition of the predictor while maintaining power
close to that of the Bonferroni Q test when the predictor is
strongly persistent with an asymptotically negligible initial con-
dition. An empirical application to the returns and predictor
data originally analyzed in CY highlighted the ability of our
proposed hybrid tests to provide statistically significant evidence
of predictability where the Bonferroni Q and t tests fail to do

so in cases where the magnitude of the initial condition of the
predictor is estimated to be large or small, respectively. Given
that both the initial condition and the degree of persistence of a
given predictor are unknown in practice we believe that our pro-
posed hybrid testing procedures will be very useful to empirical
practitioners. In particular, the loss of power of the hybrid tests
relative to the Bonferroni Q test when the predictor is strongly
persistent with an asymptotically negligible initial condition
is very small compared to the superior size control and large
power advantages displayed by the hybrid tests when the initial
condition of the predictor is large or the predictor is weakly
persistent.
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