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Abstract 

Mental health disorders are typically diagnosed based on subjective reports (e.g., through 

questionnaires) followed by clinical interviews to evaluate self-reported symptoms. 

Therefore, considering the interconnected nature of psychiatric disorders, their accurate 

diagnosis is a real challenge without indicators of underlying physiological dysfunction. 

Depersonalisation/derealisation disorder (DPD) is an example of dissociative disorder 

characterised mainly by persistent disembodiment, detachment from the surroundings, and 

feeling of emotional numbness. Its underlying neural correlates have been investigated to 

understand and help with a more accurate and in-time diagnosis of the disorder. However, in 

terms of EEG studies, which hold great importance due to their convenient and inexpensive 

nature, the literature has often been based on hypotheses proposed by experts in the field, 

meaning it requires prior knowledge of the disorder. In addition, participants labelling in 

research experiments are often derived from the outcome of the Cambridge Depersonalisation 

Scale (CDS), a subjective assessment to quantify the level of depersonalisation/derealisation. 

As a result, I aimed to propose a novel EEG processing pipeline based on deep neural 

networks to discover electrophysiological DPD biomarkers. My deep learning model requires 

no prior knowledge or assumption of the disorder. In addition, the structure of the proposed 

model targets the unreliability of CDS scores by using them as prior information only to 

guide the unsupervised learning task in a multi-task learning scenario. I have also presented 

new ways of network visualisation to investigate spectral, spatial, and temporal information 

derived in the learning process and have provided neuroscientific evidence supporting the 

reliability of my results. I have also applied the visualisation approach to a novel motor 

imagery BCI system called EEG-ITNet to represent the future of more robust, interpretable, 

and high-accuracy BCI systems. The proposed EEG analytics in this thesis could also be 
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applied to investigate other mental disorders currently diagnosed based on clinical assessment 

scores. 
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1 Introduction  
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In this chapter, I outline my motivation to pursue this research project and the line of 

arguments in choosing the research method. I highlight the shortcomings of the literature and 

the novelties of my work to address those shortcomings. The chapter also presents my 

contributions to the science and the structure of the whole thesis. 

1.1 Motivation 

Nowadays, mental health disorders are typically diagnosed based on subjective reports (e.g., 

through questionnaires) followed by clinical interviews to evaluate self-reported symptoms. 

Therefore, diagnosing mental health disorders is a real challenge without indicators of 

underlying physiological dysfunction. Every patient may show a range of cognitive, 

behavioural, and physical symptoms, which are collated to find the best-fitted diagnosis and 

treatment. However, literature has indicated a deeply interconnected nature of psychiatric 

disorders and has argued that finding predefined boundaries is unlikely [1]. As a result, a 

delay in accurate diagnosis or even misdiagnosis is highly probable.  

My motivation to conduct this research was formed around one of the most prevalent 

under-diagnosed psychiatric disorders, Depersonalisation/derealisation disorder (DPD). 

Although studies have shown the prevalence of DPD to be around 1–2% of the population [2-

4], making it as common as some well-known mental disorders such as schizophrenia and 

Obsessive-compulsive Disorder (OCD), it typically takes seven to 12 years on average to be 

accurately diagnosed. Therefore, it is a critical endeavour for clinical practice and research to 

identify DPD, its risks and neuroprotective factors, and find alternative ways for its faster and 

more accurate diagnosis. Accordingly, I decided to propose Electroencephalogram (EEG) 

analytics based on deep learning algorithms to investigate the underlying neural patterns in 

DPD and find potential electrophysiological biomarkers to help with its accurate and timely 

diagnosis. It is important to note that the term "biomarker" used throughout my thesis refers 
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to a unique, abnormal neural pattern activated by appropriate stimuli that can explain DPD 

symptoms. Furthermore, I intended to propose explainable visualisation approach in deep 

learning algorithms to take a step toward gaining the attention and trust of clinicians and 

practitioners in the capability of Artificial Intelligence (AI) for medical investigation and 

diagnosis. 

1.2 Justification of Methodology 

I argued that finding potential neural biomarkers can be a huge step toward understanding 

DPD and supporting its accurate and timely diagnosis. Among the neuroimaging techniques 

for DPD analysis within the central nervous system, EEG holds great promise because of its 

non-invasive nature, low costs, and simple setup. Besides, it has shown promising capability 

in discovering the underlying neural correlates of many psychological and mental disorders 

and is a reliable method for medical diagnosis [5]. However, research on the neural correlates 

of DPD using EEG is often formed around a hypothesis from an expert in the field. Then, the 

reliability of the potential biomarker as a discriminative factor in DPD is validated using 

statistical tests. In other words, finding a potential biomarker is based on trial and error and 

requires an expert's prior knowledge. In addition, labels of participants in experimental 

research as either patient or control (or high vs low symptomology) are often assigned 

according to a clinical questionnaire and the most common way to do so for DPD is currently 

based on the Cambridge Depersonalisation Scale (CDS) [6]. However, the CDS score is not 

always reliable, and there is sometimes disagreement between the outcome of the CDS 

questionnaire and the clinicians' diagnosis [7]. Besides, finding an agreed threshold by which 

a participant would be considered a DPD patient is challenging. 

In this research, I employed deep learning algorithms to overcome the above 

shortcomings in the experimental literature. From several machine learning algorithms for 



4 

 

EEG analysis, deep learning is a reliable technique with proven outstanding results in 

identifying several neurological and psychological disorders [8, 9]. In addition, end-to-end 

deep learning architectures are particularly noteworthy since they eliminate the need for 

handcrafted features and prior information regarding the dataset. Accordingly, I proposed an 

automated biomarker discovery protocol using a novel end-to-end multi-input multi-output 

deep learning structure. I showed how CDS scores could help conduct (but not directly 

imply) the learning process. Regressing CDS scores was not the main goal of the learning 

process but separating the neural data between the control and patient. This way, I put less 

stress on the CDS scores as a subjective measure to accurately reflect the level of 

depersonalisation, but I took advantage of them as prior information to guide the 

unsupervised part of my learning process to find more reliable discriminative neural features. 

1.3 Contribution to Science 

Here, I summarise the highlights and novelties of my work and its outputs in the form of 

scientific publications. 

1.3.1 Highlights and Novelties 

The highlight and novelties of this work are:  

a) Proposing a novel deep learning framework for EEG signal analysis to find neural 

patterns associated with DPD symptoms without requiring prior knowledge of the 

disorder. My method uses clinical assessment scores while addressing their 

uncertainty in the learning process.  

b) Proposing new ways of network visualisation, investigating spectral, spatial, and 

temporal information derived in a deep learning process. 
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1.3.2 Outputs 

My contribution to science comprises the following four peer-reviewed publications:   

1. Salami, A., Andreu-Perez, J., & Gillmeister, H. (2020). Symptoms of 

depersonalisation/derealisation disorder as measured by brain electrical activity: A 

systematic review. Neuroscience & Biobehavioral Reviews, 118, 524-537.  

Link to the publication 

As the first step in my research, I aimed to provide a systematic review of the 

symptoms of DPD as measured by brain electrical activity. I comprehensively 

described research targeting the neural correlates of core DPD symptoms, covering 

publications between 1992 and 2020 that have used electrophysiological techniques. 

The aim was to investigate the diagnostic potential of these relatively inexpensive and 

convenient neuroimaging tools. I reviewed the EEG power spectrum, components of 

the event-related potential (ERP), as well as vestibular and heartbeat-evoked 

potentials as likely electrophysiological biomarkers to study DPD symptoms. I 

suggested tools for prospective studies of electrophysiological DPD biomarkers, 

which are urgently needed to fully develop their diagnostic potential. 

2. Salami, A., Andreu-Perez, J., & Gillmeister, H. (2022). EEG-ITNet: An Explainable 

Inception Temporal Convolutional Network for Motor Imagery Classification. IEEE 

Access, 10, 36672-36685. 

Link to the publication 

As part of my investigations to develop the final explainable biomarker discovery 

protocol based on deep learning, I proposed the end-to-end EEG-ITNet, an 

explainable inception temporal convolutional network for motor imagery 

classification. I specifically addressed the lack of interpretability of deep learning 

models, which makes them not quite favoured by the neuroscience community. I 

https://www.sciencedirect.com/science/article/pii/S0149763420305492
https://ieeexplore.ieee.org/abstract/document/9739771
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comprehensively explained and supported the validity of network illustration from a 

neuroscientific perspective. 

3. Salami, A., Andreu-Perez, J., & Gillmeister, H.. Finding Neural Correlates of 

Depersonalisation Disorder via Explainable CNN-based Analysis Guided by Clinical 

Assessment Scores. Artificial Intelligence in Medicine (Under review) 

My explainable deep learning-based EEG analysis for biomarker discovery was 

thoroughly explained and presented in my last publication. I argued that EEG studies 

on finding discriminative neural factors are often based on hypotheses proposed by 

experts in the field, meaning it requires prior knowledge of the disorder. In addition, 

participant labelling in research experiments is often derived from the outcome of the 

CDS, while its threshold and reliability might be challenged. As a result, I aimed to 

propose a novel end-to-end EEG processing pipeline based on deep neural networks 

for DPD biomarker discovery, which requires no prior knowledge or assumption of 

the disorder. In addition, the multi-task learning nature of the proposed deep model 

targets the uncertainty in CDS scores by using them as prior information only to guide 

the unsupervised learning task. A comprehensive evaluation has been done to confirm 

the significance of my proposed deep structure, including new ways of network 

visualisation to investigate spectral, spatial, and temporal information derived in the 

learning process. I also argued that the proposed EEG analytics could also be applied 

to investigate other psychological and mental disorders currently indicated on the 

basis of clinical assessment scores. 

4. Salami, A., Andreu-Perez, J., & Gillmeister, H. (2020, December). Towards decoding 

of depersonalisation disorder using EEG: A time series analysis using CDTW. In 

2020 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 548-553).  

Link to the publication 

https://ieeexplore.ieee.org/abstract/document/9308273
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To emphasise the importance of my research, I showed that we could discriminate 

between DPD patients and healthy individuals using a reliable biomarker in their 

neural activities. I used one of the EEG biomarkers found in my analysis as a feature 

and performed a classification task using time series analysis. 85% accuracy (Kappa 

0.7) was obtained in my investigation using leave-one-subject-out cross-validation. 

1.4 Structure of the Thesis 

The structure of the rest of my PhD thesis is as follows: 

• In chapter 2, I first introduce DPD and its symptoms and then provide the 

fundamentals needed to read and understand the rest of the thesis, including essential 

EEG acquisition, signal processing, and machine learning concepts. 

• In chapter 3, I exhaustively discuss the structural and functional neurophysiology of 

DPD and provide a systematic review of research targeting the neural correlates of 

core DPD symptoms, focusing on studies aiming to characterise the cardinal 

symptoms of the disorder by measuring the electrical activity of the brain. The chapter 

also recalls the application of deep learning in neuroimaging signal analysis and 

introduces some state-of-the-art methods, stating their pros and cons.  

• In chapter 4, I describe the employed pre-processing pipeline, followed by in detailed 

description of my deep learning architectures, including score-guided DPD biomarker 

discovery system and EEG-ITNet, an explainable neural network for motor imagery 

Brain-computer Interfaces (BCIs). The chapter also holds my visualisation techniques 

and how to explain and interpret the learning process. In addition, the chapter contains 

details of the two DPD datasets and two motor imagery datasets used in my PhD 

project. Finally, I emphasise the importance of finding a reliable biomarker to aid the 

DPD diagnostic process by performing a classification task using time series analysis.    
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• In chapter 5, I present the application of my explainable deep models in motor 

imagery BCI and also my results on the effectiveness of the proposed biomarker 

discovery system for handling uncertainty in clinical assessment scores and its ability 

to find reliable electrophysiological biomarkers. I evaluate each part of my analysis 

and network independently and also as a whole system. In addition, I provide the 

results of my initial investigations on the reliability of electrophysiological 

biomarkers in supporting DPD diagnosis.   

• In chapter 6, I comprehensively discuss and validate the outputs of both networks 

designed as motor imagery BCI and DPD biomarker discovery system and provide 

neuroscientific evidence supporting my results.   

• In chapter 7, a conclusion for my PhD research and a discussion on its limitation can 

be found. The chapter also includes recommendations for potential future work. 
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2 Background  
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In this chapter, I first introduce DPD and then explain the technical background needed to 

follow and understand the rest of the thesis. The chapter includes basic concepts in EEG 

signal acquisition and processing and some deep learning theories. 

2.1 Depersonalisation/derealisation Disorder (DPD) 

Depersonalisation/derealisation refers to a state of mind in which a person feels detached and 

disconnected from their bodies and own senses as well as from their surroundings [10]. In 

traumatic situations, or when the brain faces a high level of stress or anxiety, prefrontal 

inhibition of the limbic emotional response system serves to protect the organism from 

overwhelming sensations and emotions [11, 12]. As a result, individuals may experience 

temporary emotional numbing, disembodiment, out-of-body experiences, or a sense of 

unreality about the outside world [2]. For instance, temporary occurrences of 

depersonalisation have been reported by almost 50% of college students [15]. Fatigue [16], 

sleep deprivation [17], or travelling to unfamiliar places can also be the cause of transient 

depersonalisation/derealisation [18]. However, in cases where the symptoms are chronic, it is 

considered a type of dissociative disorder (Depersonalisation/derealisation disorder (DPD); 

Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5) [19]).  

Although the exact cause of DPD is not yet known, traumatic experiences and childhood 

anxiety are thought to be common triggers [3, 20]. It can also be provoked by intense stress, 

depression, panic attacks, and ingestion of psychoactive substances [21-23]. Patients 

experience persistent and frequent feelings of disembodiment or detachment from their 

physical self as well as emotional numbness that may extend beyond the present moment to 

include memories and imagination. Since derealisation is an inseparable aspect of DPD in 

most cases, the symptoms may also include detachment from surroundings, as if the world 
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around the patient is unreal, or a weakened ability to respond to emotional circumstances. 

However, the capacity for emotional expression and reality testing remains intact [24, 25]. 

It is important to differentiate transient depersonalisation/derealisation symptoms and the 

chronic type. While the former is common and often needs no intervention, the latter can 

profoundly affect the quality of life for patients and intervene in their daily activities and 

social relationships. The literature has reported DPD to be accompanied by anxiety, 

depression or schizophrenia [26], as well as difficulties in concentration and memory 

retrieval [27]. However, symptoms of depersonalisation and derealisation secondary to 

another medical or psychiatric diagnosis should be identified and distinguished from primary 

DPD to treat the underlying problem [28]. Therefore, identifying DPD, as well as its risks and 

neuroprotective factors, at early stages should thus be a critical endeavour for clinical practice 

and research. 

DPD has a prevalence of about 1-2% of the population [2-4], which is comparable to that 

of schizophrenia and OCD, with an equal gender ratio and an average onset age in early 

adulthood [23, 29-31]. Nevertheless, DPD is one of the most prevalent under-diagnosed 

psychiatric disorders [28, 32]. Generally, there are no medical laboratory tests for the 

diagnosis of dissociative disorders, and since patients find it difficult to describe the 

symptoms of depersonalisation and derealisation, it currently takes an average of seven to 12 

years to correctly diagnose DPD [28]. Diagnosis is hampered by a lack of awareness of DPD 

among medical practitioners [33], and its symptomatology overlap with medical conditions 

such as epilepsy and migraine [34, 35] and psychiatric conditions such as depression and 

Post-traumatic Stress Disorder (PTSD) [36]. Therefore, delineating the neurophysiological 

correlates of DPD may be of great importance for an early diagnosis of DPD as it 

discriminates it from its transient form and from other conditions.  
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2.1.1 Cambridge Depersonalization Scale (CDS) 

CDS is a standard scale and the most well-known benchmark questionnaire to evaluate the 

frequency and duration of DPD symptoms, comprising 29 items to quantify the level of 

depersonalisation/derealisation in individuals. It consists of items such as "Parts of my body 

feel as if they didn't belong to me" or "My surroundings feel detached or unreal, as if there 

were a veil between me and the outside world". Through measuring the frequency and 

duration of symptoms over a recent period of six months on a combined 10-point scale, the 

level of depersonalisation/derealisation is then evaluated based on the overall score, which 

could be between 0 and 290. According to the ROC curve analysis and finding the best 

compromise between true positive and false positive rates in a sample of 77 subjects, Sierra et 

al. [6] proposed a cut-off point of 70 for the CDS score. However, there is sometimes 

disagreement between the outcome of the CDS questionnaire and clinicians' diagnosis [7]. In 

addition, some studies [37-39] have suggested a threshold of 50 on different, nonclinical 

datasets, challenging the utility of the clinical cut-off point for the purpose of cognitive 

neuroscience research. 

2.2 EEG Signal Acquisition 

In this section, I briefly define common terminologies in EEG signal acquisition. The datasets 

used in my research to investigate neural signatures of depersonalisation symptoms were the 

outcome of experiments designed to measure brain responses to specific events or stimuli. 

More specifically, they consist of visual-tactile stimulation, which provokes somatosensory 

responses. These types of datasets are designed to record Event-related Potentials (ERPs), 

which are the main focus of this section. 
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2.2.1 What Is EEG 

EEG represents the electrical activities of a population of neurons in the human brain, which 

can be measured by electrodes placed on the surface of the scalp. EEG acquisition system 

often comprises scalp electrodes, a signal amplifier, an analogue-to-digital converter, and a 

transmission module to transfer the signals to a computer. The conversion rate (measured in 

Hz) is called sampling frequency which is defined as the number of samples per second taken 

from a continuous/analogue signal to make a discrete/digital signal. 

2.2.2 EEG Artefacts 

EEG signals can be affected and deteriorated by artefacts, which refer to any physiological, 

electrical, and environmental signals integrated with our desired neural signal during EEG 

recording. For example, artefacts could be interference from other physiological signals, such 

as heart rate, electrode detachment, or signal distortion resulting from the cortex's behaviour 

as a volume conductor [40]. 

2.2.3 Event-related Potential (ERP) 

Event-related Potential (ERP) is a neural pattern generated by the brain in response to a 

specific event or stimulus [41]. In cases where the stimulus is tactile, it is referred to as 

Somatosensory Evoked Potential (SEP). Each ERP signal contains several components 

corresponding to several brain mechanisms. Temporal averaging over several trials can be 

used to extract and visualise the components of ERP. The idea is based on the assumption 

that each ERP signal contains an Additive White Gaussian Noise (AWGN). So averaging 

over many trials can reject noise from the signal (because AWGN has zero mean) and 

increase the Signal-to-noise Ratio (SNR). A sample ERP signal and its common components 

are depicted in Figure 2.1.  
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2.2.3.1 Baseline Correction 

In ERP signal processing, baseline correction is a critical stage that uses EEG activity over a 

pre-stimulus time window (also called the baseline period) to correct activity over a post-

stimulus interval. The average signal amplitude over the baseline period gets subtracted from 

the signal following the event. 

2.3 Signal Processing 

Here, I introduce the main signal processing approaches I used in my PhD study to help the 

reader understand the following chapters better. 

2.3.1 Continuous Dynamic Time Warping (CDTW) 

Dynamic Time Warping (DTW) is used to find the similarity between two time series with 

possible delays and different speeds with respect to each other [42]. Consider two different 

multi-dimensional time series 𝐴(𝑡), 𝑡 = 1,… , 𝑇1 and 𝐵(𝑡), 𝑡 = 1,… , 𝑇2. The general idea is to 

find a warping function 𝜓 = [𝜓1(𝑡), 𝜓2(𝑡)]
𝑇 between the two time series which minimises 

the following similarity measure: 

 

Figure 2.1 Different SEP components 
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𝐷(𝐴, 𝐵) = ∑𝑑 ((𝐴(𝜓1(𝑡 − 1)), 𝐵(𝜓2(𝑡 − 1))) , (𝐴(𝜓1(𝑡)), 𝐵(𝜓2(𝑡))))

𝑇

𝑡=2

=  ∑‖𝐴(𝜓1(𝑡))𝐵(𝜓2(𝑡))
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝐴(𝜓1(𝑡 − 1))𝐵(𝜓2(𝑡 − 1))⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖

2
𝑇

𝑡=2

 

(2.1) 

where ∥. ∥ is the Frobenius norm. In the warping or matching function 𝜓, a point 

𝐴(𝜓1(𝑡)) corresponds to a point 𝐵(𝜓2(𝑡)) for 𝑡 = 1,… , 𝑇. Minimisation of the similarity 

measure 𝐷 can be done using dynamic programming in the so-called a multi-stage decision 

process [43] based on the following recursive formula: 

𝐷(𝑡) = min𝜓1(𝑡−1) {𝐷(𝑡 − 1)

+ 𝑑 ((𝐴(𝜓1(𝑡 − 1)), 𝐵(𝜓2(𝑡 − 1))) , (𝐴(𝜓1(𝑡)), 𝐵(𝜓2(𝑡))))} 

(2.2) 

Note that in general 𝐴(𝑡) and 𝐵(𝑡) can be samples of two continues time series; however, in 

case the two time series are discrete, 𝜓1(𝑡) and 𝜓2(𝑡) can only take values on {1, … , 𝑇1} and 

{1, … , 𝑇2} respectively. Therefore, the warping function can be derived from the similarity 

matrix calculated as follows: 

𝐷(𝑖, 𝑗) =∥ 𝐴(𝑖) − 𝐵(𝑗) ∥ +min {𝐷(𝑖 − 1, 𝑗), 𝐷(𝑖, 𝑗 − 1), 𝐷(𝑖 − 1, 𝑗 − 1)} 

𝑖 =  1, … , 𝑇1 𝑗 =  1, … , 𝑇2 

(2.3) 

Then a warping path (alignment path) is found, starting from the top right corner of the 

distance matrix to the bottom left corner, by selecting the cells with the minimum value in 

each step from the adjacent cells and keeping the slope of the path always non-negative. The 

similarity measure between the two time series is the sum of distances on the warping path. 

An example of the warping plane and the warping path is illustrated in Figure 2.2. In this 

example, the aligned signals after DTW are as follows: 

𝐴′ = (𝐴1, 𝐴1, 𝐴1, 𝐴1, 𝐴2, 𝐴2, 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝐴6, 𝐴7, 𝐴7, 𝐴8, 𝐴9, 𝐴10) 

𝐵′ = (𝐵1, 𝐵2, 𝐵3, 𝐵4, 𝐵4, 𝐵5, 𝐵6, 𝐵6, 𝐵7, 𝐵7, 𝐵7, 𝐵7, 𝐵8, 𝐵9, 𝐵9, 𝐵10) 
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As mentioned earlier, 𝐴(𝑡) and 𝐵(𝑡) can be a subsample of two continuous time series. 

Continuous Dynamic Time Warping (CDTW) is a continuous version of DTW in which each 

point of one time series can be matched with any value between two samples of the other 

time series (more details can be found in [44]). 

ERP signals are an example of time series, and therefore, I applied CDTW in section 4.5.2 

to address the possible distortion and time shift in the ERP components. My goal was to 

examine the potential of using a reliable electrophysiological biomarker to distinguish 

between individuals with low and high levels of depersonalisation.  

2.3.2 Resampling-average Method 

In ERP analysis, the existing noise in the experiment is assumed to be generated from a 

normal distribution with zero mean. Therefore, it was mentioned that the reason behind 

taking the average over multiple epochs time-locked to the stimuli of interest is to cancel out 

the noise and random brain activities that can affect ERP components. However, in EEG 

studies, this approach results in a single grand-average ERP for each subject per condition, 

 

Figure 2.2 Sample illustration of the distance matrix and the alignment path in DTW 
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making it impractical to train a machine learning algorithm due to insufficient data samples. 

To overcome this problem, the resampling-average method (an idea derived from [45]) can 

be used to generate multiple ERP waves for efficient training of machine learning algorithms 

and consequently find discriminative features among the groups of interest. The resampling-

average method used in my study is portrayed in Figure 2.3 and works as follows. For each 

condition in the experiment (explained in detail in chapter 4), I randomly selected a subset of 

r trials of that condition and calculated the average ERP on that subset to form a single input 

data for my deep learning model. To enhance the output of the resampling-average method 

further, the trials that dropped out for averaging were randomly selected from those with high 

variance in the ERP pre-stimulus (baseline) signal. This was based on the assumption that a 

high-quality ERP signal should have a low variance in the pre-stimulus signal. By repeating 

this process n times, we can generate n ERP waves. It is important to note that although the 

generated samples are not independent of each other, using this method can reduce the impact 

of outliers in the EEG dataset and generate enough data for training an effective deep neural 

network.  

2.4 Deep Learning 

Artificial Neural Network (ANN) is a subset of machine learning, which reflects the human 

brain's behaviour and mimics how biological neurons signal to one another. Like other 

machine learning algorithms, ANNs are designed to predict the outcomes without being 

 

Figure 2.3 Resampling-average method to generate ERP samples. 
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explicitly programmed to do so by learning the hidden patterns in the available data. To 

explain the basic building blocks of ANN and how it functions, we can look at its elementary 

entity, the artificial neuron. 

2.4.1 Artificial Neuron 

Assume a set of d-dimensional input data points 𝑋 = {𝑥̅1, 𝑥̅2, … , 𝑥̅𝑛} where 𝑥̅𝑖 ∈ ℝ𝑑 and 𝑥𝑖𝑗 is 

the j-th dimension of 𝑥̅𝑖. Having a weight vector 𝑤̅ = [𝑤1, 𝑤2, … , 𝑤𝑑]
𝑇 and a scalar bias term 

𝑏, the output 𝑦̂𝑖 of the neuron can be calculated as follows: 

𝑦̂𝑖 = 𝜙(∑𝑤𝑗𝑥𝑖𝑗

𝑑

𝑗=1

+ 𝑏) = 𝜙(𝑤̅𝑇𝑥̅𝑖 + 𝑏) (2.4) 

where 𝜙 is the activation function. Notice that the bias term and the activation function are 

optional, and the model in Figure 2.4 will represent a linear regression if no activation is 

applied. However, activation functions are used to empower ANNs to learn nonlinear 

decision boundaries and give them the flexibility to be used in different scenarios. So, for 

instance, the sigmoid function can be used to have a logistic regression instead of a linear 

one.  

 

Figure 2.4 Artificial neuron 
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For this simple model, assume a binary classification scenario where the goal is to find 

the optimum values for 𝑤̅ and 𝑏 that result in an accurate prediction of the true class labels 

𝑦𝑖 ∈ {0,1} over a training set {𝑋, 𝑌}, where 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑛} is the set of true labels. The 

above optimisation problem can be solved by defining an appropriate loss function. For 

instance, Log Loss [46], which indicates how close the prediction probability is to the 

corresponding true label, can be used as the loss function in this simple example. 

Accordingly, the cost function, which is defined as an average of a loss function over an 

entire training dataset, can be written as follows: 

𝐽(𝜃) = −
1

𝑛
∑𝑦𝑖

𝑛

𝑖=1

log(𝑦̂𝑖) + (1 − 𝑦𝑖)log (1 − 𝑦̂𝑖) (2.5) 

where 𝜃 refers to the set of network parameters, including the weight vector 𝑤̅ and the bias 

term 𝑏. As mentioned earlier, the goal is to solve the optimisation problem of finding the 

values of network parameters 𝜃 that minimise the cost function 𝐽(𝜃), which can be achieved 

using optimisation algorithms, such as the well-known iterative gradient descent [47]. Notice 

that the choice of loss function depends on the scenario and its possible outputs. I will later 

introduce the unique loss function I used in my research, which was proposed according to 

my goals and the nature of my dataset. 

2.4.2 Convolutional Neural Network (CNN) 

A multi-channel EEG signal can be seen as a 2-dimensional image, where each pixel 

represents the EEG sample at a single time point over a single electrode. Therefore, 

Convolutional Neural Networks (CNNs), a class of ANN initially developed for image 

recognition and tasks involving pixel data processing, can be applied to analyse EEG signals 

and extract information from them [48]. For that, I have taken advantage of two algorithms in 

the CNN literature in my research and design, including the inception module and Temporal 
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Convolutional Network (TCN). However, explaining the learned features and their 

connection with known EEG components was the challenge in my study.  

The basic components of CNN are convolutional, pooling, flatten, and fully connected layers, 

as depicted in Figure 2.5. The convolution process involves a kernel inside CNN core layers 

moving across the receptive fields of an image. In other words, it is a process where a kernel 

matrix (simply a matrix of numbers) is passed over the input image and transforms the image 

based on the values from the filter. Using multiple kernels and concatenating them after 

convolution (different colours in Figure 2.5) along so called convolutional channel 

dimension, we map the input into a new (often with a higher dimension) space. During the 

learning process, the weight matrices are optimised to find the mapping that reveals the 

discriminative information more evident. A pooling layer is then applied to reduce the data 

dimension, which could be simply the average of adjacent pixels. The aim of the flatten layer 

is to reform the output of a convolutional layer into a single one-dimensional vector, 

converting the multi-dimensional input to a vector similar to our input data 𝑥̅𝑖 explained in 

the artificial neuron. Note that the activation functions can be applied throughout the 

network, often after each matrix multiplication, to empower the network to learn nonlinear 

 

Figure 2.5 Simple CNN architechture 
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patterns in the data. For more information on CNN and the math behind it, please refer to 

[47]. 

2.4.2.1 Inception 

The naive inception module was initially proposed in computer vision to tackle the 

drawbacks of using deeper, wider, and more complex networks for image classification [49]. 

To understand how inception works, assume a convolutional layer designed to break the 

multi-channel EEG signal into its informative frequency sub-bands (more details provided in 

chapter 4). The idea of an inception module is to use several parallel (rather than sequential) 

convolutional layers with various filter sizes and stack their output along the convolutional 

channel dimension (Figure 2.6-b), rather than adopting a single convolutional layer with a 

 

Figure 2.6 Conventional convolutional layer (a) and its alternative with inception 

modules (b) 
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fixed-length kernel (Figure 2.6-a). Inception modules are effective, especially in the case of 

small training datasets or limited computational capacity, where it is not feasible to use a 

deep, complex neural network with a high number of parameters. This is because the network 

gets either more prone to overfitting or goes without computational resources [49].  

2.4.2.2 Temporal Convolutional Network (TCN) 

Convolution with dilation is the foundation of TCNs initially proposed by Bai et al. [50]. 

Dilation refers to expanding the kernel by inserting holes between its consecutive elements. 

The TCN term was first coined by Lea et al. [51] and used as a new and effective class of 

temporal models for action segmentation and detection. Since then, TCNs have been 

suggested as a promising alternative to Recurrent Neural Networks (RNNs) [47] for sequence 

modelling by providing a unified approach to encode spatial-temporal information and 

capture high-level temporal information hierarchically. In the area of EEG signal analysis, 

TCNs have been recently applied and demonstrated promising results for temporal analysis of 

EEG time series with faster computation than RNNs [52, 53]. 

Adding dilation to a series of convolutional layers can increase the receptive field of the 

network. Therefore, in my design, I applied this modification of CNN consisting of a series of 

causal convolutional layers with varying dilation (powers of a base dilation) to take 

advantage of a more extended history coverage and extract rich temporal features at each 

time step. By causal convolutional, I mean that the output of the convolutional layer at each 

time step depends only on the earlier time steps of the input time series (Figure 2.7). A 

leading zero padding [47] is applied to achieve this and ensure an output sequence with equal 

length to the input sequence. Mathematically, if we have 𝑛 convolutional layers stacked on 

one another with a dilation base of 𝑏 and a kernel size of 𝑇, then the TCN receptive field 𝑟 

can be calculated as follows: 
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𝑟 = 1 + (𝑇 − 1)
𝑏𝑛 − 1

𝑏 − 1
 (2.6) 

Notice that the kernel size 𝑇 needs to be selected as a number greater than the dilation base 𝑏 

to avoid having holes in the receptive field. By holes, I mean samples in the input sequence 

that do not affect the output sequence. To further enhance the performance of TCN, its 

representation in the form of residual blocks was proposed [50]. To extract temporal features 

in my motor imagery BCI investigations, I designed a TCN as a series of residual blocks, 

each consisting of multiple causal convolutional layers with the same dilation. The dilation 

rate increases for each consecutive residual block as the powers of the dilation base 𝑏. In this 

case, with having 𝑛 residual blocks with 𝑚 convolutional layers in each, a dilation base of 𝑏, 

and a kernel size of 𝑇, the receptive field of the TCN will be calculated as follows: 

𝑟 = 1 + 𝑚(𝑇 − 1)
𝑏𝑛 − 1

𝑏 − 1
 (2.7) 

So (2.7) can be used to determine the number of residual blocks and causal convolutions in 

each, dilation base, and the kernel size needed to design a TCN that can account for 𝑟 time 

steps back in time. Of course, the residual blocks also contain activation functions and 

dropout to account for nonlinearity and avoid overfitting the network, respectively. Batch 

 

Figure 2.7 Three causal convolutional layers with leading zero padding and the 

corresponding receptive field. In this example, the kernel size is 3 and the dilation based 

is 2. 
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normalization is often applied after convolutional layers to tackle the exploding gradient 

problem [47]. 
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3 Literature Review  
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In this chapter, I first present the outcome of my systematic review on the neural correlates of 

core DPD symptoms, covering publications between 1992 and 2020 that have used 

electrophysiological techniques. The aim was to investigate the diagnostic potential of these 

relatively inexpensive and convenient neuroimaging tools. I reviewed the EEG power 

spectrum, components of the ERP, as well as vestibular and heartbeat-evoked potentials as 

likely electrophysiological biomarkers to study DPD symptoms. I argue that acute anxiety- or 

trauma-related impairments in the integration of interoceptive and exteroceptive signals play 

a key role in the formation of DPD symptoms and that future research needs analysis 

methods that can take this integration into account. I also suggest tools for prospective studies 

of electrophysiological DPD biomarkers, which are urgently needed to develop their 

diagnostic potential fully. 

In the second part of this chapter, I review the application of deep learning for EEG signal 

analysis, stating the pros and cons of existing architectures and their shortcomings in 

handling my scenario. I discuss why I need a structure that can handle clinical assessment 

scores as prior information rather than entirely relying on them in my multi-task learning 

scenario (or generally for analysing any mental disorders assessed based on clinical 

assessment scores). In addition, I indicate the need for a more explainable visualisation 

technique for the learning process, which could help to intelligibly investigate and discuss my 

findings from a cognitive neuroscientific point of view. 

3.1 Symptoms of Depersonalisation/derealisation Disorder as 

Measured by Brain Electrical Activity 

In this review section, I provide an overview of the structural and functional neurophysiology 

of DPD, with a particular focus on studies aiming to characterise the cardinal symptoms of the 

disorder, such as feelings of disembodiment and emotional numbing by measuring the 
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electrical activity of the brain. Electrophysiological neuroimaging techniques are of great 

interest because of their ease of application and cost-effectiveness for clinical practice. 

Therefore, I intend to identify and introduce electrophysiological biomarkers associated with 

DPD symptoms, which may potentially help with the early recognition of this under-diagnosed 

psychiatric condition. My review demonstrates both the urgent need to replicate promising 

findings on a larger scale and the potential for further electrophysiological pattern analysis to 

characterise DPD. 

3.1.1 Introduction 

Several neuroimaging studies in the literature have targeted central neural patterns and 

possible abnormal activities in DPD with functional Magnetic Resonance Imaging (fMRI) 

[10, 60], Positron Emission Tomography (PET) [61], and EEG. These studies predominantly 

compare the neural substrates of DPD patients with control subjects and have mainly focused 

on two core aspects of DPD, emotional numbing and disembodiment [62]. For instance, 

various fMRI studies [63-65] have investigated the neural responses of DPD patients to 

emotional versus neutral stimuli [66, 67]. Results illustrate that emotional numbing (the 

attenuation of emotional experiences as a result of inhibitory processes) in DPD is associated 

with reduced activity in brain areas responsible for emotional processing, particularly the 

insula and limbic regions, including the hypothalamus and amygdala [68]. Lemche et al. [63] 

showed an inverse relationship between activity in the hypothalamus and amygdala and 

positive and negative emotional stimuli intensity in a group of DPD patients compared with 

controls. fMRI studies also showed increased activation of the right ventrolateral prefrontal 

cortex in DPD patients exhibiting emotional numbness in response to aversive stimuli [66, 

67]. 

Similarly, increased activation of the dorsal prefrontal cortex, which plays a role in 

emotional suppression [69], was found during processing both positive and negative emotional 
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facial expressions in DPD patients [63]. Dorsal prefrontal activation was inversely related to 

skin conductance levels. This suggests that prefrontal regions actively suppress the operation 

of emotional cortical and limbic regions. In line with this proposal, fifteen minutes of 1Hz 

inhibitory rTMS to the right ventrolateral prefrontal cortex was found to result in an increase 

of skin conductance capacity, which reflects the capacity of autonomic responses to emotional 

stimuli [59].  

Among the neuroimaging techniques for analysing brain activity, EEG holds great promise 

as a diagnostic tool because of its non-invasive nature, low costs and simple setup. It provides 

information about the ongoing neural processes in the cerebral cortex with high temporal 

resolution. Therefore, I specifically intended to provide a review of studies on DPD using 

electrophysiological signals to detect and introduce electrophysiological biomarkers associated 

with DPD symptoms. My review also addresses some recent developments in the theories of 

self-consciousness that can potentially help to explain the unique symptomatology of DPD. 

3.1.2 Review Methodology 

The papers reported in this review are exclusively based on electrophysiological approaches. 

They comprise all the papers that have tried to explain symptoms of DPD using scalp 

electrophysiological signals (for a review of studies on DPD using other behavioural or 

neuroimaging techniques, see [2, 25]). I categorized my search based on the four major and 

distinct symptoms of DPD derived from factor analysis on the CDS [6, 72]. In addition, I 

describe studies related to ‘other symptoms’ of DPD, such as those related to perception, 

attention and working memory (see Table 3.1). I also explicitly distinguished between papers 

based on whether they investigated transient or chronic DPD, with transient DPD defined as 

episodes of depersonalisation in healthy individuals and those with a primary diagnosis of 

another illness. Since the essence of depersonalisation is a self-protective mechanism, its 

momentary symptoms can emerge in many healthy individuals during their lifespan as the 
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brain's response to an overwhelmingly stressful or traumatic situation in order to reduce its 

repercussions by creating a sense of physical and emotional numbness. Studies have reported 

the prevalence of transient depersonalisation in the range of 34 to 70% in the non-clinical 

population [28, 73]. Besides, although a comprehensive study has confirmed DPD as a distinct 

disorder [74], transient depersonalisation and derealisation are also common symptoms in 

several major psychiatric illnesses such as anxiety [29], panic attacks [75], burnout syndrome 

[76], and PTSD [77]. For instance, episodic depersonalisation attacks along with panic attacks 

have been jointly observed in several cases [78, 79], and this symptomatic pattern has been 

considered a distinct disorder, the "phobic anxiety-depersonalisation syndrome" [80]. The 

dissociative subtype of PTSD has been distinguished from its nondissociative subtype 

symptomatically and by distinct patterns of central nervous system activities [81]. In the 

dissociative subtype, patients show episodic depersonalisation symptoms, which correlate 

negatively with the activation of amygdala and right anterior insula [82]. 

Symptom Description 

Disembodiment feelings 

(desomatisation) 
Lack of body ownership or loss of agency 

Emotional numbing 

(de-affectualisation) 
Attenuation in emotional responsiveness 

Anomalous subjective recall 

(de-ideation) 

Disassociation between an incident and personal 

feeling in memory retrieval 

Alienation from surroundings 

(derealisation) 
Detachment of the self from its surroundings 

Other symptoms and processing 

differences 

Impaired attentional functioning and processing 

speed or perceptual organisation 

Table 3.1 Five major symptoms of DPD (adapted from [25, 33] and other associated 

processing differences) 
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3.1.2.1 Search Keywords and Information Sources 

Several combinations of keywords were used in my systematic search. The search keywords 

consisted of one word from Set 1 and one word from Set 2 as follows (notice that, unlike 

Scopus, distinct results will be derived for British and American spelling of the keywords in 

Google Scholar): 

Set 1: "Depersonalization", "Depersonalisation", "Derealization", "Derealisation" 

Set 2: "Electrophysiological", "EEG", "MEG", "Biomarker", "Interoception", 

"Exteroception" 

The search was conducted in two major electronic databases, Google Scholar and Scopus. 

The search was not restricted to any year range, and selected papers covered publications 

from 1992 to February 2020. References of all the relevant papers were also scanned to find 

further potential studies in the field. 

3.1.2.2 Articles Overview 

Papers selected (based on their title) from Google Scholar and Scopus created an initial 

database of 104 studies after removing duplicate papers. The papers were manually filtered, 

and the number was reduced to 70 based on their abstracts. Papers concerned with 

(neuroimaging) techniques other than electrophysiology were excluded from the review. A 

final assessment of the papers was conducted based on an evaluation of the full text. The final 

number of selected papers was 10, and these are presented as an overview in Table 3.2, and 

described in detail in the next section. 

3.1.3 Electrophysiological Studies of DPD 

Earlier studies sought to investigate the oscillatory signatures associated with the experience 

of depersonalisation. Locatelli et al. [83] examined EEG patterns in depersonalisation states. 

They aimed to observe the probable dysregulation in the temporolimbic regions of the brain 
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in healthy subjects and panic disorder patients with and without 

depersonalisation/derealisation using an odour discrimination task. The power of the EEG 

signals in eight separate frequency bands covering 1 to 30Hz was analysed at six temporal 

electrodes. The results revealed bilateral abnormalities in EEG of the temporal lobe in 

patients with depersonalisation compared to panic disorder patients without depersonalisation 

or derealisation. Patients with depersonalisation/derealisation showed increased power in the 

delta band and a bilateral lack of responsiveness in the upper alpha band during odour 

stimulation. Hollander et al. [24] reported EEG power changes in depersonalisation in a 

different frequency band. They investigated the neurophysiological basis of depersonalisation 

in a 23-year-old man who had reported depersonalisation and derealisation symptoms after 

suffering from severe anxiety for a period. Although the long-term resting-state EEG was 

reported as normal, brain electrical activity mapping revealed frontal alpha overactivation and 

increased temporal theta activity in the left hemisphere. They also reported enhanced N200 

 

Figure 3.1 Flow diagram of the article selection process through the systematic review 
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components of visual and auditory ERPs (~200ms post-stimulus) in the left temporal areas. 

DPD was frequently found to be associated with abnormal theta activity over temporal 

regions. In an alcohol-induced depersonalisation state, Raimo et al. [84] observed a 

significantly higher relative power in the theta band compared with asymptomatic episodes. 

The presence of abnormal theta activities in the depersonalisation state was also confirmed in 

[85] and associated with a large effect size. Hayashi et al. [85] showed that depersonalisation 

symptoms in panic disorder patients could induce abnormalities in the EEG pattern of 

patients, characterised by repeated slow wave (in the range of theta) bursts. 

3.1.3.1 Disembodiment Feelings (Desomatisation) 

One of the cardinal symptoms of depersonalisation is disembodiment – feeling detached or 

estranged from one's own body parts or whole body when looking at them directly or in a 

mirror. DPD patients also often complain about a lack of agency - feeling as if their speech or 

movements are robotic and not their own. In other words, the disorder is characterized by 

frequent and persistent experiences of losing the physical sense of self (the feeling of oneself 

as the bodily subject of one's experiences). Adler et al. [37] tried to explain disembodiment in 

DPD patients using a somatosensory resonance paradigm, which taps into the human mirror 

neuron system [86, 87]. The mirror neuron system, which resides in the premotor cortex and 

inferior parietal cortex, as well as associated regions of sensory, motor and emotional 

processing [88], is active both when we perform an action (action execution) and when we 

observe someone else engaging in a similar action (action observation) [89] and is thought to 

encode the functional goal of action [90]. The mirror neuron system plays a crucial role in the 

adult representation of the bodily self [91-93] and its development from infancy based on 

contingencies between sensory and motor information [94, 95]. Adler et al. [37] investigated 

the mirroring mechanism using SEPs for self-related information (synchronous visual-tactile 

stimulation on one's own face) and other-related information (synchronous visual-tactile 
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stimulation on someone else's face). For people with very infrequent symptoms of 

depersonalisation (low CDS scores), mirroring effects for self-related information were 

observed at early stages of somatosensory processing (P45 component, ~45ms post-stimulus), 

while for other-related information, they occurred at later stages (N80 component, ~80ms 

post-stimulus) (both findings associated with a large effect size). For persons with high levels 

of depersonalisation (high CDS scores), however, the authors did not observe a self-related 

mirroring effect at P45. Still, they found other-related mirroring at N80 (finding associated 

with a large effect size). At later cognitive stages (P200 component, ~200ms post-stimulus), 

mirroring effects for self- and other-related information differed for individuals with low 

CDS scores but not for those with high CDS scores (findings associated with large and 

medium effect size, respectively).  In accordance with [96], Adler et al. suggested the lack of 

early (implicit) self-related information processing as a potential biomarker to explain 

disembodiment feelings in DPD. A lack of self-other differentiation at later cognitive stages 

(P200) may also contribute to this aspect of the DPD phenomenology. 

In order to explain disembodiment in DPD, it is important to understand how the sense of 

bodily self-attribution forms in humans. The “rubber hand illusion” [97-99] and its full-body 

virtual reality equivalent [100-102] have been instrumental in showing that the integration of 

multisensory information from our environment, specifically our bodily stimuli, forms the 

sense of bodily self-consciousness [99, 103-105] (for review see [106]). In the illusion, a 

participant's real hand receives tactile stimulation synchronously with a rubber hand, while 

they only see the rubber hand being touched. Synchronous (but not asynchronous) 

visuotactile stimuli result in changes in body ownership (the feeling that the rubber hand is 

part of one's own body) and self-location (the felt location of one's own hand shifts toward 

the rubber hand). 
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The multimodal integration of exteroceptive signals, such as the tactile and visual stimuli 

employed in the rubber hand illusion and Adler et al. 's study, is thought to occur in several 

temporal and parietal lobe areas [107], especially the insula [108, 109], and disruptions in this 

process have been proposed as a possible explanation for feelings of disembodiment in DPD 

[39, 110]. Indeed, participants with frequent symptoms of depersonalisation (high CDS 

scores) appear to be more susceptible to feelings of illusory ownership of a rubber hand than 

those with infrequent symptoms [38]. It is worth noting that this association between biases 

in multisensory information processing and anomalous bodily experiences is not limited to 

the clinical population. For instance, Braithwaite et al. [111] exposed the rubber hand to a 

realistic threat following periods of synchronous vs asynchronous visual-tactile stimulation. 

They found no differences in Galvanic Skin Responses (GSRs) in a group of persons 

predisposed to out-of-body experiences. In contrast, a control group showed elevated threat-

related GSRs after synchronous compared to asynchronous visual-tactile stimulation. The 

GSR tracks changes in the conductivity of human skin due to sweating, reflective of the 

arousal related to the intensity of emotional states. 

In addition to the integration of exteroceptive signals, several studies have confirmed the 

role of interoceptive signals in bodily self-consciousness [112, 113] (for a review, see [114]). 

Interoception refers to the processing of signals originating from visceral organs and 

representing the body's internal state [115]. The main brain regions responsible for 

interoception are the insula, cingulate cortex, amygdala, and somatosensory cortex [116]. 

Notice that the role of these brain regions has been revealed before in depersonalisation 

[117], and abnormal activities in those brain areas have been observed in DPD patients [68, 

118-120]. Since the activity of the insula is attenuated in DPD [67, 68], attempts to explain 

disembodiment in DPD based on deficient interoception were made in 2014 [121, 122]. 

Interoceptive functioning was evaluated based on two heartbeat detection tasks (Schandry 
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and Whitehead tasks [123, 124]) in both studies. However, Michal et al. 's DPD patients 

performed similarly to healthy subjects in heartbeat detection tasks, while Sedeño et al. 's 

DPD patients showed impaired performance. This contradiction may be explained by the 

inability of interoceptive accuracy tests to reliably measure body awareness [125]. In fact, 

Michal et al. [121] argued that patients with DPD have specific difficulties with sustained 

attention to interoceptive signals as they show decreasing accuracy in the heartbeat 

perception task over time, while healthy observers typically increase their accuracy. This 

pattern may suggest deficits in sustaining attention to bodily sensations, rather than with 

bodily sensations per se, in patients with DPD. However, a more robust index is needed for 

the investigation of interoception and bodily self-consciousness in DPD.  

One of the main indices of interoceptive signal processing are Heartbeat-evoked 

Potentials (HEPs) [126-128], which correspond to the processing of cardiac signals in the 

brain. HEPs are obtained by averaging brain signals time-locked with heartbeats in 

frontocentral regions of the brain, with the insula as their primary origin [129]. They 

normally can be observed from 200 to 500ms after the occurrence of the R-peak in the human 

electrocardiogram [127, 130]. Changes in HEPs can represent interoception and the level of 

attention to internal signals. They also reflect distinct attentional mechanisms for 

interoceptive and exteroceptive signals, such that interoception (tapping in line with one's 

own heartbeat) yields larger HEP amplitudes compared with exteroception (tapping in line 

with a recording of a simulated heartbeat) [131]. This difference was shown to be greater for 

people who lack interoceptive awareness, measured through the heartbeat detection task 

[123], and who may thus need more attentional effort to perceive their visceral signals [132]. 

In this regard, and to understand the role of interoceptive signals in bodily self-consciousness, 

Park et al. [133] investigated the association between HEPs and bodily self-consciousness. 

They showed that HEPs correspond to the strength of an induced illusory sense of self in a 
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full-body version of the rubber hand illusion. In addition, the authors confirmed the role of 

the insula, cingulate cortex, and amygdala in interoceptive signal processing and bodily self-

consciousness, which had been reported before [134, 135].  

Schulz et al. [136] studied the patterns of HEPs in people with DPD and compared them 

with healthy subjects through a heartbeat perception task. The objective was to find an 

association between feelings of disembodiment in DPD and the cortical representation of 

HEPs as an interoceptive signal. Healthy participants showed differential HEP amplitudes 

after 500ms from the onset of HEP between rest and heartbeat perception task, but such a 

difference was not found in DPD patients (finding associated with a relatively large effect 

size). A later study based on the analysis of cardiac responses to startle stimuli demonstrated 

that the altered pattern of visceral-afferent signals in DPD is not limited to the cortical level, 

as similar effects were observed in the brainstem [137]. It is worth noting that according to 

their earlier report [121], DPD patients' performance in the heartbeat perception task 

decreased over time. Patients with DPD showed higher initial performance than healthy 

controls but showed a decrease over time, while healthy individuals showed an increase over 

time, resulting in a lack of difference in performance between the two groups overall.  

Since it is likely that both interoception and exteroception are involved in the formation of 

self-consciousness, researchers have attempted to define the role of their integration in bodily 

self-consciousness [138, 139]. For example, Sel et al. [140] investigated whether the 

integration of visual and cardiac information, as an interoceptive and exteroceptive signal, 

respectively, can modify self-face recognition and neural responses to heartbeats. For this 

purpose, a modified version of the enfacement illusion [141] as a multisensory integration 

method was used. The participants saw an unfamiliar face being morphed with their own face 

and also integrated with a pulsing shade synchronous or asynchronous with their heartbeats. 

The results showed changes in the HEP amplitude between 195 and 289ms after the R-peak 
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at centroparietal sites of the right hemisphere, with reduced HEP amplitudes during 

synchronous cardio-visual stimulation compared with asynchronous stimulation. The authors 

explained the reduced HEP amplitude as a result of a conflict created by the external 

representation of private information (heartbeats) by an external agent (someone else's face). 

Based on their argument, the brain resolves this conflict by attenuating the prominence of 

interoceptive sensations in the formation of self-awareness, which manifests as reduced HEP 

amplitudes and therefore leads to an increased perceived similarity between self and other.  

Similar results were later obtained by Heydrich et al. [142] for cardio-visual stimulation on a 

full body. Instead of HEPs, they used SEPs as a possible index for changes in self-

consciousness. Self-identification with the virtual body modulated SEP component P45, 

which had previously been shown to reflect reduced implicit self-related information 

processing in DPD [37]. 

In addition to impairments in the integration of exteroceptive and interoceptive body-

related signals, feelings of disembodiment in DPD may be exacerbated by deficits in attentional 

processes [143, 144], and this should be taken into account in future studies of DPD [145]. 

3.1.3.2 Emotional Numbing (De-affectualisation) 

A second core symptom of DPD is emotional numbness [146, 147]. Self-reports from patients 

have asserted the lack of emotional responsivity to external stimuli in DPD [23], and fMRI 

studies have shown reduced activity in emotion processing regions such as the amygdala, 

hippocampus, temporal gyrus and anterior insula [66]. Quaedflieg et al. [148] examined the 

hypothesis of whether the emotion-induced blindness effect differs in individuals with high 

versus low levels of depersonalisation determined on the basis of scores on the CDS. Emotion-

induced blindness refers to a phenomenon in which one emotionally striking stimulus draws 

the attention of an individual to such an extent that it reduces the processing capability for 

further subsequent signals [149]. Due to the lack of patients' emotional responsivity [23], an 
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inverse relationship between the level of depersonalisation and emotion-induced blindness was 

expected. The Emotional Scenes Task [149] was used to present emotional distractors 200ms 

before the target in order to reduce the ability for correct target detection. As expected, 

individuals with high levels of depersonalisation (high CDS scores) showed slightly, but not 

significantly, less emotion-induced blindness than those with low levels of depersonalisation 

(low CDS scores). The authors also examined visual ERPs during the above task for the two 

groups. They found a meaningful positive correlation between the magnitude of emotion-

induced blindness and the ERP difference wave of emotional versus neutral distractors in a 

200–300ms time window at central and frontal electrodes. Interestingly, the ERP difference 

wave at frontal sites was significantly smaller for high CDS compared to low CDS individuals 

in the 200–300ms time window (finding associated with a relatively large effect size). 

Therefore, the authors explained that the impact of an emotional distractor on subsequent 

processing is less in people with high level of depersonalisation and is found at relatively early 

stages (200-300ms) of information processing. They also showed that the lack of impact from 

emotional distractors on these ERP components was associated with the derealisation factor of 

the CDS rather than with levels of anxiety. In fact, depression and anxiety were related to ERP 

difference waves in the 600–700ms time window at frontal electrodes. Their findings confirm 

that DPD is a distinct psychological phenomenon from anxiety or depression [150, 151]. 

The attenuation of the emotional response in DPD is thought to be caused by decreased 

activities in emotional cortical (insula) and limbic (hypothalamus, amygdala) regions as well 

as increased activities of the prefrontal cortex [25, 63, 64, 68, 147]. The activation of the 

posterior dorsal prefrontal cortex, specifically, is thought to represent true inhibition of the 

intensity of an emotional stimulus [152, 153] through the functional coupling between 

prefrontal and limbic regions [154]. In sum, it is hypothesised that emotional numbing in DPD 

is due to early overactivation of these prefrontal regions, which triggers the reduction of activity 
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in limbic areas. The activation of this early defensive mechanism could be due to the higher 

sensitivity of the brain to perceive an external emotional stimulus as a threat [14]. 

This prefrontal-to-limbic suppressive mechanism can be further investigated using 

electrophysiological signals. To do so, I suggest that researchers might consider EEG and ERP 

markers associated with selective cortical inhibition of affective (e.g. aversive) processing, 

such as alpha wave activity [155], frontal alpha asymmetries [156], delta–beta coherence [157], 

theta/beta ratio [158], and relatively early (200-300ms) posterior negativities in visual ERPs, 

which are thought to be a consequence of emotional stimulus appraisal in the amygdala [159, 

160], in addition to the frontal and central emotional difference waves in the same time range 

(200-300ms) that [148] showed to be attenuated in DPD. 

3.1.3.3 Anomalous Subjective Recall (De-ideation) 

Although functionally intact, memories in DPD can be subject to fragmentation, where patients 

have difficulty forming sequential and coherent narratives of events [58]. DPD patients might 

also complain of their memories being “colourless” ([25], p.4). Although patients can recall 

autobiographical memories, they describe them as if they did not personally experience them 

and as if they were an outside observer of the incident. Sierra and David [25] argued that 

autobiographical memory recall entails two aspects, including retrieval of the incident and 

retrieval of the particular feelings during that incident. Although the former aspect is intact in 

DPD patients, the absence of the latter [66] results in actual memories becoming colourless and 

like a dream. Similarly, a study of visual imagery and perception by Lambert et al. [161], 

compared patients with DPD and a group of healthy individuals. DPD patients performed as 

well as the control group in the visual perception test [162] but showed weakened ability in the 

imagination of visual information. Since the recall of autobiographical events and the 

projection of one's self into an imaginary future are similarly constructive processes [163], with 

largely overlapping neural underpinnings in limbic (hippocampus) and medial prefrontal, 
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medial parietal and temporal cortical regions [164, 165], it is conceivable that both may feel 

similarly self-detached in DPD. 

However, in addition to the questioning of de-ideation as an independent concept in the 

factor structure of the CDS [146], subjective recall and imagination in DPD have not been 

adequately studied. In fact, no article was found in the literature on the investigation of de-

ideation using electrophysiological signals. However, Papageorgiou et al. [166] observed an 

altered pattern of P300 during a working memory task in DPD patients. This encoding-related 

electrophysiological signature could therefore be a potential biomarker to investigate de-

ideation in DPD [167]. Moreover, observation of N200 and frontally distributed N400 (FN400) 

components of ERP in DPD patients during a memory recall task might also help to discover 

the underlying nature of de-ideation. A study by Proverbio et al. [168] showed no distinction 

in N200 and FN400 components between the retrieval of an old memory and the retrieval of a 

more recent but emotionally salient memory, and both scenarios evoked smaller components 

in comparison with a recent neutral memory. Since these ERP components index familiarity of 

a stimulus [169, 170], the authors argued that both time and emotional valence have effects on 

memory recall. Enhanced N200 and FN400 components in DPD patients could therefore mark 

patients' subjective unfamiliarity with their memory. Finally, an additional biomarker of altered 

self-related memory and imagination in DPD may be occipital alpha wave activity. Resting-

state occipital alpha is an index of visual cortical excitability [171], which has recently been 

associated with individual differences in the strength of visual imagery [172]. 

3.1.3.4 Alienation from Surroundings (Derealisation) 

DPD refers to a chronic condition and entails, as some researchers proposed [62, 72], four 

distinct symptoms, one of which is derealisation. However, in the case of transient 

depersonalisation, derealisation is a distinct phenomenon [173], characterised by detachment 

from surroundings rather than from bodily self, with possible distinct neurobiological 
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mechanisms [174]. For instance, in a recent study by Heydrich et al. [175], the authors 

investigated the brain mechanism of depersonalisation- and derealisation-like symptoms in 

patients with epilepsy. Patients were divided into three groups those with only 

depersonalisation-like symptoms, those with only derealisation-like symptoms, and a control 

group consisting of patients with temporal lobe epilepsy who had experienced Déjà vu or 

experiential hallucinations. The results from multimodal neuroimaging study revealed that the 

majority of patients in the first group suffered from frontal lobe epilepsy while the second 

group mostly suffered from temporal lobe epilepsy. The epileptogenic zone in the group of 

patients with depersonalisation-like symptoms extended from the mediodorsal premotor cortex 

to the medial prefrontal cortex. Heydrich et al. 's results thus showed not only that 

depersonalisation and derealisation are two distinct transient phenomena, but also that they are 

associated with two different sources of impairments. 

No study was found in the DPD literature explicitly targeting derealisation symptoms using 

electrophysiological methods. I propose that ERP signatures of familiarity and of attentional 

engagement could serve as potential biomarkers of derealisation. Since derealisation is 

characterised by a sense of unfamiliarity with one's surroundings, including with spaces and 

objects that are intimately known, N200 and FN400, which previously were highlighted as 

familiarity indexes [169, 170], may differ less in DPD patients than in controls during exposure 

to familiar versus unfamiliar scenery. Investigating the allocation of attention within such 

scenes may also help to delineate the underlying nature of derealisation, as unfamiliar contexts 

are likely to present a greater source of distraction than familiar contexts [176-178]. P300 has 

been shown to be associated with cortical engagement in attentional tasks [179] and may serve 

as a biomarker for feelings of alienation from one's surroundings. Indeed, abnormal P300 

patterns have already been observed in DPD patients in other tasks [166, 180]. I further propose 

EEG/ERP indices of spatial cognition within egocentric and allocation reference frames as 
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potential measures of derealisation symptoms. For example, egocentric (vs allocentric) 

encoding of object locations in space has been associated with larger N1 amplitudes and longer 

N2 latencies at left and bilateral inferior parietal sites, respectively [181], possibly resulting 

from differential spatial discrimination and frame-dependent localisation processes at these 

stages [182-184]. Gramann and colleagues [185] found that the use of an egocentric (vs. 

allocentric) reference frame during spatial navigation was associated with greater alpha 

suppression in or near the right primary visual cortex (vs in occipito-temporal, bilateral inferior 

parietal, and retrosplenial cortical areas). As a result of incoherent spatial referencing between 

body and environment, such EEG/ERP signatures may be expected to be altered in persons 

experiencing derealisation symptoms. 

Another way to investigate derealisation (and other DPD) symptoms may be through the 

probing of the vestibular system. The vestibular system includes sensory organs located in the 

inner ear, which send information about the head's position, spatial orientation, and motion to 

the brain [186], where vestibular signals are processed in distributed regions from the temporo-

parietal cortex to the prefrontal cortex [187]. The vestibular system plays a crucial role, not 

only in the sense of balance, motor coordination, and spatial orientation but also more broadly 

for egocentric self-awareness [188] by providing a gravitational reference to other bodily 

signals [189]. When signalling pathways are disturbed in peripheral vestibular disease, the 

brain fails to generate a coherent spatial representation of the body with respect to the external 

world [190]. An incoherent spatial frame of reference may also result in feelings of detachment 

from the world (derealisation). Several studies in the literature indeed report a higher tendency 

for DPD symptoms among patients with peripheral vestibular disease than among healthy 

individuals. Sang et al. [191] first showed this in a sample group of 171 subjects (121 healthy, 

50 patients), and later [192] reported that levels of depersonalisation were negatively correlated 

with patients' ability to estimate spatial orientation in an environment. Further substantiating 
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the potential involvement of vestibular signals in DPD symptoms, Tschan et al. [193] found 

that detachment from memory, derealisation and disembodiment in the general population were 

the three most substantial DPD symptoms associated with feelings of vertigo and dizziness, the 

most frequent symptoms seen in vestibular patients [191]. 

Future studies of DPD, specifically those interested in derealisation, may thus consider 

activating the vestibular system through passive full-body motion or through direct artificial 

stimulation of the (otolith) vestibular system [194], and probing EEG / ERP markers pertaining 

to cortical vestibular processing (vestibular evoked potentials, EEG power and EEG 

microstates). For instance, several vestibular evoked potentials can be measured over posterior, 

frontal and central sites within 500ms of passive motion, acoustic or galvanic stimulation [195-

197]. Evoked potentials can reflect different motion parameters and have been source-localised 

to the cingulate sulcus visual area and the opercular-insular region [195]. These studies have 

also identified evoked beta- and mu-band responses in central electrodes. EEG studies have 

further shown that motion-induced vestibular stimulation causes bilateral temporal-parietal 

suppression of alpha oscillatory activity [198, 199], which was found to be attenuated in 

patients with the vestibular loss [198]. Cortical EEG/ERP signatures like these may thus be 

helpful in studying the vestibular system in DPD and egocentric self-awareness in general. 

3.1.3.5 Other Symptoms of DPD 

Standard neuropsychological tests have detected broad perceptual and attentional alterations in 

the pathophysiology of depersonalisation/derealisation [144, 200]. Already Hollander et al. 

[24] suggested that depersonalisation is marked by dysfunctions in the emotional modulation 

and integration of perceptual information, and they reported increased absolute values of visual 

and auditory N200 components of ERPs over the left temporal cortex in a DPD patient, in 

addition to abnormal theta oscillatory activity.  
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An electrophysiological alteration in early attentional functioning in DPD was later verified 

in [201]. Schabinger et al. used a spatial cueing paradigm [202] to investigate the selective 

attentional mechanisms [203, 204] in DPD and psychosomatic control patients who were 

matched for depression and anxiety. Each trial in this paradigm consisted of a target (ellipse) 

or non-target (circle) visual stimulus in either the left or right area of the screen, proceeded by 

a central spatial cue (arrow) indicating correctly, incorrectly, or neutrally the location of the 

upcoming stimulus. Visual ERPs in response to cued stimuli were investigated for the two 

groups. Schabinger et al. found diminished suppression of stimuli at to-be-ignored locations at 

the early sensory P1 component in DPD patients compared to control patiends (findings 

associated with a large effect size) while attentional effects at sensory N1 (enhancement of 

stimuli at to-be-attended locations) and later cognitive components (including P300) were 

similar across patient groups. It was proposed that the lack of early-stage suppression of 

irrelevant sensory inputs might be responsible for the distractibility reported by DPD patients. 

Schabinger et al. suggested visual ERP component P1 as a potential biomarker for deficient 

attentional functioning in chronic DPD. 

Papageorgiou et al. examined the potential alteration in the P300 ERP component in 

transient depersonalisation [166]. In a working memory test, lower P300 amplitudes (but no 

changes in latency) at central posterior brain regions were observed in individuals with 

transient depersonalisation experiences compared with a control group (finding associated with 

a large effect size). Since high P300 amplitudes are typically evoked by conditions which 

demand more attention [205, 206], the findings of the above study appear to confirm attention 

problems in depersonalisation states. However, a later study [180] reported a related but inverse 

finding regarding amplitude and latency changes in P300 in the depersonalisation state. 

Analysis of ERP components during an oddball auditory task in patients with panic disorder 

revealed that patients who had experienced depersonalisation symptoms showed reduced P300 
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latency (but no changes in amplitude) to a striking target sound compared with healthy 

individuals (finding associated with a medium effect size). Reduced P300 latency indicates 

accelerated information processing and stimulus classification [41, 207]. No such reduction in 

P300 latency was observed in the comparison between panic disorder patients without 

depersonalisation and the control group. In addition to the unchanged attentional effects at 

P300 in a visual-spatial task comparing DPD with psychosomatic control patients [201], longer 

(rather than reduced) P300 latencies were reported in panic disorder patients compared to 

healthy individuals [208]. In sum, although P300 may be a valuable electrophysiological 

biomarker for attentional deficits in depersonalisation/derealisation, more studies with 

carefully designed tasks are needed to examine its precise expression in each task and for each 

group of patients. Additional ERP biomarkers for abnormalities in perceptual-attentional 

systems in DPD may be found in P1 [201] and N200 [24] components, and these also require 

substantial replication through new studies of transient and chronic DPD. 

3.1.4 Summary  

DPD can profoundly affect the quality of life of patients and interfere with their social 

relationships and daily activities. It usually takes several years to be correctly diagnosed [28], 

and the disorder's symptoms can be intolerable until then. I provided a systematic review of 

the studies targeting transient and chronic symptoms of depersonalisation using 

electrophysiological neuroimaging techniques. The aim was to describe what is presently 

known about the neurophysiological correlates of DPD symptoms and to make 

recommendations for further study to improve the diagnostic potential of this neuroimaging 

tool.  

Before I summarise the EEG/ERP indices of DPD, it is worth noting the sparse use of 

electrophysiology to delineate the neurophysiological correlates of DPD symptoms. Only ten 

studies satisfied my criteria for inclusion in this review, two of which were single-case 
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studies. Yet, EEG/ERP methodologies are powerful techniques for eliciting human 

perception, cognition and action independently of participants' cultural background or 

education levels. Unlike fMRI, EEG/ERPs are direct measures of neural activity. 

Inexpensive, easy to implement, and well tolerated by patients, their diagnostic potential has 

been successfully studied in other disorders, including schizophrenia [209], which has a 

similar prevalence as DPD. I would therefore urge researchers interested in 

depersonalisation/derealisation to invest more resources into these techniques to develop their 

potential in supporting DPD diagnostic process beyond what is presently known. 

Several studies have shown abnormal EEG activities in theta band in DPD patients, and 

the severity of symptoms was found to be associated with increased theta activity. Higher 

theta wave synchronisation has been observed for emotional compared to neutral stimuli, and 

this synchronisation occurs earlier (around 200ms) when emotional stimuli are processed 

implicitly but later (around 300ms) during the explicit recognition of facial emotions [210]. 

Therefore, increased theta activity in DPD patients might be associated with their greater 

effort or involvement in processing emotional information (specifically unpleasant emotional 

information [56, 147, 148]). Another study [211] showed that the theta wave represents the 

suppression of nontarget stimuli in the go/nogo task, which requires both selective inhibition 

and arousal. Therefore, theta activity might also represent the greater effort in the selective 

suppression of processing, which has been observed to be deficient in DPD patients [201]. 

Theta further plays a role in memory maintenance in that higher theta activity is associated 

with the need for greater working memory capacity [212, 213]. Thus, the theta band of the 

EEG power spectrum is likely to serve as a potential electrophysiological biomarker to study 

DPD symptoms related to emotion, attention/inhibition and working memory. Future studies 

of DPD should therefore focus on this oscillatory signature and investigate (a) the temporal 

dynamics of event-related synchronisation in response to emotional stimuli and (b) 
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oscillatory power during transient episodes of depersonalisation and in patients with chronic 

DPD, for example. Note that it is important for future studies to consider a relatively 

prolonged time window in order to analyse low-frequency components of EEG such as theta 

(practically, the time window needs to contain at least three cycles of the target frequency), 

which may affect stimulus design. 

Analysis of cortical event-related and heartbeat-evoked potentials (ERPs and HEPs) can 

also reveal valuable information regarding the underlying nature of DPD symptoms, as well 

as of the sensorimotor integrative processes contributing to bodily self-consciousness in 

general. HEPs and some ERP components have been introduced as potential valuable indices 

to investigate DPD symptoms related to disembodiment. Somatosensory P45 reflects 

processing in the primary somatosensory cortex and is known to be involved in attributing 

body ownership [37, 214, 215]. Cortical HEPs are thought to primarily derive from insula 

activity, which is attenuated in DPD [67, 68]. A lack of P45 modulation during visual-tactile 

stimulation related to the self [37], and a lack of HEP modulation during focused attention to 

one's own heartbeat [136], may both serve as an electrophysiological biomarker for feelings 

of disembodiment (desomatisation) in transient and chronic DPD. Both somatosensory cortex 

and insula are part of the networks responsible for interoception [112], and the integration of 

interoceptive, exteroceptive, and interoceptive with exteroceptive sensory signals have been 

recently proposed as critical for generating the moment-to-moment feeling of self-

consciousness. When integrative processes like these are transiently or chronically 

dysfunctional, feelings of disembodiment may ensue and may be further exacerbated by 

abnormal attentional processes [145]. My review has highlighted the potential of 

somatosensory P45 and of HEPs for measuring these processes in health and disease. It is 

worth mentioning that there might be a link between somatosensory P45 and cortical HEP in 

the investigation of DPD symptoms. A recent study [216] showed that the activation of the 
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somatosensory P45 component in response to personal visual-tactile stimulation (touch on the 

subject's own hand) is stronger in people with a higher level of interoceptive awareness. If 

interoceptive awareness modules HEPs [217], measuring both P45 and HEPs in the same 

study may be able to test the relationship between interoceptive and exteroceptive awareness 

[218]. In addition, researchers may consider the inclusion of electrophysiological markers for 

proprioceptive and vestibular signal processing to investigate the bodily self in health and 

disease. Vestibular processes are increasingly recognised as critically involved in feelings of 

body ownership and egocentric perception and vestibular disturbances bear a strong link with 

several cardinal DPD symptoms [193, 219]. 

Another potential set of ERP biomarkers for DPD symptoms occurs around 200-300ms 

[148], including N200 [24], P200 [37] and P300 [166, 180]. In this review, I have referred to 

enhanced temporal N200 as an aspect of alterations in the perceptual-attentional system [24], 

to lack of self-other differentiation in somatosensory resonance at frontocentral P200 as an 

aspect of disembodiment [37], to lack of frontocentral 200-300ms differences [148] as an 

aspect of emotional numbing, and to reduced amplitude/latency at centro-parietal P300 [166, 

180] as an aspect of working memory/attentional dysfunction. I have also suggested the 

potential of additional markers in this time range, such as the N200 and frontal N400 related 

to stimulus familiarity. Partly due to inconsistencies in the precise expression of P300 

abnormalities in DPD, further studies are urgently needed to systematically confirm P300 as a 

potential electrophysiological biomarker for investigating DPD symptomatology related to 

attentional and working memory dysfunction, as well as to symptoms of de-ideation and 

derealisation. Caution should be applied when regarding the association between P300 and 

DPD symptoms because P300 changes also occur with a number of other pathologies and 

physiological states (e.g. [220-222]) and are thus not necessarily selective for 

depersonalisation.  
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Reduced brain activities have been observed in DPD patients in sensory information 

processing units [68] as well as regions responsible for the processing of visceral signals 

[117]. Besides, the impairment is found mainly in the early stages of information processing 

[37, 148, 201]. This impairment in the implicit processing of multimodal interoceptive and 

exteroceptive signals could be a result of long-time severe stress or anxiety [13], which may 

damage the sensory processing units and reduce their processing capacity [14]. For instance, 

one dominant theory to explain emotional numbing in DPD [14] defines a threshold for the 

level of anxiety (or any unpleasant salient stimuli) after which the emotional processing units 

(including the anterior insula and amygdala) discontinue translating emotions into perceived 

feelings, and DPD is associated with abnormalities in this threshold or in how quickly it is 

reached [59]. The higher GSR baseline and the earlier peak in GSR response of DPD patients 

to emotional stimuli in [58] represent a faster saturation of emotional capacity [147]. Further, 

reduced capacity in sensory processing units may also be the cause of concentration problems 

in DPD, in a way that there may be a commensurate loss in the capacity to filter relevant 

from irrelevant signals in sensory information. A related framework within which symptoms 

of DPD may be explained is based on the loss of the brain's ability to make and update 

predictions about the internal body state and the outside world [145, 223, 224]. With reduced 

activity in emotional information processing units (such as insula), the brain faces a relative 

sparsity of information for maintaining precision in predictions about one's self and the 

outside world. The increasing inconsistencies may cause further suppression of emotional 

processing and, in turn, give rise to DPD symptoms such as feelings of disembodiment or 

derealisation. Conflict-monitoring-related electrophysiological markers such as the Mismatch 

Negativity (MMN) and Error-related Negativity (ERN) are good candidates for investigating 

this theory further. MMN is a pre-attentive fronto-central response around 100-200ms after 

omitted or perceptually deviant sensory events in a stimulus sequence and is generated by a 
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network of temporal-prefrontal cortical regions [225]. ERN is generated by a region in the 

Anterior Cingulate Cortex (ACC) [226] and emerges around 100ms after the onset of an 

erroneous motor response, even when the observer is unaware of making an error and even 

when the error cannot be corrected [159]. Recent studies have begun to describe both MMN 

and ERN within a predictive-coding framework as indexes of the brain's monitoring of bodily 

processes, where MMN may represent the failed prediction of visceral and other sensory 

inputs and thus the failed suppression of the prediction error [225, 227]. ERN may represent 

the monitoring of errors committed as a consequence of failed interoceptive and 

exteroceptive predictions, with imbalances in monitoring shown to be related to anxiety 

pathology [228-230]. Thus, MMN and ERN may be useful for indexing errors in predicting 

the internal and external state of the body in persons with DPD.  

There is not enough evidence to confirm a clear hemispheric lateralisation of DPD 

symptoms' neurophysiological correlates. Nevertheless, it is likely that such hemispheric 

biases will eventually emerge with more targeted research. Some studies have already shown 

abnormalities in left-hemispheric activation of DPD patients [24, 231] and of individuals with 

more frequent dissociative experiences [232]. Furthermore, based on the dominant role of the 

right hemisphere in emotional [233] and self-related processing [91], right-hemispheric 

biases in the dysregulation of emotional processing and disembodiment in DPD may be 

expected. In support of this argument, it may also be interesting to note that the right 

hemisphere may be more involved in the perception and processing of negative emotions, 

while the left hemisphere deals predominantly with positive sensations [234], and that 

impairment in emotional responsivity in DPD is often exclusive to unpleasant and threatening 

stimuli rather than pleasant ones [54-56]. In addition, inhibitory rTMS applied to the right 

ventrolateral prefrontal cortex can increase arousal capacity [59] and rTMS applied to the 

right temporoparietal junction can reduce symptoms (as measured by CDS total score) in 
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DPD patients [235]. Increased activation in the angular gyrus of the right parietal lobe has 

also been found to be correlated with the level of depersonalisation [61]. However, the DPD 

literature currently faces a lack of direct investigations of hemispheric differences related to 

DPD symptoms; more studies on this are urgently needed. 

A schematic of the notable biological signals and associated electrophysiological 

biomarkers introduced in this review are depicted in Figure 3.2. Future studies in this area 

should consider both indexes of interoceptive (such as HEPs) and exteroceptive signals (such 

as visual or somatosensory ERPs), vestibular signals, and especially their interaction 

(including monitoring ERP markers like MMN, ERN). For a comprehensive picture of DPD, 

it is useful to jointly investigate both peripheral (autonomic) and central (cerebral) bodily 

responses, and both early (perceptual) and later (cognitive) stages of central information 

processing. Additionally, there is a lack of research in the analysis of EEG power spectra and 

their relative ratios and coherence. As this review has uncovered that these may yield 

promising biomarkers for all cardinal DPD symptoms, further studies need to consider 

different EEG waveforms and their roles in the formation of these symptoms. For such 

analyses, the use of time-frequency and phase‐based signal processing [236] can be very 

insightful since studies have suggested phase alignment as a fundamental phenomenon 

underlying the generation of ERPs and HEPs rather than evoked potentials [129, 237]. 

Further, the association between the vestibular system and the DPD symptoms can help 

the design of experimental paradigms in future studies [238]. In this regard, a study by Sang 

et al. [191] proposes caloric vestibular stimulation as an effective way to provoke 

depersonalisation/derealisation-like symptoms in the non-clinical population. The induced 

symptoms were similar to those experienced by patients with vestibular disease. However, it 

should be carefully considered that there is also a close link between the vestibular system 

dysfunction and out-of-body experiences [239-241]. For example, Lopez et al. [240] reported 
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a higher tendency for out-of-body experiences in patients with dizziness, and the relationship 

was more significant in patients with a peripheral vestibular disorder. Since out-of-body 

experiences are not that common in depersonalisation/derealisation [25], using methods to 

dysregulate the vestibular system (such as caloric vestibular stimulation) to induce 

depersonalisation/derealisation symptoms should be done carefully to prevent 

misinterpretation.  

3.2 Deep Learning for EEG Signal Analysis 

My research project falls into the area of BCIs. Therefore, I first provide a brief introduction 

to BCIs and then discuss the shortcomings of the available models and algorithms to address 

all aspects of my scenario. 

3.2.1 Brain-computer Interfaces (BCIs) 

BCIs were developed to provide direct communication between the human brain and external 

devices through the acquisition of neural signals and their translation and transmission as 

control commands to assistive devices [242]. Although initially designed to help people with 

cognitive or physical impairments, BCIs have a wide range of applications nowadays, 

ranging from medical and neuroergonomics to entertainment, intelligent environments, and 

even security and authentication [243]. EEG-based BCI systems are among the popular 

techniques due to the convenient and inexpensive nature of EEG signals. The electrical 

activities of a population of neurons can generate adequately high electrical fields that can be 

measured by electrodes placed on the surface of the scalp. However, the recorded signals 

have a low SNR due to several factors, such as interference from other physiological signals, 

electrode detachment, or signal distortion resulting from the cortex's behaviour as a volume 

conductor [40]. Therefore, advanced signal processing and machine learning algorithms have  
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been extensively applied in this area to increase the SNR and the quality of the extracted 

neural patterns of interest [244]. 

3.2.2 Existing Deep Architectures and Their Shortcomings 

Deep learning has seen considerable use in the analysis of medical imaging data, including 

EEG signals [245]. The investigations in this area have been mainly based on supervised 

learning and with the purpose of performing classification tasks, especially in the field of 

BCI. For instance, Rezaei Tabar et al. [246] used a stacked autoencoder after a pre-trained 

CNN to perform binary classification in a motor imagery BCI task. They used the short-time 

Fourier transform of multi-channel EEG signals as an input to enrich the extracted feature 

vector from the CNN. Although they managed to improve the classification accuracy 

compared to the state-of-the-art approaches, they did not provide any insight into the learned 

features and the interpretation of discriminative features used to perform the classification 

task. Accordingly, more recent publications have focused not only on proposing novel 

architectures to analyse EEG data but also on extracting and interpreting features of the 

network from a neuroscientific perspective.  

Schirrmeister et al. [247] investigated different end-to-end CNN architectures, such as 

shallow CNN, deep CNN, and residual CNN, for EEG analysis. They reported relatively 

higher performance than the well-known Filter Bank Common Spatial Pattern (FBCSP) [248] 

and showed deep learning as a promising tool for analysing EEG signals. They also used two 

novel feature visualisation techniques based on the correlation between several major 

frequency bands and the output of CNN units to understand the level of contribution of each 

feature in the CNN final decision. The limitation of their visualisation method was its 

dependency on known features, which makes it impracticable in cases where there is no prior 

information on discriminative features. In another influential research study, Lawhern et al. 

[249] introduced EEGNet as a compact CNN capable of analysing different EEG-based BCI 
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paradigms. They also showed how the filter weights of convolutional layers could be 

visualised to represent and portray the learned features. Although EEGNet showed promising 

results as a general model, it was still only a supervised learning algorithm. Hence for my 

DPD scenario or generally for analysing mental disorders based on clinical assessment 

scores, a multi-task learning structure is needed to handle clinical assessment scores as prior 

information rather than entirely relying on them. In addition, I intended to find a more 

explainable visualisation technique for the learning process, which helps to intelligibly 

investigate and discuss my findings from a cognitive neuroscientific point of view. 

Therefore, I aimed to propose a novel end-to-end EEG processing pipeline based on deep 

neural networks for DPD biomarker discovery, which can employ the CDS scores as prior 

information in the learning process and provide explainability to discuss and validate its 

findings. I will argue that the proposed EEG analytics could also be applied to investigate 

other psychological and mental disorders currently indicated on the basis of clinical 

assessment scores. 
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4 Proposed Methods   
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In this chapter, I first present my EEG pre-processing pipeline to clean and prepare the raw 

EEG data before feeding it to end-to-end deep models. The chapter then details my proposed 

EEG analytics based on deep learning algorithms acting as a biomarker discovery system for 

DPD. In addition, the chapter includes the visualisation technique used to evaluate and explain 

the learning process. As a part of my project and to show the reliability of my visualisation 

technique, I applied the approach to a novel convolutional network called EEG-ITNet, 

designed for motor imagery classification. The EEG-ITNet structure has been extensively 

explained in this chapter. Finally, to show the importance of finding a reliable 

electrophysiological biomarker for supporting DPD diagnosis, I present a waveform matching 

algorithm to perform a classification task on an auxiliary DPD dataset. 

4.1 Proposed Pre-Processing Pipeline 

The raw EEG data was fed into my proposed automated preprocessing pipeline, detailed in 

Figure 4.1. The pipeline starts with downsampling to 250Hz to reduce the size of the dataset 

and decrease the processing time without considerable loss of information. Then, a high-pass 

Finite Impulse Response (FIR) filter with a 1Hz cut-off frequency was applied to the multi-

channel EEG signals to remove the DC offset and low-frequency artefacts, followed by a 

low-pass filter with a 40Hz cut-off frequency to remove high-frequency artefacts and 50Hz 

 

Figure 4.1 An overview of the proposed automated preprocessing pipeline 
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line noise. One might argue that a relatively high 1Hz cut-off frequency can be detrimental in 

terms of affecting ERP components. However, since somatosensory processing is mainly 

associated with early high-frequency ERP components [250], using a 1Hz cut-off frequency 

was not only unlikely to have a negative impact on my results but was also crucial to correct 

significant signal distortion in my dataset and save as many trials as possible. Nevertheless, in 

the case of no information on the nature of the experiment or high-quality recordings, a high-

pass filter with a lower cut-off frequency is generally advisable. In the next stage, the 

clean_rawdata() plugin in EEGLAB was used to detect and remove corrupted channels 

automatically, including the ones with a constant pattern, excessive noise, or poor scalp-

surface contact. clean_rawdata() is the offline version of Artefact Subspace Reconstruction 

(ASR) method proposed by Christian Kothe (details can be found in [251]). Next, those 

rejected EEG channels were interpolated using other nearby channels. Using data from two 

EOG channels, I then used the REG-ICA algorithm [252] to remove blinks and other EOG 

artefacts from my EEG signals. REG-ICA is a hybrid algorithm for EOG artefact rejection 

based on Independent Component Analysis (ICA). The method applies a regression algorithm 

to compare independent components with EOG channels to decontaminate them. I used 

Preconditioned ICA (PICARD) [253, 254] as the ICA algorithm and Least Mean Square 

(LMS) as the regression algorithm. After artefact rejection, I used the average of all 

electrodes to re-reference EEG voltages, followed by 100ms pre-tactile-stimulus baseline 

correction. I also applied moving window peak-to-peak threshold artefact rejection to exclude 

any trial that was not cleaned during the earlier steps. Finally, ERP epochs were extracted 

from 100ms before tactile stimulus onset to 400ms after tactile stimulus onset.  

4.2 Score-guided Biomarker Discovery System for DPD 

I argued that EEG studies on finding discriminative neural factors are often based on 

hypotheses proposed by experts in the field, meaning it requires prior knowledge of the 
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disorder. In addition, participant labelling in research experiments is often derived from scores 

on the CDS, the threshold and reliability of which might be challenged. As a result, I aimed to 

propose a novel end-to-end EEG processing pipeline based on deep neural networks for DPD 

biomarker discovery, which requires no prior knowledge or assumption of the disorder. In 

addition, the multi-task learning nature of the proposed deep model targets the potential 

unreliability of CDS scores by using them as prior information only to guide the unsupervised 

learning task. Thus, this section introduces my main DPD dataset, which I used to train and 

evaluate the score-guided biomarker discovery system. Note that I will later introduce another 

DPD dataset with fewer participants that I used to evaluate the reliability of identified 

biomarkers. The second dataset will be referred to as the auxiliary DPD dataset. After 

introducing the main DPD dataset, I fully demonstrate my deep learning structure, its 

corresponding loss function, and the learning process. 

4.2.1 Main DPD Dataset 

The main DPD dataset used in my study was collected before by [255]. In the original study, 

which was inspired by Adler et al. [37], emotional primes and a tactile mirroring task were 

used to examine the cardinal symptoms of DPD, including emotional numbness and 

disembodiment. The study was approved by the Human Research Ethics Committee of the 

authors' institution, and all participants gave informed written consent to take part. The 

dataset consists of 50 participants who initially took the self-rating CDS questionnaire to 

quantify their (trait) level of depersonalisation. With a threshold of 50 on CDS scores, 21 

subjects were evaluated as participants with a low level of depersonalisation, and 29 subjects 

were considered individuals with a high level of depersonalisation, henceforth termed the 

control group and the DPD group, respectively. It is important to recall that the DPD 

diagnostic process is not solely based on CDS, and the outcome of the questionnaire only 

helps the clinician in their final diagnosis of DPD as a primary condition [28]. The diagnostic 
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process also involves several examinations, including but not limited to physical exams, lab 

tests, and psychiatric evaluations. Nevertheless, since there is not always access to clinically 

diagnosed DPD patients in experimental research, CDS is often used as a primary metric to 

label participants as those with low and high levels of depersonalisation.  

In addition to the CDS, participants' levels of depression and anxiety were also recorded 

based on Patient Health Questionnaire-9 (PHQ9) and State-trait Inventory for Cognitive and 

Somatic Anxiety (STICSA), respectively. The aim was to control the effect of depression and 

anxiety, which are highly comorbid with depersonalisation [256, 257], in the analysis. 

Participants also completed the Operationalised Psychodynamic Diagnosis-Structure 

Questionnaire (OPD-SQ) self-object differentiation subscale, which has been associated with 

dissociation [258], and the Multidimensional Assessment of Interoceptive Awareness 

(MAIA), which assesses eight different dimensions of subjective interoception [259].  

Each session in the experiment consisted of two types of trials; tactile stimulation 

following an emotional prime and tactile stimulation following a neutral prime. The 

emotional prime was in the form of a happy or angry face and voice, with happy and neutral 

primes and angry and neutral primes forming two distinct datasets. During the experiment, 

subjects with normal or corrected-to-normal vision were asked to sit in front of a computer 

screen. Each trial started with a 400ms window of emotional or neutral prime, followed by a 

600ms neutral hand stimulus (subjects observed a left or right hand and a pencil against a 

white background). The next 200ms time window comprised either the pencil touching the 

participant's hand (touch condition) or the space next to the hand (no-touch condition) so that 

the perceived distance of the pencil travelling would be the same. Finally, each trial ended 

with replaying the neutral hand stimulus for 600ms. In the 200ms time window of both touch 

and no-touch conditions, the participants received a 200ms tactile stimulus to their same 

hand, resulting in a synchronous visual-tactile stimulation for the touch condition. All trial 
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types within each set were randomly intermixed with equal frequency. The animated 

schematics and timing scheme of each trial are presented in Figure 4.2. EEG signals were 

recorded during each session using a Compumedics Neuroscan SynAmps RT 64-channel 

amplifier and an EasyCap scalp electrode cap at a 1000-Hz sampling frequency and an online 

filter of 0.01-100 Hz.  

The main DPD Dataset holds several types of trials as it contains two subsets (happy and 

angry), two conditions (touch and no-touch), and two types of visual stimulation (emotional 

and neutral prime). Since studies have shown abnormal autonomic nervous system responses 

in both the brain and the autonomic nervous system of DPD patients [260], which tend to be 

more evident for unpleasant and threatening emotional stimuli [54], I decided to only focus 

on the angry set and synchronous visual-tactile stimulation (touch condition) following 

emotional primes (angry faces and sounds). However, even by focusing on a single subset 

and a single condition after a single prime, one would still end up with two types of trials 

representing tactile stimulus to the left or right hand. It is essential to consider that those trials 

still need to be analysed separately since somatosensory processing in the brain is only 

initially lateralised to the hemisphere contralateral to the touch. Accordingly, one should not 

 

Figure 4.2 The schematics and timing of each trial in the main DPD dataset 
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combine those trials by remapping the electrodes in one of the conditions unless one is 

interested in only early ERP components.  

Based on the quality and quantity of processed EEG signals for each participant, data 

from 7 participants were excluded from further analysis in the main DPD dataset, resulting in 

a total of 19 and 24 control and DPD participants, respectively. Furthermore, I disregarded 

almost half of the EEG channels and analysed only those presented in Figure 4.3 to simplify 

my analysis. Note that the channel selection was in line with the nature of my experiment, 

which contained visual and tactical stimulation.  

4.2.2 Network Architecture 

The deep learning architecture proposed in my research as a biomarker discovery system is a 

multi-input multi-output deep neural network, as depicted schematically in Figure 4.4. The 

two input branches of the network consist of sequences of layers similar to the structure of 

the well-known EEGNet [249] to analyse the trials with tactile stimuli to the left and right 

hand separately. Generally, each branch starts with a 2D convolutional layer with a kernel 

 

Figure 4.3 The names and placement of electrodes used in the research 
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Figure 4.4 Overview of the proposed deep model for biomarker discovery 
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size of 1 × 𝑠 acting as a frequency filter, followed by another depthwise 2D convolutional 

layer [47] with a kernel size of 𝑐 × 1 acting as a spatial filter, which together simulates the 

behaviour of the well-known FBCSP algorithm (explanation on that has been provided in 

section 4.3). The kernel size for the depthwise convolutions is equal to the number of 

electrodes in the dataset to design a spatial filter that combines all the electrodes to find the 

sources of brain activities. However, the number of convolutional filters in the first layer (𝐹1) 

and the second layer (𝑑) are the hyperparameters of the system, which determine the number 

of frequency bands and spatial filters in each frequency range, respectively. The goal of the 

later separable convolutional and flatten layers is to find a low-dimensional representation of 

the input multi-channel EEG signal. Then, low-dimensional representations derived from 

both types of trials are concatenated to form a more extensive feature vector, which serves as 

an input to the final multi-task learning structure of the network.  

The output of the network consists of a supervised and an unsupervised branch. The 

supervised branch is a fully-connected layer with one unit and a "Relu" activation function to 

predict the continuous CDS scores, while the unsupervised branch is a fully-connected layer 

with two units and a "softmax" activation function to generate cluster assignments. The idea 

was to learn a representation that separates the dataset into two patient and control clusters 

(clustering branch) guided by the CDS scores (regression branch). Because on the one hand, I 

mentioned that the CDS scores are subjective and imprecise, so I should rely on more than 

just them to find the electrophysiological biomarkers. On the other hand, clustering can be 

accomplished by discriminative yet nonmeaningful or confounded features. Therefore by 

defining an appropriate loss function, I 1) guide the network to find and extract features that 

represent two distinct neural patterns; 2) make sure they represent patterns of individuals with 

a high and low level of depersonalisation. 
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4.2.3 Proposed Loss Function 

In order to achieve my objectives, I proposed a loss function as follows: 

ℒ𝑡𝑜𝑡𝑎𝑙 = 𝑤𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛ℒ𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 + 𝑤𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔ℒ𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 + 𝑤𝑙𝑖𝑛𝑘ℒ𝑙𝑖𝑛𝑘  

s. t. 𝑤𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 + 𝑤𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 + 𝑤𝑙𝑖𝑛𝑘 = 1 

(4.1) 

where ℒ𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 is the loss function associated with the regression branch, forcing the 

network to predict the continuous CDS scores. I used Mean Squared Error (MSE) for this 

purpose which can be formulated as follows: 

ℒ𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 (4.2) 

where 𝑛 is the number of samples per batch, 𝑦𝑖 is the reported CDS score, and 𝑦̂𝑖 is the 

network-predicted score from the regression branch. The ℒ𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 in (4.1) denotes the 

unsupervised loss function used to help the network find a low-dimensional representation 

that separates data points into two distinct clusters and their corresponding cluster 

assignments. For this purpose, I used information maximisation [261, 262], which is simply 

defined as an estimate of the mutual information between the low-dimensional representation 

of the input data and cluster assignments. Let 𝐸 ∈ (𝑒1, … , 𝑒𝑛), where 𝑒𝑖 ∈ ℝ𝑑, denotes a d-

dimensional random variable representing the concatenated low-dimensional representation 

of left and right tactile stimulus inputs. By defining 𝑍 ∈ {0,1} as a random variable 

expressing cluster assignments, one can estimate mutual information between 𝐸 and 𝑍 as 

follows: 

𝐼(𝐸; 𝑍) = 𝐻(𝑍) − 𝐻(𝑍|𝐸) (4.3) 

where 𝐻(. ) and 𝐻(. |. ) are entropy and conditional entropy, respectively, and can be 

calculated as follows on a batch: 
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𝐻(𝑍) = −∑ [(
1

𝑛
∑𝑝(𝑧|𝑒𝑖)

𝑛

𝑖=1

)(log (
1

𝑛
∑𝑝(𝑧|𝑒𝑖)

𝑛

𝑖=1

))]
𝑧

 (4.4) 

 

𝐻(𝑍|𝐸) = −
1

𝑛
∑[∑ 𝑝(𝑧|𝑒𝑖)log (𝑝(𝑧|𝑒𝑖))

𝑧
]

𝑛

𝑖=1

 
(4.5) 

where 𝑧 is an instance of the random variable 𝑍. Thus, the clustering loss function based on 

information maximisation can be finally defined as follows: 

ℒ𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 = −(𝐻(𝑍) − 𝐻(𝑍|𝐸)) (4.6) 

By this definition, a lower loss value would be subject to an increase in marginal entropy 

𝐻(𝑍), which encourages the cluster assignments toward class balance and avoids trivial 

solutions, and a decrease in conditional entropy 𝐻(𝑍|𝐸), which ensures having high 

confidence in each cluster assignment. 

Using the weighted sum of ℒ𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 and ℒ𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 as the loss function, the supervised 

and unsupervised tasks in my model could be achieved independently due to their 

independent units, making the network highly prone to overfit on uninformative features. In 

other words, finding clusters representing my desired groups of people with low and high 

levels of depersonalisation was not guaranteed. To tackle this problem, I introduced a third 

term in my loss function called ℒ𝑙𝑖𝑛𝑘, which bridges the gap between the supervised and 

unsupervised branches and ensures the finding of meaningful desirable neural patterns to 

distinguish the patients from the control group. To achieve that, I first used a smooth logistic 

function in the form of 𝑓(𝑥) =
1

1+𝑒
−(

𝑇ℎ𝑟
10

+0.1𝑥)
 (see Figure 4.5-right) to scale the predicted 

scores from the supervised task to numbers between 0 and 1. The Thr in the indicated logistic 

function determines the turning point of the function and is the threshold on CDS scores to 

evaluate subjects as control or DPD patients. As mentioned earlier, there is no globally 

agreed threshold on CDS scores for DPD classification. While researchers often choose 50 in 
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their studies, clinicians prefer to use 70. Therefore, I performed a greedy search by sweeping 

all the possible values for the threshold from 20 to 100 to find the one that results in the 

lowest loss value, with the idea that an optimum threshold would be the one that performs 

subjects' separability with high confidence while making an accurate prediction of the CDS 

scores. Figure 4.5-left shows the sweep result, illustrating the mean and standard deviation 

(as shadow) of the clustering loss values over ten iterations for each threshold value. I found 

an optimum threshold of 56, which lies between the common threshold in the literature and 

clinician preference, and used that value in the rest of my analysis.  

The scaled scores following the logistic function were then compared to the cluster 

assignments using the cross-entropy loss function. The idea was based on the fair assumption 

that participants with extreme scores (too low or too high) should be assigned to their 

corresponding cluster with higher confidence. So assume 𝑦̂𝑖 the network predicted score from 

the regression branch for the 𝑖-th data point and 𝑓: 𝑦̂𝑖 → 𝑠𝑖 the optimised logistic function, 

where 𝑠𝑖 donates the scaled scores (𝑠𝑖 ∈ [0,1]). The scaled scores can form a vector 𝑠 =

[1−𝑠𝑖
𝑠𝑖

] showing how likely each input data belongs to each group. Similarly, in my binary 

 

Figure 4.5 Minimum clustering loss value for different CDS thresholds (left) and the 

smooth logistic function defined to transform CDS predictions to a value between 0 and 1 

with a turning point of optimum threshold (right) 
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problem, the output of the clustering branch for the input 𝑖 is a vector 𝑧 = [𝑧𝑖1
𝑧𝑖2

] (where 𝑧𝑖1 +

𝑧𝑖2 = 1) containing the cluster assignments. As a result, the ℒ𝑙𝑖𝑛𝑘 can be defined as follows: 

ℒ𝑙𝑖𝑛𝑘 = −
1

𝑛
∑[(1 − 𝑠𝑖). 𝑙𝑜𝑔𝑧𝑖1 + (𝑠𝑖). log (1 − 𝑧𝑖1)]

𝑛

𝑖=1

 (4.7) 

In sum, the proposed loss function (4.1) can be trained using gradient descent to minimise 

the CDS prediction error while forming two clusters and guarantee getting clusters 

representing my two groups of participants with low and high levels of depersonalisation. 

Notice that my proposed deep learning model does not require a validation set as the ℒ𝑙𝑖𝑛𝑘 

causes a trade-off between the regressions and the clustering losses, preventing them from 

overfitting. Therefore, I only used early stopping in my model to terminate the learning 

process once I no longer see improvements in the total loss, meaning the supervised and 

unsupervised tasks have reached an equilibrium point. 

4.3 Explainability and Visualisation Technique 

The goal of my study was to find potential electrophysiological biomarkers for DPD. For that, 

I needed to dig into the learning process of my deep model by visualising the spectral, spatial, 

and temporal information that the model used to make a decision. 

4.3.1 Spectral Information 

As depicted in Figure 4.4, the first 2D convolutional layers in my model were applied over 

the time axis of multi-channel EEG with varying kernel sizes. Adding an extra dimension to 

the input signal preserved for convolutional channels, these initial 2D convolutional layers 

act as frequency filters and extract the signal in different informative sub-bands. To further 

elaborate on this, assume the input signal in each electrode 𝑋[𝑛] ∈ ℝ1×𝑆, where 𝑠 is the 

number of samples. Since a convolutional layer is simply the dot product of the input signal 

and a kernel, the output 𝑋′[𝑛] ∈ 𝑅1×𝑆 of the initial vanilla 2D convolutional layer with a 
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kernel 𝐾 of size 2𝑙 + 1 and "same" padding [47] over each EEG channel can be calculated as 

follows: 

𝑋′[𝑛] = ∑ 𝑋[𝑖]𝐾[𝑖 − 𝑛]

𝑙

𝑖=−𝑙

 (4.8) 

which represents the convolution between the EEG time series of each electrode and the 

reverse of the kernel (𝑋[𝑛] ∗ 𝐾[−𝑛]). We also know that the convolution in the time domain 

acts as multiplication in the frequency domain. Therefore, taking the Fourier transform of 

convolutional kernels, one can find out the frequency sub-bands selected by the network 

during the training phase. However, since the deep learning algorithms are sensitive to even 

tiny discriminative features, the Fourier transform of convolutional kernels can be highly 

varied. So for the sake of visualisation, I use Savitzky-Golay filtering [263] to smooth the 

Fourier transforms. Savitzky-Golay is a type of digital filtering consisting of a series of least-

square polynomial approximations applied on fixed-length time windows swept over the time 

series. For a sequence of samples 𝑌[𝑛], the mean-squared approximation error for a time 

window centred at 𝑐 can be calculated as follows: 

𝐸 = ∑ (∑ 𝑎𝑚𝑛𝑚 − 𝑌[𝑛]

𝑝

𝑚=0

)2

𝑐+𝑙

𝑛=𝑐−𝑙

 (4.9) 

where 𝑎𝑚, 𝑚 = 0,… , 𝑝 are polynomial coefficients, 𝑝 is the polynomial order, and 𝑙 is the 

half-width of the filter window. To minimise the mean-squared approximation error and find 

the optimal polynomial coefficients, one should take the derivative of (4.9) with respect to all 

the polynomial coefficients and set them equal to 0, which yields a set of 𝑝 + 1 normal 

equations [264]. Accordingly, the polynomial coefficients can be found as follows: 

𝐴 = (𝐷𝑇𝐷)−1𝐷𝑇𝑌  (4.10) 
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where 𝐴 = [𝑎0, 𝑎1, … , 𝑎𝑚, … , 𝑎𝑝]
𝑇 is the vector of polynomial coefficients. The matrix 𝐷 =

{𝑑𝑛,𝑚} is called the design matrix with the size of 2𝑙 + 1 by 𝑝 + 1 and the elements as 

follows: 

𝑑𝑛,𝑚 = 𝑛𝑚, 𝑐 − 𝑙 ≤ 𝑛 ≤ 𝑐 + 𝑙, 𝑚 = 0,… , 𝑝 (4.11) 

The Savitzky-Golay smoothing process can also be explained as a shift-invariant discrete 

convolution process, which is why it is referred to as Savitzky-Golay filtering (more details 

can be found in [264]). 

4.3.2 Spatial Information 

Besides batch normalisation and activation function, my model also contains depthwise 

convolutional layers after the first 2D temporal convolutions. The depthwise convolutional 

layer with "valid" padding acts as spatial filtering. It linearly combines signals in different 

electrodes to transform the electrode domain to the source domain and find discriminative 

sources. Note that this convolutional layer is applied separately in each convolutional 

channel, as each convolutional channel represents the signal in a different frequency sub-

band. Also, the nonlinear activation function that follows this layer further improves spatial 

filtering by giving it nonlinearity. Thus, for an input EEG signal 𝑋[𝑛] ∈ 𝑅𝑐×𝑠 with 𝑐 channels 

and 𝑠 number of samples in each channel, the transformation from the electrode domain to 

the source domain 𝑆[𝑛] ∈ 𝑅𝑐′×𝑠, with 𝑐′ being the number of sources, can be formulated as 

follows: 

𝑆[𝑛] = 𝑊𝑋[𝑛] (4.12) 

where 𝑊 is a 𝑐′ × 𝑐 matrix containing spatial filters; however, 𝑊 in (4.12) represents the 

unmixing matrix and does not represent the spatial locations of sources. Therefore, one must 

find and visualise the mixing matrix 𝑊−1 to find the correct location of sources learned 

during the training phase. 
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4.3.3 Temporal Information 

In addition to spectral and spatial information, I also aimed to visualise the temporal 

information in both the source and electrode domains. Since the first two convolutional layers 

of my model behave as frequency and spatial filters, they map the input multi-channel EEG 

data from the electrode domain to the source domain. Hence after the training process and 

learning the optimal network weights, I was able to extract and depict the corresponding 

source activity for each input sample. Furthermore, I utilised the signal of the closest 

electrodes to each source to investigate the neural patterns in the electrode domain. 

4.4 Motor Imagery EEG-ITNet 

In order to show the explainability and reliability of my visualisation technique, I applied the 

same approach to a novel convolutional network, which I called EEG-ITNet, designed for 

motor imagery classification. In this section, I introduce EEG-ITNet as a promising motor 

imagery-based BCI system, and in the next chapter, I provide results supporting the 

effectiveness of my visualisation technique to bring explainability to similar deep models. 

4.4.1 Network Architecture 

The general architecture of EEG-ITNet is depicted in Figure 4.6 and consists of 4 main 

blocks: inception block, temporal convolution (TC) block, dimension reduction (DR) block, 

and classification block. 

1) Inception block: The learning process starts with three parallel sets of layers. Similar to my 

DPD biomarker discovery system, each set includes a 2D convolutional layer along the time 

axis, which acts as frequency filtering, followed by a 2D depthwise convolutional layer 

acting as spatial filtering. Adding inception modules with varying convolutional kernel sizes 

eliminates the need for a fixed-length kernel [265] and allows the network to learn filters 

representing various frequency sub-bands. I will later show that the longer the kernel size, the 
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more likely to learn features in low-frequency components. The kernel size for the depthwise 

convolution again equals the number of electrodes in the dataset to design a spatial filter that 

combines all the electrodes to find the sources of brain activity. Hence, the tensor obtained 

after the inception modules represent the signals of sources in different frequency sub-bands. 

Finally, this block ends with a nonlinear activation function and dropout to allow the network 

to learn more complex nonlinear spatial information and avoid overfitting, respectively.  

2) Temporal convolution (TC) block: After extracting sources in different informative 

frequency sub-bands, the TCN architecture is applied to extract the discriminative temporal 

features while taking the history of the time series into account. The TC block consists of 

several residual blocks, and each is formed by depthwise causal convolutional layers with 

leading zero padding, followed by activation function and dropout. Using depthwise causal 

convolution followed by batch normalisation instead of weight normalisation is a 

modification I made in the original TCN structure (described in section 2.4.2.2). Since the 

output of the inception block represents signals in the source domain, depthwise causal 

convolution has been used to ensure that the temporal information of each source is extracted 

separately. With this modification, my observation showed more robust and accurate 

performance than the conventional TCN. Depending on the number of previous time steps 

intended to be considered, the number of residual blocks, kernel length, and dilation base can 

 

Figure 4.6 General schematic of EEG-ITNet 
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be chosen based on (2.7). An average pooling layer also precedes this block to reduce the 

data dimensions and avoid overfitting.  

3) Dimension reduction (DR) block: The output of the TC block essentially contains temporal 

information extracted from sources with various frequency spectrums. Thus, I utilised a 1 × 1 

convolutional layer to combine these temporal features and control the number of final 

features used to perform the classification task. The number of convolutional filters is a 

hyperparameter and needs to be adjusted to avoid overfitting. As well as an activation 
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Figure 4.7 Details of different blocks in EEG-ITNet architecture 
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function and a dropout layer, this block also ends with an average pooling layer to further 

reduce the tensor dimension. Notice that these sets of layers also appeared in my score-

guided model in Figure 4.4, with the same purpose of reducing input dimension before the 

concatenation layer and going through clustering and regressions branches. 

4) Classification block: This block is the final piece of EEG-ITNet and contains a fully 

connected layer with a "softmax" activation function that follows a flatten layer. Although I 

call it the classification layer, it can be easily modified depending on the desired output and 

the problem set. 

4.4.2 Dataset and Evaluation Scenarios 

Dataset 2a of BCI competition Ⅳ and OpenBMI motor imagery dataset [266] were used to 

evaluate the performance of EEG-ITNet exhaustively. The description of each dataset is as 

follows:  

4.4.2.1 Motor Imagery Datasets 

1) BCI competition Ⅳ dataset 2a: It is a multi-class motor imagery dataset containing EEG 

recordings of 9 participants during imagination of left hand, right hand, both feet, and tongue 

movements. The dataset has been collected in two separate sessions, each consisting of 288 

trials with an equal number of trials for each class. The actual labels were provided for the 

data in the first session, while the second session was reserved for testing the classification 

algorithms in the competition. Each trial in the paradigm started with 2 seconds of 

preparation time, followed by a cue that lasted for 1.25s, representing the imagination class 

(Figure 4.8). The imagination period continued for 4s after the cue onset and was terminated 

by an inter-trial break. The EEG signals were recorded using 22 electrodes and sampled with 

250Hz. Since I aimed to propose an end-to-end neural network, the signals were only 

downsampled to 125Hz, scaled to have zero mean and unit variance, and epoched to a 3-
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seconds time window after the cue onset. It should also be noted that the 3 EOG channels 

available in the dataset were excluded from my analysis.  

2) OpenBMI motor imagery dataset: Collected by Lee et al. [266], OpenBMI is a more 

extensive EEG dataset containing EEG recordings from 54 subjects across multiple sessions 

performing three different BCI tasks: motor imagery, ERP, and Steady-state Visually Evoked 

Potential (SSVEP). In this study, I used EEG recordings from the first session of the motor 

imagery task, which represent neural activities while performing the imagery task of grasping 

with either left or right hand. The experiment consists of balanced train and test datasets with 

100 trials each. The experimental paradigm of this dataset is depicted in Figure 4.9. It starts 

with 3s of preparation period followed by 4s of imagination period based on the movement 

direction of the fixation cross. 62 Ag/AgCl electrodes were used to record the signals at 1kHz 

sampling frequency. Similar to BCI competition Ⅳ dataset 2a, the dataset was only 

downsampled to 125Hz, standardised to have zero mean and unit variance, and epoched to a 

3-seconds time window after the cue onset. I should note that similar to what the authors 

 

Figure 4.8 Timing scheme of the motor imagery dataset 2a from BCI competition Ⅳ 

 

 

 

 

 

 

 

Figure 4.9 Timing scheme of the OpenBMI motor imagery dataset 
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proposed in the original paper [266], only 20 electrodes located on the motor cortex (FC-

5/3/1/2/4/6, C5/3/1/z/2/4/6, and CP-5/3/1/z/2/4/6) were selected for the analysis.  

4.4.2.2 Evaluation Scenarios 

The performance of EEG-ITNet was evaluated in three different scenarios, corresponding to 

within-subject, cross-subject, and cross-subject with fine-tuning, detailed below. Note that 

since the data from the second sessions were used for testing the system and the labels were 

unknown to the participants in the competition, I did not use them as training or validation 

sets in my analysis. 

1) Within-subject: For each subject independently, the EEG recordings of their first session 

were divided into train and validation sets to find the best parameters of the network. Then, 

the trained network was assessed on the EEG recordings of the test session, and the results 

were reported for each subject. 

2) Cross-subject: The network parameters were learned using the training set of all other 

subjects rather than the test subjects themselves, meaning the system had never seen any data 

from the test subject. The subjects preserved for training were divided to form my training 

and validation sets. Similar to the within-subject case, unique network parameters were 

obtained for each individual subject in this case. 

3) Cross-subject with fine-tuning: In the final scenario, the labelled EEG recordings of the 

training session of each target subject were used to fine-tune the parameters of the system 

developed for each target subject in the second scenario. 

4.5 Classification using Time Series Analysis 

To show the importance of biomarker discovery for DPD, I investigated the possibility of 

performing a classification task between people with a low and high level of depersonalisation 
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using an electrophysiological biomarker from ERP signals. I used a separate DPD dataset for 

this purpose, which will be referred to as the auxiliary DPD dataset in my thesis. 

4.5.1 Auxiliary DPD Dataset 

The dataset collected by [37] was used in my initial investigation to show the importance of 

biomarker discovery for DPD and the potential of EEG to act as a supporting tool in the 

diagnostic process using a reliable electrophysiological biomarker. The dataset consists of 29 

subjects who initially took the self-rating CDS questionnaire to quantify their level of 

depersonalisation. According to the authors of [37], I used a threshold of 50, which resulted 

in 15 subjects being evaluated as a group of participants with a low level of depersonalisation 

and 14 sex and age-matched subjects as individuals with a high level of depersonalisation for 

the auxiliary DPD dataset. Since it was my preliminary study evaluating EEG signals as a 

diagnostic tool for DPD, the subjects with poor SNR or close CDS scores to the threshold 

were excluded from my analysis. Therefore, the auxiliary DPD dataset eventually contained 

10 subjects with high CDS scores and 10 with low CDS scores, referred to as DPD patients 

and control individuals, respectively. 

Figure 4.10 shows the animated schematics of the two distinct categories of trials in the 

auxiliary DPD dataset. Each trial started with 700ms pre-stimuli in which subjects saw a 

picture of their own faces and a pencil. Then for 200ms, they received tactile stimulation 

while they saw a picture of themselves being touched or not being touched (half of the trials 

for each condition) by the pencil. In no-touch trials, the pencil was next to the cheek, so the 

perceived distance that the pencil travelled would be the same across trials. Each trial ended 

with 800ms post-stimuli in which subjects again saw their own faces and the pencil. The 

tactile stimulation was delivered to either left or right cheek (half of the trials for each) to 

cancel the possible effects of anatomical congruency between the viewed and felt touch. The 

EEG signals were recorded using a 64-channels cap at 500Hz sampling frequency.  
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4.5.2 Extracted Features and Classification Method 

In the next chapter, I will present the results of my score-guided biomarker discovery system 

on my main DPD dataset and will confirm the P45 component of ERP (also found by Adler 

et al. [37]) as an EEG biomarker for DPD. P45 is an early component of SEP, which appears 

as a positive peak around 45ms after the stimulus onset and represents the autonomic 

(implicit) information processing [267]. Later, on my auxiliary DPD dataset, I will 

demonstrate a difference between the average SEPs over touch and no-touch trials in the 

control group over P45, missing in DPD patients. Finally, I will use that biomarker to 

perform a classification task between DPD and control groups using the classification 

procedure depicted in Figure 4.11.  

I first calculated the difference signal between touch and no-touch trials for the two 

groups, which was a positive signal for the control group while a fluctuated signal around 

zero for the DPD group in the time window associated with P45 (more details in the next 

chapter). Then I used leave-one-subject-out cross-validation so that in each iteration, one 

subject was left for testing and the others for training. I calculated the average difference 

 

Figure 4.10 Two types of trial design in the experiment of the auxiliary DPD dataset 
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SEPs (touch vs no-touch) for the DPD patients and the control subjects in the training sets 

and for the test subjects separately. Because the exact timing of the P45 component is not 

often clearly apparent, I considered a time window between 20 and 50ms after the stimulus to 

analyse the P45 component. To further address the possible distortion and time shift in the 

ERP components, including P45, I then used CDTW (explained in detail in section 2.3.1) to 

find the similarity between the average SEP of the test subject with each group. For instance, 

Figure 4.12 shows an example of the extracted signal for control subjects, DPD patients, and 

a single test subject. It also shows the aligned signals after applying CDTW. For this 

example, the similarity measure between the signal of the test subject and the control group 

and the DPD group was 12.4742 and 18.9643, respectively. Therefore, the test subject was 

assigned to the control group.  

 

Figure 4.11 Flowchart of the classification procedure 
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Figure 4.12 Signal alignment for a test subject (C19) in comparison with the average SEP 

of the control group and the DPD group 

 

 

 

 

 



84 

 

5 Applications  
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This chapter presents all the results and findings from my PhD study, along with discussions 

supporting the proposed methods' effectiveness. The chapter begins with the evaluation of 

EEG-ITNet, which I proposed as part of my study to show the usefulness of my visualisation 

technique on motor imagery datasets. As the primary goal of my PhD research, I will then 

present the outputs of my score-guided biomarker discovery system, with an exhaustive 

evaluation of the effectiveness of each step taken to find reliable electrophysiological 

biomarkers for DPD. I will also discuss the connection between EEG-ITNet learned features 

with the neural correlates underlying motor imagery tasks as well as the association of 

discovered DPD biomarkers with its symptoms from a cognitive neuroscientific point of 

view. Finally, in the last section of this chapter, I present the results from my time series 

analysis to perform a classification task on a separate DPD dataset using one of the 

discovered EEG biomarkers. 

5.1 Explainability in Motor Imagery BCIs 

This section compares the performance of EEG-ITNet to other similar end-to-end deep 

learning models in motor imagery classification tasks, containing details on the learning 

process and hyperparameter selection. More importantly, the section comprises a visual 

representation of the learning process and provides interpretable outputs of the spectral and 

spatial information learned and used by EEG-ITNet to make decisions in the classification 

task. Neuroscientific pieces of evidence have been provided supporting the results. 

5.1.1 Comparison Models 

I selected three similar existing end-to-end architectures for an exhaustive evaluation of the 

EEG-ITNet performance, including EEGNet, EEG-TCNet, and EEG-Inception. This section 

explains each of these networks and their implementation in my research. 
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1) EEGNet: As a compact convolutional neural network, EEGNet showed promising results 

for analysing different EEG datasets [249]. Like DeepConvNet [247], EEGNet starts with 

temporal and spatial convolutions, followed by a separable convolution. 

2) EEG-TCNet: Proposed as an extension of EEGNet, EEG-TCNet applied a TCN structure 

after feature extraction layers of EEGNet to further improve its performance [52].   

3) EEG-Inception: Designed as a classification tool for ERP-based spellers, EEG-Inception is 

a CNN architecture that comprises two inception modules and an output module [265]. Each 

inception module consists of three parallel sets of layers, including 2D vanilla convolutions. 

Since my dataset and preprocessing stages are similar to Lawhern et al. [249], I used the 

same implementation of EEGNet. The EEG-Inception was also implemented based on table 

Ⅳ in [265] as they used a dataset with the same sampling frequency as mine (after 

downsampling). For EEG-TCNet, the authors introduced their network as an extension to the 

shallow EEGNet. So to reproduce EEG-TCNet to be compatible with my preprocessing 

stages, I used the same implementation of EEGNet provided in [249] followed by a TCN 

structure. The parameters of TCN were selected based on the first formula in [52] as follows: 

𝐾𝑇 = 3, 𝐿 = 2, 𝐹𝑇 = 16, 𝑝𝑡 = 0.3. Accordingly, Table 5.1 summarises a comparison of the 

key factors of EEG-ITNet with the above deep models.  

5.1.2 Training Process and Hyperparameters Selection 

The inception block in EEG-ITNet consists of three 2D convolutional layers with 2, 4, and 8 

filters and kernel sizes of 16, 32, and 64 samples, respectively, followed by three depthwise 

 

Table 5.1 Comparison of the key factors of eeg-itnet with other end-to-end architectures 
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convolutional layers with a depth of 1. Since the motor imagery input signal's sampling rate 

is 125Hz, the largest kernel was selected with the size of 64 samples as it can capture 

frequency components as low as 125/64 ≈ 2Hz of the input signal. 

For example, Figure 5.4 contains the learned frequency filters with the 16, 32, and 64-

sample kernels for subject 3 in BCI competition Ⅳ dataset 2a. As can be seen, the larger the 

filter size, the more it is prone to capture lower frequencies. The reason behind selecting 

more filters for larger kernel sizes is the fact that motor imagery is often associated with 

activities in the lower alpha (8–12Hz) and beta (13–30Hz) bands [268], rather than high-

frequency bands, e.g. gamma (30–100 Hz) band. Besides, the lack of samples in short filter 

sizes makes it difficult to calculate their Fourier transform and visualise them. 

Notwithstanding, gamma activity can still be observed during motor imagery with open eyes 

due to changes in subjects' spatial attention toward the target limb [269].  

The inception block is followed by an average pooling layer with a pool size of 4. 

Afterwards, to extract temporal features in the TC block, I decided to use four residual 

blocks, each consisting of two convolutional layers, with a dilation base of 2 capable of 

covering the whole signal history. For this purpose, the TC block requires convolutional 

layers with a filter size of 4, which can be calculated based on (2.7). Finally, the number of 

filters in the 1×1 convolutional layer used as a dimension reduction technique was selected to 

be 14, followed by another average pooling with a pool size of 4. The dropout rate of 0.4 and 

0.2 was also picked throughout the network for within-subject and cross-subject scenarios, 

respectively.   

In all scenarios, I first used 10-fold cross-validation to select the best model parameters, 

with the help of early stopping with the patience of 100 (15 in cross-subject) to avoid 

overfitting. Then I trained the networks for a maximum of 50 extra epochs with the learning 
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rate of 10−4 on the combined training and validation sets to benefit from the information of 

all the labelled samples. The number of extra epochs needs to be carefully investigated to 

ensure no overfitting. For this purpose, I extracted the curves representing train and test 

losses versus a range of extra epochs used in the training process, concatenated to the loss 

patterns in the selected best fold of cross-validation. For instance, Figure 5.1 shows this 

curve for subject 3 in BCI competition Ⅳ dataset 2a while training EEG-ITNet in the cross-

subject scenario. Notice that the sudden jump in the curves is due to the fact that in each fold, 

I split all labelled data to form train and validation sets, while during extra epochs, I use all 

labelled data as the train set, resulting in a different range of values for the losses. It should be 

reminded that in the competition, the participants did not have access to the test data labels to 

evaluate the performance of their proposed algorithm. However, in my investigation, for the 

sake of fair comparison, I selected the best test accuracy for each deep learning model and 

each subject, meaning the number of extra epochs varies over models and subjects.  

 

Figure 5.1 The effect of the number of extra epochs in the training of EEG-ITNet for 

subject 3 from BCI competition Ⅳ dataset 2a in the cross-subject scenario. Left (grey 

box) - training process in the selected best fold of cross-validation. Right (white box) - 

training process for 50 extra epochs using all labelled data 
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5.1.3 Performance Evaluation 

Table 5.2 summarises the classification accuracies in the within-subject case for EEG-ITNet 

and my comparison models on BCI competition Ⅳ dataset 2a. The performance of EEG-

ITNet has been superior to other classification algorithms in terms of mean classification 

accuracy over all the subjects. Nevertheless, a one-sided Wilcoxon signed-rank test with a 

significance level of 0.05 was used to verify the significance of improvement [270]. The 

Wilcoxon signed-rank test is a non-parametric statistical test, especially suitable for small 

sample sizes. Non-parametric statistical tests generally do not require large sample sizes and 

make fewer assumptions about the data distribution, including normality. The performance of 

EEG- ITNet is very promising, reaching the highest accuracy for five out of nine subjects and 

the second best in three cases.  

 

EEG-

Inception 
EEGNet 8,2 EEG-TCNet EEG-ITNet 

S1 77.43 (4th) 81.94 (3rd) 82.29 (2nd) 84.38 (1st) 

S2 54.51 (4th) 56.94 (3rd) 64.24 (1st) 62.85 (2nd) 

S3 82.99 (4th) 90.62 (1st) 88.89 (3rd) 89.93 (2nd) 

S4 72.22 (1st) 67.01 (3rd) 60.76 (4th) 69.1 (2nd) 

S5 73.26 (2nd) 72.57 (4th) 72.92 (3rd) 74.31 (1st) 

S6 64.24 (1st) 58.68 (3rd) 62.5 (2nd) 57.64 (4th) 

S7 82.64 (3rd) 76.04 (4th) 83.33 (2nd) 88.54 (1st) 

S8 77.78 (4th) 81.25 (2nd) 79.51 (3rd) 83.68 (1st) 

S9 76.39 (3rd) 78.12 (2nd) 76.39 (3rd) 80.21 (1st) 

Average 73.50 73.69 74.54 76.74 

Std 9.11 11.12 10.09 11.48 

p-value 0.043* 0.010* 0.055  - 

*Significant at level of 0.05 

Table 5.2 Performance evaluation for within-subject case in terms of classification 

accuracy for BCI competition Ⅳ dataset 2a 
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Table 5.3 shows the performance of EEG-ITNet in the cross-subject scenario and its 

comparison with other end-to-end architectures on BCI competition Ⅳ dataset 2a. It also 

contains the p-value needed to reject the null hypothesis (no difference in the classification 

accuracies obtained by EEG-ITNet and each comparison model). In this scenario, each model 

is trained without using any data from the target subject. Therefore, due to the dynamic 

nature of EEG signals and their variation from one subject to another, a significantly lower 

performance has been observed in this case. However, my proposed model has reached the 

highest mean accuracy in the cross-subject case, with statistically significant improvement 

over EEG-Inception, EEGNet, and EEG-TCNet. Figure 5.2 also shows this comparison and 

the data distribution of the results reported in Table 5.3 using a box plot.  

Finally, for each subject, their EEG recordings from the training session were used to 

fine-tune the parameters of the systems designed for them in the cross-subject scenario. The 

 

EEG-

Inception 
EEGNet 8,2 EEG-TCNet EEG-ITNet 

S1 66.32 68.75 69.1 71.88 

S2 48.26 50 52.08 62.85 

S3 73.61 80.21 81.94 81.94 

S4 56.6 59.38 61.81 65.62 

S5 65.62 64.24 60.42 63.19 

S6 56.25 48.26 51.39 56.25 

S7 73.61 72.57 76.39 80.21 

S8 70.49 77.43 74.31 78.12 

S9 61.11 55.56 58.68 64.93 

Average 63.54 64.04 65.12 69.44 

Std 8.69 11.59 10.86 8.98 

p-value 0.009* 0.008* 0.006* - 

*Significant at level of 0.05 

Table 5.3 Performance evaluation for cross-subject case in terms of classification 

accuracy for BCI competition Ⅳ dataset 2a 
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classification results of this case can be found in Table 5.4, which confirm the higher 

accuracy of EEG-ITNet compared to other deep learning models with statistical significance. 

 

EEG-

Inception 
EEGNet 8,2 EEG-TCNet EEG-ITNet 

S1 77.43 84.38 86.46 84.03 

S2 54.86 54.86 64.93 65.28 

S3 87.85 92.36 90.28 92.01 

S4 72.57 67.01 71.53 73.96 

S5 74.65 66.67 73.26 75.35 

S6 66.32 61.46 58.68 64.93 

S7 79.17 79.86 80.56 84.72 

S8 83.33 82.99 82.99 84.72 

S9 79.17 75.69 73.61 83.68 

Average 75.04 73.92 75.81 78.74 

Std 9.76 12.19 10.24 9.4 

p-value 0.008* 0.010* 0.022* - 

*Significant at level of 0.05 

Table 5.4 Performance evaluation for cross-subject with fine tuning case in terms of 

classification accuracy for BCI competition Ⅳ dataset 2a 

 

 

 

 

Figure 5.2 Box plot of the classification performance on BCI competition Ⅳ dataset 2a in 

the cross-subject scenario 
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I have also investigated the improvement in the classification results compared to the within-

subject scenario in Figure 5.3. Comparing the improvement of shallow EEGNet (5 out of 9 

subjects with an average improvement of 0.23%) with deep EEG-ITNet (7 out of 9 subjects 

with an average improvement of 2%) proves the ability of the proposed deeper architecture to 

handle extra information from other subjects more effective than a shallow one. The 

improvement is also more significant for complex networks (in terms of the number of 

parameters) such as EEG-Inception, which showed improvement in 7 out of 9 subjects with 

an average improvement of 1.54%. However, deep EEG-ITNet is more favoured than the 

deep and complex EEG-Inception in this area, as it has more potential to be visualised and 

interpreted.  

Because of the high number of subjects in the OpenBMI motor imagery dataset, results 

have been summarised in Table 5.5. The table shows superior performance for EEG-ITNet in 

all of our cases compared to other deep models in terms of mean classification accuracy. In 

 

Figure 5.3 Classification improvement in cross-subject with fine-tuning case compared to 

the within-subject scenario for different deep learning models on BCI competition Ⅳ 

dataset 2a 
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order to evaluate the significance of improvement, I performed right-tailed paired t-test after 

checking the test assumptions. I confirmed data normality by Shapiro–Wilk test [271].  

5.1.4 Network Visualisation 

Figure 5.4 shows the spectral and spatial filters learned for subject 3 from BCI competition 

Ⅳ dataset 2a in the inception block of EEG-ITNet using the visualisation techniques 

proposed in section 4.3. This has been selected as an example to show how each set of 

frequency response and scalp topo-map represents the power spectrum and spatial location of 

a group of sources activating uniquely among motor imagery classes. Notice that the sign of 

spatial coefficients does not carry any information about oscillatory synchronisation or 

desynchronisation processes. The network is trained to perform a classification task by 

finding discriminative neural patterns among the four motor imagery classes. The spatial 

activations' location and the absolute value of coefficients are important only as they 

represent the occurrence and significance of distinct neural activities in at least one of the 

motor imagery classes. So in order to avoid confusion, the spatial patterns are plotted in 

grayscale symmetric to zero.   

 Within-subject Cross-subject 
Cross-subject with fine 

tuning 

 acc  t (n) p-value acc t (n) p-value acc t (n) p-value 

EEG-Inception 69.3 3.88 <0.001* 71.15 3.71 <0.001* 75.11 1.52 0.067 

EEGNet 8,2 69.61 4.23 <0.001* 71.2 3.35 <0.001* 74.04 3.35 <0.001* 

EEG-TCNet 68.35 5.23 <0.001* 70.83 4.55 <0.001* 73.85 4.32 <0.001* 

EEG-ITNet 71.91 - - 73.52 - - 76.19 - - 

acc: Classification accuracy, t: Test statistic T, n: Degree of freedom = 53 
*Significant at level of 0.05 

Table 5.5 Summary of classification performance in different scenarios for OpenBMI 

motor imagery dataset 
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5.1.5 Conclusion 

As part of my PhD research, I proposed EEG-ITNet, an explainable CNN architecture based 

on inception modules and causal convolutions with dilation. Inception modules were 

proposed to eliminate the need to use fix-length kernels, allowing the network to learn input 

data patterns at different scales. In addition, causal convolutions with dilation were employed 

as an alternative to RNNs to learn and extract temporal dependencies and information in EEG 

time series. The series of depthwise causal convolutions with dilation in the form of residual 

blocks extracted informative discriminative features to perform the classification task in such 

a way that allowed EEG-ITNet to outperform well-known existing end-to-end neural 

networks in different scenarios. Another significance of EEG-ITNet is its less complex 

structure (in terms of the number of trainable parameters) compared to other existing end-to-

end architectures, including EEG-Inception and EEG-TCNet.  

This part of my research aimed to apply my feature visualisation technique to EEG-ITNet 

and examine the potential of my approach in bringing explainability to this model, which has 

similar initial layers as my score-guided biomarker discovery system. I discussed the 

association between the network's learned spectral and spatial patterns with expected neural 

patterns during motor imagery tasks. Among other end-to-end comparison models, only the 

authors of EEGNet have attempted to explain and visualise the learned features. However, in 

my study, the Fourier transform combined with Savitzky-Golay filtering offered more 

interpretability and accuracy for network visualisation (Figure 5.5). For instance, the weights 

of the convolutional layers applied along the time axis in EEGNet were translated as 

representing a single frequency component each. However, it is unlikely for the neural 

patterns of motor movements or mental tasks to be generated from a single frequency 

component. That is why the reader may find the smoothed power spectrum of sources 

generated in EEG-ITNet more intuitive and easier to interpret. Besides, the authors of 
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EEGNet have made no attempt to explain the spatial filters from a neuroscientific viewpoint. 

Hence, we discussed the validity of the extracted features and supported them from a 

neuroscientific perspective. My discussion was based on a fair assumption that motor 

imagery in our selected experiment relies on lateralised changes in the spatial attention 

toward the target limb and the imagination of motor execution. 

5.2 DPD Biomarker Finding 

In this section, I extensively evaluate the significance of my score-guided biomarker discovery 

model to find and propose reliable biomarkers for DPD. I start the section by showing the 

impact of each component added to my model to improve its performance. The section also 

describes how to interpret learned features to exploit EEG biomarkers. 

5.2.1 The effect of 𝓛𝒍𝒊𝒏𝒌 

I proposed a third term in my loss function for my multi-task learning scenario called ℒ𝑙𝑖𝑛𝑘 as 

I argued that only using the weighted sum of ℒ𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 and ℒ𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 as the loss function 

would make the network highly prone to overfit and result in finding uninformative and 

 

Figure 5.5 Comparison of the outcome of EEGNet (left) and EEG-ITNet (right) feature 

visualisation techniques. In EEGNet, frequency information can be calculated based on 

the number of detectable cycles in the learned temporal kernel window, resulting in a 

single frequency component. So, for example, the above kernel from EEGNet represents 

32Hz as it contains 8 cycles in 0.25 seconds. 
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meaningless features in my case. To show the effect of ℒ𝑙𝑖𝑛𝑘, I investigated and compared the 

low-dimensional representation of the multi-channel EEG signals obtained from two 

networks with and without the ℒ𝑙𝑖𝑛𝑘 term in their loss function in Figure 5.6. For the sake of 

visualisation, I used the two strongest principal components of the learned low-dimensional 

representations. Figure 5.6 shows how ℒ𝑙𝑖𝑛𝑘 forces the network to find clusters representing 

the two groups of people with a low and high level of depersonalisation. Furthermore, Figure 

5.7 shows the clustering loss values in the training process of those two networks and 

confirms the effect of ℒ𝑙𝑖𝑛𝑘 on preventing overfitting. 

 

Figure 5.6 The scatter plots of the two strongest principal components of the learned low-

dimensional representation of the input multi-channel EEG signals. The illustrations have 

been derived after training without (top) and with (bottom) link loss. The grouping is 

based on the output of the clustering layer (left) or reported CDS scores (right). 
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One of the objectives of my research was to address the unreliability of CDS scores as a 

diagnostic metric. The outcome of my proposed deep multi-task learning model with the 

parameters in Table 5.6 formed two clusters representing the DPD and the control groups. 

 

Figure 5.7 The clustering loss value during the training process with and without the link 

loss term. 

 

 

 

 

 

 

Hyperparameter name Hyperparameter value 

Number of filters in temporal convolution (F1) 4 

Number of filters in depthwise convolution (d) 2 

Number of filters in separable convolution 8 

Temporal convolution kernel size (1×s) 1×128 

Separable convolution kernel size 1×32 

First average pooling factor (p1) 2 

Second average pooling factor (p2) 4 

Dropout rate 0.2 

Batch size 32 

Learning rate 10-4 

Early stopping patience 20 

Number of generated trials using resampling-average method 60 

wregression 1.058×10-4 

wclustering 3.333×10-4 

wlink 6.666×10-4 

Table 5.6 Selected hyperparameters for the proposed deep model 
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After comparing the subjects assigned to each cluster with their original classification based 

on the reported CDS scores, I noticed that the discrepancy between my clustering analysis 

and original grouping was two DPD subjects that my clustering analysis assigned to the 

cluster representing the control group. In other words, the classification of the subjects based 

on my clustering analysis differed slightly from the one based on reported CDS scores. 

Accordingly, to investigate my method's superiority and accuracy over the conventional 

diagnosis based on CDS scores, I calculated a point-biserial correlation coefficient [273] 

between the outcome of clustering and original classification with some additional data 

available from the participants, such as their depression and anxiety scores. Table 5.7 shows 

that the outcome of clustering analysis shows a higher correlation with some psychological 

factors that are highly comorbid with depersonalisation [260] compared to the original 

classification based on the reported CDS scores. 

Psychological factors 
Grouping based on 

reported CDS scores 

Grouping based on 

clustering analysis 

 rpb p-value rpb p-value 

Total CDS score 0.78 < 0.001 0.79 < 0.001 

Anomalous body experience factor of CDS 0.66 < 0.001 0.67 < 0.001 

Emotional numbing factor of CDS 0.73 < 0.001 0.72 < 0.001 

PHQ-9 depression test score 0.29 0.061 0.31 0.041 

Cognitive anxiety factor of STICSA 0.42 0.005 0.49 < 0.001 

Somatic anxiety factor of STICSA 0.28 0.072 0.33 0.029 

Self-object differentiation subscale of the 

Operationalized Psychodynamic Diagnosis-

Structure Questionnaire (OPD-SQ) score 

0.56 < 0.001 0.6 < 0.001 

Table 5.7 Point-biserial correlation analysis for grouping based on reported CDS scores 

and our proposed learning method with participants' psychological factors. 
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5.2.2 Biomarker Extraction 

In order to find potential biomarkers for DPD diagnosis, I aimed to visualise spectral, spatial, 

and temporal information obtained after training the proposed deep model in Figure 5.8. 

Notice that my deep learning pipeline consists of two parallel branches, with the same type of 

layers, to simultaneously analyse trials associated with synchronous visual-tactile stimulation 

to the participant's left and right hand. Using the visualisation technique I proposed in 4.3, I 

illustrated the power spectrum and the spatial location of sources that contributed the most 

during my multi-task learning process to simultaneously perform the clustering task and 

predict CDS scores. Therefore, any sources in Figure 5.8 can serve as potential 

electrophysiological biomarkers. Notice that the spatial activities depicted for each source in 

 

Figure 5.8 Spectral and spatial information of potential electrophysiological biomarkers 

obtained from analysing synchronous visual-tactile stimulation to the left (a) and right (b) 

hands. 
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Figure 5.8 can represent the combination of more than one source. That is why spatial 

activities can be observed in multiple spatial locations for each source. The power spectrum 

displayed above every two sources indicates the response of the frequency filter learned to 

extract those sources, with the red dashed lines separating EEG waves, including delta, theta, 

alpha, and beta.  

Each of the sources in Figure 5.8 can serve as a potential electrophysiological biomarker. 

Since each of those topoplots might represent the spatial activities of a group of sources, I 

may choose sources that were sparse and showed stronger spatial activity for further 

investigation. Therefore, for the left touch trials (Figure 5.8-a), I focused on sources 3 and 8. 

By extracting the output of depthwise 2D convolutional layer (see Figure 4.4) from our 

network after the training process, we can also display the temporal activity of those sources 

for their corresponding inputs. 

Accordingly, Figure 5.9 shows the spectral and spatial features of sources 3 and 8 derived 

by analysing synchronous visual-tactile stimulation to the participant's left hand along with 

their average temporal activities taken on all the trials for each group of people with a low 

and high level of depersonalisation. As participants' grouping differed based on my clustering 

analysis and reported CDS scores, I present the average temporal activities for both. The 

shaded region shows the standard deviation of activities. Any time window with non-zero 

temporal activity indicates the temporal characteristic of the potential biomarker. In other 

words, by looking at the illustrations in Figure 5.9-a for source 3, one may propose a 

hypothesis that there is an EEG biomarker for depersonalisation (higher activation for DPD 

patients based on CDS score and for Cluster 1) during synchronous visual-tactile stimulation 

to the participant's left hand with a delta (and high alpha/low beta) component over the left 

centro-temporal lobe (around channel C3) in the time window encompassing the P300 ERP 

component.  
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In order to statistically investigate the proposed hypothesis, I first visualised the average 

ERP responses to synchronous visual-tactile stimulation to the participant's left hand over 

channel C3, which is the closest electrode to the spatial characteristics of source 3 in Figure 

5.9. Figure 5.10 shows the average ERPs based on my clustering analysis and reported CDS 

scores. Both plots in Figure 5.10 clearly show a difference around the P300 component. 

Nevertheless, after checking the test assumptions, such as normal distribution and 

homogeneity of variance, I performed an independent samples t-test on the P300 average 

amplitude (average ERP in the time window of 260-360ms post-stimulus) to investigate the 

significance level. The result was significant, with 95% confidence for both groupings, 

revealing a stronger effect for grouping based on clustering analysis (t(41)=2.57, p=0.014, 

 

Figure 5.9 Spectral, Spatial, and temporal characteristics of sources 3 and 8 obtained 

from analysing synchronous visual-tactile stimulation to the participant's left hand. The 

temporal response slightly differs based on clustering and reported CDS scores grouping. 

Dashed circles indicate characteristics of potential biomarkers. 
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Cohen’s d=0.80, 95% CI [0.14, 1.13]) than based on reported CDS scores (t(41)=2.23, 

p=0.032, Cohen’s d=0.70, 95% CI [0.05, 1.08]).  

Similarly, one can propose other hypotheses by looking at spectral, spatial, and temporal 

characteristics of sources obtained in our learning process. As another example, looking at 

source 8 in Figure 5.9, we can assume that there is a potential biomarker in response to 

synchronous visual-tactile stimulation to the participant's left hand with delta component over 

channel C3 or C4/FC4 in the time window around early P45, P100 and later P300 ERP 

components. Notice that source 8 in Figure 5.9 represents the combination of two sources; 

one of them (P300 component over C3) overlaps with source 3 investigated earlier. As a 

result, one can form their second hypothesis as an early P45/P100 component cluster in the 

delta range activating over channel C4/FC4 contralateral to the left-hand stimulation. In 

order to explore the second hypothesis further, I again aimed to visualise the time responses 

in the electrode domain over C4/FC4, and the results can be seen in Figure 5.11. I also 

statistically evaluated the second hypothesis and confirmed a significant difference in P45 

average amplitude (time window of 40-70ms) with 95% confidence between DPD and 

control groups over channel C4/FC4.  

 

Figure 5.10 Average ERP responses to synchronous visual-tactile stimulation to the 

participant's left hand over channel C3. Clusters 1 and 2 represent DPD and control 

groups, respectively. 
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I should note that the group differences in the proposed biomarkers might be statistically 

more significant if we perform the t-test on the filtered ERP components based on the 

spectral characteristics of biomarkers. However, I did not investigate it as the length of each 

trial was only 500ms, resulting in high signal distortion following a bandpass filter on each 

trial. However, since my deep processing pipeline can be used for any similar psychological 

disorder assessed by clinical assessment scores, a bandpass filter based on the spectral map of 

learned features is highly recommended if a more extended time window is available. 

The activity of P45 over the contralateral somatosensory cortex concluded from my 

second hypothesis (using source 8 in Figure 5.8-a) was also captured by source 3 in Figure 

5.8-b for synchronous visual-tactile stimulation to the participant's right hand, confirming the 

above component as a promising biomarker for DPD study and diagnosis. Therefore, using 

the same approach, more hypotheses can be inferred and investigated as potential 

electrophysiological biomarkers for DPD. The summary of discovered biomarkers and their 

evaluation can be found in Table 5.8. The statistical results reported in this table are based on 

the clustering analysis grouping. A summarised comparison of all discovered biomarkers 

between the control group and DPD patients is also illustrated using boxplots in Figure 5.12.  

 

Figure 5.11 Average ERP responses to synchronous visual-tactile stimulation to the 

participant's left hand over channel C4/FC4. Clusters 1 and 2 represent DPD and control 

groups, respectively. 
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Stimulated 

hand 
Electrode 

ERP component 

(Time window) 
t-statistic p-value 

Effect size 

(Cohen’s d) 

95% 

confidence 

interval 

left C3 
P300 

(260-360ms) 
2.57 0.014* 0.80 [0.14, 1.13] 

left C4/FC4 
P45 

(40-70ms) 
-2.78 0.008* 0.87 [-0.99, -0.16] 

right FC4 
P200 

(180-280ms) 
2.29 0.027* 0.71 [0.09, 1.46] 

right C3/CP3 
P45 

(40-70ms) 
-2.40 0.021* 0.75 [-0.83, -0.07] 

right PO8 
P200 

(180-280ms) 
-3.00 0.005* 0.93 [-2.75, -0.53] 

* Show significance at 0.05 level 

Degree of freedom = 41 

  

Table 5.8 The summary of all the biomarkers identified using the proposed deep multi-

task learning model for our DPD dataset and their statistical evaluation between DPD and 

control clusters. 

 

 

 

 

 

 

 

 

 

 

Figure 5.12 The component amplitude comparison between the control and DPD groups 

using boxplots for each biomarker discovered in Table 5.8. 
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5.3 DPD Diagnosis 

In the final stage of my PhD research, I showed how we could employ EEG biomarkers 

found by my score-guided biomarker discovery system to perform a classification task 

between individuals with low and high levels of depersonalisation. Notice that the dataset 

used to train my network (main DPD dataset) was different from the dataset I used to perform 

the classification task (auxiliary DPD dataset). 

5.3.1 Illustration of Abnormal P45 Activation 

One of the biomarkers detected by my network was P45 activation over the contralateral 

somatosensory cortex (see Table 5.8). Adler et al. [37] also showed a difference in the 

activation of the P45 component in DPD patients compared with the control group. 

Accordingly, Figure 5.13 shows the average SEPs over touch (thick line) and no-touch trials 

 

Figure 5.13 Average SEPs for touch and no-touch trials in a cluster of electrodes located 

in the somatosensory cortex (electrodes marked in Figure 5.14-B) 
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(thin line) for DPD patients and the control group over the somatosensory cortex (centro-

parietal regions depicted in grey in Figure 5.14-B). Since the P45 activation found by my 

network was contralateral to tactile stimulation, for stimulation to the left cheek (right cheek), 

I calculated SEP on the average of selected electrodes in the right (left) hemisphere. Then I 

obtained the average SEP response over both hemispheres. As can be seen in Figure 5.13, there 

is a difference in the activation of P45 components in DPD patients compared with the control 

group. As I discussed in section 3.1, the lack of P45 activation during touch trials represents 

impairment in early information processing in DPD patients [148, 201]. Furthermore, since 

there is a link between P45 and the sense of body ownership [37, 214, 215], the observed lack 

of P45 can be associated with feelings of disembodiment in the DPD group [37]. 

 

Figure 5.14 Different brain regions (A) and the schematic of 64-channels cap (B) - filled 

in grey channels are the ones used to calculated SEPs 
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5.3.2 Classification Results 

 Following the classification algorithms discussed in section 4.5.2, Table 5.9 shows the 

classification results using leave-one-subject-out cross-validation. Table 5.9 also contains the 

ID 
True 

class 

CDS 

score 

Similarity measure with 

the control group 

Similarity measure 

with the DPD group 
Result 

C10 Ctrl. 10 3.9061 3.9663 Ctrl. 

C15 Ctrl. 9 1.4856 18.0678 Ctrl. 

C17 Ctrl. 18 4.1491 29.6794 Ctrl. 

C19 Ctrl. 19 12.4742 18.9643 Ctrl. 

C2 Ctrl. 19 0.1501 9.7086 Ctrl. 

C20 Ctrl. 12 0.1976 9.8148 Ctrl. 

C4 Ctrl. 4 4.2445 4.9838 Ctrl. 

C66 Ctrl. 19 7.6045 28.8936 Ctrl. 

C70 Ctrl. 11 19.0275 48.8561 Ctrl. 

C71 Ctrl. 17 10.1552 35.2177 Ctrl. 

D11 DPD 71 26.3729 0.7552 DPD 

D14 DPD 199 11.6940 5.3986 DPD 

D15 DPD 101 19.7699 1.0860 DPD 

D18 DPD 72 83.6372 34.2489 DPD 

D3 DPD 91 23.1570 1.1153 DPD 

D5 DPD 99 8.6665 9.4076 Ctrl. 

D6 DPD 140 67.6014 24.0648 DPD 

D9 DPD 97 4.4002 2.3384 DPD 

D13 DPD 111 2.6640 10.8761 Ctrl. 

D69 DPD 98 3.0716 26.8930 Ctrl. 

Number of subjects correctly classified 17 

Total number of subjects 20 

Accuracy % (Kappa value) 85% (0.7) 

Table 5.9 Participants CDS score and the classification results using proposed 

electrophysiological biomarker (P45) 
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similarity measures between the signals for each subject and the two classes. I was able to 

reach 85% classification accuracy on the auxiliary DPD dataset. In addition, I asserted that 

the signals have a distortion and time shift. Thus, to show the effectiveness of using CDTW 

in my scenario, I also excluded CDTW and calculated the number of correctly classified 

subjects based on the Euclidean distances (Euclidean distances can be calculated since all the 

time series have the same number of samples) on original SEP signals without alignment. In 

addition, one other possible approach would be to consider the peak value in the chosen time 

window as the P45 component. If the value for the signal peak in the time window was closer 

to the signal peak of the control group, it would be assigned to the control group; otherwise, 

the DPD group. My proposed classification procedure is compared with the above methods in 

Table 5.10.  

5.3.3 Conclusion 

As an initial investigation, I aimed to explore the discovered P45 component of ERP as a 

potential feature to discriminate between individuals with high and low DPD symptoms. I 

first showed that although P45 was extracted from my score-guided biomarker discovery 

system trained on our main DPD dataset, the lack of P45 was also evident in the auxiliary 

DPD dataset. I used P45 as a feature to perform the classification task using time series 

analysis. In this regard, CDTW was applied to tackle the problem of possible time shifts and 

distortion in signals around P45. I reached 85% accuracy (Kappa value of 0.7), which shows 

Classification strategy 
Number of correctly 

classified subjects 

Classification 

accuracy (%) 

Using peak amplitude 15 75 

Without signal alignment 16 80 

Proposed approach 17 85 

Table 5.10 Comparison of my classification approach with other possible approaches 
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the importance and effectiveness of EEG signals and a reliable biomarker to act as a 

diagnostic tool.  

.
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6 Discussion  
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In this chapter, I provide neuroscientific evidence supporting the validity of discovered neural 

patterns for both motor imagery and DPD datasets in my analysis. 

6.1 Motor Imagery Biomarkers 

As shown in Figure 5.4, larger filter sizes capture relatively lower frequencies, while smaller 

filters tend to learn higher frequency components. To explain the learned filters, one should 

consider the dataset to be composed of two tasks, including motor imagery and sustained 

spatial attention toward the target limb. Motor imagery is associated with a decrease in alpha 

and beta power (event-related desynchronisation) over the sensory and motor cortex in the 

contralateral hemisphere [268, 274, 275]. This modulated alpha activity has been clearly 

captured by filters 4, 5, 7, and 8 in the left panel of Figure 5.4 and filter 4 in the middle 

panel. Notice that among these filters, spatial activation is located at the vertex only in filter 5 

of the left panel, which is likely to be associated with the imagination of bilateral foot 

movement. In other cases, the filters represent modulated neural patterns during left or right 

hand motor imagery located in the contralateral hemisphere. The beta equivalent to the alpha 

desynchronisation seen over the vertex (filter 5 of the 64-sample kernel) during motor 

imagery was also captured by 64-sample filters 1 and 6, which may be similarly related to 

bilateral foot movement imagination. 

The spatial activation in the parieto-occipital regions in the alpha band witnessed by 

filters 4, 7, and 8 of the left panel may be associated with the need to maintain spatial 

attention toward the target limb. Studies have shown that covert spatial attention can lead to 

alpha desynchronisation in the contralateral hemisphere alongside an increase in alpha power 

ipsilaterally over the visual cortex [276-278]. So, for instance, during right-hand motor 

imagery, when the subjects direct their visual attention to the right visual hemifield and start 

imagining movement, alpha desynchronisation happens contralaterally in motor and visual 
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cortical regions that are associated with motor imagery and visual attention, respectively. 

Increased gamma activity has also been reported during visual attention contralateral to the 

visual hemifield [269], which would explain the increase in the power spectrum between 30-

40Hz in most filters, yet more detectable in the second filter of each inception module. 

Gamma-band activity can also be explained, considering that the time window used for the 

analysis contains the period in which subjects attended to the visual cue. Please also note that 

visualisations >60Hz are not valid based on the Nyquist theorem, as we have downsampled 

our signals to 125Hz. 

Finally, spatial activations in low frequencies (< 5Hz) over frontal regions most likely 

represent eye blinks and eye movements. This pattern can be seen in filters 1, 3, and 6 of the 

left panel and filter 3 in the middle. While eye blinks are unlikely to play a functional role, 

there might be a relationship between subjects' eye movement and how they attended to and 

performed each motor imagery task in the experiment, which is captured as a discriminative 

pattern by the neural network.  

6.2 DPD Biomarkers 

6.2.1 Contralateral P45 

P45 findings are straightforward to interpret. They reflect the activity in the somatosensory 

cortex contralateral to tactile stimulation. This activity is heightened in DPD patients relative 

to controls (see Figure 5.12), suggesting enhanced visual-tactile processing following 

negative emotional primes as a biomarker for DPD. Why might tactile processing be 

enhanced in such circumstances? Adler et al. [37] showed that P45 visual-tactile processing is 

suppressed rather than enhanced for self-related stimulation conditions (self-face observation) 

in those with high levels of DPD compared to those with low levels. My findings of DPD-

based P45 enhancements following negative emotional primes may thus be seen as 
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contradictory. However, the literature on DPD suggests that the stimulation conditions may 

have tapped into a different mechanism (other-related stimulation) in our scenario because we 

did not show participants' own body parts but photographs of other people's hands only 

during tactile stimulation. Farmer et al. [39] reported enhanced visual-tactile processing for 

other faces in those with high vs low levels of DPD. It may be that when the visual stimulus 

is more indicative of “other” than of “self”, visual-tactile integration is enhanced in DPD 

relative to control groups, and this is what has been extracted by my current analyses. The 

underlying reasons for this remain yet unexplored in research. Still, it is not unlikely that they 

reflect a strategy of emotional over-activation or over-attunement in those with frequent 

depersonalisation symptoms, given the well-established links between DPD and childhood 

trauma (typically from emotional abuse or neglect [4, 20]). 

6.2.2 Ipsilateral P200/P300 over Sensory-motor Processing Regions 

The differences between the groups in P200 (right hand stimulation) and later P300 (left hand 

stimulation), with sources in ipsilateral sensory-motor processing regions, are likely related to 

those reported by Adler et al. [37] at frontocentral P200. In [37], other-related visual tactile 

processing was reduced in those with high levels of DPD compared to those with low levels. 

My analysis also showed less activation among DPD patients compared to the control group. 

Although my results are derived from an experiment that was not designed to directly 

manipulate and measure self-other distinction, the P200/P300 findings may still be speculated 

as a biomarker of DPD that reflects reduced self-other differentiation, as argued by Adler et 

al. [37]. It is frequently reported that in DPD, the mirror image feels like a stranger to the 

observer despite the full realisation that they are looking at themselves. This phenomenology 

may be underlain by less distinct self and other processing mechanisms operating in this time 

range. It is feasible to propose that this may be a consequence of the earlier over-attunement 

with the other that was seen in the time range of P45. Interestingly, the relevant right-
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hemispheric biomarker emerges earlier in processing (P200) than its left-hemispheric 

equivalent (P300), but the left-hemispheric group differences are markedly stronger. It may 

be speculated that this may relate to the potential left hemispheric abnormalities that have 

been documented in DPD [24, 231], possibly reflecting an aberration of the typical pattern of 

hemispheric differences in emotional processing [233], whereby the left hemisphere 

predominantly processes positive emotions, and the right hemisphere predominantly 

processes negative emotions [234]. 

6.2.3 P200 over Occipital-temporal Cortex 

P200 findings over the right occipital-temporal cortex (PO8) may be related to aberrant visual 

processing in DPD relative to controls. The identified time range of the effect and its spatial 

source is in line with ERP components related to the recognition of familiar faces and bodies 

in occipitotemporal regions, where typically a smaller P200 is obtained for familiar relative to 

unfamiliar shapes (e.g., [279]). Enhanced processing for the DPD group relative to controls in 

this time range may thus reflect greater unfamiliarity during synchronous visual-tactile 

stimulation. DPD is typically marked by feelings of disembodiment, where one's own hands 

and face may not feel like they belong to one's self, and derealisation, where one's 

surroundings and reality in general may appear dreamlike, intangible and unfamiliar. It is 

conceivable that the relatively heightened P200 processing in higher-level visual association 

regions for the DPD group may be a biomarker of this phenomenological experience. 
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7 Conclusion, Limitations, and Future Work  
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DPD affects 1-2% of the population, comparable to schizophrenia and OCD. Yet, it takes 

seven to 12 years on average to be accurately diagnosed. Therefore, a correct diagnosis of 

DPD is an urgent matter in the area of psychological disorders, and there is a need to find 

diagnostic markers highly specific to DPD to distinguish it from other alternative diagnoses. I 

argued that understanding the potential of electrophysiological tools for identifying DPD 

symptoms can help diagnose DPD quickly and effectively. I appealed to researchers 

interested in the phenomena of self-awareness in health and disease to consider using these 

tools more frequently. Accordingly, in the first stage of my PhD, I provided a systematic 

review to describe research targeting the neural correlates of core DPD symptoms that have 

used electrophysiological techniques. I aimed to investigate the diagnostic potential of these 

relatively inexpensive and convenient neuroimaging tools. I reviewed the EEG power 

spectrum, components of the ERP, as well as vestibular and heartbeat-evoked potentials as 

likely electrophysiological biomarkers to study DPD symptoms. I argued that acute anxiety- 

or trauma-related impairments in the integration of interoceptive and exteroceptive signals 

play a key role in the formation of DPD symptoms and that future research needs analysis 

methods that can take this integration into account. Besides, literature has reported theta 

abnormalities in DPD related to emotion, attention/inhibition and working memory. 

Therefore, future studies should consider a relatively prolonged time window to analyse low-

frequency EEG components such as theta, which may affect stimulus design. Practically, the 

time window should contain at least three cycles of the target frequency. 

My research then focused on employing deep learning techniques to design a more 

powerful biomarker discovery system for DPD. I focused on developing an explainable end-

to-end deep learning model that can extract rich, informative neural patterns from EEG 

signals and exploit neural patterns specific to DPD symptoms to help the community better 

understand the disorder. I discussed why my DPD scenario, or generally analysing any 
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mental disorders assessed based on clinical assessment scores, should be seen as a multi-task 

learning problem to reduce the impact of uncertainty in CDS scores. Besides, I argued that 

the literature often relies on experts' knowledge of the disorder and is based on hypothesis 

testing to find DPD biomarkers. As a result, I proposed a multi-input multi-output deep 

learning structure, which was designed to find the best separability in the dataset, guided by 

clinical assessment score. Furthermore, I proposed a method to visualise and explain the 

learning and decision-making process in deep neural networks designed for EEG analysis and 

described how it could be applied to exploit multiple reliable EEG biomarkers for DPD. 

Finally, I summarised and interpreted the obtained biomarkers, including P45 contralateral to 

tactile stimulation, ipsilateral P200/P300 over sensory-motor processing regions, and P200 

over the occipital-temporal cortex, from a cognitive neuroscientific point of view and 

provided references in the literature supporting my arguments. It must be remembered that 

transient depersonalisation is a common phenomenon during life span and could be early 

signs of chronic type risk. Hence, developing a system to track the depersonalisation state and 

its severity could be of great importance to help with the prevention of the chronic type. The 

potential biomarkers and analytics presented in my work can help to find a solution for online 

tracking of a depersonalisation state. 

The limitation in my results on the potential neural signatures of depersonalisation 

symptoms was the need for more discussion on the spectral information derived during the 

learning process. Although I visualised the frequency responses of the filters trained in my 

model, I did not investigate them further for the ERP dataset. Since each trial was only 500ms 

long, there needed to be more samples to calculate the Fourier transform accurately. Besides, 

applying a band-pass filter on such a short window to focus on a specific frequency band 

would result in severe signal distortion and, therefore, the unreliability of results. That is why 

I encourage future studies to consider a relatively prolonged time window in order to 
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investigate also spectral information and some low-frequency components of EEG (such as 

theta), which were flagged as potential biomarkers in the literature. 

To indicate my visualisation technique's effectiveness, I also applied it to a novel end-to-

end deep learning model for motor imagery BCI called EEG-ITNet. I comprehensively 

explained and supported the validity of network illustration from a neuroscientific 

perspective and discussed the superior interpretability of my visualisation technique over 

other attempts in the literature, such as the one from the authors of EEGNet. In addition, 

using inception modules and causal convolutions with dilation, EEG-ITNet showed 

capabilities in extracting rich spectral, spatial, and temporal information from multi-channel 

EEG signals with less complexity (in terms of the number of trainable parameters) than other 

existing end-to-end architectures, such as EEG-Inception and EEG-TCNet. I thoroughly 

evaluated EEG-ITNet on two motor imagery BCI datasets (dataset 2a from BCI competition 

Ⅳ and OpenBMI motor imagery dataset) in three different scenarios: within-subject, cross-

subject, and cross-subject with fine-tuning. EEG-ITNet showed statistically significant 

improvement in performing the classification task in most scenarios (up to 5.9%) compared 

to other end-to-end architectures. I argued that the performance of EEG-ITNet may be 

improved even further by finding the optimum hyperparameters for each scenario. In 

addition, finding a way to visualise and explain temporal features and dependencies learned 

inside its TC block would be of great importance and can further improve the interpretability 

of EEG-ITNet. Besides, I was interested in further investigating the effect of network 

deepness on its performance. These could be one's focus in future studies. Nevertheless, I 

believe that the concepts introduced in my motor imagery study can help to develop more 

robust, interpretable, and high-accuracy BCI systems. 

In my proposed EEG analytics, the deep learning model is no longer recognised as a black 

box, and its learning process can be explained. In addition, it can be modified and applied to 
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any psychological and mental disorders currently indicated based on clinical assessment 

scores to exploit electrophysiological biomarkers that can help clinicians with a more 

accurate diagnosis. The input to the network can be ERP, EEG recording during a mental 

task, or resting state EEG, and one can employ it to extract and interpret neural patterns in the 

same way with just a few modifications in the network parameters and layers. However, it 

should be noted that the goal of my PhD research was not to perform a classification task or 

develop a diagnostic tool, as the true labels in my scenario were based on CDS scores which I 

argued are only partially reliable. This was a critical limitation in the main DPD dataset I 

used for my research, as individuals with a high level of depersonalisation were determined 

only according to the outcome of CDS rather than being clinically diagnosed with DPD. 

Nevertheless, to show the importance of finding a reliable electrophysiological biomarker 

in the diagnostic process, I demonstrated the significance of advanced signal processing 

algorithms to perform a more accurate classification of individuals with high and low levels 

of depersonalisation symptoms using an electrophysiological biomarker. For this purpose, I 

used contralateral P45 components of SEP over the somatosensory cortex discovered in my 

analysis and achieved 85% accuracy (Kappa value of 0.7) in a classification task. Indeed a 

more extensive dataset with clinically approved labels of participants is needed to confirm 

P45 as an accurate and reliable biomarker for DPD diagnosis.  
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Appendix (List of Abbreviations)  

No. Abbreviation Definition 

1 ACC Anterior Cingulate Cortex 

2 AI Artificial Intelligence 

3 ANN Artificial Neural Network 

4 ASR Artefact Subspace Reconstruction 

5 AWGN Additive White Gaussian Noise 

6 BCI Brain-computer Interface 

7 CDS Cambridge Depersonalization Scale 

8 CDTW Continuous Dynamic Time Warping 

9 CNN Convolutional Neural Network 

10 DPD Depersonalisation/derealisation Disorder 

11 DSM Diagnostic and Statistical Manual of Mental Disorders 

12 DTW Dynamic Time Warping 

13 EEG Electroencephalogram 

14 ERN Error-related Negativity 

15 FBCSP Filter Bank Common Spatial Pattern 

16 FIR Finite Impulse Response 

17 fMRI functional Magnetic Resonance Imaging 

18 GSR Galvanic Skin Response 

19 HEP Heartbeat-Evoked Potentials 

20 ICA Independent Component Analysis 

21 LMS Least Mean Square 

22 MMN Mismatch Negativity 

23 MSE Mean Squared Error 
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24 OCD Obsessive-compulsive Disorder 

25 PET Positron Emission Tomography 

26 PHQ9 Patient Health Questionnaire-9 

27 PICARD Preconditioned ICA 

28 PTSD Post-traumatic Stress Disorder 

29 ReLU Rectified Linear Unit 

30 RNN Recurrent Neural Networks 

31 rTMS repetitive Transcranial Magnetic Stimulation 

32 SEP Somatosensory Evoked Potential 

33 SNR Signal-to-noise Ratio 

34 SSVEP Steady-state Visually Evoked Potential 

35 STICSA State-trait Inventory for Cognitive and Somatic Anxiety 

36 TCN Temporal Convolutional Network 

 

 

 


