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Abstract 

 

This paper empirically assesses the performance of green bond indices and the causality of 

that performance using a range of financial and commodity data. We present new insights 

from the novel application of datasets, neural networks and performance measurements. We 

find that green bond indices do not outperform the market when factors beyond market return 

are considered. We find that Brent crude oil has the most significant effect on certain indices, 

a finding that contrasts with other studies on green bonds. A greater sensitivity to oil prices 

and global green equities also evinces a negative impact on a green bond index’s ability to 

outperform the market. For the first time, a linear causal relationship is established between 

Title Transfer Facility (TTF) returns and green bond index returns. Additionally, a 

fundamental shift in causal relationships is observed over the COVID-19 period. In this way, 

we contribute to the literature on sustainable green bonds and the impact of COVID-19. 

These insights provide more clarity to market participants for navigating the uncertainties of 

both the global energy transition and the postpandemic period. 
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1. Introduction 

 

Sustainability is becoming a key focus of financial markets and regulations, and investors are 

increasingly interested in financial instruments that comport with sustainable goals. One of 

the primary financial asset classes that fits this definition is green bonds, which are primed 
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for financing environmentally friendly projects to address climate change (Reboredo, 2018). 

The United Nations Climate Change Conference (COP26) has restated the need for the 

mobilisation of $100 billion per year of investment, from both public and private sources, 

towards decarbonisation and climate change mitigation goals. Green bonds have already 

proven to be an effective financial instrument capable of raising billions in climate finance 

(Kanamura, 2020). However, an important aspect of this effort is the involvement of 

institutional investment, predicated on robust risk management, in green bonds. 

 

Whilst green bonds themselves have been studied with increasing frequency in recent years 

(Broadstock and Cheng, 2019; Naeem et al., 2021), green bond indices have not received the 

same attention. The use of bond indices by investors and portfolio managers as a benchmark 

to measure the performance of both actively and passively managed bond portfolios makes 

them a prime gauge for the performance of bonds as an asset class. Utilising green bond 

indices also allows for more readily comparable assessments of performance against other 

asset classes due to the structure of total return indexation, making green bond index analysis 

less prone to parameterisation errors, allowing for a streamlined assessment of risk. 

 

Therefore, given that green bonds are a relatively new development and given the growing 

need for institutional and other professional investors to meet environmental social 

governance criteria, it is essential that the performance and causality of green bond indices 

are properly understood. A key challenge in mobilising debt capital towards financing a 

transition to a low-carbon and climate-resilient (LCR) economy will be managing existing 

capital constraints given risk and return characteristics. By providing insight into these 

aspects of green bond indices, we seek to provide market participants and researchers with 

the clarity to make these judgements. Previous studies have focused on either the 

performance of green bonds, green bond indices and green equity (Kanamura, 2020; Jin et al., 

2020) or on the causality flowing from other asset prices to these asset classes (Hammoudeh 

et al., 2020). 

 

Most of the limited literature on green bonds and investing relies on investigation of the 

correlative relationship between markets, and the strand of literature on causality is even 

more limited. This leads to an inability to legitimately deduce cause and effect on green bond 

indices, as correlations do not provide a means to detect the specific impact of certain 

exogenous shocks or regulatory changes. We seek to address this by focusing formally on the 

causal relationships between our variables, providing practically applicable insights for 

investors and companies looking to hedge their climate risk exposure. 

 

The objective of this study is to examine the performance of green bond indices and the 

factors that drive that performance. To this end, we examine four globally significant green 

bond indices, the iShare Green Index (iSG), Bloomberg Green Index (BG), iShare USD 

Green Index (iSGC) and S&P Green Index (SPG), using the most prominent and recent 

performance assessment estimations. The rationale for their inclusion is partly due to their 

comparable carbon intensity ratings (to ensure like-for-like ESG comparison) and their 

geographic dispersion of assets (EU, USA, China and Australia). This is crucial for capturing 

causalities across international markets and contributes to making our findings practically 

applicable to international investors. Certain indices (iShare USD, Bloomberg Green) are 

more weighted towards North American firms, whilst the others are more focused on 

European bonds. This in turn allows us to contrast our findings with previous analyses 

(Hammoudeh et al., 2020) and provide insights into specific index performance. 

 



We utilise a wide range of data and assess their causal relationships with the indices, 

including two equity indices, the S&P Clean Index and the EU Renewables Index, and the 

US 10-year Treasury bill, Brent crude oil and EUA carbon allowance prices. We utilise these 

variables not just for causality analysis but in combination with performance analysis as well, 

an investigation not previously conducted in the strand of literature on green bond indices. In 

addition to oil and carbon allowances, natural gas will continue to be a critical part of the 

energy mix, and policy-makers and market participants also will have to factor this 

commodity into any climate financing initiatives. Therefore, for the first time, we assess the 

causal relationship between the Title Transfer Facility (TTF) natural gas benchmark and 

green bond index prices, providing insights into the causality of a commodity that is critically 

important to electricity generation and thereby the energy transition. This is especially true 

given the ongoing energy crisis that is shifting the balance of the energy complex in Europe 

(Rehman et al., 2023), driven by acute shortages of natural gas and the need for funding 

renewable alternatives. By analysing the causality between the TTF and green bond index 

returns, we can provide avenues for future research into the impact of wholesale commodity 

prices on the pace of change in the European energy transition. In addition, we can detect 

how any potential causality may change under uncertainty by conducting robustness tests 

around breakpoint periods, such as the COVID-19 pandemic. We analyse causality using a 

blend of econometric and neural network tests with three causality algorithms, the Granger 

causality, nonlinear Granger causality and transfer entropy algorithms. We also include a 

novel application of the vector autoregression neural network (VARNN) methodology to 

leverage the nonlinearity parameters of the artificial neural network (ANN) framework. 

These tests are chosen to supplement previous results in the literature that focus on Granger 

causality (Hammoudeh et al., 2020; Lee et al., 2021) and contribute towards broadening the 

scope of the literature on green bond analysis. We also extend our analysis to look 

specifically at the effect of the COVID-19 pandemic on green bond indices to assess whether 

causal relationships established prior to the pandemic still hold, and to the ongoing global 

energy supply crisis to assess the effect of demand-side exogenous shocks. 

 

In this way, we contribute to the literature by examining the green bond indices with a novel 

application of various performance analysis and causality tests whilst utilising a dataset that 

includes a commodity (TTF natural gas) never applied to the study of green bond causality. 

Our study provides a unique combination of the capital asset pricing model (CAPM), Fama–

French 5-factor model and Sortino ratios to define and compare the performance of green 

bond indices. Our use of VARNN techniques alongside linear and nonlinear Granger 

causality allows us to supplement previous studies such as Lee et al. (2021). We also 

contribute by providing a basis for more research on neural network techniques in the green 

bond space, whilst significantly increasing the available literature on green bond indices 

themselves. We find that green bond indices do not outperform the market when factors 

beyond market return are considered. We find that Brent crude oil has the most significant 

effect on the BG and iSGC indices, a finding that contrasts with other studies on green bonds 

(Hammoudeh et al., 2020) that demonstrated US Treasury bonds as having the most 

significant causality. Our transfer entropy results show that green equity index returns 

provide more influential information than the remaining variables, likely following from the 

use of fundamental analysis of companies whose bonds compose the green bond indices. A 

greater sensitivity to oil prices and global green equities also evinces a negative impact on the 

ability of a green bond index to outperform the market. By investigating the effect of TTF 

returns on green bond indices, we detect statistical causalities to almost the same extent as 

with those of Brent crude oil, opening avenues for future research into the economic 

relationship between green bond indices and natural gas and possible substitution effects 



from crude oil. We also break our dataset around the structural break of the COVID-19 

pandemic and the beginning of the 2021 energy crisis and find evidence that a greater 

sensitivity to oil prices and global green equities preceded the structural break of the COVID-

19 pandemic. In contrast, our analysis during the intra-COVID period suggests a fundamental 

shift in the causal relationships between our variables and green bond indices, adding to the 

nascent body of literature on pandemic effects on green bond indices and other financial 

relationships. Additionally, whilst pandemic-related exogenous shocks have a definite effect 

on green bond index prices, the current asymmetric energy crisis is evidently disconnected 

from green bond index return causality. 

 

Our findings create new avenues for further research into the interaction of linear and 

nonlinear relationships between different indices and market factors. The result that our 

indices underperform the market provides insight for policy-makers and institutional 

investors looking to widen their investment in sustainable financial assets and improve 

market liquidity. We also contribute to the emerging strand in the literature on the effect of 

COVID-19 on green bonds, providing evidence counter to other studies’ assertions regarding 

the impact of exogenous shocks. In addition, we contribute to the literature on green bond 

indices through the use of the VARNN model in exploring causality, along with the other 

models we consider. These insights provide more clarity to market participants for navigating 

the uncertainties of both the global energy transition and the postpandemic period. 

 

The remainder of this paper is organised as follows. In Section 2, we give a brief overview of 

the literature, and in Sections 3 and 4, we introduce both our data and our methodology 

framework. Section 5 provides the empirical results, related discussions and robustness tests. 

Our paper is concluded in Section 6. 

 

2. Literature Review 

 

Detecting the outperformance of financial assets has been assessed in various ways, but for 

green bonds, the CAPM and Fama–French 3-factor models are most often utilised. Chu et al. 

(2020) detect the causal effect of arbitrage limits on various asset pricing anomalies, focusing 

on stocks. Utilising CAPM and Fama–French estimations to detect outperformance, they 

found that the anomaly returns and alphas were mostly positive and statistically significant. 

Baker et al. (2018) study the pricing and ownership patterns of municipal green bonds by 

incorporating assets with nonpecuniary sources of utility, utilising CAPM. Their results 

highlighted that green bonds are issued at a premium compared to similar ordinary bonds on 

an after-tax basis. Lebelle et al. (2020) assess the impact on financial performance from the 

issuance of green bonds, utilising CAPM and 3- to 4-factor models, with their results 

suggesting that investors react in a similar manner as with conventional or convertible bonds. 

Kanamura (2020) examines the greenness character and performance of green bonds in 

relation to energy and shows evidence of a positive relationship between energy and 

environmental values. Thus, it is suggested that greenness is incorporated into the Bloomberg 

Barclays MSCI and the S&P Green Bond Index. 

 

Regarding the relation between green bonds and other financial markets, the literature offers 

generally limited studies. For instance, Reboredo (2018) reports evidence of significant 

linkages of these bonds with corporate and government bonds and underscores the benefits of 

diversification in stock and energy markets. Broadstock and Cheng (2019) investigate the 

relationship between green and conventional bond markets and find that some 

macroeconomic factors influence the time-varying relationship between them. Jin et al. 



(2020) determine the correlations between carbon markets and green bond indices in the 

context of hedging using GARCH and OLS parameterisations of dynamic hedge ratio 

models, showing that the S&P Green Bond Index is the best hedge for carbon futures. 

Another strand of the literature compares the characteristics of green bonds to those of 

conventional bonds. MacAskill et al. (2020) use constant and time-varying copulas to 

examine the dynamic dependence structure between green bonds and several global and 

sectoral clean energy markets. They show a positive time-varying average and tail 

dependence between green bonds and clean energy stock markets. Naeem et al. (2021) 

analyse the connectedness between green bonds and other conventional assets. The principal 

findings of their study indicate a strong connectedness and spillover effects between green 

bonds and government and corporate bonds but show a weak connection with high-yield 

corporate bonds. 

 

Hammoudeh et al. (2020) test the time-varying Granger causality relationship between green 

bonds and various other financial and commodity variables. It was determined that there was 

significant causality running from the US 10-year Treasury bond index to green bonds, with 

significant causality also running from CO2 emission allowance prices and clean energy 

equity indices, although this was limited to 2019. Lee et al. (2021) test the causal relation 

between US oil and green bond index prices and geopolitical risks using Granger causality in 

quantile analysis. Granger causality is detected from geopolitical risk to the oil price at the 

extreme quantiles, and causality is detected from the oil price to the green bond index for the 

lower quantiles. Sinha et al. (2021) also utilise quartile modelling, specifically quantile-on-

quantile regression and wavelet multiscale decomposition, between the S&P 500 Global 

Green Bond Index and S&P 500 Environmental and Social Responsibility Index. Green 

financing mechanisms are shown to have gradual negative transformational impacts on 

environmental and social responsibility. Their prescription for action includes a potential 

monitoring mechanism to create sufficient social externalities through the measurement of 

green project social outcomes. 

 

Given the growing need for institutional and other professional investors to meet 

environmental social governance criteria, it is essential that the performance and causality of 

green bonds are properly understood. Previous studies have focused on either the 

performance of green bonds, green bond indices, and green equity or on the causality flowing 

from other asset prices to these asset classes. Therefore, the objective of this study is to 

examine both the performance of green bond indices and the causal relationships between 

green bond indices and other related assets whilst utilising novel applications of econometric 

and neural network causality models. Our goal is to provide insights into what factors drive 

the performance of green bond indices, focusing on the indices rather than the green bonds 

themselves. 

 

We also extend our analysis to look specifically at the effect of the COVID-19 pandemic on 

green bond indices to assess whether causal relationships established prior to the pandemic 

still hold. For this purpose, we include two equity indices, the S&P Global Clean Energy 

Index and the EU Renewables Index, and the US 10-year Treasury bill, Brent crude oil and 

EUA carbon allowance prices. Given the critical importance of natural gas in the energy 

transition, we also assess the causal relationship between the TTF natural gas benchmark and 

green bond prices. We utilise these variables not only for causality analysis but also in 

combination with performance analysis. We analyse causality based on three causality 

algorithms, the Granger causality, nonlinear Granger causality and transfer entropy 

algorithms, in addition to a novel application of the VAR neural network methodology. 



 

3. Methodological Framework 

 

First, we statistically determine the performance of our four green bond indices via the capital 

asset pricing model (CAPM), Fama–French 5-factor model and Sortino ratio. Along the lines 

of Chu et al. (2020), Lebelle et al. (2020) and Baker et al. (2018), the CAPM has been chosen 

as the primary method of performance analysis for financial assets. However, in contrast to 

prior studies, we select the Fama–French 5-factor model over the older 3- and 4-factor 

models previously used in the literature to account for advances in performance analysis and 

acquire new insights into green bond index performance as an asset class. 

 

3.1 CAPM 

 

The first measure to assess is the capital asset pricing model (CAPM), which highlights that 

the cost of capital is determined only by systemic risk and generates the required rate of 

return an investor should expect given the amount of risk that she accommodates. The CAPM 

provides a measure of the sensitivity of the expected excess green bond index returns against 

a core global benchmark (the S&P 500) for ease of comparison between the bond indices, 

some of which contain international bond information. The rationale for using this measure is 

that it is widely used in the literature (such as in Baker et al., 2018), albeit not with this 

specific dataset, allowing broad cross comparison, which we augment with additional 

performance measures. 

 

The CAPM (Sharpe, 1964) has two different components, time value of money (represented 

by risk-free rate 𝑅𝑓) and systemic risk (represented by β), which compares the returns of the 

asset to the market over a period of time and to the market premium (𝑅𝑚 − 𝑅𝑓). This study 

uses the S&P 500 as a market to measure the associated risk over a period of time, following 

the studies of Lebelle et al. (2020) and Baker et al. (2018). Similarly, the excess green bond 

index return is regressed against the excess of S&P 500 stock returns to examine the 

associated risk in relation to traditional bonds and stocks. Hence, the specification of the 

model is as follows. 

 

                     𝐺𝑟𝑒𝑒𝑛 𝐵𝑜𝑛𝑑 𝐼𝑛𝑑𝑒𝑥 𝑟𝑒𝑡𝑢𝑟𝑛 − 𝑅𝑓 =  𝛼 + 𝛽1(𝑆&𝑃500 − 𝑅𝑓) + 𝜃𝑡              (1) 
 

where 𝜃𝑡 is the error term assumed to be white noise, and 𝑅𝑓 is the 1-year US Treasury bill 

return. 

 

3.2 Fama–French 5-Factor Model 

 

In addition to the CAPM, we utilise the Fama–French 5-factor model (Fama and French, 

2015). Whilst the CAPM uses a singular variable to describe the returns of a portfolio or 

stock over the returns of the market as a whole, the Fama–French model expands to five 

variables, predicated on the factors determined as driving outperformance, namely, stocks 

with small capitalisations and stocks with a high book-to-market ratio (“value” stocks, 

contrasted with “growth” stocks), the return spread between profitable and unprofitable 

companies (RMW), and the return spread between companies that invest conservatively 

versus companies that invest aggressively (CMA). These are then added to a CAPM 

estimation equation: 

 

𝐺𝑟𝑒𝑒𝑛 𝐵𝑜𝑛𝑑 𝐼𝑛𝑑𝑒𝑥 𝑟𝑒𝑡𝑢𝑟𝑛 − 𝑅𝑓                                               (2) 



= 𝑎 +  𝛽1(𝑅𝑚 − 𝑅𝑓) + 𝛽2𝑆𝑀𝐵 + 𝛽3𝐻𝑀𝐿 + 𝛽4𝑅𝑀𝑊 + 𝛽5𝐶𝑀𝐴 

 

where Rf is the risk-free return rate and Rm is the return of the market portfolio as per the 

CAPM. By including this measure along with the CAPM, we can compare whether the 

additional factors produce any variance in the results, offering insights into the efficacy of 

these performance measures for green bond indices. Other studies, such as Chu et al. (2020) 

and Lebelle et al. (2020), have utilised Fama–French models in conjunction with CAPM to 

measure green bond index performance; however, these extended only to 3- and 4-factor 

specifications. Unlike these studies, we seek to add to the strand of literature on the 

performance measurement of green bond indices by adding the full 5 factors of the most 

recent literature (Fama and French, 2015). 

 

3.3 Sortino Ratio 

The Sortino ratio is a performance measure that differentiates downside deviation from total 

overall volatility by using the asset's standard deviation of negative portfolio returns instead 

of the total standard deviation of portfolio returns. The Sortino ratio is able to measure and 

compare the performance of assets with skewed return distributions by using the downside 

deviation rather than the standard deviation as the measure of risk. This makes the measure 

relevant for bond index investors due to their particular focus on duration and short-term 

yield volatility. Whilst other risk-adjusted indicators do exist, such as the M2 and Sharpe 

ratios (as applied in Németh-Durkó and Hegedűs, 2021), we utilise the Sortino ratio due to its 

isolation of the downside volatility of a portfolio or asset. Used in conjunction with the 

CAPM and Fama–French 5-factor models, this provides a comparable basis against the 

literature previously mentioned and potential avenues for further research. 

Sortino ratio =  
𝑅𝑝−𝑟𝑓

𝜎𝑑
                                                   (3) 

where Rp is the expected portfolio return, rf is the risk-free rate and 𝜎𝑑 is the standard 

deviation of the downside. This provides a view of a portfolio's risk-adjusted performance, 

providing positive volatility is a benefit, delineating an investment's return for a given level 

of negative risk. 

We then perform our causality detection tests on each of our green bond indices, allowing us 

to determine the extent of causality from our set of financial and commodity data to influence 

the outperformance of our green bond indices. 

 

The tests that are applied involve a broad segment of causal tests, including linear and 

nonlinear tests, that are both robust and widely utilised in the strand of literature on bond 

causality. This allows us to compare and contrast our results with those of different studies 

(such as Hammoudeh et al., 2020; Lee et al., 2021) and highlight the different results between 

the linear and nonlinear versions of our tests. We add to this the more recent parameterisation 

of VARNN and transfer entropy to determine their impact and provide further theoretical 

underpinning for the study. For similar reasons, we do not apply statistical tests that identify 

causality between uncorrelated variables, such as convergent cross mapping. More detail 

covering the mathematical framework of the models can be found in the Appendix. 

 

3.4 Granger Causality 

 



The classical test for causality determined between two series is the Granger (linear and 

nonlinear) causality test. As defined in Granger (1980), the test is structured to first predict Y 

with respect to its own history and to then predict with the additional history of a separate 

variable X. The difference is then evaluated between these two situations, allowing the 

practitioner to determine whether the added X variable has any effect on the predictions of 

the target variable. 

 

We select this test to provide a baseline for more modern parameterisations of causality tests 

(VARNN) and to capture linear and nonlinear causality. This allows us to supplement 

previous studies that have utilised similar techniques (albeit for different datasets), such as 

Lee et al. (2021). 

 

3.5 Transfer Entropy 

 

Transfer entropy (Shannon, 1948) measures the information flow from two variables (X to Y) 

and accounts for both linear and nonlinear causal effects. It should be noted that linear Granger 

causality and transfer entropy are equivalent if all processes are jointly Gaussian. This allows 

us to detect simple nonlinear relationships introduced into our dataset with transfer entropy that 

traditional linear Granger causality may fail to show, and we also can test against other 

nonlinear tests for robustness (i.e., VARNN). 

 

3.6 VARNN Model 

 

Using artificial neural networks (ANNs), we can detect causality in time series that change 

nonlinearly over time. It is possible to implement the Granger causality test parameterised as a 

VARNN model to leverage the nonlinearity parameters of the ANN framework. By selecting 

this model, in conjunction with transfer entropy, we provide a robust counterpoint to the 

nonlinear Granger causality, allowing us to critically assess the results from the newer model 

against established techniques. We also contribute to the literature related to signal processing 

parameterisation techniques applied to green bond indices (Sinha et al., 2021; Hung, 2021), 

with our results providing a basis for more research on ANN techniques in the green bond 

space. 
 

4. Data 

 

For our green bond index data, we select the most prominent traded green bond indices: iShare 

Green Index (iSG), Bloomberg Green Index (BG), iShare USD Green Index (iSGC) and S&P 

Green Index (SPG). These securities were selected because they are independently evaluated 

along four broad dimensions to determine their classification as green bonds. The criteria 

reflect themes articulated in the International Capital Market Associations ‘Green Bond 

Principles’, requiring commitments about a bond’s stated use of proceeds, the process for green 

project evaluation, the process for management of the proceeds and the commitment to ongoing 

reporting of the environmental performance of the use of the proceeds. The funds themselves 

are predominantly composed of fixed income securities (such as bonds) with investment-grade 

creditworthiness, with comparable carbon intensity ratings and geographic dispersion of assets 

(EU, USA, China and Australia). Certain indices (iShare USD, Bloomberg Green Index) are 

more weighted towards North American firms, whilst the others are more focused on European 

bonds. This allows us to contrast our findings with previous analyses of green bonds 

(Hammoudeh et al., 2020; Naeem et al., 2021) and provide insights into the specifics of index 



movements. Due to the global nature of our index data, we can capture causalities across 

international markets, making our results more practically applicable to international investors. 

 

We utilise all available daily price data for each of our indices from 01/08/2014 to 18/10/2021. 

All data are sourced from Bloomberg. In addition, our causality variables include two equity 

indices, the S&P Clean Index and the EU Renewables Index, the US 10-year Treasury bill, and 

the primary traded energy commodity prices: Brent crude oil, TTF natural gas benchmark and 

EUA carbon allowance prices. The S&P Clean Index and EU Renewables Index represent 

equity indices, allowing us to analyse the interplay between securities and capital markets in a 

green energy context, similar to studies such as Broadstock and Cheng (2019) and Reboredo 

(2018). The S&P Clean Index is weighted primarily towards the US (39.7%) and China 

(11.7%), whilst the EU Renewables Index provides a contrasting European dataset to address 

the geographic spread in our green bond indices. Brent crude oil, TTF natural gas and EUA 

carbon allowance are key global benchmarks for their respective asset classes, meaning that 

they are comprehensive enough to compare against a variety of green bond indices whilst 

allowing us to retain a parsimonious dataset. This will allow us to complement the findings of 

Jin et al. (2020), specifically on the connectedness between green bonds and carbon futures 

returns. Additionally, by their inclusion, we can study any causal effects of the broader energy 

commodity complex on green bond indices. Last, the US 10-year Treasury bill is included as 

a control measure to detect whether our other variables are more or less causal for green bond 

indices than prevailing interest rates. Our causality variables also are sourced from Bloomberg, 

specifically daily prices for the 01/08/2014 to 18/10/2021 period. The descriptive statistics for 

our returns data are displayed in Table 1. 

 

Insert Table 1 about here 

 

 

All of our data (except the S&P Green Index) have positive mean returns and are covariance 

stationary at first differences. There is evidence of skewness and leptokurtosis, which motivates 

a nonlinear approach to contrast with tests that assume a normal distribution. Finally, all the 

green bond indices have average returns below those of the other asset classes. This suggests 

that the indices underperform other assets in their class, and we perform an empirical 

assessment of performance to clarify this. 

 

5. Results 

 

5.1 CAPM, Sortino Ratio and Fama–French Results 

 

First, we present the results of the CAPM estimation for our four green bond indices, where 

the alpha represents the intercepts and the beta the coefficients of the regression. The results 

are shown in Table 2. We see that all the alpha estimates are slightly positive, with the 

exception of the SPG index. However, the alpha estimators are not significant. This suggests 

that our measure of alpha is highly model dependent, meaning that the CAPM model may not 

adequately detect latent risk factors and thus may artificially inflate the alpha estimators. This 

motivates the use of a Fama–French 5-factor model that parameterises latent risk factors to 

assess performance. The betas of the indices show that all three of the highest-performing 

indices have the same level of systemic risk. Whilst the Bloomberg Green Index has a lower 

p value and thereby greater statistical significance, all three are within the 5% confidence 

interval. This implies that the iShare Green Index has the highest excess return for the lowest 

level of systemic risk and thus is our outperforming index. 



 

Insert Table 2 about here 
 

The Sortino ratio results show that the BG index has the highest ratio and thus a better risk-

adjusted return than the other indices. Additionally, the negative Sortino ratio for the iSG 

index indicates that the risk-adjusted return is negative. Bearing in mind that the CAPM alpha 

estimators were not statistically significant, this rationale implies that the index outperforms 

the others at the expense of higher risk. For the Fama–French estimation results (Table 2), we 

note that the alpha estimators are negative. They also are highly significant, which implies 

that they can be accepted over the CAPM. This implies that green bond indices do not 

outperform the market when factors beyond market return are considered. The beta estimates 

also are positive compared with those of the CAPM; however, they are much larger, and only 

the SPG index beta is significant. All of the SMB factors are significant, and the positivity of 

the SMB coefficients implies that small stocks impact performance more highly. The HML 

estimators are significant for only the iSG and iSGC indices, and none of the RMW and 

CMA estimators return significant results. 

 

Together, this implies that green bond indices likely underperform the market portfolio, albeit 

with factor results that do not fully account for the causality of our indices. This 

underperformance likely stems from the strong long-term demand for these bonds among 

green investors, who are increasingly becoming enthusiastic towards addressing their 

commitments to prevent climate change. As higher demand feeds through to higher prices, 

this in turn should lower yields on the bonds that constitute the indices, provided that 

liquidity of supply does not rise with demand. Additionally, underperformance in the short to 

medium term also is expected, given that investments in green bond indices will reduce 

margins and profitability. This should be offset by a reduction in risk over the long term, 

when adverse climate events and other regulations negatively affect companies that have not 

made suitable investments. To assess more thoroughly the causality of green bond index 

performance, we now perform causality tests using the variables in our dataset. 

 

5.2 Causality Test Results 

 

Moving to the causality test results, we first perform the Granger causality tests, as shown in 

Table 3. 

 

Insert Table 3 about here 
 
 

For Granger causality, we find that we reject the null hypothesis that any of the variables 

cause a change in the movement of the iSG index. For the BG and iSGC indices, the variable 

with the most reliably significant effect is Brent crude oil, a finding that contrasts with other 

studies on green bonds (Hammoudeh et al., 2020) that demonstrated US Treasury bonds as 

having the most reliable Granger causality. We note that the EUA variable is significant for 

the SPG index, supplementing prior results in the literature, and may stem from the increased 

usage and importance of carbon credits in the pricing of financial products in Europe. 

However, both the S&P Clean and EU Renewable indices also have a positive Granger 

causality effect for the SPG index, to a greater extent than EUA. This implies that equity 

market price effects have higher Granger causality than carbon credit price effects on this 

green bond index. 

 



However, due to the possibility of nonlinear effects, we also perform nonlinear Granger 

causality tests, which also are presented in Table 3. When we switch to using the nonlinear 

Granger test, we find that we fail to reject the null hypothesis for all the variables and indices. 

This implies that there is no nonlinearity to the causal effect of these variables on our index 

returns. This comes although the indices display high nonnormality of their distribution and 

thus would be expected to be more receptive to nonlinear testing techniques. We test for the 

robustness of this via structural break tests to delimitate whether structural changes in our 

datasets are obscuring the nonlinear informational factors affecting the Granger causality 

tests. Looking at the remaining statistically significant standard Granger causality results, 

Brent crude oil has the most significant linear Granger causality for the iSGC index. 

Together, this implies that a greater sensitivity to oil prices and global green equities has a 

negative impact on the ability of an index to outperform the market. 

 

Finally, we present the transfer entropy results (Table 4). 

 

Insert Table 4 about here 

 
 

The transfer entropy results show the extent of information causality flows. For example, the 

history of the X process (S&P Clean return) has 0.0072 bits of additional information for 

predicting the next value of Y (the iShare Green Index). That is, it provides information about 

the future of Y, in addition to what we know from the history of Y. 

 

The transfer entropy results show that all of our variables have nonzero entropy, so we can 

conclude that all of our variables influence the green bond indices in some way, but the S&P 

Clean Equity Index provides influential information for more of the indices than the 

remaining variables, along with Brent crude oil (BG, iSGC and SPG). This may follow from 

the use of fundamental analysis of companies whose bonds compose the green bond indices, 

such as the ratio and balance sheet analysis demonstrated in Alonso-Conde and Rojo-Suárez 

(2018). This would likely have informational effects on bond market participants, thus 

increasing the influence on green bond returns. In addition, the finding that oil markets 

provide significant causality confirms the results from the Granger causality tests. Of note is 

that the TTF is also significant for the SPG index, to almost the same extent as Brent crude 

oil. This may follow from the increasing importance of natural gas as a transition fuel for 

addressing global net zero carbon emission commitments and therefore partially determining 

the price dynamics of green bond indices. 

 

Last, because we are aware that all the aforementioned models could potentially suffer from 

not fully capturing the nonlinearity of causality in the data, we look to perform VARNN tests, 

the results of which are presented in Table 5. 

 

Insert Table 5 about here 
 
 

The results represent the nonlinear outputs from the final layer of the neural network, driven 

by the optimisation algorithm, which is comparable to the causal relationship demonstrated in 

the output of the nonlinear Granger causality statistic results above, i.e., the magnitude and 

sign direction of the output indicate the level and direction of causality. We find that the 

VARNN results partially confirm the Granger causality results. However, the other variables 

detect greater causality from the TTF than in the prior tests, with a particularly negative effect 



detected for the BG index. A possible reason for this is that the VARNN builds on the 

structure of the Granger causality test, augmenting it by allowing for the modelling of 

relationships between variables that change over time. Both the Granger causality test and 

transfer entropy are nonadaptive, meaning they do not make it possible to update the new 

values by using old ones. However, the VARNN is able to do this, albeit without the 

presentation of significance variables. 

 

5.3 Results for Testing over the COVID-19 Period 

 

We next seek to determine whether there is any specific effect on green bond index causality 

due to the COVID-19 pandemic. To this end, we first perform structural break tests to 

ascertain whether any change in regime took place over the COVID-19 period, and then we 

rerun our causality testing for both the pre- and intra-COVID periods. 

 

5.3.1 Structural Break Test Results 

 

First, we test for structural breaks in our green bond index data, focusing around 1/1/20201. A 

Chow test was performed, with the results (shown in Table 6) confirming that there is a 

structural break in our dataset. From these results, we conclude that for robustness, we should 

break our dataset to eliminate any interference from the change in year, whilst still capturing 

the resulting effects of the burgeoning pandemic on financial markets. Second, we test for 

structural breaks in our green bond index data in 2021. For most of the year, no breaks are 

detected; however, two of the indices—iSG and iSGC—gave results that allowed us to reject 

the null hypothesis of no structural break over the period of 5/1/2021. Therefore, we break 

the dataset for these indices to detect the impact of this specific crisis on green bond indices 

and whether there is likely to be any lasting effect as the COVID-19 pandemic abates. 

 

5.3.2 Results for the Pre- and Intra-COVID Period Datasets 

 

We now run Granger causality tests for split datasets, focusing on the structural break of the 

COVID-19 pandemic. The cut-off dates were chosen around 1/1/2020, with the pre-COVID 

period defined as 1/8/2014 to 1/1/2020 and the intra-COVID period defined as 2/1/2020 to 

18/10/2021, in line with the Chow test results. 

 

The results for the pre-COVID dataset are shown in Table 7. Here, we find that the standard 

Granger causality relationships across the indices have broken down, with almost none of the 

variables able to explain Granger causality in the indices. We find that the results are largely 

less statistically significant than in our main results, with the Granger causality providing 

significant results for only the iSGC index. However, the iSGC index is now mostly caused 

by the US 10-year Treasury bill, rather than Brent crude oil, which implies that this Granger 

causality was a phenomenon brought on during the intra-COVID period. This implies that a 

greater sensitivity to oil prices and global green equities follows the structural break of the 

COVID-19 pandemic, as if there was no change, and thus it can be assumed that their 

relationship underwent no adjustment due to the pandemic. 

 

Insert Table 7 about here 

 
1 We run a series of tests with different cut-off dates from around September 2019 to March 2020 and January 

2021 to October 2021; however, our results remain statistically unchanged. We also tested the remainder of the 

dataset and found no other breakpoints across the indices, and for brevity these results have not been included. 

The results are available upon request. 



 
 

We present the results from the intra-COVID datasets in Table 8. Here, we find that the 

results match much more closely with our main results, namely, that Brent crude oil remains 

the most significant causal factor across all the indices. We again note that the EUA variable 

is significant for the SPG index, and both the S&P Clean and EU Renewable indices also 

have a positive Granger causality effect for the SPG index, to a greater extent than EUA. This 

implies that these effects came about as a result of the volatility of the COVID-19 pandemic. 

 

Insert Table 8 about here 

 

 

When looking at the nonlinear Granger causality tests, we find that certain variables display 

very high levels of causality. This was not broadly the case in our prior results, and the fact 

that the nonlinear testing now translates to significant results for our remaining indices 

suggests that during the COVID-19 pandemic, the nature of the causal relationships between 

our variables and green bond indices has fundamentally shifted. This is likely due to the 

multifarious impacts of the pandemic on financial markets, such as both fiscal and monetary 

interventions and increases in alternative energy usage. 

 

This result indicates that green bond indices and their performance are heavily affected by 

exogenous economic shocks, a finding that runs counter to prior analyses (MacAskill et al., 

2020). Again, as in our Granger causality results, Brent crude oil is the most reliably 

significant, affecting both the BG and iSGC indices. The strength of the causal relationship 

also is relatively large, which follows from the level of pandemic volatility. 

 

Whilst none of the nonlinear variables are significant for the iSG index, the SPG index shows 

high causality from the EU Index variable. Given that these results are not uniform, it is 

plausible that the differences in the internal composition of each index cause different 

responses to each variable, predicated on how those variables are in turn affected by 

pandemic-related volatility. The magnitude of these Granger causality statistics suggests that 

high-volatility events translate to green bond indices, in line with the findings of Broadstock 

and Cheng (2019) and Reboredo (2018). 

 

Next, we present the transfer entropy results for both the pre- and intra-COVID data samples. 

The pre-COVID transfer entropy results (Table 9) are broadly in line with the main results. 

The EU Index and S&P Clean index remain significant for the iSG and BG indices, whilst 

none of the variables are significant for the iSGC index. In contrast, the SPG index no longer 

has significant causality from the EU Index and S&P Clean index. Overall, the magnitude of 

the transfer entropy remains relatively unchanged for variables that remain significant in both 

samples, implying that the main results held for the prepandemic period. The finding that 

Brent oil ceases to be a causal factor during the pandemic for the iSGC index is contrary to 

the findings of Naeem et al. (2021), which implied that connectiveness between green bonds 

and oil was maintained over the pandemic period. 

 

Insert Table 9 about here 

 

 

The intra-COVID transfer entropy results (Table 10) show a similar shift in significant 

variables for the intra-COVID period. This again suggests a breakdown in the prepandemic 



informational relationship of causality, likely as a result of the wide disruption of financial 

markets. Of note is the fact that causality for the SPG index has shifted from the TTF to the 

EUA, and Brent crude oil is no longer significant for the BG. Additionally, the magnitude of 

the transfer entropy has increased dramatically for all significant variables, except for the 

S&P Clean for iSGC. This implies that the information flow from these variables has been 

exacerbated by pandemic effects. The BG index result, however, is less clear, and our results 

provide routes for further study into the specific pandemic relation between Brent returns and 

those of the Bloomberg Green Index. 

 

Insert Table 10 about here 
 
 

Finally, we present the VARNN results for our pre- and intra-COVID datasets in Table 11. 

The VARNN results for the pre-COVID dataset are significantly lower in their level of 

causality than in the main results, except for the EUA. The intra-COVID dataset broadly gave 

higher causality for all indices other than iSG. 

 

Insert Table 11 about here 

 
 
 

Overall, we find significant evidence from the Granger causality and transfer entropy results 

that a shift in the relationship between green bond indices and our causality variables has 

taken place over the course of the pandemic. This result is in line with recent studies of the 

pandemic by Naeem et al. (2021) that maintain that the rupture in supply chains and other 

downstream economic components of the energy industry caused by the pandemic has had a 

direct effect on energy commodity prices and tertiary industries such as green energy. The 

heightened informational flow is evidence of this, as is the shift in significant variables. One 

reason highlighted in Broadstock and Cheng (2019) that could explain this is the interlinking 

of volatility affects throughout the global energy complex. This opens the potential for 

volatility-causal investigation of the pandemic on green bonds to determine the exposure of 

future green energy investments on this facet of potential exogenous shocks. 

 

5.4 Robustness Tests 

 

We now perform a series of robustness tests to confirm that our main results hold. As 

mentioned, a more robust approach would require the testing of potential structural breaks in 

our data to determine whether there have been any regimental changes in our variables’ 

causality over time. 

 

5.4.1 Multicollinearity Tests 

 

Given the close correlative relationship between our variables, it is crucial to ensure that the 

coefficient estimates of the multiple regression do not change erratically in response to small 

changes in the model or data. Variance inflation factors (VIFs) are a method of measuring the 

level of collinearity between the regressors in an equation. VIFs show how much of the 

variance of a coefficient estimate of a regressor has been inflated due to collinearity with the 

other regressors. They can be calculated by dividing the variance of a coefficient estimate by 

the variance of that coefficient had other regressors not been included in the equation. The 



results shown in Table 6 demonstrate that none of the variables has a VIF greater than 2, 

indicating that we can exclude the potential for multicollinearity. 

 

Insert Table 6 about here 

 

 

Next, given the economic shock of the COVID-19 pandemic and its effect on financial 

markets and energy demand, and the impact of massive fiscal intervention from policies such 

as the EU pandemic emergency purchase programmes, we look to determine whether our 

results hold when accounting for this structural break in our data. This provides insight as to 

whether the pandemic has increased the extent to which our variables drive green bond index 

performance or whether new causal paradigms have emerged. We also perform a structural 

break test around the ongoing global energy supply crisis in 2021, predicated on a global 

shortage of natural gas and surging energy demand as countries exit emergency lockdown 

measures owing to the pandemic. 

 

5.4.2 Results for the Pre- and Intra-Energy Crisis Period Dataset 

 

Next, we examine the results for a second breakpoint, as shown in Table 6. This breakpoint is 

centred around the ongoing energy supply issues engendered by the aftermath of the COVID-

19 pandemic. We perform this analysis to confirm whether any significant results arise and to 

contextualise our central analysis further, with the results shown in Table 12. The Granger 

causality results for the precrisis period are mostly in line with the pre-COVID breakpoint 

dataset results, albeit with lower Granger statistics. This decline also is seen in the transfer 

entropy statistics, in addition to Brent crude oil becoming statistically significant for the iSG 

index and the TTF and S&P Clean variables for the iSGC index. This slight shifting of 

causality between our variables using the brief period between the first and second 

breakpoints in our dataset indicates the underlying shift in causal relationships as global 

energy commodities began to regain high demand as economics began to recover from the 

pandemic. 

 

Insert Table 12 about here 

 

 

Focusing on the intracrisis results (Table 13), we note that none of the Granger causality or 

nonlinear Granger causality statistics are significant, in contrast to the intra-COVID results, 

which detected significance for various energy commodities. Similarly, the transfer entropy 

and VARNN results lost much of their statistical significance, with the sole exception of S&P 

Clean for iSG. This suggests that, whilst pandemic-related exogenous shocks have a definite 

effect on green bond index prices, the current energy crisis is evidently disconnected. This 

implies that demand-shock energy crises that have traditionally led to precipitous falls in 

value are not as causal as asymmetric shocks such as COVID-19. However, as the energy 

crisis overlaps with the COVID period, and considering that the conditions of the pandemic 

led to the energy crisis, we cannot confirm that this analysis meaningfully supplants that of 

our central COVID breakpoint analysis. 

 

Insert Table 13 about here 
 

 

 



6. Conclusion 

 

In this paper, we empirically assess the performance of green bond indices against market 

returns, specifically the iShare Green Index (iSG), Bloomberg Green Index (BG), iShare 

USD Green Index (iSGC) and S&P Green Index (SPG). For the first time, we utilise both 

CAPM and Fama–French 5-factor performance modelling on these indices, and we find that 

green bond indices do not outperform the market when factors beyond market return are 

considered. We analyse the causality for this performance using returns data for green equity, 

the US T-bill, Brent oil, carbon allowance (EUA) and natural gas (TTF, not previously 

utilised in the literature) on our green bond indices. We find that Brent crude oil has a 

significant effect on the BG and iSGC indices, a finding that contrasts with other studies on 

green bonds (Hammoudeh et al., 2020) that demonstrated US Treasury bonds as having the 

most significant causality. A greater sensitivity to oil prices and global green equities also 

evinces a negative impact on the ability of a green bond index to outperform the market. We 

investigate the effect of TTF returns on green bond indices, and we detect causalities to 

almost the same extent as with Brent crude oil. This presents the possibility of natural gas 

markets encroaching on crude oil as a statistically causal determinant in certain green bond 

indices, a finding not previously highlighted in the literature. This finding presents an 

opportunity for future research to investigate the possibility of green bond indices and natural 

gas being related by a third underlying economic factor to clarify the economic causality of 

this statistical relationship and possible substitution effects from crude oil to natural gas. In 

addition, we note that the EUA displayed similar levels of causality, supplementing prior 

results in the literature, which likely stems from the increased usage and importance of 

carbon credits in the pricing of financial products in Europe. The transfer entropy results 

show that the S&P Clean Equity Index provides more influential information than the 

remaining variables, likely following from the use of fundamental analysis of companies 

whose bonds compose the green bond indices, such as the ratio and balance sheet analysis 

demonstrated in Alonso-Conde and Rojo-Suárez (2018). Together, this implies that a greater 

sensitivity to oil prices and global green equities has a negative impact on the ability of an 

index to outperform the market. 

 
We also break our dataset around the structural break of the COVID-19 pandemic, and the 

ongoing 2021 global energy crisis, to ascertain the effect of this event on the causal 

relationships of our data. Looking at the pre-COVID period, we do not find evidence of 

sensitivity to oil prices and global green equities that precedes the structural break of the 

COVID-19 pandemic. However, our tests on data through the intra-COVID period suggest 

that the nature of the causal relationships between our variables and green bond indices has 

fundamentally shifted since the onset of the pandemic. This likely stems from the 

unprecedented fiscal and monetary interventions, combined with increased alternative energy 

usage over the period. Our result that green bond indices and their performance are heavily 

affected by exogenous economic shocks runs counter to prior analyses (MacAskill et al., 

2020) and contributes to the nascent strand of literature on the effect of COVID-19 on 

sustainable asset classes. We also find nonuniformity among the significance of the causal 

relationships in our results, implying that the internal composition of the indices causes 

altering responses to different financial variables, in turn predicated on how those variables 

are affected by pandemic-related volatility. This result supplements the findings of 

Broadstock and Cheng (2019) and Reboredo (2018), and future research could consider the 

impact of reverse causality for these data. Another important finding is that, whilst pandemic-

related exogenous shocks have a definite effect on green bond index prices, the current 

energy crisis is evidently disconnected from green bond index return causality. This insight 



contributes to the risk management case for green bond indices, as it implies that demand-

shock energy crises that have traditionally led to precipitous falls in value are not as causal as 

asymmetric shocks such as COVID-19. 

 

Our findings create new avenues for further research into the interaction of linear and 

nonlinear relationships between different indices and market factors. The result that our 

indices underperform the market provides insights for policy-makers and institutional 

investors looking to widen their investment in sustainable financial assets and improve 

market liquidity. We also contribute to the emerging strand in the literature on the effect of 

COVID-19 on green bonds, providing evidence counter to other studies’ assertions regarding 

the impact of exogenous shocks. Our finding of low causality for our variables over the 

course of the 2021 energy crisis contributes to the literature on the overhanging effects of 

COVID-19 and provides insights for market practitioners looking at the reduction in green 

bond index and climate-related risks over the long term. These insights provide more clarity 

to market participants, assisting with navigating the uncertainties of both the global energy 

transition and the postpandemic period. 
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Appendix 

 

1. Granger Causality 

 

To conduct the Granger causality test, a pair of vector autoregressive (VAR) models are 

considered. The first uses the precedent values of Y, and the second uses both passed values 

of X and Y to predict Y: 

 

𝑀𝑜𝑑𝑒𝑙1  𝑌𝑡 =  𝛼0 + ∑ 𝛼𝑖𝑌𝑡−𝑖 + 𝑢𝑡

𝑝

𝑖=1

                                                    (4) 

𝑀𝑜𝑑𝑒𝑙2  𝑌𝑡 =  𝛼0 + ∑ 𝛼𝑖𝑌𝑡−𝑖

𝑝

𝑖=1

+ ∑ 𝛽𝑖𝑋𝑡−𝑖 + 𝑢𝑡

𝑝

𝑖=1

                                       (5) 

 

where p is the lag parameter, 𝛼𝑖 and 𝛽𝑖 are the parameters of the models, and 𝑢𝑡 is a white 

noise error term. 

 

The causality is quantified by evaluating the variances in the errors of both models, in this 

case with the Granger causality index (GCI), expressed as follows: 
 

𝐺𝐶𝐼 = log (
𝜎1

2

𝜎2
2)                                                             (6) 

 

where 𝜎1
2 and 𝜎2

2 are the variances of the errors of 𝑀𝑜𝑑𝑒𝑙1 and 𝑀𝑜𝑑𝑒𝑙2 , respectively. For the 

evaluation of the statistical significance of the differences, the Fisher test can be used, as 

follows: 

 

𝐹 =
(𝑅𝑆𝑆1−𝑅𝑆𝑆2)−𝑝

𝑅𝑆𝑆2
(𝑛−2𝑝−1)

                                                           (7) 

 

where 𝑅𝑆𝑆1 and 𝑅𝑆𝑆2 are the residual sum of squares related to 𝑀𝑜𝑑𝑒𝑙1 and 𝑀𝑜𝑑𝑒𝑙2 , 
respectively, and n is the size of the lagged variables. This leads to two hypotheses: 
 

𝐻0: ∀𝑖 ∈ {1, … , 𝑝}, 𝛽𝑖 = 0                                                         (8) 

𝐻1: ∃𝑖 ∈ {1, … , 𝑝}, 𝛽𝑖 ≠ 0                                                   (9) 

 

where 𝐻0 is the hypothesis that X does not cause Y. Under 𝐻0, F follows the Fisher 

distribution with (𝑝, 𝑛 − 2𝑝 − 1) as degrees of freedom. 

 

2.  Transfer Entropy 

 

To avoid the problem of mutual information (wherein common information between X and Y 

does not consider the information transfer from one variable to the other), time delay 

parameters are included to specify this direction of information: 
 

𝑇𝑋→𝑌 = ∑ 𝑃(𝑌𝑡 , 𝑌𝑡
𝑞 , 𝑋𝑡

𝑝)log (𝑌𝑡,𝑌𝑡
𝑞

,𝑋𝑡
𝑝

𝑃(𝑌𝑡|𝑌𝑡
𝑞 , 𝑋𝑡

𝑝
)

𝑃(𝑌𝑡|𝑌𝑡
𝑞

)
) = 𝐼(𝑌𝑡 , 𝑋𝑡

𝑝|𝑌𝑡
𝑞)                    (10) 

 
where 𝑍𝑡

𝑙 = (𝑍𝑡−1, . . . , 𝑍𝑡−𝑝) for  𝑍 = 𝑋, 𝑌, 𝑝, 𝑞 are the time delay parameters for X and Y, 

respectively, P represents the probability, and I represents the mutual information symbol. 



Another framework for the derivation of transfer entropy can be described as that of the 

difference between two conditional entropies. In the first instance, Y’s past values alone are 

considered, and in the second, the conjoined past values are added: 
 

𝑇𝐸𝑋→𝑌 = 𝐻(𝑌𝑡|𝑌𝑡−1, . . . , 𝑌𝑡−𝑝) − 𝐻(𝑌𝑡|(𝑌𝑡−1, . . . , 𝑌𝑡−𝑝), (𝑋𝑡−1, . . . , 𝑌𝑡−𝑝))            (11) 
 

 
where H represents the conditional entropy. It is this conjoined expression wherein a prediction 

principle comparable to that of the Granger causality test is displayed. 

 

3. VARNN Model 

 

The VARNN (p) model is a multilayer perceptron neural network model that predicts the value 

of the target variable (Y) by way of the target value’s own previous values and those of a 

separate ‘predictor’ variable. The global function of VARNN (p) can be written as follows: 
 

𝑌𝑡 =  𝛹𝑛𝑛 ( 𝑌𝑡−1, . . . , 𝑌𝑡−𝑝 , . . . , 𝑌𝑘(𝑡−1) , . . . , 𝑌𝑘(𝑡−𝑝)) +  𝑈𝑡                        (12) 

 

with a training dataset that consists of a multivariate time series containing one target variable 

Y and k predictor variables Y1,. ., Yk, where Ψnn is the network function, and Ut represents the 

error terms. 
 

The remainder of the test is structured similarly to the standard test, as laid out in Aitkin and 

Foxall (2003). However, since we are using VARNN instead of VAR, two VARNN models 

must be used as opposed to two VAR models. Accordingly, we change the Fisher test statistic, 

leading to its definition as follows: 
 

𝐹 =

𝑅𝑆𝑆1−𝑅𝑆𝑆2
𝑑2−𝑑1
𝑅𝑆𝑆2

(𝑛 − 𝑑2)

                                                                          (13) 

 

where d1 and d2 are the number of parameters of the univariate and bivariate models, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Tables 

 
Table 1: Descriptive Statistics of Green bond index and causality variable returns datasets 

Descriptive Statistics 

  Mean  Skew Kurtosis ADF p-value 
iShare Green Index (iSG) -0.0003 11.741 713.678 0.000 

Bloomberg Green Index (BG) 0.0001 -0.777 13.213 0.000 

iShare USD Green Index (iSGC) 0.0001 -1.629 23.776 0.000 

S&P Green Index (SPG) 0.0001 -0.518 9.113 0.000 

       

S&P Clean Index 0.0005 -0.478 13.599 0.000 

EU Renewables Index 0.0008 -0.452 7.467 0.000 

US 10-year Bill 0.0028 0.784 2.078 0.000 

Brent crude oil 0.0002 -0.270 16.847 0.000 

TTF (Natural Gas) 0.0013 3.152 40.263 0.000 

EUA (Carbon Allowance) 0.0016 -0.082 6.353 0.000 
Notes: This table shows the descriptive statistics of the iShare Green Index, Bloomberg Green Index, iShare USD Green Index 
and S&P Green Index, as well as the S&P Clean Index and the EU Renewables Indices, the US 10-year Treasury Bill, Brent 
crude oil, TTF Natural Gas benchmark and EUA Carbon Allowance data, along with augmented Dickey–Fuller test (ADF) p-

values to test against a unit root null hypothesis. 

 

 

 

 

 

 

 
Table 2: CAPM, Sortino Ratio and Fama-French estimation results 

  Sortino CAPM Fama-French 

   Alpha Alpha SMB RMW 

 Ratio Estimate p-value Estimate p-value Estimate p-value Estimate p-value 

iSG -0.03209 0.00006 0.36845 -0.00455 0.00000 0.00059 0.00312 0.00012 0.69444 

BG 0.06568 0.00005 0.46719 -0.00455 0.00000 0.00058 0.00399 -0.00016 0.60000 

iSGC 0.04957 0.00004 0.49552 -0.00457 0.00000 0.00068 0.00000 -0.00006 0.90201 

SPG 0.02359 -0.00006 0.16246 -0.00467 0.00000 0.00038 0.03894 -0.00019 0.51335 

    Beta Beta HML CMA 

    Estimate p-value Estimate p-value Estimate p-value Estimate p-value 

iSG   0.00003 0.02714 0.00006 0.52412 -0.00043 0.01511 -0.00030 0.43000 

BG   0.00003 0.01454 0.00014 0.17364 -0.00032 0.07254 -0.00006 0.86710 

iSGC   0.00003 0.02956 0.00012 0.23884 -0.00039 0.02355 -0.00026 0.49625 

SPG   0.00002 0.00611 0.00021 0.03155 -0.00007 0.62787 -0.00034 0.33453 

Notes: This table shows the CAPM, Sortino Ratio and Fama-French 5-factor model estimation results for the 4 green bond 
indices. 

 

 

 

 

 

 

 

 



 

 

 
Table 3: Granger Causality and Non-Linear Granger Causality tests results 

       iSG         BG         iSGC         SPG 

  Granger  p-value Granger  p-value Granger  p-value Granger  p-value 

S&P Clean  0.000 0.997 0.002 0.177 0.003 0.060 0.039 0.000 

EU Index 0.001 0.268 0.000 0.803 0.001 0.544 0.043 0.000 

US 10y 0.001 0.465 0.002 0.132 0.003 0.076 0.001 0.439 

Brent 0.002 0.175 0.003 0.042 0.004 0.031 0.002 0.192 

TTF 0.000 0.681 0.000 0.945 0.000 0.931 0.001 0.375 
EUA 0.001 0.282 0.000 0.844 0.001 0.595 0.026 0.000 

  
Non-Linear 

Granger  
p-value 

Non-Linear 

Granger  
p-value 

Non-Linear 

Granger  
p-value 

Non-Linear 

Granger  
p-value 

S&P Clean  0.010 0.315 0.005 0.880 0.010 0.249 0.002 0.999 

EU Index 0.000 1.000 0.002 1.000 0.000 1.000 0.000 1.000 

US 10y 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 

Brent 0.007 0.619 0.002 0.998 0.000 1.000 0.000 1.000 

TTF 0.000 1.000 0.003 0.997 0.003 0.995 0.000 1.000 

EUA 0.000 1.000 0.002 1.000 0.000 1.000 0.005 0.904 
Notes: This table shows the Granger and Non-Linear Granger Causality (GCI) statistics for the 4 green bond indices using our 
causality dataset along with test p-values. 

 

 
 

Table 4: Transfer Entropy tests results 

 Transfer Entropy 

 iSG BG iSGC SPG 

 
Transfer 

Entropy 
p-value 

Transfer 

Entropy 
p-value 

Transfer 

Entropy 
p-value 

Transfer 

Entropy 
p-value 

S&P Clean 0.007 0.090 0.011 0.003 0.009 0.010 0.010 0.013 

EU Index 0.017 0.000 0.006 0.210 0.005 0.277 0.008 0.023 

US 10y 0.001 1.000 0.001 1.000 0.002 0.993 0.002 0.983 

Brent 0.006 0.213 0.009 0.013 0.009 0.030 0.001 0.000 

TTF 0.007 0.173 0.005 0.383 0.005 0.410 0.001 0.012 

EUA 0.004 0.613 0.004 0.493 0.004 0.697 0.007 0.107 
Notes: This table shows the Transfer Entropy statistics and p-values for the dependent variables of our causality dataset on 
each of the green bond indices. 

 

 

 

 

 
Table 5: VARNN Results 

     

  iSG BG iSGC SPG 

S&P Clean  0.00009 -0.00073 0.00119 0.00094 

EU Index 0.00084 0.00256 0.00026 0.00049 

US 10y 0.00019 0.00265 0.00293 0.00289 

Brent 0.00063 -0.00073 0.00085 0.00063 

TTF 0.00107 -0.01458 0.00606 0.00353 

EUA 0.00182 0.00305 0.00101 0.00124 

Notes: This table shows the VARNN non-linear output layer results for the dependent  
variables on each of the green bond indices. 

 

 
 



Table 6: Chow test results and Variance Inflation Factors 

 Breakpoint 1/1/20 Breakpoint 5/1/21 

Index F-statistic P value F-statistic P value 

iSG 1810.989 0.000 3.632 0.057 

BG 2017.704 0.000 0.124 0.725 

iSGC 3621.978 0.000 3.797 0.052 

SPG 2047.265 0.000 2.116 0.146 

 Variable 
Uncentred 

VIF 
Centred 

VIF 
 

 S&P Clean  1.911 1.909  

 EU Index 1.847 1.842  

 US 10y 1.696 1.004  

 Brent 1.054 1.054  

 TTF 1.018 1.016  

     
Notes: This table shows the Chow Break test results for each of the 
green bond indices and the and Variance Inflation Factors for each of 
the exogenous variables. 

 

 

 

 

 

 

 
 

Table 7: Pre-COVID Granger Causality and Non-Linear Granger Causality tests results 

 iSG BG iSGC SPG 

  Granger  p-value Granger  p-value Granger  p-value Granger  p-value 

S&P Clean  0.0022 0.2014 0.0002 0.8442 0.0001 0.9457 0.0014 0.3770 

EU Index 0.0004 0.7307 0.0004 0.7483 0.0018 0.2918 0.0009 0.5221 

US 10y 0.0038 0.0692 0.0034 0.0965 0.0070 0.0072 0.0016 0.3370 

Brent 0.0038 0.0693 0.0002 0.8770 0.0002 0.8734 0.0023 0.2000 

TTF 0.0002 0.8864 0.0003 0.2050 0.0010 0.5026 0.0001 0.9601 

EUA 0.0003 0.8323 0.0003 0.8071 0.0028 0.1391 0.0005 0.6991 

                  

  
Non-Linear 

Granger  
p-value 

Non-Linear 
Granger  

p-value 
Non-Linear 

Granger  
p-value 

Non-Linear 
Granger  

p-value 

S&P Clean  0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0003 1.0000 

EU Index 0.0014 0.1235 0.0009 1.0000 0.0000 1.0000 0.0000 1.0000 

US 10y 0.0000 1.0000 0.0001 1.0000 0.0055 0.9580 0.0011 0.9999 

Brent 0.0040 0.9931 0.0000 1.0000 0.0005 1.0000 0.0000 1.0000 

TTF 0.0001 1.0000 0.0007 1.0000 0.0000 1.0000 0.0000 1.0000 

EUA 0.0027 0.9999 0.0007 1.0000 0.0000 1.0000 0.0000 1.0000 

Notes: This table shows the Granger and Non-Linear Granger Causality statistics (GCI) using our causality dataset for the 4 

green bond indices, along with test p-values for the Pre-COVID dataset. 

 

 

 

 

 

 

 

 



Table 8: Intra-COVID Granger Causality and Non-Linear Granger Causality tests results 

 iSG BG iSGC SPG 

  Granger  p-value Granger  p-value Granger  p-value Granger  p-value 

S&P Clean  0.0135 0.0462 0.0105 0.0910 0.0109 0.0823 0.0332 0.0010 

EU Index 0.0028 0.5320 0.0055 0.2841 0.0055 0.2862 0.0370 0.0019 

US 10y 0.0005 0.8926 0.0002 0.9569 0.0004 0.9141 0.0014 0.7248 

Brent 0.0020 0.6397 0.0112 0.0776 0.0153 0.0302 0.0179 0.0166 

TTF 0.0006 0.8729 0.0002 0.9594 0.0004 0.9212 0.0040 0.3981 

EUA 0.0074 0.1861 0.0566 0.2745 0.0050 0.3201 0.0141 0.0400 

                  

  
Non-Linear 

Granger  
p-value 

Non-Linear 
Granger  

p-value 
Non-Linear 

Granger  
p-value 

Non-Linear 
Granger  

p-value 

S&P Clean  0.0094 0.9988 0.0083 0.9999 0.0000 1.0000 0.0000 1.0000 

EU Index 0.0568 0.0661 0.0000 1.0000 0.0000 1.0000 0.0017 0.0456 

US 10y 0.0139 0.9852 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 

Brent 0.0049 0.9996 0.3339 0.0010 0.3720 0.0001 0.0143 0.9845 

TTF 0.0000 1.0005 0.0000 1.0000 0.0124 0.9921 0.0001 1.0000 

EUA 0.0000 1.0005 0.0000 1.0000 0.0249 0.8050 0.0015 1.0000 

Notes: This table shows the Granger and Non-Linear Granger Causality statistics (GCI) using our causality dataset for the 4 
green bond indices, along with test p-values for the Intra-COVID dataset. 
 
 
 
 

Table 9: Pre-COVID Transfer Entropy tests results 

 Transfer Entropy 

 iSG BG iSGC SPG 

 
Transfer 

Entropy 
p-value 

Transfer 

Entropy 
p-value 

Transfer 

Entropy 
p-value 

Transfer 

Entropy 

p-value 

S&P Clean 0.003 0.873 0.011 0.023 0.006 0.487 0.007 0.170 

EU Index 0.022 0.000 0.006 0.396 0.004 0.767 0.009 0.063 

US 10y 0.001 0.997 0.001 1.000 0.001 0.997 0.001 1.000 

Brent 0.006 0.480 0.008 0.143 0.004 0.896 0.010 0.036 
TTF 0.007 0.300 0.005 0.500 0.009 0.103 0.006 0.270 

EUA 0.007 0.297 0.004 0.750 0.007 0.353 0.011 0.013 
Notes: This table shows the Transfer Entropy statistics and p-values for the dependent variables on each of the green bond 

indices for the Pre-COVID dataset, using the variables from our causality dataset. 
 

 

 
Table 10: Intra-COVID Transfer Entropy tests results 

 Transfer Entropy 

 iSG BG iSGC SPG 

 
Transfer 

Entropy 
p-value 

Transfer 

Entropy 
p-value 

Transfer 

Entropy 
p-value 

Transfer 

Entropy 

p-value 

S&P Clean 0.041 0.001 0.048 0.001 0.048 0.001 0.071 0.001 

EU Index 0.039 0.003 0.019 0.197 0.026 0.040 0.026 0.003 

US 10y 0.025 0.087 0.002 1.000 0.002 1.000 0.001 1.000 

Brent 0.040 0.003 0.023 0.070 0.023 0.047 0.037 0.001 

TTF 0.018 0.220 0.005 0.977 0.006 0.883 0.010 0.580 

EUA 0.015 0.337 0.012 0.587 0.015 0.320 0.020 0.040 
Notes: This table shows the Transfer Entropy statistics and p-values for the dependent variables on each of the green bond 
indices for the Intra-COVID dataset, using the variables from our causality dataset. 

 

 

 

 



 
 

 

 
Table 11: VARNN Results for Pre- and Intra-COVID datasets 

 Pre-COVID Intra-COVID 

  iSG BG iSGC SPG iSG BG iSGC SPG 

S&P Clean  0.0001 -0.0011 -0.0011 0.0000 -0.0006 -0.0007 -0.0006 -0.0002 

EU Index 0.0005 -0.0003 -0.0003 0.0004 0.0045 0.0045 0.0044 0.0040 

US 10y 0.0034 0.0030 0.0030 0.0034 0.0008 0.0008 0.0008 0.0009 

Brent 0.0009 -0.0098 -0.0098 -0.0003 -0.0004 -0.0005 -0.0004 0.0001 

TTF 0.0027 -0.0337 -0.0337 -0.0017 -0.0105 -0.0103 -0.0098 -0.0076 

EUA 0.0011 0.0063 0.0063 0.0016 0.0044 0.0044 0.0043 0.0041 
Notes: This table shows the VARNN non-linear output layer results for the dependent variables on each of the green bond 
indices, for both the Pre- and Intra-COVID datasets. 

 

 

 

 

 
 

Table 12: Pre-Crisis Granger Causality, Transfer Entropy and VARNN results 

 iSG iSGC iSG iSGC 

  
Granger p-value Granger p-value 

Transfer 
Entropy 

p-value 
Transfer 
Entropy 

p-value 

S&P Clean  0.0001 0.4455 0.0073 0.0019 0.0090 0.0571 0.0142 0.0000 

EU Index 0.0003 0.8083 0.0006 0.6191 0.0208 0.0000 0.0071 0.1800 

US 10y 0.0035 0.0531 0.0025 0.1253 0.0006 1.0000 0.0018 0.9971 

Brent 0.0035 0.0537 0.0032 0.0711 0.0092 0.0372 0.0068 0.2132 

TTF 0.0001 0.9040 0.0013 0.3351 0.0073 0.1271 0.0104 0.0171 

EUA 0.0002 0.8759 0.0018 0.2193 0.0035 0.8000 0.0053 0.4270 

  iSG iSGC iSG iSGC   

  
Non-

Linear 
Granger 

p-value 
Non-

Linear 
Granger 

p-value VARNN VARNN   

S&P Clean  0.0000 1.0000 0.0168 0.0351 0.0010 0.0010   

EU Index 0.0005 1.0000 0.0000 1.0000 0.0005 0.0006   

US 10y 0.0000 1.0000 0.0000 1.0000 0.0033 0.0033   

Brent 0.0029 0.9961 0.0000 1.0000 -0.0098 -0.0093   

TTF 0.0000 1.0000 0.0000 1.0000 0.0065 0.0063   

EUA 0.0021 0.9999 0.0000 1.0000 -0.0072 -0.0068   

Notes: This table shows the Granger and Non-Linear Granger Causality statistics (GCI), Transfer Entropy and VARNN non-

linear output layer results using our causality dataset for the Pre-Crisis dataset. 

 

 

 

 
 

 

 
 

 

 
 

 



Table 13: Intra-Crisis Granger Causality, Transfer Entropy and VARNN results 

 iSG iSGC iSG iSGC 

  
Granger  p-value Granger  p-value 

Transfer 
Entropy 

p-value 
Transfer 
Entropy 

p-value 

S&P Clean  0.0021 0.8149 0.0175 0.1866 0.0368 0.0333 0.0178 0.3533 

EU Index 0.0005 0.9544 0.0079 0.4595 0.0099 0.8975 0.0109 0.8071 

US 10y 0.0005 0.9544 0.0079 0.4595 0.0000 1.0000 0.0000 1.0000 

Brent 0.0005 0.9544 0.0018 0.8344 0.0130 0.6232 0.0128 0.5831 

TTF 0.0060 0.5511 0.0119 0.3113 0.0000 1.0000 0.0132 0.5000 

EUA 0.0029 0.7535 0.0228 0.1065 0.0128 0.6878 0.0129 0.5900 

  iSG iSGC iSG iSGC   

  
Non-

Linear 
Granger  

p-value 
Non-

Linear 
Granger  

p-value VARNN VARNN   

S&P Clean  0.0000 1.0000 0.0528 0.8821 -0.0023 -0.0021   

EU Index 0.0000 1.0000 0.0000 1.0000 -0.0029 -0.0025   

US 10y 0.0000 1.0000 0.0000 1.0000 0.0000 0.0000   

Brent 0.0000 1.0000 0.0000 1.0000 0.0029 0.0027   

TTF 0.0000 1.0000 0.0000 1.0000 0.0034 0.0046   

EUA 0.0781 0.5721 0.0000 1.0000 0.0243 0.0215   

Notes: This table shows the Granger and Non-Linear Granger Causality statistics (GCI), Transfer Entropy and VARNN non-
linear output layer results using our causality dataset for the Intra-Crisis dataset. 

 

 


