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Abstract

Hydraulic valves, for the purpose of targeted pressure relief and damping, are a ubiquitous part of modern
suspension systems. This paper deals with the analytical computation of fixed points of the dynamical
system of a single-stage shock absorber valve, which can be applied for the direct computation of its system
variables at equilibrium without brute-force numerical integration. The obtained analytical expressions
are given for the original dimensional version of the model derived from continuity and motion equations
for a realistic valve setup. Furthermore, a large part of the study is devoted to a systematic sensitivity
analysis of the model towards crucial parameter changes. Numerical investigation of a potential loss of
stability and following nonlinear oscillations is performed in multi-dimensional parameter spaces, which
reveals sustained valve vibrations at increased valve mass and applied pretension force. The dynamical
behaviour is analysed by phase space orbits, as well as Fourier-transformed valve displacement data to
identify dominant frequencies. Chaotic indicators, such as Lyapunov exponents and the Smaller Alignment
Index (SALI), are utilized to understand the nature of the oscillatory motion and to distinguish between
order and chaos.
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1. Introduction

It is long known that shock absorbers and automotive dampers, which contain various forms of me-
chanical valves subjected to fluid pressure, show complex and sometimes unexpected behaviour, such as
instabilities, or sustained vibrations and noise during operation. This is mainly due to the dominant phys-
ical nonlinearities, which are also present in the underlying equations of motion. These nonlinear terms
come in several forms, such as coupled pressure-displacement relationships, impact laws, or variable spring
stiffness, which collectively render the dynamical system non-smooth and therefore difficult to analyse with
usual methods of nonlinear dynamics (Kunze and Küpper, 2001; Di Bernardo et al., 2008).

Although early works, especially by Lang (1977), Reybrouck (1994), and Talbott and Starkey (2002), in-
troduced potent models for the prediction of shock absorber variables, these approaches were either algebraic
and linearized in nature and therefore not suited for studies of its nonlinear dynamics, or they applied a large
set of semi-empirical fitting parameters that did not allow investigation of the actual physical effects and
co-dependencies of real model properties. Duym et al. (1997a) also gives a critical evaluation of early damper
models, stating some of their weaknesses and shortcomings, such as the problems in capturing hysteresis
and comparable nonlinear effects. Consequently, models based on nonlinear differential equations and actual
material properties and physical parameters are required for the analysis of realistic cause-effect relation-
ships between model properties and behaviour, as well as its dynamics. More recently, Farjoud et al. (2012)
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devised a set of nonlinear differential equations for the modelling of hydraulic damper valves and successfully
predicted their opening characteristics at different shim stack and orifice settings. Boggs et al. (2010) and
Sikora (2018) applied similar analytic methods to model the suspension damping behaviour in real-world
vehicle applications. Furthermore, Liao et al. (2021) derived at suitable two-degree-of-freedom model for
fluid-structure coupling within a relief valve for the parameter optimization of underwater applications.

As a result of ongoing research and development in pressure relief valve dynamics, particularly in the
automotive industry, it became necessary to understand instability mechanisms and the loss of dynamic
stability of hydraulic valves in operation. In an early numerical investigation of instabilities in hydraulic valve
systems, Hayashi et al. (1997) could identify the Feigenbaum route to chaos by power spectra, bifurcation
diagrams and Lyapunov exponents for a simplified poppet control valve. Benaziz et al. (2012) applied
a first-order differential equation system to predict the dynamics of spring valves and studied the global
stability of hydraulic valves under realistic parameter changes. Thus, they could map out the occurrence
of instabilities under various flow rates. Additionally, they provided a nonlinear model for the analysis of
valve vibration and the resulting structure-borne noise (Benaziz et al., 2015). Using various approaches
like the brute-force numerical integration of long time series of trajectories with implicit schemes, as well
as bifurcation analyses of non-impacting periodic solutions, Hős and Champneys (2012) and Bazsó et al.
(2014) were able to identify initial instabilities and various bifurcation types, such as fold, torus, and grazing
bifurcations, in a non-dimensional model of a pressure relief valve. Recently, an experimental study by Ma
et al. (2019) confirmed these instability mechanisms of pressure relief valves and specified the occurrence
of chatter instabilities by general stability maps for a wide range of volumetric flow rates and geometric
properties such as inlet pipe length. The valve types in these studies are similar to the one studied here,
but lack the energy dissipation of a viscous fluid surrounding the valve. Furthermore, to date no systematic
investigation of the effect of parameter variations on the global dynamics of suspension valves has been
attempted. One reason for this was the non-existence of a validated closed system of differential equations
suitable for the application of numerical integration and fixed-point analysis.

Recently, such a physical model was introduced and successfully applied to analyse inertia and dynamic
stability of a typical automotive suspension valve system (Schickhofer and Wimmer, 2022; Schickhofer,
2022). In this work, its derivative in the form of a coupled, dimensional nonlinear system of equations for
a shock absorber pressure relief valve is studied with respect to its equilibrium states and its sensitivity to
parameter changes. The chosen approach is therefore a mixture of analytical methods for the derivation of
formulae for direct computation, as well as numerical methods for the integration of the first-order system.
Moreover, to understand whether the system undergoes changes in the nature of its dynamics from order
to chaos, or vice versa, chaotic indicators such as Lyapunov exponents (Benettin et al., 1980a,b) and the
Smaller Alignment Index (SALI) (Skokos et al., 2003, 2004) are applied. Although the studied system is
generally dissipative, as explained in detail for variations of the damping parameter in Sec. 3.3.5, it could
well display transient chaotic motion with subsequent loss of function. It is therefore important, both from
a fundamental, as well as an applied perspective on pressure relief valves and shock absorber systems, to
understand and accurately predict such transitions and sensitivities.

Various model parameters are known to have a significant impact on the shock absorber valve function
and dynamic behaviour. However, little is known on their precise impact on equilibrium states, transition
to chaos, and instabilities. This study attempts to answer three important questions:

• Is it possible to find analytic expressions for the equilibrium states of the main shock absorber variables,
such as valve displacement, velocity, and pressure?

• How are the nonlinear valve dynamics affected by realistic parameter changes?

• Can we distinguish between order and chaos in the motion of the investigated dissipative dynamical
system?

In the following, we will address these these questions through analytical and numerical methods and we
will return to them in Sec. 4 for a detailed discussion.
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2. Theory

The dynamical system to be studied is the three-dimensional model of a valve for the purpose of pressure
relief in a hydraulic shock absorber. A shock absorber acts as part of the suspension system of various
types of vehicles, such as cars, motorcycles, or trains, to absorb wheel displacements as a result of ground
irregularities or impact. It contains a viscous fluid, typically mineral oil, which is compressed by the motion
of a rod in a piston. Its valve is further displaced by the acting pressure. The pressure drop across the
valve initiates flow rates through a piston with orifices of various cross sections, most notably the flow
rate Qb through a constant bleed orifice and the flow rate Qv through a variable valve opening. This
entire process leads to an efficient relief of pressure by various flow losses through the piston and valve
gap flow. For a detailed description of the shock absorber concept, the reader is referred to Dixon (2008)
and Schickhofer (2022). Figure 1 shows the forces acting on the single valve and the volumetric flow rates
across the considered control volume. The underlying system of equations have been previously validated
and successfully implemented for shock absorber development (Schickhofer and Wimmer, 2022). Below, the
dimensional version of the equation system is analysed with respect to its critical points.

Qv

Qb(b)

Qv

Qp, V

(a)

x

x
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x = x2
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k c
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Qv

Figure 1: Diagram of pressure force Fp, momentum force Fm, impact force Fi, and pretension F0 acting on the shock absorber
valve (a), and sketch of the control volume V involving the total volumetric flow rate Q, valve flow rate Qv , and bleed flow
rate Qb (b) used for the fully integrated form of the continuity equation (2). A detailed description and definition of forces
and flow rates is given in Sec. 2.1. The boundaries at x = x1 and x = x2 of the domain and valve motion are indicated.

2.1. Dimensional system

Essentially by applying Newton’s second law on the valve shown in Fig. 1(a), and the mass continuity
equation on the control volume depicted in Fig. 1(b), one arrives at the following equations:

mẍ+ cẋ+ kx = Fp (p) + Fm (x, p) + Fi (x)− F0, (1)

ṗ =
1

βV
[Q−Qv (x, p)−Qb (p)] . (2)

Equation (1)(a) models the valve as a driven oscillator of mass m, damping c, and spring constant k, which is
subjected to the forces given below. The mineral oil used in the damper is assumed to be compressible with
effective compressibility β, and the integrated continuity equation across the volume V takes into account
all flow rates introduced in Fig. 1(b).

Pressure force. The dominant force is given by the static pressure difference ∆p = p − p0 across the valve
between the variable upstream pressure p and the downstream pressure p0 of the shock absorber piston. It
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depends crucially on the imposed volumetric flow rate further described below and causes a pressure force
given by

Fp (p) = Ap∆p = Ap (p− p0) =
∧

App. (3)

Here, Ap is the total area on the valve on which the fluid pressure acts. In many shock absorbers this area
consists of the sum of several port sections. If the reference pressure is considered zero (p0 = 0), or if p is
assumed as gauge pressure, the expression in Eq. (3) simplifies to App.

Momentum force. Due to the redirection of the fluid jet by the valve surface, a momentum change is taken
into account by the force term

Fm (x, p) =
Cfρ

Ap

απdvx︸ ︷︷ ︸
Av(x)

Cd,v

√
2p

ρ


2

, (4)

which is dependent on the valve opening x and pressure p, but also on the empirically determined momentum
coefficient Cf , which controls the relative amount of transferred momentum. Lang (1977) established this
parameter through experiments at Cf ≈ 0.3, but it can vary significantly between shock absorber geometries
due to differences in piston geometry design and the resulting flow paths, which directly affect the impact
angle of the jet on the valve surface and thus the effective area (Hős et al., 2014). The valve opening section
Av (x) = αPx = απdvx is a direct function of the product of perimeter and valve displacement, which gives
a generated surface for the flow. The flow proportionality coefficient α is used to adjust the actual flow area
depending on the geometry. An alternative definition of the momentum force, Fm = ṁu0, can be given as
a function of mass flow rate ṁ and inlet mean flow velocity u0.

Impact force. The effect of impact at the lower and upper bounds x1 and x2 is modelled by a force term

Fi (x) =


−ki (x− x1) , x ≤ x1,

0, x1 < x < x2,

−ki (x− x2) , x ≥ x2,

(5)

which models the repulsion using a stiff spring constant ki = 1×1010 Nm−1 that is considerably larger than
the system stiffness (ki ≫ k).

Pretension force. The constant force F0 can be controlled via pretension of the spring acting on the valve.
Its purpose is the targeted delay of opening during initial pressure increase.

Volumetric flow rates. The total volumetric flow rate Q is introduced to the system by displacement due to
road irregularities. Furthermore, the definitions of the valve flow rate

Qv (x, p) = Cd,v απdvx︸ ︷︷ ︸
Av(x)

√
2∆p

ρ
, (6)

and of the flow rate through the constant bleed orifice

Qb (p) = Cd,bAb

√
2∆p

ρ
, (7)

follow directly from the Bernoulli equation, which is considered to accurately describe the flow across the
piston under the premise that the discharge coefficients Cd,v and Cd,b are accurately chosen to reflect the
transition from laminar to turbulent flow, as suggested by Segel and Lang (1981). As introduced through
Fig. 1, the bleed orifice is a constriction of constant cross section in the centre of the shock absorber piston,
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while the valve lift leads to a variable opening. The effect of both paths is a cumulative flow rate and
pressure drop across the shock absorber.

Using the above definitions, Eq. (1)-(2) can be rewritten as a three-dimensional, first-order system

ẏ1 = y2, (8)

ẏ2 =
1

m
[−cy2 − ky1 + Fp (y3) + Fm (y1, y3) + Fi (y1)− F0] , (9)

ẏ3 =
1

βV
[Q−Qv (y1, y3)−Qb (y3)] , (10)

where y⃗ = (y1, y2, y3) = (x, ẋ, p).
The system (8)-(10) can subsequently be used for numerical integration within a large parameter space.

By varying the flow rate Q and certain valve properties, the dynamics and transitions from stable to unstable
states are investigated in Sec. 3.2 and Sec. 3.3. Numerical integration is carried out by schemes capable
of dealing with stiff equations and non-smooth systems, such as ODE15s or ODE23s in MATLAB. For the
data displayed in multi-dimensional parameter spaces, such as the plots depicting valve displacement as a
function of flow rate and model parameters in Sec. 3.3, task farming on a computing cluster is applied,
which allows for the parallel integration of many single-core cases for sufficiently long runtimes.

2.2. Chaotic indicators

2.2.1. Lyapunov exponents

Lyapunov characteristic exponents (LCE) are a well-known tool to gauge the rate of separation from
an orbit point in Rm along its m orthogonal directions. In three dimensions, this leads to a set of three
Lyapunov exponents,

Lk = lim
t→∞

(
1

t
ln

[
w⃗k (t)

w⃗k (0)

])
= lim

t→∞

(
1

t
ln [r⃗k (t)]

)
, (11)

indicating the shrinking or stretching of orthogonal axes r⃗k (t) that span the state space with k = 1, . . . ,m
at time t. If the largest Lyapunov exponent settles to a non-zero, positive value, this gives an indication of
chaotic motion, since infinitesimally close initial conditions result in orbits that diverge exponentially fast
in time (Alligood et al., 1996).

2.2.2. Smaller Alignment Index (SALI)

An alternative to Lyapunov exponents for the detection of chaos is the Smaller Alignment Index (SALI)
(Skokos et al., 2003, 2004), which is defined as

SALI (t) = min

{∥∥∥∥ w⃗1 (t)

∥w⃗1 (t)∥
+

w⃗2 (t)

∥w⃗2 (t)∥

∥∥∥∥ ,∥∥∥∥ w⃗1 (t)

∥w⃗1 (t)∥
− w⃗2 (t)

∥w⃗2 (t)∥

∥∥∥∥} . (12)

It uses the fact that any two randomly chosen initial deviation vectors w⃗1 (0), w⃗2 (0) will eventually become
aligned with the most unstable direction with the angle between them tending to zero. Since one is only
interested in the direction of the deviation vectors, they are only normalized at each timestep and not
orthogonalized, which is a crucial difference to the computation of Lyapunov exponents and saves computing
time. In the case of chaotic orbits the normalized vectors align and point to the same (or exactly opposite)
direction. Thus the norm of their sum (antiparallel alignment index ) or difference (parallel alignment index )
tends to zero. It follows from Eq. (12) that generally SALI (t) ∈

[
0,
√
2
]
, with limt→∞ SALI (t) = 0 being a

clear indication of chaos. SALI provides information on the instantaneous changes of the dynamics and is
therefore an important additional quantity for chaotic indication. While Lyapunov exponents show the long-
term persistent trend of a dynamical system either towards order or chaos, in particular after convergence
and considerable integration time, SALI is able to identify also transient chaos and is especially relevant for
the analysis of short-lived oscillations of realistic, dissipative systems, such as the one studied in this paper.

5



2.3. Validation

Extensive validation of the model (8)-(10) has been carried out both against fluid-structure interaction
(FSI) simulation data in Schickhofer and Wimmer (2022) as well as against experimental test bench data of
damping curves in Schickhofer (2022). A typical approach in suspension engineering has been carried out
in these measurements: Using a time-resolved dynamometer with controlled sinusoidal mass flow input of
ground excitation wg = 2πfg,

ṁ (t) = ṁmax (t) sin (ωgt) ,

the pressure drop across the hydraulic shock absorber valve has been measured and compared to the pressure
output of the model. Here, a reference frequency of ground excitation of fg = 8Hz has been chosen. Since
the pressure reduction across the valve system is directly coupled to the other model variables, such as
valve opening displacement, this constitutes a sufficient setup for valve model validation. Figure 2 shows
a comparison of numerically obtained pressure loss from the system (8)-(10) against test bench data of
a realistic shock absorber including a hydraulic pressure relief valve of 0, 15, and 29Clicks, where Clicks
refers to a common configuration unit for the adjustment of the bleed orifice area (Ab = 0mm2 at 0Clicks,
Ab = 1.4mm2 at 15Clicks, Ab = 2.7mm2 at 29Clicks). The other baseline model parameters of the
check valve are given by the values from Appendix A. It can be seen that the agreement between the
model’s prediction and the test bench measurements is satisfactory and lies consistently below 4% for the
compression stroke of positive pressure drop values and the rebound stroke of negative values in Fig. 2.

Figure 2: Numerically computed pressure loss of a realistic damper including a pressure-relief valve modelled by the system
(8)-(10) compared against test bench measurements.

3. Results

In the following, both direct analytical approaches, as well as numerical integration of the first-order
system (8)-(10) are performed to investigate the characteristics of the valve dynamics. While Sec. 3.1 offers
a mathematical formulation for the immediate computation of equilibrium states in the valve motion, Sec.
3.2-3.2 explore the physical consequences of crucial parameter changes of the system. The three-dimensional
dynamical system, as introduced by Eq. (8)-(10) is solved with the values for its model parameters as
presented in Appendix A. Wherever specific parameters are varied, this is noted in text and figures.
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3.1. Fixed points

The investigation of fixed points of a dynamical system is valuable for a number of reasons: First of
all, they give the long-term state to which the system converges after all initial transients have disappeared
and constitute important stable solutions for a given set of initial and boundary conditions. Additionally, if
analytical expressions can be found for these critical points, no numerical integration is necessary for their
computation, which is an important mathematical property.

In order to find the fixed points of the system (8)-(10), its gradients must vanish such that

˙⃗ye =
∂y⃗

∂t

∣∣∣∣
y⃗e

= f⃗ (y⃗e) = 0⃗, (13)

which gives

y2 = 0, (14)

−ky1 + Fp (y3) + Fm (y1, y3) + Fi (y1)− F0 = 0, (15)

Q−Qv (y1, y3)−Qb (y3) = 0. (16)

Equation (14) simply enforces zero velocity of the valve at equilibrium, while Eq. (16) recovers essentially
the conservation of volume across the control domain. Thus, there will be no compressibility effects at fixed
points of the system. As a result, Eq. (15) is analysed as the main equation of state involving valve opening
y1 and acting pressure y3:

y1 =
1

k
(Fp (y3) + Fm (y1, y3) + Fi (y1)− F0)

=
1

k

Apy3 +
Cfρ

Ap

(
απdvCd,vy1

√
2y3
ρ

)2

− ki
(
y1 − x1/2

)︸ ︷︷ ︸
∀y1≤x1∧y1≥x2

−F0

 . (17)

This is a quadratic equation that can be rewritten to give an expression for y1. By rearranging and defining
constant coefficients, we obtain

2Cf

kAp
(απdvCd,v)

2

︸ ︷︷ ︸
a

y21y3 −
(
1 +

ki
k

)
y1 +

Ap

k︸︷︷︸
b

y3 +
ki
k︸︷︷︸
c

x1/2︸︷︷︸
d

− F0

k︸︷︷︸
e

= 0,

which can be rewritten as
ay3y

2
1 − (1 + c) y1 + by3 + cd− e = 0. (18)

Equation (16) can be further applied to get a relationship between displacement y1 and pressure y3:

y3 =
ρ

2

(
Q

Cd,vαπdvy1 + Cd,bAb

)2

=
ρQ2

2︸︷︷︸
h

1Cd,vαπdv︸ ︷︷ ︸
f

y1 + Cd,bAb︸ ︷︷ ︸
g


2 ,

which results in

y3 =
h

(fy1 + g)
2 . (19)
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By using Eq. (19) for Eq. (18), one ends up with an equation of third order in y1:

ay21
h

(fy1 + g)
2 − (1 + c) y1 + b

h

(fy1 + g)
2 + cd− e = 0,

ahy21 − (1 + c) (fy1 + g)
2
y1 + (cd− e) (fy1 + g)

2
+ bh = 0. (20)

In order to alleviate the analytical treatment, three cases are distinguished that reflect typical realistic
conditions of the shock absorber:

Case 1: Fi = 0, F0 = 0. For motion of the valve with vanishing impact force and pretension, this case gives
a reasonable approximation. It leads to the following expression:

ahy21 − (fy1 + g)
2
y1 + bh = 0,

f2y31 + (2fg − ah) y21 + g2y1 − bh = 0,

y31 +
2fg − ah

f2︸ ︷︷ ︸
A

y21 +
g2

f2︸︷︷︸
B

y1 −
bh

f2︸︷︷︸
C

= 0. (21)

Thus, the resulting relationship can be written as a third-order equation in y1 of the type y
3
1+Ay21+By1−C =

0, which can be solved by

y1 ≈0.26457
3

√
−2A3 + 5.1962

√
−4A3C −A2B2 + 18ABC + 4B3 + 27C2 + 9AB + 27C

−
0.41997

(
3B −A2

)
3
√

−2A3 + 5.1962
√
−4A3C −A2B2 + 18ABC + 4B3 + 27C2 + 9AB + 27C

− 0.33333A. (22)

Case 2: Fi = 0, F0 ̸= 0. If pretension force is applied and regular smooth motion without impact is
considered, we get

ahy21 − (fy1 + g)
2
y1 − e (fy1 + g)

2
+ bh = 0,

f2y31 + (2fg − ah+ ef) y21 +
(
g2 + 2efg

)
y1 − bh+ eg2 = 0,

y31 +
2fg − ah+ ef

f2︸ ︷︷ ︸
A

y21 +
g2 + 2efg

f2︸ ︷︷ ︸
B

y1 −
bh− eg2

f2︸ ︷︷ ︸
C

= 0, (23)

which can be solved in a similar fashion as above:

y1 ≈0.26457
3

√
−2A3 + 5.1962

√
−4A3C −A2B2 + 18ABC + 4B3 + 27C2 + 9AB + 27C

−
0.41997

(
3B −A2

)
3
√

−2A3 + 5.1962
√
−4A3C −A2B2 + 18ABC + 4B3 + 27C2 + 9AB + 27C

− 0.33333A. (24)

Case 3: Fi ̸= 0, F0 ̸= 0. For the case of acting impact and pretension forces, which involves all terms of
Eq. (20), we can attempt a comparison of the order of present forces. Since the stiffness of the impact force
term is several orders of magnitude larger than the system’s stiffness (ki/k ≈ 106), we can approximate Eq.
(20) by

−c (y1 + d) = 0, (25)

which leads to the fixed points
y1 = d = x1/2, (26)
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at the lower and upper bound of the impact oscillator (cf. Fig. 1). These are pseudo-equilibria of the
non-smooth dynamical system, which are defined exclusively by the discontinuities of the domain.

With the analytically obtained expressions for equilibrium displacements of Eq. (22) and Eq. (26),
together with the definition of Eq. (19) for the related pressure, one has the possibility of computing those
valve parameters without numerically integrating system (8)-(10). Figure 3 shows a comparison of analytical
and numerical solutions for relevant flow rates. After initial transients have subsided, the time-dependent
numerical result settles to an equilibrium and the two solutions are identical.

(b)(a)

Figure 3: Analytically computed equilibrium solutions for displacement and pressure compared to the results from numerical
integration of the system (8)-(10) for typical volumetric flow rates of [2, 4, 8, 14, 20] L/min.

3.2. Valve opening characteristics

An important aspect of valve dynamics is the opening behaviour during increase of the flow rate. In this
section, we investigate the possibility of popping-off instabilities or valve chattering during opening, as well
as the occurrence of oscillations during impact at the boundaries of the non-smooth system (8)-(10). The
impact force (5) is acting at x1 = 0mm and x2 = 1.7mm (cf. Appendix A) in this setup, which are valve
seat values for shock absorber applications.

Depending on the flow velocity magnitudes, the valve might show delays in settling to an equilibrium
state. This effect is demonstrated in Fig. 4 and occurs due to initial vibrations and further violent chattering
during closing, especially at intermediate to high flow rates. Initially, there are persistent instabilities at low
volume flow due to the fact that the forces acting on the valve are of similar order of magnitude (cf. Eq.
(1)). After recovery to a constant delay of equilibrium above approximately 50 L/min, it increases linearly
with the applied volume flow at higher flow rates at above 200L/min. Thus, there is a clear indication of an
ideal range of operation of the shock absorber valve with respect to the fluid flow it can handle. Predictable
and largely constant opening characteristics are obtained for volumetric flow rates of 60–190L/min.

3.3. Parametric studies

The impact of various parameter changes is studied below, where crucial quantities such as the bleed
orifice area, mass, or pretension are varied (cf. Sec. 2.1). All parameter ranges are chosen based on a
realistic check valve model as it would occur in a hydraulic shock absorber and using the baseline properties
from Appendix A.
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(b)(a)

Figure 4: Dynamics of valve opening for a range of 0–1000L/min (a) and 0–100L/min (b). The time needed for reaching the
opening amplitude at 1.7mm is shown together with a black dashed line indicating the point at which the solution has settled
to equilibrium and all gradients of the first-order system (8)-(10) have vanished.

3.3.1. Bleed orifice area

The cross-sectional area of the bleed orifice regulates the flow through the constant orifice of the valve, as
detailed in Eq. (7). It thereby generates a pressure loss due to flow constriction and subsequent expansion,
which occurs in parallel to the flow losses through the spring-loaded valve. Fig. 5 reflects the fact that
changes in the bleed orifice area have a linear effect on the valve dynamics. The orbits change only slightly
in magnitude, but the underlying motion pattern stays the same. Therefore, all dynamic motion captured
in Fig. 5 can be considered stable.

3.3.2. Mass

A crucial parameter for the dynamic behaviour of a pressure relief valve is its mass. It can be seen from
Fig. 6 that an increase of mass has a potentially destabilizing effect due to larger inertia. This leads to
violent chattering, a boundary effect of non-smooth dynamical systems and impact oscillators, which entails
a series of impacts that cause vibrations of the valve in real applications (Mora, 2013). Table 1 indicates the
fundamental stability properties of the valve at different mass and flow rates. This nonlinear phenomenon
intensifies at higher flow rates and causes sustained loops, or even surfaces, along which the trajectories
oscillate (cf. Fig. 6(b)-(d)). The tendency of the valve to show stable oscillations thereby clearly increases
at higher mass, as further demonstrated by the Fourier transformation of the displacement time series data
shown in Fig. 7. Additionally, the sections through the parameter space in Fig. 8 reveal ranges of volumetric
flow rates of sustained oscillations visualized in black that extend to lower flow rates within the sections of
higher masses. Furthermore, initial instabilities during valve opening are bleeding into lower flow rates at
intermediate mass, as indicated by the isolated patches of higher displacement in Fig. 8(b).

Table 1: Stability map summarizing the results of Fig. 6 for various mass values and flow rates, where the symbol × means
stable and ◦ means unstable.

Flow rate Q
Mass m

0.0005 kg 0.0105 kg 0.0205 kg 0.0305 kg

10Lmin−1 × × × ×
50Lmin−1 × ◦ ◦ ◦
100Lmin−1 × ◦ ◦ ◦
500Lmin−1 × ◦ ◦ ◦
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(d)(c)

(b)(a)

Figure 5: Orbits in phase space of displacement, velocity, and pressure for specific values of the bleed orifice area and increasing
flow rates of Q = 10Lmin−1 (a), Q = 50Lmin−1 (b), Q = 100Lmin−1 (c), and Q = 500Lmin−1 (d).
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(d)(c)

(b)(a)

Figure 6: Phase space with trajectories for various valve masses and increasing flow rates of Q = 10Lmin−1 (a), Q = 50Lmin−1

(b), Q = 100Lmin−1 (c), and Q = 500Lmin−1 (d).

(b)(a)

Figure 7: Displacement time series (a) and Fourier transformation (b) for realistic volumetric flow rates and the chosen mass
values.
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(b)(a)

Figure 8: Parameter space of valve displacement as a function of mass, time, and flow rate in a range of 0–100L/min (a) and
0–50L/min (b).
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3.3.3. Pretension

The pretension force applied to a shock absorber valve delays opening and causes an overall higher
pressure drop. However, there is a problematic side effect of using a loaded spring for pretension: Particularly
at lower volumetric flow rate and during the initial phase of opening there is a tendency to trigger instability
and oscillations, which is visible in Fig. 9 and Tab. 2. In Fig. 9(a) the orbits in phase space exist on geometric
structures similar in appearance to a chaotic attractor. Also Fig. 10 gives indications to aperiodic motion:
While strong oscillatory behaviour can be recognized for all considered pretension force values, the motion
undergoes a transition from relatively unordered vibrations without distinct frequencies at lower flow rates
to regular periodic oscillations at frequencies of 2100–2900Hz. The transient character of this unwanted
valve response becomes obvious by investigating the parameter spaces of Fig. 11, where the black areas
again indicate strong vibrations that are dominant when the terms for opposing forces in Eq. (1), such as
the pressure force and momentum force on the one hand, and the pretension force on the other hand, become
similar in magnitude. As soon as the volumetric flow rate is larger than a threshold value for the considered
pretension, valve oscillations subside. This effect is also underlined by Tab. 2, which shows stable motion
at intermediate to high flow rates above 100Lmin−1 for all pretension values.

(d)(c)

(b)(a)

Figure 9: Orbits in phase space of displacement, velocity, and pressure for specific values of pretension and increasing flow
rates of Q = 10Lmin−1 (a), Q = 50Lmin−1 (b), Q = 100Lmin−1 (c), and Q = 500Lmin−1 (d).

In order to further investigate the nature of the oscillatory motion described above, chaotic indicators
are applied to the cases with pretension leading to orbits resembling chaotic trajectories. As visible in
Fig. 9, these are in particular pretensions of F0 = 30N and F0 = 60N. Figure 12 shows the evolution
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Table 2: Stability map for the considered pretension values and flow rates of Fig. 9, where × indicates a stable setup and ◦ an
unstable one.

Flow rate Q
Pretension F0 0N 30N 60N 90N

10Lmin−1 × ◦ ◦ ◦
50Lmin−1 × ◦ ◦ ◦
100Lmin−1 × × ◦ ◦
500Lmin−1 × × × ×

(b)(a)

Figure 10: Displacement in the time (a) and frequency domain (b) for a range of volumetric flow rates.
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(b)(a)

Figure 11: Parameter space with displacement as a function of pretension, time, and volumetric flow rate in the range of
0–100L/min (a) and 0–50L/min (b).
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of the Lyapunov exponents in time. It becomes clear from the double-logarithmic plot that it tends to
zero. Nevertheless, intermediate ranges around t = 10−4 show a highly unsteady behaviour of the Lyapunov
exponents, which are possibly related to transient chaos. Moreover, the time series of SALI in Fig. 13 shows
values that never fully settle below SALI (t) ≤ 10−12. This confirms the notion of the consistently decreasing
Lyapunov exponents from above and gives convincing reason to believe that the observed orbits of Fig. 9
are indeed ordered and periodic, despite their Fourier-transformed trajectories of Fig. 10(b) showing only
weak frequency information. However, the initial SALI time evolution in Fig. 13(a)-(b) for the pretension
values of F0 = 30N and F0 = 60N has a sharp exponential decline hinting once again to transient chaotic
behaviour.

(a) (b)

Figure 12: Lyapunov exponents of the system at a pretension of F0 = 30N (a) and F0 = 60N (b) for t → 1 s in double-
logarithmic plot.

(a) (b)

Figure 13: Time evolution of SALI at a pretension of F0 = 30N (a) and F0 = 60N (b) for t → 1 s in logarithmic plot.
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3.3.4. Spring stiffness

An increase in stiffness of the spring loading the valve shows a strong influence on the equilibrium solution
to which the motion settles. However, the basic dynamics of the blowing-off or popping-off process is not
affected (cf. Fig. 14). In particular, there is a clear initial overshooting of trajectories at intermediate to
high stiffnesses of around 5100Nm−1 to 7600Nm−1, as visible in Fig. 15. This is probably due to a delayed
reaction of the valve to the stronger spring forcing. Furthermore, Fig. 16 shows a gradual diminution of the
opening amplitude at increasing values of spring stiffness, especially at small to intermediate flow rates up
to approximately 70Lmin−1.

(d)(c)

(b)(a)

Figure 14: Phase space with trajectories for the system’s variables at various values of the spring stiffness and at flow rates of
Q = 10Lmin−1 (a), Q = 50Lmin−1 (b), Q = 100Lmin−1 (c), and Q = 500Lmin−1 (d).

3.3.5. Damping

Both structural and fluid damping is taken into account in the resulting damping coefficient of the
system. This makes it difficult to quantify its exact value through experiments. In the following, the impact
of its typical parameter ranges on the valve dynamics is investigated. Figure 17 shows a significant reduction
of velocity already at intermediate values, pushing the orbits into displacement-pressure planes. Moreover,
any chattering motion, which is significant at low damping of c < 100N sm−1, effectively vanishes at
c > 200N sm−1, even for large volumetric flow rates. It can be recognized in Fig. 18 that the valve opening
is also significantly delayed at higher damping, causing a shift in displacement amplitudes and opening
times. This effect is occurring at all flow rates, but more severely at the lower range (cf. Fig. 19).
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(b)(a)

Figure 15: Time series of displacement data for various stiffness values and flow rate ranges of 0–100L/min (a) and 0–50L/min
(b).

(b)(a)

Figure 16: Parameter space of displacement as a function of stiffness, time, and flow rate ranges of 0–100L/min (a) and
0–50L/min (b).
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(d)(c)

(b)(a)

Figure 17: Orbits in phase space for various damping coefficients at volumetric flow rates of Q = 10Lmin−1 (a), Q = 50Lmin−1

(b), Q = 100Lmin−1 (c), and Q = 500Lmin−1 (d).

(b)(a)

Figure 18: Displacement time series for increasing values of the damping coefficient and flow rates of 0–100L/min (a) and
0–50L/min (b).
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(b)(a)

Figure 19: Displacement in a parameter space of damping coefficient, time, and volumetric flow rate of 0–100L/min (a) and
0–50L/min (b).
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3.3.6. Compressibility

A change in compressibility is the most likely reason for strong hysteresis effects of pressure relief valves
in shock absorbers, as described in some detail by Duym et al. (1997b). The compressibility of hydraulic
oils can increase due to several reasons such as oil quality, thermal expansion, or dissolved gas phase in the
form of air bubbles. Particularly the presence of air in the mineral oil can alter the nominal resistance to
compression. As Fig. 20 shows, higher compressibility clearly leads to a damping effect on all variables,
introducing unpredictability and irreversibility to the system. This is one of the reasons why resulting
damping force characteristics of the shock absorber do not coincide with compression and rebound strokes,
despite comparable valves for both phases.

(d)(c)

(b)(a)

Figure 20: Orbits in phase space for discrete values of compressibility at volumetric flow rates of Q = 10Lmin−1 (a), Q =
50Lmin−1 (b), Q = 100Lmin−1 (c), and Q = 500Lmin−1 (d).

4. Conclusions

The basic function of the shim valves within a shock absorber resembles that of an impact oscillator, a
non-smooth dynamical system that shows a multitude of nonlinear effects such as grazing bifurcations and
chaotic motion (Di Bernardo et al., 2008). Such effects can be detrimental and can compromise the regular
function of the shock absorber by drastically increased response times or even complete loss of damping at
high excitation frequencies and flow rates through the valve system. These effects are further complicated
by the presence of multiple phases in the shock absorber (mineral oil in the main chamber, nitrogen in the

22



gas reservoir). Due to this inherently nonlinear behaviour, it is of vital importance to understand the impact
that parameter changes have on the dynamic features of a shock absorber pressure relief valve and on the
nature of its motion (i.e. steady, periodic, aperiodic, or chaotic).

Regarding the main research questions outlined in Sec. 1, the following findings are documented:

• The quantitative value of shock absorber variables, such as valve displacement, velocity, and pressure,
can be computed at its critical points for any set of boundary conditions and system properties by
using the analytical expressions of Eq. (22) and Eq. (19) for the case without impact (Fi = 0) and
Eq. (26) for the case with impact (Fi ̸= 0), where the fixed points are pseudo-equilibria defined by
the bounds of the domain.

• It is shown in Sec. 3.3 that while certain parameters, such as the bleed orifice cross-sectional area
have a predictable, linear effect of the motion of the valve, other parameters, such as the mass and
pretension of the spring-loaded valve show a tendency to destabilize the system under the current
setup. This effect of the pretension force has also been noted by Hős et al. (2015) with respect to
instability mechanisms of spring-loaded pressure relief valves in gas service. Although shock absorbers
operate with a viscous fluid and are therefore highly dissipative, we could detect instability towards
transient chaos in analogy to this study. An increase in valve mass leads to a notable occurrence of
low to medium frequency tonality in the range of 400–1200Hz and at medium to high volumetric flow
rates of 40–500Hz (cf. Sec. 3.3.2). In contrast, the application of a pretension force leads to sustained
periodic and non-periodic motion (cf. Sec. 3.3.3).

• The oscillatory behaviour summarized above is further analysed by using chaotic indicators, which
quantify the level of order and chaos in the system and provide a measure of the time needed for
transient chaos to subside. Moreover, Fourier transformations alone already give a good indication of
the periodicity of the valve motion. It is shown that intermediate values of pretension, as mentioned
above, lead initially to aperiodic, transient chaotic valve dynamics, which are eventually damped out
due to the high dissipation of the investigated system. The chaotic indicator SALI is shown to be a
potent method for the detection of transitory chaos in dissipative systems, such as the one studied here,
due to its ability to gauge the immediate dynamical state, as opposed to the indication of long-term
behaviour by the Lyapunov exponents.

Based on the above conclusions, it becomes clear which quantities and parameter ranges lead to unsteady,
vibratory valve response and to potentially dangerous loss of function due to instabilities. The results
presented in Sec. 3 are a direct extension to the study of the non-dimensional valve model by Schickhofer
and Wimmer (2022), which investigated the exact onset of instabilities and Hopf bifurcations for realistic
flow rates by application of the Routh-Hurwitz criterion.

Direct conclusions for the effective design of common shock absorber valves can be drawn from the data
presented in this paper: The valve mass should be kept as low as possible to ensure dynamic stability
throughout the entire flow rate regime. Additionally, if pretension (e.g. by springs) is applied, this should
be carefully adjusted for the operating flow rate, such that no strong valve oscillations are excited due to
pretension and impact rebound force being of the same order of magnitude. Consequently, by taking into
account the global stability results from Tab. 1 and Tab. 2, one can choose a balanced setup between mass,
pretension, and target flow rate. Finally, the approach described in Sec. 2 can be applied to other hydraulic
valve systems to gain valuable information on their stability and nonlinear dynamics.
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Appendix A. Baseline system properties

Below the values for the model quantities of the shock absorber valve are given. They are based on a
realistic pressure relief valve setup for the purpose of flow control in a suspension system. Wherever different
values are chosen, this is explicitly stated in the text.

Table A.1: Properties of the valve system.

Parameter Symbol Value Unit

Mass m 6.8768× 10−4 kg
Spring constant k 200 Nm−1

Impact stiffness ki 1010 Nm−1

Damping coefficient c 10 N sm−1

Pretension force F0 0.35 N
Pressure area Ap 7.2150× 10−5 m2

Bleed orifice section Ab 2.7× 10−6 m2

Discharge coefficient of valve opening Cd,max,v 0.6 −
Discharge coefficient of bleed orifice Cd,max,b 0.6 −
Momentum coefficient Cf 0.3 −

Table A.2: Properties of the mineral oil.

Parameter Symbol Value Unit

Reference density ρ0 830 kgm−3

Reference compressibility β0 7.6× 10−10 Pa−1

Kinematic viscosity ν 2.3× 10−5 m2 s−1

Control volume V 1× 10−4 m3
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