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Redundant relators in cyclic presentations of groups
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Abstract. A cyclic presentation of a group is a presentation with an equal number of
generators and relators that admits a particular cyclic symmetry. We characterise the ori-
entable, non-orientable, and redundant cyclic presentations and obtain concise refinements
of these presentations. We show that the Tits alternative holds for the class of groups de-
fined by redundant cyclic presentations and show that if the number of generators of the
cyclic presentation is greater than two, then the corresponding group is large. Generalising
and extending earlier results of the authors, we describe the star graphs of orientable and
non-orientable cyclic presentations and classify the cyclic presentations whose star graph
components are pairwise isomorphic incidence graphs of generalised polygons, thus clas-
sifying the so-called .m; k; �/-special cyclic presentations.

1 Introduction

A group presentation is said to be redundant if it contains a freely redundant rela-
tor, that is, if it has a relator that is either freely trivial or that is freely conjugate
to another relator or to the inverse of another relator. A presentation with no freely
redundant relators is called concise, and a concise presentation obtained by remov-
ing freely redundant relators from a presentation is called a concise refinement of
that presentation [9]. A cyclic presentation is a presentation with an equal num-
ber of generators and relators that admits a particular cyclic symmetry, and the
corresponding group is called a cyclically presented group [22]. Redundant cyclic
presentations are either orientable if no relator is a cyclic permutation of the in-
verse of any other relator, or non-orientable otherwise [2].

In this paper, we classify the redundant cyclic presentations, we show that the
class of groups defined by such presentations satisfies the Tits alternative, and as
a companion piece to [8], we classify the (redundant and concise) .m; k; �/-special
cyclic presentations (that is, the cyclic presentations with length k relators, where
the star graph has � isomorphic components, each of which is the incidence graph
of a generalised m-gon).
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The paper is organised as follows. In Section 2, we give relevant definitions and
background. In Section 3, we observe that redundant cyclic presentations are ubiq-
uitous, in the sense that, for any n � 2 and any non-empty word u in the free group
of rank n, it is possible to construct both orientable and non-orientable redundant
cyclic presentations using these n; u. We classify the orientable (redundant and
concise) presentations and classify the non-orientable cyclic presentations; in each
case, we obtain concise refinements of these presentations. In Section 4, we show
that if a redundant cyclic presentation has more than two generators, then the group
it defines is large, and in particular, motivated by [13, Problem 2] (which asks
which groups defined by .m; k)-special cyclic presentations are large), we observe
that groups defined by redundant .m; k; �/-special cyclic presentations are large.
We show that the Tits alternative holds for the class of groups defined by redundant
cyclic presentations, and we investigate which redundant cyclic presentations with
two generators define groups that contain a non-abelian free subgroup, providing
a classification in the orientable case. In Section 5, we generalise [8, Theorem 3.3]
to describe the star graphs of orientable and non-orientable cyclic presentations.
In Section 6, we extend the classification in [8, Sections 5, 6] to classify the (re-
dundant and concise) .m; k; �/-special cyclic presentations. In particular, we show
that if a cyclic presentation is .m; k; �/-special, wherem � 3, thenm D 3, the pre-
sentation is orientable, and the defining word is positive or negative, and we show
that if a redundant cyclic presentation is .m; k; �/-special, then 1=mC 2=k < 1
and hence defines a non-elementary hyperbolic group.

2 Preliminaries

2.1 Presentations and cyclic presentations of groups

Given a positive integer n, let Fn be the free group with basisX D ¹x0; : : : ; xn�1º.
A non-empty word w 2 Fn is said to be positive or negative if all of the exponents
of generators are positive or negative, respectively. (In particular, generators xi
are positive, and their inverses x�1i are negative.) We shall say that a word w of
length at least 2 is alternating if it has no subword of the form .xixj /

˙1 and that
it is cyclically alternating if it has no cyclic subword of that form. Thus a word is
cyclically alternating if and only if it is alternating and has even length. A word w
is reduced if it does not contain a subword of the form xix

�1
i or x�1i xi ; it is cycli-

cally reduced if all cyclic permutations of it are reduced. If w 2 Fn is a cyclically
reduced, non-empty, word, then the unique word v 2 Fn such that w D vp with
p maximal is called the root of w. We shall write l.w/ to denote the length of w
in Fn. Throughout this article, equality of words will refer to equality of elements
of the free group Fn.
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When considering group presentations hX jRi, R will be a set of relators (so
does not contain any relator more than once), all of whose elements are cycli-
cally reduced. Let � WFn ! Fn be the shift automorphism given by �.xi / D xiC1,
where (as throughout this article) subscripts are taken mod n. Given a non-empty
cyclically reduced word w representing an element in Fn, the words � i .w/, where
0 � i < n and 1 � i < n, are the shifts and proper shifts of w, respectively, the
presentation

Pn.w/ D hx0; : : : ; xn�1 jw; �.w/; : : : ; �
n�1.w/i

is a cyclic presentation, the groupGn.w/ it defines is a cyclically presented group,
and w is the defining word [22]. Without loss of generality, we may assume that
the generator x0 is a letter of w, and we make this assumption throughout this
article. Then Pn.w/ is said to be irreducible if the greatest common divisor of n
and the subscripts of the generators that appear in w is equal to 1 [11]. The shift
automorphism � satisfies �n D 1, and the resulting Zn-action on Gn.w/ deter-
mines the shift extension E D Gn.w/ Ì� Zn, which admits a presentation of the
form hx; t j tn; W.x; t/i, where W.x; t/ is obtained by rewriting w in terms of the
substitutions xi D t ixt�i , 0 � i < n (see, for example, [23, Theorem 4]).

For 1 � t � n, we define the t -truncation of Pn.w/ to be the presentation

Pn;t .w/ D hx0; : : : ; xn�1 jw; �.w/; : : : ; �
t�1.w/i

and denote byGn;t .w/ the group that it defines. Let �WFn ! Fn be the cyclic per-
mutation function that cyclically permutes a word by one generator (or the inverse
of a generator), with inverse ��1. That is, �.x�1p1x

�2
p2 : : : x

�k
pk / D x

�2
p2 : : : x

�k
pkx

�1
p1

(0 � pi < n, �i D ˙1, 1 � i � k). Then � and � commute, and if w is a cycli-
cally reduced word of length k, then �k.w/ D w. It follows that if w is a cycli-
cally reduced word of length k that is equal to a cyclic permutation of the shift
�h.w/, then a cyclic permutation of w is equal to the shift � .n;h/.w/, and if a shift
of w is equal to a cyclic permutation �t .w/ of w, then a shift of w is equal to
the cyclic permutation �.k;t/.w/. Consider, for example, P6.x0x1x2x3x4x5/ with
h D 4 and t D 4. (To see the first claim, let ˛; ˇ 2 Z satisfy ˛hC ˇn D .n; h/,
and observe that w is equal to a cyclic permutation of

�˛h.w/ D �˛hCˇn.w/ D � .n;h/.w/:

Similar arguments hold for the second claim.) Moreover, �r.vp/ D .�r.v//p and
�h.vp/ D .�h.v//p for any h; r; p � 1, so if w D vp, where v is the root of w,
then �h.w/ D �r.w/ if and only if �h.v/ D �r.v/. We will write �.w/; �.w/ to
denote the initial and terminal letters of a word w, respectively.
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Following [2, page 160], given a group presentation P D hX jRi, an element
r 2 R is said to be freely redundant if it is freely trivial or if there exists another
element s 2 R such that r and s are elements of the free group with basis X and
either r is freely conjugate to s or r is freely conjugate to s�1 (that is, either r is
a cyclic permutation of s or of s�1). A presentation is said to be redundant if it
contains a freely redundant relator and is concise otherwise [9, page 4]. (Concise
presentations are referred to as slender presentations in [3, page 5] or irredundant
presentations in [28, page 82].) If a presentation P 0 is obtained from a presentation
P by removing freely redundant relators, then we say that P 0 is a refinement of P ,
and if, in addition, P 0 is concise, we say that it is a concise refinement of P (com-
pare [9, page 4]). A cyclic presentation Pn.w/ is orientable if w is not a cyclic
permutation of the inverse of any of its shifts [2, page 155] and is non-orientable
otherwise. Thus an orientable cyclic presentation is redundant if and only if w is
equal to a cyclic permutation of one of its proper shifts, and if a cyclic presenta-
tion is non-orientable, then it is redundant. As examples, the cyclic presentation
P2.x0x1/ is orientable and redundant, P3.x0x1/ is orientable and concise, and
P2.x0x

�1
1 / is non-orientable (and therefore redundant).

The deficiency of the presentation P D hX jRi is defined as

def.P / D jX j � jRj;

and the deficiency of a group G, def.G/, is defined to be the maximum of the de-
ficiencies of all finite presentations defining G. A group G is large if it has a finite
index subgroup that has a non-abelian free homomorphic image, and it is SQ-uni-
versal if every countable group embeds in a quotient of G. Every large group is
SQ-universal, and every SQ-universal group contains a non-abelian free subgroup
[27]. Moreover, as noted in [32], the converse to neither of these statements holds
in the class of cyclically presented groups: the Higman group G4.x0x1x�20 x�11 /

is SQ-universal [29] but has no proper finite index subgroup [18] so is not large,
and the groupG7.x0x1x3/, identified in [12, Example 3.3] and [20, Example 6.3],
contains a non-abelian free subgroup [12] but is just-infinite [13, Theorem 2] so
is not SQ-universal. A class of groups is said to satisfy the Tits alternative if ev-
ery group in that class either contains a non-abelian free subgroup or is virtually
solvable.

2.2 Star graphs

Let P D hX jRi be a group presentation and let QR denote the symmetrised clo-
sure of R, that is, the set of all cyclic permutations of elements in R [R�1. The
star graph of P is the undirected vertex-labelled graph � where the vertex set is in
one-one correspondence with X [X�1, vertices are labelled by the correspond-
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ing element of X [X�1, and where there is an edge joining vertices labelled x
and y for each distinct word xy�1u in QR (see [25, page 61]). Such words occur
in pairs, that is, xy�1u 2 QR implies that yx�1u�1 2 QR. These pairs are called in-
verse pairs, and the two edges corresponding to them are identified in � . It follows
that replacing any relator of a presentation by its root, or removing a redundant re-
lator from a presentation, leaves the star graph unchanged; in particular, the star
graphs of a presentation and any concise refinement of it are equal. We refer to
vertices in X as positive vertices and vertices in X�1 as negative vertices.

We now set out our graph theoretic terminology. We allow graphs to have loops
and to have more than one edge joining a pair of vertices. Given a graph � ,
we write V.�/ to denote its vertex set. If � is bipartite with vertex partition
V.�/ D V1 [ V2, where each edge connects a vertex in V1 to a vertex in V2, then
V1; V2 are called the parts of V.�/. Two adjacent vertices are said to be neigh-
bours, and the set of neighbours of a vertex v in a graph � is denoted N�.v/.
A graph � is r-regular if jN�.v/j D r for all v 2 V.�/, and it is regular if it is
r-regular for some r .

A path of length l in � is a sequence of vertices .u D u0; u1; : : : ; ul D v/ with
edges ui � uiC1 for each 0 � i < l ; it is a closed path if u D v. The path is re-
duced if the edge uiC1 � uiC2 is not equal to the edge uiC1 � ui (0 � i < l � 1).
The distance d�.u; v/ between vertices u; v of � is l � 0 if there is a path of
length l from u to v, but no shorter path, and d�.u; v/ D1 if there is no path
from u to v. The girth, girth.�/ of a graph � is the length of a reduced closed
path of minimal length if � contains a reduced closed path, and girth.�/ D1
otherwise. The diameter, diam.�/ of a graph � is the greatest distance between
any pair of vertices of the graph (which may be infinite). If � is a graph with
finite girth, then girth.�/ � 2 diam.�/C 1. For an integer n � 2 and a (multi-)
set A � ¹0; 1; : : : ; n � 1º, the circulant graph circn.A/ is the graph with vertices
v0; : : : ; vn�1 and edges vi � viCa for all 0 � i < n, a 2 A (subscripts mod n). We
define the graph circ0n.A/ to be circn.A/ if n=2 … A and to be circn.A/with exactly
one edge vi � viCn=2 removed for each n=2 � i < n otherwise. For later use, we
note that circn.A/ is the complete bipartite graph Kn=2;n=2 if and only if n=2 is
even and A D ¹˙1;˙3; : : : ;˙.n=2 � 1/º, and circ0n.A/ is the complete bipartite
graphKn=2;n=2 if and only if n=2 is odd andAD ¹˙1;˙3; : : : ;˙.n=2� 2/;n=2º.

2.3 Special presentations

An .m; k; �/-special presentation is a group presentation in which the relators
have length k and whose star graph has � isomorphic components, each of which
is the incidence graph of a generalised m-gon. Formally, we have the following
definition.
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Definition 2.1 ([8, Definition 2.1]). Let m � 2, k � 3, � � 1. A finite group pre-
sentation P D hX jRi is said to be .m; k; �/-special if the following conditions
hold:

(a) the star graph � of P has � isomorphic components, each of which is a con-
nected, bipartite graph of diameter m and girth 2m in which each vertex has
degree at least 3;

(b) each relator r 2 R has length k;

(c) if m D 2, then k � 4.

This generalises the concept of .m; k/-special cyclic presentations introduced
in [13], which corresponds to the case � D 1, which in turn generalises the con-
cept of special presentations introduced in [20] (which corresponds to the case
m D k D 3). The concise cyclic presentations that are .m; k; �/-special were clas-
sified in [8]. We refer the reader to [8, 13] for background and further references
on properties of .m; k; �/-special presentations and the groups they define.

Note that if a presentation is .m; k; �/-special, then it has at least 3 generators.
As in the proof of [13, Theorem 2], a group G defined by an .m; k; �/-special
presentation with 2=k C 1=m < 1 is non-elementary hyperbolic and hence SQ-
universal. If w D vp, where v is the root of w, then the star graph � of Pn.w/ is
equal to the star graph of Pn.v/. Moreover, if v has length 2, then the vertices of
� have degree at most 2, so neither Pn.v/ nor Pn.w/ are .m; k; �/-special. There-
fore, Pn.w/ is .m; pk; �/-special if and only if Pn.v/ is .m; k; �/-special. Thus,
in classifying .m; k; �/-special cyclic presentations Pn.w/, we can assume that w
is not a proper power. For our characterisation of .3; k; �/-special cyclic presen-
tations, we recall that a set of k integers d1; : : : ; dk is called a perfect difference
set (of order k) if, among the k.k � 1/ differences di � dj (i ¤ j ), each of the
residues 1; 2; : : : ; .k2 � k/ mod .k2 � k C 1/ occurs exactly once.

3 Classification of redundant cyclic presentations

3.1 Classification of orientable redundant cyclic presentations

Suppose that Pn.w/ is orientable and that v is the root of w, and recall from
Section 2.1 that a cyclic permutation of w is equal to one of its proper shifts if
and only if a cyclic permutation of v is equal to one of its proper shifts. It follows
that Pn;t .w/ is a concise refinement of Pn.w/ if and only if Pn;t .v/ is a concise
refinement of Pn.v/. Therefore, in this context, we may assume that w is not
a proper power.
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Every non-empty word w 2 Fn has an expression of the form

w D

n=.n;h/�1Y
iD0

� ih.u/ (3.1)

for some u 2 Fn of length l.u/ � 1 and some 0 � h < n, even if only trivially,
with u D w and h D 0. However, as we shall see, if Pn.w/ is orientable and
redundant, then there is an expression (3.1) with u ¤ w and h > 0. (For exam-
ple, P3.x0x1x2/ has such an expression with u D x0 and h D 1.) Therefore, w
satisfies �l.u/.w/ D �h.w/, and hence a cyclic permutation of w is equal to the
shift � .n;h/.w/, which is proper if 0 < h < n.

Note that, in (3.1), w is positive if and only if u is positive, w is cyclically alter-
nating if and only if u is cyclically alternating, and if w ¤ u, then w is alternating
if and only if it is cyclically alternating. For later use, we record that, given a word
w of the form (3.1), every cyclic permutation of w has an expression of the same
form, where the length of u and the value of h are preserved.

Lemma 3.1. Let

w D

n=.n;h/�1Y
iD0

� ih.u/

for some reduced word u and for some 0 � h < n. Then every cyclic permutation
of w is of the form

n=.n;h/�1Y
iD0

� ih.v/

for some reduced word v, where l.v/ D l.u/.

Proof. Let l D l.u/ and 0 � s < l.w/, and write

s D t l C r; where 0 � t < n=.n; h/; 0 � r < l:

Then

�s.w/ D

n=.n;h/�1Y
iD0

� ih.v/; where v D � th.u2/� .tC1/h.u1/;

where u1 is the initial subword of u of length r and u2 is the terminal subword of
u of length l � r .
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Theorem 3.2 identifies the word u in an expression (3.1) in terms of the cyclic
permutations of w that are equal to a shift of w. Corollary 3.3 shows that if u
is chosen to be the shortest possible, then (for the corresponding value of h) the
.n; h/-truncation Pn;.n;h/.w/ is a concise refinement of Pn.w/.

Theorem 3.2. Letw 2 Fn be a non-empty cyclically reduced word of length k that
is not a proper power and suppose that some shift of w is equal to �t .w/ for some
0 � t < k. Then

w D

n=.n;h/�1Y
iD0

� ih.u/

for some 0 � h < n, where u is the initial subword of w of length .k; t/.

Proof. Since some shift of w is equal to �t .w/, we have �h.w/ D �.k;t/.w/
for some 0 � h < n. Let � D k=.k; t/ and write w D

Q��1
iD0 ui for some words

u0; : : : ; u��1, each of length .k; t/. Then (subscripts mod �)

��1Y
iD0

uiC1 D �
.k;t/.w/ D �h.w/ D

��1Y
iD0

�h.ui /:

Thus, for each 0 � i < �, we have uiC1 D �h.ui /, so uiC1 D � .iC1/h.u0/. In
particular, we have u0D u�D ��h.u0/, so �h� 0 mod n, so �� 0 mod n=.n;h/,
so � D pn=.n; h/ for some p � 1. If p > 1, then n=.n; h/ < � and

un=.n;h/ D �
.n=.n;h//�h.u0/ D u0;

so w is a proper power, a contradiction. Therefore, � D n=.n; h/, and hence

w D

��1Y
iD0

ui D

n=.n;h/�1Y
iD0

� ih.u/;

where u D u0, as required.

Corollary 3.3. Let w 2 Fn be a non-empty cyclically reduced word of length k
that is not a proper power and let u be the shortest subword of w such that

w D

n=.n;h/�1Y
iD0

� ih.u/ for any 0 � h < n:

Then Pn;.n;h/.w/ is a concise refinement of Pn.w/.
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Proof. Observe first that �h.w/ D �l.u/.w/, so � .n;h/.w/ is a cyclic permuta-
tion of w, so Pn;.n;h/.w/ is a refinement of Pn.w/. Suppose for contradiction
that Pn;.n;h/.w/ is not concise. Then �s.w/ D �r.w/ for some 0 < s < .n; h/,
0� r < k. Let t D l.u/ (noting that t j k), and let a;b 2Z satisfy ar C bt D .r; t/.
Then

�asCbh.w/ D �as.�bh.w// D �as.�bt .w//

D �bt .�as.w// D �bt .�ar.w// D �arCbt .w/ D �.r;t/.w/:

Theorem 3.2 then implies .r; t/ � t , so .r; t/ D t , and hence r D �t for some
� � 1. Therefore,

�s.w/ D �r.w/ D ��t .w/ D ��h.w/;

and hence s � �h mod n, but 0 < s < .n; h/, a contradiction.

3.2 Classification of non-orientable cyclic presentations

Given any non-empty word u 2 Fn, where n � 2 is even, and the word

w D u�n=2.u/�1 2 Fn;

the cyclic presentation Pn.w/ is non-orientable. Lemma 3.6 of [2] characterises
the non-orientable cyclic presentations Pn.w/ as those for which n is even and
w is equal to u�n=2.u/�1 for some reduced word u. Unfortunately, that state-
ment is not quite correct: a presentation that demonstrates this is P4.w/, where
w D x0x

�1
2 x3x

�1
1 . (However, the remaining results from [2] appear to be unaf-

fected.) In Theorem 3.4, we instead characterise such presentations as those for
which n is even and some cyclic permutation of w is equal to u�n=2.u/�1 for
some reduced word u, and we show that the n=2-truncation Pn;n=2.w/ is a con-
cise refinement of Pn.w/.

Theorem 3.4. Let w 2 Fn be a non-empty cyclically reduced word. The cyclic
presentation Pn.w/ is non-orientable if and only if n is even and w has a cyclic
permutation that is equal to u�n=2.u/�1 for some reduced word u 2 Fn, in which
case Pn;n=2.w/ is a concise refinement of Pn.w/.

Proof. Suppose that n is even and that w has a cyclic permutation that is equal to
u�n=2.u/�1 for some reduced word u. Then w is equal to a cyclic permutation of
�n=2.w�1/, so Pn.w/ is non-orientable.

Conversely, suppose �h.w/ D �t .w�1/ for some 0 � h < n and 0 � t < l.w/.
Note that h ¤ 0 since the only word that is equal to a cyclic permutation of
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its inverse is the empty word. Let w D x�0
d0
x
�1
d1
: : : x

�k�1
dk�1

, where �j 2 ¹˙1º and
0 � dj < n for each 0 � j < k, k � 1. Then

x
�0
hCd0

x
�1
hCd1

: : : x
�t�1
hCdt�1

� x
�t
hCdt

: : : x
�k�1
hCdk�1

D x
��t�1
dt�1

x
��t�2
dt�2

: : : x
��0
d0
� x
��k�1
dk�1

x
��k�2
dk�2

: : : x
��t
dt
:

Hence, by comparing exponents and subscripts, we have

dj � hC dt�1�j mod n; �j D ��t�1�j for all 0 � j < t; (3.2)

dj � hC dkCt�1�j mod n; �j D ��kCt�1�j for all t � j < k: (3.3)

In particular, since d0 � .hC dt�1/mod n and dt�1 � .hC d0/mod n, we have
2h � 0 mod n, and so n D 2h. If t is odd, then (3.2) implies that �.t�1/=2 D 0,
a contradiction; thus t is even, t D 2� � 0, say. Similarly, it follows that k � t
is even, k � t D 2� � 0, say. Therefore, eliminating t D 2� and k D 2�C 2�,
equations (3.2), (3.3) become

dj � hC d2��1�j mod n; �j D ��2��1�j for all 0 � j < 2�;

dj � hC d4�C2��1�j mod n; �j D ��4�C2��1�j for all 2� � j < 2�C 2�;

respectively. Therefore,

w D

��1Y
jD0

x
�j
dj
�

2��1Y
jD�

x
�j
dj
�

2�C��1Y
jD2�

x
�j
dj
�

2�C2��1Y
jD2�C�

x
�j
dj

D

��1Y
jD0

x
�j
dj
�

��1Y
jD0

x
����j�1
hCd��j�1

�

2�C��1Y
jD2�

x
�j
dj
�

2�C��1Y
jD2�

x
��4�C��1�j
hCd4�C��1�j

D

��1Y
jD0

x
�j
dj
�

 
��1Y
jD0

x
�j
hCdj

!�1
�

2�C��1Y
jD2�

x
�j
dj
�

 
2�C��1Y
jD2�

x
�j
hCdj

!�1
D u1�

h.u1/
�1
� u2�

h.u2/
�1;

where

u1 D

��1Y
jD0

x
�j
dj
; u2 D

2�C��1Y
jD2�

x
�j
dj
:

Setting u D �h.u�11 /u2, we have that u�h.u/�1 is a cyclic permutation of w, as
required.

Thus we have that Pn;n=2.w/ is a refinement of Pn.w/. Suppose for contra-
diction that Pn;n=2.w/ is not concise; then u�n=2.u�1/ is a cyclic permutation



Redundant relators in cyclic presentations of groups 11

of � i .u�n=2.u�1// or of � i .�n=2.u/u�1/ for some 1 � i < n=2, but in the latter
case, 2i � 0 mod n (as above), a contradiction. Therefore, Theorem 3.2 implies

u�n=2.u�1/ D

n=.n;h/�1Y
iD0

� ih.v/

for some reduced word v and some 1 � h < n. Therefore, v is an initial subword of
u and �n�h.v/ is a terminal subword of �n=2.u�1/. Hence �n�h.v/ D �n=2.v�1/,
so v�1 D �n=2�h.v/. Let x��� , x��� (0 � �; � < n, ��; �� 2 ¹˙1º) be the initial and
terminal letters of v, respectively. Then, by comparing initial and terminal letters
of v�1 and �n=2�h.v/, we have

x���� D x
��
�Cn=2�h

and x���� D x
��
�Cn=2�h

:

In particular, � � �C n=2 � h and � � � C n=2 � h mod n, so h D n=2. There-
fore, u�n=2.u�1/ D v�n=2.v/, so u D v and �n=2.u�1/ D �n=2.v/, a contradic-
tion.

In considering non-orientable cyclic presentations Pn.w/ in contexts where re-
lators can be replaced by their cyclic permutations, it thus suffices to consider
cyclic presentations Pn.u�n=2.u/�1/ for some reduced word u (even though w
itself may not be of the form u�n=2.u/�1). Note that, for such a w and u, the word
w is non-positive, non-negative, and w is cyclically alternating if and only if w is
alternating if and only if u is alternating.

4 The Tits alternative

The Tits alternative has been considered for various classes of cyclically pre-
sented groups [4, 7, 14, 21, 26, 32]. In this section, we investigate the Tits al-
ternative for the class of groups defined by redundant cyclic presentations. Ob-
serve that groups that are both solvable and virtually abelian arise within this
class: the group Z has orientable and non-orientable redundant cyclic presen-
tations P2.x0x1/; P2.x0x�11 /; the group Z2 has the non-orientable cyclic pre-
sentation P2.x0x1x�10 x�11 /; the Baumslag–Solitar group BS.1;�1/ (the funda-
mental group of the Klein bottle) has the orientable redundant cyclic presenta-
tion P2.x20x

2
1/ and the non-orientable, redundant, cyclic presentation P2.x20x

�2
1 /.

Groups defined by redundant cyclic presentations have positive deficiency; by [1],
a virtually solvable group of positive deficiency has deficiency one, and a group
of deficiency one is solvable if and only if it is isomorphic to a group of the
form Gk D ha; b j bab

�1 D aki for some k 2 Z (see [33, Theorem 1]). Note that
G0 Š Z, G1 Š Z2, and G�1 Š BS.1;�1/; we expect that if k … ¹�1; 0; 1º, then
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Gk does not have a cyclic presentation. Note further that Z and Z2 are the only
abelian one-relator groups [25, Proposition 5.24, page 108] and hence are the only
abelian groups defined by redundant cyclic presentations.

Theorem 4.1. Let n � 2, let w 2 Fn be a cyclically reduced word, and assume
that Pn.w/ is redundant. If either n � 3 or n D 2 and w is a proper power, then
Gn.w/ is large. In particular, if Pn.w/ is a redundant .m; k; �/-special cyclic
presentation, then Gn.w/ is large.

Proof. If n � 3, then Corollary 3.3 and Theorem 3.4 imply def.G/ � 2 (as its
defining presentation has a concise refinement with n generators and at most bn=2c
relators), so Gn.w/ is large by [1]. If n D 2, then def.G/ � 1, so if in addition w
is a proper power, then Gn.w/ is large by [30], [17, page 83]. The final observa-
tion follows by noting that every .m; k; �/-special presentation has at least three
generators.

Therefore, if Pn.w/ is a redundant cyclic presentation that does not define
a large group, then (since there are no redundant cyclic presentations P1.w/)
n D 2 and w is not a proper power. In the concise case, we note that, by [10],
if n � 3 and w is a proper power, then Gn.w/ is large, and if w is a third or higher
power, then G2.w/ is large (the infinite dihedral group G2.x20/, being solvable,
demonstrates that this does not extend to all proper power defining words w). If
P2.w/ is orientable and redundant, then �.w/ is equal to �t .w/ ¤ w for some
t , so by Theorem 3.2, w D u�.u/, where u D u.x0; x1/ is the initial subword of
w of length n=2. If P2.w/ is non-orientable, then by Theorem 3.4, w is a cyclic
permutation of u�.u/�1 for some reduced word u. That is, P2.w/ is redundant
if and only if w is a cyclic permutation of u.x0; x1/u.x1; x0/�, where � D 1 in
the orientable case and � D �1 in the non-orientable case, and so G2.w/ is the
one-relator group hx0; x1 ju.x0; x1/u.x1; x0/�i. One-relator groups either contain
a non-abelian free subgroup or are solvable (see [24, Theorem 3], [6]), so we have
the following.

Corollary 4.2 (The Tits alternative). If Pn.w/ is a redundant cyclic presentation,
then Gn.w/ either contains a non-abelian free subgroup or is solvable.

In the orientable case, we can say precisely which presentations define a solv-
able group.

Corollary 4.3. Let Pn.w/ be an orientable redundant cyclic presentation. Then
Gn.w/ contains a non-abelian free subgroup unless n D 2 and eitherw is a cyclic
permutation of x�0x

�
1 (� D ˙1), in which caseG Š Z, orw is a cyclic permutation

of x2�0 x
2�
1 (� D ˙1), in which case G Š BS.1;�1/.
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Proof. As explained above, if G does not contain a non-abelian free subgroup,
then G Š G2.w/, where w is cyclically reduced and is a cyclic permutation of
u.x0; x1/u.x1; x0/ for some reduced word u.x0; x1/.

If u.x0; x1/ involves exactly one of x0; x1, then w is a cyclic permutation of
x
p
0 x

p
1 for some p 2 Zn¹0º, so G Š hx0; x1 j x

p
0 x

p
1 i which is large if jpj � 3 (as

it maps onto Zp � Zp), isomorphic to BS.1;�1/ if p D ˙2, and isomorphic to Z
if p D ˙1. Thus we may assume that u.x0; x1/ involves both x0 and x1.

Without loss of generality, we may write either

(i) u.x0; x1/ D x
k1
0 x

k2
1 x

k3
0 : : : x

ks
1 , where s � 2 is even, or

(ii) u.x0; x1/ D x
k1
0 x

k2
1 x

k3
0 : : : x

ks
0 , where s � 3 is odd,

and (in each case) each ki 2 Zn¹0º.
If s D 2, then w is a cyclic permutation of xk1Ck20 x

k1Ck2
1 , so

G Š hx0; x1 j x
k1Ck2
0 x

k1Ck2
1 i;

which maps onto
G2.x

k1Ck2
0 / Š Zjk1Ck2j � Zjk1Ck2j;

which is large if jk1 C k2j … ¹1; 2º, and G is isomorphic to Z if k1 C k2 D ˙1
and to BS.1;�1/ if k1 C k2 D ˙2. Thus we may assume s � 3.

The shift extension of G is of the form

E D hx; t j t2; U.x; t/U.txt; t/i D hx; t j t2; .U.x; t/t/2i;

where

U.x; t/ D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

 
.s�3/=2Y
iD0

xk2iC1 txk2iC2 t

!
xks if s is odd;

s=2�1Y
iD0

xk2iC1 txk2iC2 t if s is even;

and hence U.x; t/t is a cyclic permutation of8̂̂̂̂
<̂̂
ˆ̂̂̂:

sY
iD1

xki t if s is odd;

xksCk1 t �

s�1Y
iD2

xki t if s is even:

Note that if s is even, then ks C k1 ¤ 0 since w is cyclically reduced. By [15,
Theorem 8] or [16, Lemma 7.3.3.1], E contains a non-abelian free subgroup, and
hence so does G, as required.
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To consider the remaining non-orientable cases, we must consider the groups
G2.u.x0; x1/u.x1; x0/

�1/.

Lemma 4.4. Let u.x0; x1/ be a reduced word and let

G D hx0; x1 ju.x0; x1/u.x1; x0/
�1
i;

where u.x0; x1/ D v.x0; x1/t for some t � 2. ThenG contains a non-abelian free
subgroup except if t D 2 and either v.x0; x1/ D x˙10 or x˙11 , in which case G is
isomorphic to BS.1;�1/.

Proof. We may assume that v is the root of u. The group G maps onto

hx0; x1 j v.x0; x1/
t ; v.x1; x0/

t
i;

which is large if t > 2 by [10]; thus we may assume t D 2. If v.x0; x1/ involves
exactly one of x0; x1, then G Š hx0; x1 j x20x

�2
1 i Š BS.1;�1/. Suppose then that

v.x0; x1/ involves both x0 and x1. Without loss of generality, we may write either

(i) v.x0; x1/ D x
k1
0 x

k2
1 x

k3
0 : : : x

ks
1 , where s � 2 is even, or

(ii) v.x0; x1/ D x
k1
0 x

k2
1 x

k3
0 : : : x

ks
0 , where s � 3 is odd,

and (in each case) each ki 2 Zn¹0º.
The group G maps onto

H D hx0; x1 j v.x0; x1/
2; v.x1; x0/

2
i D G2.v.x0; x1/

2/:

Then the shift extension of H is of the form E D hx; t j t2; V .x; t/2i, where

� V.x; t/ D .xk1 t / : : : .xks t / in case (i) (so s � 2) and

� V.x; t/ D .xksCk1 t / : : : .xks�1 t / in case (ii) (so s � 1 � 2).

By [15, Theorem 8] or [16, Lemma 7.3.3.1], E contains a non-abelian free sub-
group, and hence so does H , and hence G.

Thus it remains to consider groups of the form

G D hx0; x1 ju.x0; x1/u.x1; x0/
�1
i;

where u.x0; x1/ is not a proper power. If u.x0; x1/ D x˙10 or x˙11 , thenG Š Z; if
u.x0; x1/ D .x0x

˙1
1 /˙1 or .x1x˙10 /˙1, thenG Š Z2. We expect that, in all other

cases, G contains a non-abelian free subgroup. As examples in this direction,

(1) it follows from [5, Corollary 3.4] that if G © Z2 and Gab Š Z2, then G con-
tains a non-abelian free subgroup; and
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(2) if u.x0; x1/ D x0x1x0 : : : x1x0 is of odd length k � 3, then the shift extension
of G is the group

E D hx; t j t2; .xt/k.x�1t�1/ki Š hy; t j t2; ykty�kti;

which maps onto hy; t j t2; yki Š Z2 � Zk , so is large.

In summary, we pose the following conjecture.

Conjecture 4.5. If P2.w/ is a non-orientable cyclic presentation, then G2.w/ ei-
ther contains a non-abelian free subgroup or is isomorphic to Z;Z2 or BS.1;�1/.

5 Star graphs of cyclic presentations

In [8, Theorem 3.3], the star graphs of concise cyclic presentations were described.
In this section, we generalise that result to describe the star graphs of (possibly
redundant) cyclic presentations.

5.1 Star graphs of orientable cyclic presentations

As in [8], it is convenient to express results concerning star graphs in terms of mul-
tisets of differences of subscripts in length-two subwords of a particular subword
of w (in the redundant case) or in length-two cyclic subwords of w (in the concise
case).

Definition 5.1. Suppose Pn.w/ is orientable and let u be the shortest subword of
w such that

w D

n=.n;h/�1Y
iD0

� ih.u/ for any 0 � h < n:

Let A;B;Q;QC;Q� be the multisets defined as follows:

A D ¹a j there is a subword xix�1iCa of u�h.�.u//; with multiplicitiesº;

B D ¹b j there is a subword x�1i xiCb of u�h.�.u//; with multiplicitiesº;

QC D ¹q j there is a subword xixiCq of u�h.�.u//; with multiplicitiesº;

Q� D ¹q j there is a subword x�1iCqx
�1
i of u�h.�.u//; with multiplicitiesº;

Q D QC [Q�;

where [ denotes multiset sum and the entries are taken mod n. Note that Q D ; if
and only if u is cyclically alternating, and observe that the following congruence
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holds (compare [8, (2)]):X
a2A

aC
X
b2B

b C
X
q2QC

q �
X
q2Q�

q � h mod n (5.1)

and that if Pn.w/ is concise, then the sets A;B;Q;QC;Q� are the sets defined
in [8].

Theorem 5.2 describes the star graph of a (redundant or concise) orientable
cyclic presentation Pn.w/. We use this in obtaining our classification of the ori-
entable redundant .m; k; �/-special cyclic presentations, and in Example 6.1, we
use it to construct orientable redundant cyclic presentations with particular star
graphs. Recall that the star graph of Pn.w/ is equal to the star graph of Pn.v/,
where v is the root of w, so we may assume that w is not a proper power. In first
studying the proof, the reader may find it helpful to consider the star graphs of the
presentations P6.x0x�12 x�11 x3x

�1
5 x�14 / and P6.x0x�13 x1x

�1
2 x3x

�1
0 x4x

�1
5 /.

Theorem 5.2. Suppose Pn.w/ is orientable, where w is not a proper power, and
let u be the shortest subword of w such that

w D

n=.n;h/�1Y
iD0

� ih.u/ for any 0 � h < n;

and let � be the star graph of Pn.w/. Let

dA D gcd.n; a .a 2 A//; dB D gcd.n; b .b 2 B//;

and if u is not cyclically alternating, let q0 2 Q and set

d D gcd.n; a .a 2 A/; b .b 2 B/; q � q0 .q 2 Q//:

Then � is l.u/-regular and has vertices xi ; x�1i (0 � i < n) and edges xi � xiCa,
x�1i � x

�1
iCb

, xi � x�1iCq for all a 2 A, b 2 B, q 2 Q, 0 � i < n.

(a) If u is not cyclically alternating, then the graph � has d connected components
�0; : : : ; �d�1, where, for 0 � j < d , the graph �j is the induced subgraph
of � with vertex sets V.�j / D V.�Cj / [ V.�

�
j /, where �Cj and ��j are the

induced subgraphs of � with vertex sets

V.�Cj / D ¹xjCtd j 0 � t < n=dº;

V .��j / D ¹x
�1
jCtdCq0

j 0 � t < n=dº
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(subscripts mod n). In particular,

jV.�Cj /j D jV.�
�
j /j D n=d for all 0 � j < d

and the subscripts of the positive (respectively negative) vertices in any com-
ponent are congruent mod d .

(b) If u is cyclically alternating, then the graph � has dA C dB connected com-
ponents �C0 ; : : : ; �

C

dA�1
, ��0 ; : : : ; �

�
dB�1

, which are, respectively, the induced
labelled subgraphs of � with vertex sets

V.�Cj / D ¹xjCtdA
j 0 � t < n=dAº;

V .��j / D ¹x
�1
jCtdB

j 0 � t < n=dBº

(subscripts mod n). Moreover, each component �Cj is isomorphic to the circu-
lant graph circn=dA

.¹a=dA .a 2 A/º/, and each component ��j is isomorphic
to circn=dB

.¹b=dB .b 2 B/º/.

Proof. By Corollary 3.3, the star graph of Pn.w/ is equal to the star graph of
the concise .n; h/-truncation Pn;.n;h/.w/ of Pn.w/. Let P D Pn;.n;h/.w/ and
Q D Pn.u/ with star graphs � and ƒ, respectively. Observe that each relator of
P has length n=.n; h/ � l.u/, so the sum of the lengths of the relators of P is
equal to .n=.n; h/ � l.u// � .n; h/ D nl.u/, which is the sum of the lengths of the
relators of Q. By Corollary 3.3, since u is chosen to be the shortest possible, the
presentation Q is a concise cyclic presentation, and so its star graph is described
in [8, Theorem 3.3]. Our strategy is to identify the differences between � and ƒ.
We use the multisets A;B;Q of Definition 5.1 for each presentation P;Q, de-
noting them AP ;BP ;QP (for P ) and AQ;BQ;QQ (for Q). These multisets are
related as follows (where [ and n denote multiset sum and multiset difference,
respectively):

AQ D ¹a j there is a subword xix�1iCa of u; with multiplicitiesº

[ ¹a j there is a subword xix�1iCa of �.u/�.u/º;

AP D ¹a j there is a subword xix�1iCa of u; with multiplicitiesº

[ ¹a j there is a subword xix�1iCa of �.u/�h.�.u//º

D .AQn¹a j there is a subword xix�1iCa of �.u/�.u/º/

[ ¹a j there is a subword xix�1iCa of �.u/�h.�.u//º:
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Similarly,

BP D .BQn¹b j there is a subword x�1i xiCb of �.u/�.u/º/

[ ¹b j there is a subword x�1i xiCb of �.u/�h.�.u//º;

QP D .QQn¹q j there is a subword xixiCq or x�1iCqx
�1
i of �.u/�.u/º/

[ ¹q j there is a subword xixiCq or x�1iCqx
�1
i of �.u/�h.�.u//º:

The graph � is obtained from ƒ by, for each 0 � i < n, removing exactly one
edge of the form � i .�.u// � � i .�.u//�1 and then adjoining one edge of the form
� i .�.u// � � iCh.�.u//�1. By [8, Theorem 3.3],ƒ is l.u/-regular and has vertices
xi ; x

�1
i and edges xi � xiCa, x�1i � x

�1
iCb

, xi � x�1iCq for all a 2 AQ, b 2 BQ,
q 2 QQ, 0 � i < n. Therefore, � is also l.u/-regular and has vertices xi ; x�1i
and the same (multi-)set of edges as ƒ, but with the substitutions described above
applied. That is, � has edges xi � xiCa, x�1i � x

�1
iCb

, xi � x�1iCq for all a 2 AP ,
b 2 BP , q 2 QP , 0 � i < n, completing the proof of first part of the statement.
With this description of � in place, statements (a) and (b) follow as in the proof of
[8, Theorem 3.3].

Analogously to [8, Corollary 3.4], we have the following immediate corollary.

Corollary 5.3. Let Pn.w/ be an orientable cyclic presentation in which w is of
length k and is not a proper power, and let u be the shortest subword of w such
that

w D

n=.n;h/�1Y
iD0

� ih.u/ for any 0 � h < n:

Then

(a) Pn.w/ is .3; k; �/-special if and only if l.u/2 � l.u/C 1 D n=� and each
component of the star graph is the incidence graph of a projective plane of
order l.u/ � 1;

(b) Pn.w/ is .2; k; �/-special if and only if l.u/ D n=� and each component of
the star graph is the complete bipartite graph Kl.u/;l.u/.

Analogously to [8, Corollary 4.2], we have the following.

Corollary 5.4. Let Pn.w/ be an orientable cyclic presentation in which w is of
length k and is not a proper power, and let u be the shortest subword of w such
that

w D

n=.n;h/�1Y
iD0

� ih.u/ for any 0 � h < n:
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Suppose that u has length at least 3 and let � be the star graph of Pn.w/. If u
is a non-positive, non-negative, word of length 3, then girth.�/ � 8; otherwise,
girth.�/ � 6.

Proof. If l.u/ � 4, then by a modification of [8, Lemma 4.1, Corollary 4.2], we
have girth.�/ � 6. (More precisely, parts (a), (c), (d), (e), (f) of [8, Lemma 4.1]
hold for the star graph � of the, possibly redundant, cyclic presentation Pn.w/
if “w” is replaced by “u” and “cyclic subword” is replaced by “subword”; then
the argument of [8, Corollary 4.2] carries through as before if “cyclic subword”
is replaced by “subword”.) Thus we may assume l.u/ D 3. By inversion and
cyclic permutation, and noting that, by Lemma 3.1, every cyclic permutation of
w has the form in the statement, we may assume that either (a) u D x0xpxpCq or
(b) u D x0xpx�1pCq for some .0 � p; q < n/. In case (a), � has edges

xi � x
�1
iCp; xi � x

�1
iCq; xi � x

�1
iCh�p�q .0 � i < n/:

Then � contains the reduced closed path

x0 � x
�1
p � xp�q � x

�1
h�2q � xh�2q�p � x

�1
h�q�p � x0

of length 6, so girth.�/ � 6. In case (b), � has edges

xi � x
�1
iCp; xi � xiCq; x

�1
i � x

�1
iCh�p�q .0 � i < n/:

Then � contains the reduced closed path

x0 � x
�1
p � x

�1
h�q � xh�p�q � xh�p � x

�1
h � x

�1
pCq � xq � x0

of length 8, so girth.�/ � 8.

As in [8, Theorem A], it follows from [19] that if l.u/ � 3 and ifPn.w/ satisfies
the small cancellation condition T .q/, where q � 7, then l.u/ D 3 and u is non-
positive and non-negative.

The following corollary is analogous to the final statement of [8, Theorem A].

Corollary 5.5. Suppose Pn.w/ is orientable. If Pn.w/ is .m; k; �/-special with
m � 3, then m D 3 and w is positive or negative.

Proof. Let u be the shortest subword of w such that

w D

n=.n;h/�1Y
iD0

� ih.u/ for any 0 � h < n:
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If l.u/ < 3, then the star graph of Pn.w/ is at most 2-regular, so Pn.w/ is not spe-
cial, so we may assume l.u/ � 3. If u is positive or negative, then by Corollary 5.4,
girth.�/ � 6, so m D 3, as required. Suppose then u is non-positive and non-
negative and that Pn.w/ is .m; k; �/-special, where m 2 ¹3; 4º by Corollary 5.4.
Then there exists a 2 A. Then, letting t D n=.n; a/,

x0 � xa � x2a � � � � � x.t�1/a � x0

is a reduced closed path of length t , which is therefore even (since � is bipar-
tite). Then (noting that � divides .n; a/ by Theorem 5.2) n=� D t � ..n; a/=�/ is
even. Since each component of � is the incidence graph of a generalised m-gon,
it has 14 vertices if m D 3, and 30 vertices if m D 4 (see [31, Corollary 1.5.5]).
Therefore, n=� D 7 or 15, a contradiction.

5.2 Star graphs of non-orientable cyclic presentations

We now define multisets of differences of subscripts in length 2 subwords of a par-
ticular cyclic subword of w for the non-orientable case.

Definition 5.6. Suppose w D u�n=2.u/�1. Let NA0; NB0; NQ be the multisets defined
as follows:

NA0 D ¹a j there is a subword xix�1iCa of u; with multiplicitiesº;

NB0 D ¹b j there is a subword x�1i xiCb of u; with multiplicitiesº;

NQ D ¹q j there is a subword xixiCq or x�1iCqx
�1
i of u; with multiplicitiesº;

and define NA; NB as follows:

. NA; NB/ D

8̂<̂
:
. NA0; NB0 [ ¹n=2; n=2º/; �.u/ positive and �.u/ negative;
. NA0 [ ¹n=2; n=2º; NB0/; �.u/ negative and �.u/ positive;
. NA0 [ ¹n=2º; NB0 [ ¹n=2º/ otherwise:

Note that NQ D ; if and only if u is alternating and that, letting v denote the
cyclic subword �n=2.�.u/�1/u�n=2.�.u//�1 of w,

NA D ¹a j there is a subword xix�1iCa of v; with multiplicitiesº;

NB D ¹b j there is a subword x�1i xiCb of v; with multiplicitiesº:

The following theorem, Theorem 5.7, describes the star graph of a non-orientable
cyclic presentation Pn.u�n=2.u�1//. We use this in obtaining our classification of
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the non-orientable redundant .m; k; �/-special cyclic presentations, and in Exam-
ple 6.1, we use it to construct non-orientable cyclic presentations with particular
star graphs. We may assume u�n=2.u�1/ is not a proper power (noting that proper
power words of this form exist, such as .x0x�11 /2 when n D 2). In first studying
the proof, the reader may find it helpful to consider the star graphs of the pre-
sentations P4.x0x1x�13 x�12 /, P4.x1x�13 x�12 x0x

�1
2 x0x1x

�1
3 /, P4.x0x�11 x3x

�1
2 /,

and P4.x0x�11 x0x
�1
2 x3x

�1
2 /.

Theorem 5.7. Let � be the star graph of Pn.w/, where w D u�n=2.u/�1 and is
not a proper power. Let d NA D gcd.n; a .a 2 NA//, d NB D gcd.n; b .b 2 NB//, and
if u is not alternating, let q0 2 NQ and set

d D gcd.n; a .a 2 NA/; b .b 2 NB/; q � q0 .q 2 NQ//:

Then � is l.u/-regular and has vertices xi ; x�1i (0 � i < n) and edges

� xi � xiCa, x�1i � x
�1
iCb

, xi � x�1iCq for all a 2 NA0, b 2 NB0, q 2 NQ, 0 � i < n,

� xi � xiCa, x�1i � x
�1
iCb

for all a 2 NAn NA0, b 2 NBn NB0, 0 � i < n=2.

(a) If u is not alternating, then � has d connected components �0; : : : ; �d�1,
where, for 0 � j < d , the graph �j is the induced subgraph of � with vertex
sets V.�j / D V.�Cj / [ V.�

�
j /, where �Cj and ��j are the induced subgraphs

of � with vertex sets

V.�Cj / D ¹xjCtd j 0 � t < n=dº;

V .��j / D ¹x
�1
jCtdCq0

j 0 � t < n=dº

(subscripts mod n). In particular,

jV.�Cj /j D jV.�
�
j /j D n=d for all 0 � j < d;

and the subscripts of the positive (respectively negative) vertices in any com-
ponent are congruent mod d .

(b) If u is alternating, then � has d NA C d NB connected components

�C0 ; : : : ; �
C

d NA�1
; ��0 ; : : : ; �

�
d NB�1

;

which are, respectively, the induced labelled subgraphs of � with vertex sets

V.�Cj / D ¹xjCtd NA j 0 � t < n=d NAº;

V .��j / D ¹x
�1
jCtd NB

j 0 � t < n=d NBº
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(subscripts mod n). Moreover, each component �Cj is isomorphic to the graph

circ0n=d NA.¹a=d NA .a 2 NA/º/

and each component ��j is isomorphic to

circ0n=d NB .¹b=d NB .b 2 NB/º/:

Proof. By Theorem 3.4, the star graph of Pn.w/ is equal to the star graph of
Pn;n=2.w/, which is concise. Therefore, every length-two cyclic subword of each
relator � i .w/ (0 � i < n=2) contributes exactly one edge to the star graph � .

Noting that w is of the form �.u/ : : : �.u/ � �n=2.�.u/�1/ : : : �n=2.�.u/�1/, the
length-two cyclic subwords of the n=2 relators � i .w/ (0 � i < n=2) consist of
the l.u/ � 1 length-two subwords of � i .u/, the l.u/ � 1 length-two subwords
of � iCn=2.u�1/, � i .�.u// � � iCn=2.�.u/�1/, and of � iCn=2.�.u/�1/ � � i .�.u//.
These contribute edges xi � xiCa for each a 2 NA0, x�1i � x

�1
iCb for each b 2 NB0,

xi � x
�1
iCq for each q 2 NQ (0 � i < n),

� i .�.u// � � iCn=2.�.u//; � iCn=2.�.u/�1/ � � i .�.u/�1/ .0 � i < n=2/:

Equivalently, they contribute the edges xi � xiCa for each a 2 NA0, x�1i � x
�1
iCb

for each b 2 NB0, xi � x�1iCq for each q 2 NQ (0 � i < n), and the edges xi � xiCa
(a 2 NAn NA0), x�1i � x

�1
iCb (b 2 NBn NB0) (0 � i < n=2).

Thus each positive vertex has the same degree, and since, in the star graph of
any finite presentation, vertices corresponding to a generator and its inverse have
the same degree (see [19, Section 2.3.3]), the graph � is regular. Moreover, the
number of edges of the star graph of a concise presentation that has no proper
power relators, and where the relators are cyclically reduced, is equal to the sum
of the lengths of the relators, so the number of edges is equal to nl.u/, and hence
� is l.u/-regular.

This completes the proof of first part of the statement. With this description of �
in place, statements (a) and (b) follow as in the proof of [8, Theorem 3.3].

Corollary 5.8. Let � be the star graph of Pn.u�n=2.u/�1/, where l.u/ � 2 and
u is reduced, and let ��; �� 2 ¹1;�1º be the exponents of �.u/; �.u/, respectively.
Then girth.�/ � 4, and if ���� D �1, then girth.�/ D 2.

Proof. If �� D 1, �� D �1 or �� D �1, �� D 1, then

x0 � xn=2 � x0 or x�10 � x
�1
n=2 � x

�1
0

is a closed path of length 2. If NQ ¤ ;, then there exists q 2 NQ, so it follows that
x0 � xn=2 � x

�1
n=2Cq

� x�1q � x0 is a closed path of length 4. Thus we may assume
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NQ D ; and �� D �� , that is, u is alternating but not cyclically alternating. Then
j NAj � 2, j NBj � 2, so girth.�C/ � 4 and girth.��/ � 4, so girth.�/ � 4.

As in [8, Theorem A], it follows from [19] that if l.u/� 2, thenPn.u�n=2.u/�1/
does not satisfy the small cancellation condition T .5/.

6 .m; k; �/-special cyclic presentations

The concise .m; k; �/-special cyclic presentations were classified in [8, Sections 5
and 6]. In this section, we generalise that classification to (possibly redundant)
cyclic presentations. By Corollary 5.5 and Corollary 5.8, if a cyclic presentation
Pn.w/ is .m; k; �/-special, where m � 3, then Pn.w/ is orientable, w is positive
or negative, and m D 3. In Section 6.1 (Theorem 6.2), we classify the (redun-
dant and concise) orientable .3; k; �/-special cyclic presentations Pn.w/, where
w is positive. In Section 6.2 (Theorems 6.3–6.5), we classify the (redundant and
concise) orientable .2; k; �/-special cyclic presentations. In Section 6.3 (Theo-
rems 6.6, 6.7), we classify the non-orientable .2; k; �/-special cyclic presentations.
Theorems 6.3–6.7 are analogous to [8, Theorems C, D, E], which deal with concise
cyclic presentations. The proofs of those theorems proceed by analysing graphs
defined in terms of sets A;B;Q;QC;Q�. Theorems 6.2–6.5 (which deal with
the orientable case) are re-expressions of the corresponding theorems from [8] in
terms of the sets A;B;Q;QC;Q� of Definition 5.1. (Note that these statements
require l.u/ � 3 to ensure that the degrees of vertices are at least 3, as required
by Definition 2.1.) The proofs are similarly analogous to those from [8], so are
omitted. A minor exception to this is Theorem 6.3, where, in [8, Theorem C], the
conciseness hypothesis provides the further conclusion that � � 2, a condition that
does not hold in the redundant case. Theorems 6.6 and 6.7 (which deal with the
non-orientable case) have no direct counterparts in [8].

It will follow from the results of Sections 6.1–6.3, together with Theorem 3.2,
that if Pn.w/ is a redundant .m; k; �/-special cyclic presentation, then k � 6, so
2=k C 1=m < 1, and hence (as described in Section 2.3) the corresponding group
Gn.w/ is non-elementary hyperbolic.

Example 6.1. This example exhibits the various situations that arise for redundant
.m; k; �/-special cyclic presentations.

(a) (i) P7.
Q6
iD0 �

4i .x20x1// is orientable, redundant, .3; 21; 1/-special, and de-
fines the one-relator group G7;1.

Q6
iD0 �

4i .x20x1//;

(ii) P14.x0x1x10x7x8x3/ is orientable, redundant, and .3; 6; 2/-special;
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(iii) P21.
Q6
iD0 �

3i .x0x2x7// is orientable, redundant, and .3; 21; 3/-special.
In each case, each component of the star graph is the Heawood graph.

(b) P9.x0x1x5x3x4x8x6x7x2/ and P8.x0x1x3x6x2x3x5x0x4x5x7x2x6x7x1x4/
are orientable, redundant, and .2; 9; 3/-special and .2; 16; 1/-special, respec-
tively. In these cases, the defining word is positive.

(c) P8.x0x�11 x6x
�1
3 x4x

�1
5 x2x

�1
7 / is orientable, redundant, and .2; 8; 2/-special,

and the defining word is cyclically alternating.

(d) P8.x0x�12 x4x7x6x
�1
0 x2x5x4x

�1
6 x0x3x2x

�1
4 x6x1/ is orientable, redundant,

and .2; 16; 2/-special, and the defining word is non-positive, non-negative, and
non-alternating.

(e) P6.x0x�11 x0x
�1
3 x4x

�1
3 / is non-orientable and .2; 6; 2/-special, and the defin-

ing word is cyclically alternating.

(f) P12.x0x�12 x4x7x2x1x
�1
7 x�18 x�11 x�110 x8x

�1
6 / is non-orientable and .2; 12; 2/-

special, and the defining word is non-alternating.

The presentations in Example 6.1 were constructed using Theorems 5.2 and 5.7.
For example, for the presentation of Example 6.1 (a) (i), we sought a 7-generator
redundant presentation with A D B D ; and Q D QC equal to a perfect differ-
ence set mod 7, such as ¹0; 1; 3º. With

w D

n=.n;h/�1Y
iD0

� ih.u/;

as in Definition 5.1, if we set u D x20x1, then QC D ¹0; 1; h � 1º, and so setting
h D 4 yields the given presentation.

6.1 .3; k; �/-special cyclic presentations

Theorem 6.2 classifies when a (possibly redundant) orientable cyclic presenta-
tion Pn.w/, in which w is a positive word, is .3; k; �/-special and so generalises
[8, Theorem B]; its proof is analogous to the proof of that theorem. See Exam-
ple 6.1 (a) for examples.

Theorem 6.2. Suppose Pn.w/ is an irreducible, orientable cyclic presentation,
where w is a positive word of length k � 3 and is not a proper power, and let u be
the shortest subword of w such that

w D

n=.n;h/�1Y
iD0

� ih.u/ for any 0 � h < n:
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Then Pn.w/ is .3; k; �/-special if and only if the following hold:

(a) n D �N , where N D l.u/2 � l.u/C 1;

(b) Q is a perfect difference set;

(c) q � q0 mod � for each pair q; q0 2 Q.

We remark that a consequence of conditions (a) and (c) of Theorem 6.2 is that
� divides k.

6.2 Orientable .2 ; k; �/-special cyclic presentations

In this section, we classify the orientable .2; k; �/-special cyclic presentations

Pn

 
n=.n;h/�1Y
iD0

� ih.u/

!
(where we may assume that u is the shortest possible). We consider the cases u
positive, cyclically alternating, and non-positive, non-negative, and not cyclically
alternating separately.

u positive

Theorem 6.3 classifies when a (redundant or concise) orientable cyclic presenta-
tion

Pn

 
n=.n;h/�1Y
iD0

� ih.u/

!
;

in which u is a positive word, is .2; k; �/-special and so generalises [8, Theo-
rem C]. Note that, unlike in [8, Theorem C], � is no longer limited to the values
1; 2. The proof of Theorem 6.3 is analogous to that of [8, Theorem C] except that
the argument that leads to the conclusion � 2 ¹1; 2º needs to be removed. See Ex-
ample 6.1 (b) for an example.

Theorem 6.3. Let Pn.w/ be an irreducible, orientable cyclic presentation, where
w has length k � 4 and is not a proper power, let u be the shortest subword of w
such that

w D

n=.n;h/�1Y
iD0

� ih.u/ for any 0 � h < n;

and suppose that u is positive. Then Pn.w/ is .2; k; �/-special if and only if
n D �l.u/, l.u/ � 3, Q D ¹q0; � C q0; 2� C q0; : : : ; .l.u/ � 1/� C q0º for some
0 � q0 < n such that gcd.q0; �/ D 1, in which case each component of � is iso-
morphic to Kl.u/;l.u/.
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In constructing examples, it is useful to note that, by (5.1), the conditions of
Theorem 6.3 imply l.u/q0 C Œl.u/.l.u/ � 1/=2�� � h mod n.

u cyclically alternating

Theorem 6.4 classifies when a (redundant or concise) orientable cyclic presenta-
tion

Pn

 
n=.n;h/�1Y
iD0

� ih.u/

!
;

in which u is a cyclically alternating word, is .2; k; �/-special and so generalises
[8, Theorem D]; its proof is analogous to the proof of that theorem. See Exam-
ple 6.1 (c) for an example.

Theorem 6.4. Let Pn.w/ be an irreducible, orientable cyclic presentation, where
w has length k � 4 and is not a proper power, let u be the shortest subword of w
such that

w D

n=.n;h/�1Y
iD0

� ih.u/ for any 0 � h < n;

and suppose that u is cyclically alternating. Then Pn.w/ is .2; k; �/-special if and
only if n D 2l.u/, l.u/ � 3, � D 2, and A;B are each sets of the form

¹˙1;˙3; : : : ;˙.n=2 � 1/º:

u non-positive, non-negative, not cyclically alternating

Theorem 6.5 classifies when a (redundant or concise) orientable cyclic presenta-
tion

Pn

 
n=.n;h/�1Y
iD0

� ih.u/

!
;

in which u is a non-positive, non-negative, and not cyclically alternating word, is
.2; k; �/-special and so generalises [8, Theorem E]; its proof is analogous to the
proof of that theorem. See Example 6.1 (d) for an example.

Theorem 6.5. Let Pn.w/ be an irreducible, orientable cyclic presentation, where
w has length k � 4 and is not a proper power, and let u be the shortest subword
of w such that

w D

n=.n;h/�1Y
iD0

� ih.u/ for any 0 � h < n;

and suppose that u is non-positive, non-negative, and not cyclically alternating.
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Then Pn.w/ is .2; k; �/-special if and only if the following hold:

(a) n D �l.u/ and l.u/ is divisible by 4;

(b) A;B are each sets of the form ¹˙�;˙3�; : : : ;˙..n=2�/ � 1/�º;

(c) QC \Q� D ; and there exists some 0 � q0 < n with .q0; �/ D 1 such that
Q D ¹q0; q0 C 2�; : : : ; q0 C .n=� � 2/�º.

6.3 Non-orientable .2 ; k; �/-special cyclic presentations

In this section, we classify the .2; k; �/-special cyclic presentations Pn.w/, where
w D u�n=2.u/�1.

w alternating

Theorem 6.6 classifies when a cyclic presentation Pn.w/, wherew D u�n=2.u/�1

is an alternating word, is .2; k; �/-special and so extends [8, Theorem D]. See
Example 6.1 (e) for an example.

Theorem 6.6. Let w D u�n=2.u/�1 be a word of length k that is alternating
and not a proper power, and suppose that Pn.w/ is irreducible. Then Pn.w/ is
.2; k; �/-special if and only if l.u/ D n=2 � 3 is odd, � D 2, and NA; NB are each
sets of the form ¹˙1;˙3; : : : ;˙.n � 4/=2; n=2º.

Proof. Let � be the star graph of Pn.w/ and let �C; �� be the induced subgraphs
of � whose vertices are the positive and negative vertices of � , respectively, and
let d NA D gcd.n; a .a 2 NA//, d NB D gcd.n; b .b 2 NB//. By Theorem 5.7, �C has
d NA components and �� has d NB components. In this proof, we use the properties
of � provided by Theorem 5.7 freely without further reference.

Suppose first that Pn.w/ is .2; k; �/-special. By Corollary 5.8, u is not cycli-
cally alternating, so l.u/ is odd. Then each component of � is isomorphic, so
d NA D d NB , and since Pn.w/ is irreducible, 1 D .d NA; d NB/ D d NA D d NB , so � has
2 components, and so � D 2. Hence �C; �� are each isomorphic to Kn=2;n=2,
which is n=2-regular, so l.u/ D n=2 and (by the definition of special presenta-
tions) l.u/ � 3. Moreover,

Kn=2;n=2 D �
C
D circ0n. NA/ and Kn=2;n=2 D �

�
D circ0n. NB/;

so NA; NB are each sets of the form ¹˙1;˙3; : : : ;˙.n � 4/=2; n=2º, as required.
Conversely, suppose that the given conditions hold. Then d NA D 1 and the edges

of �C join each even vertex xi to each odd vertex xj , and so �C is the complete
bipartite graph Kn=2;n=2. Similarly, �� is the complete bipartite Kn=2;n=2. Since
the degree of each vertex is l.u/ � 3, the presentation Pn.w/ is .2; k; �/-special.
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w non-alternating

Theorem 6.7 classifies when a cyclic presentation Pn.u�n=2.u/�1/, in which u
is a non-alternating word, is .2; k; �/-special and so extends [8, Theorem E]. See
Example 6.1 (f) for an example.

Theorem 6.7. Let w D u�n=2.u/�1 be a word of length k that is not a proper
power, where u is a non-alternating word of length at least 3, and suppose that
Pn.w/ is irreducible. Then Pn.w/ is .2; k; �/-special if and only if the following
hold:

(a) n D �l.u/, l.u/ � 2 mod 4, l.u/ � 6;

(b) NA; NB are each sets of the form ¹˙�;˙3�; : : : ;˙.n=.2�/ � 2/�; n=2º;

(c) there exists some 0 < q0 < n with .q0; �/ D 1 such that

NQ D ¹q0; q0 C 2�; : : : ; q0 C .n=� � 2/�º:

Proof. Suppose first that Pn.w/ is .2; k; �/-special. Then NA; NB; NQ are sets (i.e.
they have no repeated elements), and by Corollary 5.8, we have NAn NA0 D ¹n=2º
and NBn NB0 D ¹n=2º.

By Theorem 5.7, each component �i of the star graph � of Pn.w/ is the
complete bipartite graph Kl.u/;l.u/, so n D �l.u/. Moreover, � < n=2, and hence
l.u/ > 2, for otherwise, each component has at most four vertices, so the ver-
tices have degree at most 2, a contradiction. We use properties of � provided by
Theorem 5.7 freely without further reference. The component �0 has vertex set
V.�0/ D V.�

C
0 / [ V.�

�
0 /, where �C0 ; �

�
0 are the induced labelled subgraphs of

�0 with vertex sets

V.�C0 / D ¹x0; x� ; : : : ; x.n=��1/�º;

V .��0 / D ¹x
�1
q0
; x�1q0C� ; : : : ; x

�1
q0C.n=��1/�

º;

respectively, for some q0 2 NQ (which is non-empty since w is non-alternating). In
particular, � j a for all a 2 NA0 and � j b for all b 2 NB0.

Suppose for contradiction that �; n � � … NA. Then, for each 0 � i < n, vertices
xi ; xiC� are not joined by an edge. Therefore, the positive vertices of �0 are all
in the same part of �0, so NA D ;. By Corollary 5.8, �.u/; �.u/ are both positive
or both negative, so n=2 2 NA, a contradiction, so � or n � � 2 NA. Similarly, � or
n � � 2 NB. Therefore, �0 contains closed paths

x0 � x� � � � � � x.n=��1/� � x0;

x�1q0 � x
�1
q0C�

� � � � � x�1q0C.n=��1/� � x
�1
q0
;
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each of length n=�, which is therefore even, since � is bipartite. Therefore, the
vertices x� ; x3� ; : : : ; x.n=��1/� are precisely those positive vertices of �0 that be-
long to a different part of �0, to x0 (and so are neighbours of x0), and the vertices
x�1q0C� ; x

�1
q0C3�

; : : : ; x�1q0C.n=��1/� are precisely those negative vertices of �0 that
belong to a different part of �0, to x�1q0 (and so are neighbours of x�1q0 ). Hence
NA; NB are sets of the form ¹˙�;˙3�; : : : ;˙.n=.2�/ � 2/�; n=2º. Moreover, the

positive vertices and the negative vertices of �0 each induce a complete bipartite
graph Kn=.2�/;n=.2�/ which therefore has .n=.2�//2 edges. Since each element of
NA0 contributes n=� edges to �0 and the element n=2 2 NAn NA0 contributes .n=2/=�

edges to �0, we have n=�.j NAj � 1/C .n=�/=2 D .n=.2�//2, so

j NA0j C 1 D j NAj D ..n=�/C 2/=4:

Similarly,
j NB0j C 1 D j NBj D ..n=�/C 2/=4:

In particular, n=� � 2 mod 4, so parts (a), (b) hold.
Since x�1q0 ; x

�1
q0C�

belong to different parts of �0 and there is an edge x0 � x�1q0 ,
the vertices x0; x�1q0C� belong to the same part of �0. Hence

NQ D ¹q0; q0 C 2�; : : : ; q0 C .n=� � 2/�º:

Finally, gcd.q0; �/ divides gcd.n; a .a 2 NA/; b .b 2 NB// D 1 since Pn.w/ is irre-
ducible, so gcd.q0; �/ D 1, and so (c) holds.

Now suppose that the conditions of the statement hold. Then � has � iso-
morphic components. Consider the component �0. The set of neighbours of xj�
(0 � j < n=�) is8<:¹x� ; x3� ; : : : ; x.n=��1/�º [ ¹x

�1
q0
; x�1q0C2� ; : : : ; x

�1
q0C.n=��2/�

º if j is even;

¹x0; x2� ; : : : ; x.n=��2/�º [ ¹x
�1
q0C�

; x�1q0C3� ; : : : ; x
�1
q0C.n=��1/�

º if j is odd;

and so �0 is bipartite with vertex partition

¹x� ; x3� ; : : : ; x.n=��1/� ; x
�1
q0
; x�1q0C2� ; : : : ; x

�1
q0C.n=��2/�

º

[ ¹x0; x2� ; : : : ; x.n=��2/� ; x
�1
q0C�

; x�1q0C3� ; : : : ; x
�1
q0C.n=��1/�

º:

Further, for each 0 � j < n=�, the set of neighbours N�.x�1q0Cj�/ D N�.xj�/, so
�0 is isomorphic to Kn=�;n=� , as required.

Acknowledgments. The authors thank the referee for useful comments that led
to improvements in the article.
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