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Abstract

DNA methylation microarrays have been the most cost-effective choice for large cohort stud-

ies aimed to investigate associations between methylome changes and diseases or environ-

mental exposures. The findings of many CpG sites across the genome whose methylation

changes are highly correlated with age have led to the construction of various interesting

epigenetic age estimation models, also known as epigenetic clocks. However, there is still

largely unclear regarding the mechanisms that drive age associate methylation changes. In

this thesis, the first two chapters describe two novel bioinformatic tools for analyzing DNA

methylation microarray data respectively. After that, the existing claim that cerebellums

age slowly is re-examined.

Many samples on the Gene Expression Omnibus frequently lack a sex annotation or

are incorrectly labelled. Considering the influence that sex imposes on DNA methylation

patterns, it is necessary to ensure that methods for filtering poor samples and checking

sex assignments are accurate and widely applicable. In the first chapter, a novel method to

predict sample sex using only DNAmethylation beta values is presented, which can be readily

applied to almost all DNA methylation datasets of different formats. I firstly identified 4,345

CpG sites located on both 450K and EPIC arrays which are differentially methylated between

females and males. A novel sex classifier was then constructed by combining the two first

principal components of the DNA methylation data of sex-associated probes mapped on

sex chromosomes. The proposed method was constructed using whole blood samples and

exhibits good performance across a wide range of tissues. It is also demonstrated that this

classifier can be used to identify samples with sex chromosome aneuploidy, this function is
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validated by five Turner syndrome cases and one Klinefelter syndrome case.

Data normalization is an essential step to reduce technical variation within and between

arrays. Due to the different karyotypes and the effects of X chromosome inactivation, females

and males exhibit distinct methylation patterns on sex chromosomes; this poses a significant

challenge to normalize sex chromosome data without introducing bias. Currently, existing

methods do not provide unbiased solutions to normalize sex chromosome data, usually, they

just process autosomal and sex chromosomes indiscriminately. In chapter 2, I first demon-

strate that ignoring this sex difference will lead to introducing artificial sex bias, especially

for thousands of autosomal CpGs. Then a novel two-step strategy (interpolatedXY) was

created to address this issue, which is applicable to all quantile-based normalization meth-

ods. Employing this new strategy, the autosomal CpGs are first normalized independently

by conventional methods, such as funnorm [1] or dasen[2]; then the corrected methylation

values of sex chromosome-linked CpGs are estimated as the weighted average of their near-

est neighbors on autosomes. The proposed two-step strategy can also be applied to other

non-quantile-based normalization methods, as well as other array-based data types.

Despite different tissues having vastly different rates of proliferation, it is still largely

unknown whether they age at different rates. It was previously reported that the cerebel-

lum ages slowly, however, this claim was drawn from a single methylation clock using a

small sample size and thus warrants further investigation. In chapter 3, I first collected

the largest cerebellum DNAm dataset (N=752) and found their respective epigenetic ages

were all severely underestimated by six representative DNAm age clocks, with the underes-

timation effects more pronounced in the four clocks whose training datasets did not include

brain-related tissues. Then 613 age-associated CpGs are identified in the cerebellum, which

accounts for only 14.5% of the number found in the middle temporal gyrus from the same

population (N=404). Subsequently, I built a highly accurate age prediction model for the
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cerebellum named CerebellumClockspecific (Pearson correlation=0.941, mean absolute devia-

tion=3.18 years). Ageing rate comparisons based on the two tissue-specific clocks constructed

on the 201 overlapping age-associated CpGs support the cerebellum has younger DNAm age.

Nevertheless, BrainCortexClock is constructed to prove a single DNAm clock is able to unbi-

asedly estimate DNAm ages of both cerebellum and cerebral cortex when they are adequately

and equally represented in the training dataset. In conclusion, comparing ageing rates across

tissues using DNA methylation multi-tissue clocks is flawed. The large underestimation of

age prediction for cerebellum by previous clocks mainly reflects the improper usage of the

age clocks. There exist strong and consistent ageing effects on the cerebellar methylome and

we suggest the smaller number of age-associated CpG sites in cerebellum is largely attributed

to its extremely low average cell replication rates.

In summary, the sex classifier method presented in the first chapter provides a robust and

widely applicable tool to identify the sexes of DNAm methylation samples. It can be applied

to make sex annotations and identify sex-mismatch samples. The second chapter presents a

novel two-step strategy to bypass the issue of introducing artifactual sex bias when normal-

izing female samples and male samples together by conventional normalization methods. In

the last chapter, the unique age-associated methylome change in the cerebellum is revealed

and a cerebellum-specific clock is constructed that can accurately predict cerebellum age

and it is demonstrated that the comparison of ageing rates across tissues using epigenetic

clocks is flawed. These findings have wider implications for the use of ageing clocks.
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Chapter1

Introduction

1.1 Epigenetics

1.1.1 Epigenetics concept

The concept of epigenetics has evolved significantly since its first brought up by Waddington

in 1942 [3]. Today, epigenetics is widely accepted as the study of heritable changes that

cause gene expression alterations but are independent of changes in DNA sequence [4, 5,

6]. Typical epigenetic modifications include DNA methylation, histone modifications, nucle-

osome positioning and etc [5]. The ’epigenome’ refers to the complete description of these

heritable changes [7]. Human beings and other multicellular organisms, all develop from a

single cell, i.e. zygote. The descendent cells of the zygote all share the same set of DNA

sequences while having distinct morphologies and providing various functions in different

organs and tissues. The distinct epigenome inside each cell type mediates the same set of

DNA sequences to act differently.

1
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1.1.2 What is DNA methylation

DNA methylation is the most well-studied epigenetic modification, not only because it plays

important role in mammal development by participating in various biological processes,

such as repressing gene expression [8], silencing transposable elements [9, 10], female X

chromosome random inactivation [11] and genomic imprinting [12], but equally important is

its relatively stable and easy to be quantitatively measured characteristics.

DNA methylation is a chemical modification to the DNA molecule, typically, a methyl

group (CH3) is covalently attached to the fifth carbon (5C) of cytosine residue to form 5-

methylcytosine (5mC) [13]. 5mC was first found in bacteria by Johnson and Coghill in 1925

[14], thereafter, 5mC has been revealed to exist in all domains of life, including bacteria,

plants and animals. In mammals, 5mC is predominantly found within the cytosine-guanine

dinucleotide (CpG) context. The CpG distribution is nonrandom and the majority of the

genome is CpG-poor. The majority (80%) of CpG sites across the genome of mammal

somatic cells are methylated [15]. The unmethylated CpGs are predominately located in

CpG islands, which are defined as stretches of DNA sequence (around 1000 bp) with a

high density of CpG dinucleotides [16], gene promoters are generally associated with CpG

islands, with around 70% of gene promoters reside within CpG islands [17]. The methylation

CpG island usually leads to stable silencing of gene expression [18]. Generally, all CpGs are

categorized into four classes according to their distance to CpG island, the four CpG classes

include CpG islands (inside the island), CpG island shores (≤ 2kb from an island) [19], CpG

island shelves (2−4kb from an island) [20] and CpG open seas (≥ 4kb from an island) [21].



INTRODUCTION 3

1.1.3 DNA methylation dynamics

The methylation of CpG is catalyzed by a family of DNA methyltransferases (Dnmts). The

de novo methylation is mediated by DNA methyltransferase 3A (Dnmt3a) and 3B (Dnmt3b)

[22], they both share a similar structure and function. Dnmt3a is ubiquitously expressed

and easily detectable in most adult tissues, whereas Dnmt3b is poorly expressed within most

tissues, except bone marrow testis and thyroid [23]. When cell replicates, Dnmt1 binds to the

newly synthesized hemimethylated DNA to replicate the original DNA methylation patterns

[24].

Figure 1.1: The cycle of active DNA demethylation, this diagram is adopted from [25].

After methylation patterns are established, the methylated cytosines can reverse to their
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original unmethylated state by either passive dilution when DNA replicating without effective

methylation maintenance machinery, or actively, even in non-replicating cells, demethylating

to unmethylated cytosine via the TET-TDG pathway (Figure 1.1) [25]. The dynamic pro-

cess of DNA methylation and the plasticity of the DNA methylation landscape make genes

responsive to environmental exposures. Several health and lifestyle factors have been found

to be associated with DNA methylation signatures, including childhood disease, tobacco

smoke, drug use and poor nutrition [26, 27, 28].

1.1.4 Measure DNA methylation

The methylation status of any cytosine residue across the genome in any single cell is binary,

i.e. either methylated or unmethylated. Therefore, the methylation level of a CpG for any

specific tissue that is comprised of multiple cells is determined as the percentage of methy-

lated cells for that locus. To quantitatively measure methylation levels, bisulfite conversion

is usually the first step to distinguish the methylated and unmethylated cytosine. Bisulfite

conversion involves deaminating the unmethylated cytosines into uracils while keeping the

methylated cytosines, both 5-methylcytosine and 5-hydroxymethylcytosine, unchanged. In

the following PCR steps, the methylated cytosine will be recognized as cytosine, while the

uracil will be recognized as thymine.

During the past decades, Epigenome-wide Association Studies (EWAS) has been a popu-

lar technique to discover novel associations between lifestyles or environmental exposures and

alterations in epigenome or methylome. While whole genome bisulfite sequencing (WGBS)

is recognized as the gold standard to measure the methylation patterns across the human

genome, the high cost and technical complexity still pose significant challenges that prevent

application to large-scale samples [29]. DNA methylation microarrays, such as Infinium Hu-



INTRODUCTION 5

manMethylation450 BeadChip [20] and Infinium MethylationEPIC BeadChip [30], provide

cost-effective and high-throughput measurements of the methylation status for over half

a million CpG sites across the genome will continue to be the first choice by most DNA

methylation related large cohort studies in the near future.

1.2 Ageing and DNA methylation clocks

1.2.1 Ageing and ageing biomarker

The world’s population is ageing at an ever-fast pace. According to World Health Orga-

nization, the number of people aged 60 years and older has outnumbered children younger

than 5 years by 2020 [31]. The rapid increase in the elderly population is posing a socioe-

conomic challenge to societies all over the world. Ageing is characterized by progressive

loss of cellular functions, leading to increased risk of morbidity and mortality [32]. Organ-

ismal ageing has significant importance for human health because it increases susceptibility

to many diseases, such as diabetes, cardiovascular disorders and neurodegenerative diseases

[33]. In recent years, many drugs and interventions [34, 35, 36], such as calorie restriction,

rapamycin, metformin, NAD+ supplements and exercise, have been taken to clinical trials

with the hope they may delay the ageing process or even restore young capacity. However,

a significant challenge still exists in the field which is how to accurately measure the ageing

status. People may age at different rates, largely influenced by genetic background, lifestyle

and environmental exposures. An ideal age biomarker should thus capture this difference.

Chronological age, which is the number of years a person has been alive, can serve as an

objective approximate description of how well people functions. However, the nature of

chronological age means it only steadily increases at the same rate for everyone, no matter
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what the subject’s health status is, making chronological age can not be served as a useful

biomarker for anti-ageing clinical trials. Thus the ageing field urgently requires a reliable

biomarker to measure a person’s biological age—although there is a lack of a precise and

widely accepted definition, biological age is often referred to as a quantity describing the

person’s true global ageing state [37]. Further investigation of ageing biomarkers will not

only increase our knowledge of the mechanisms of ageing, but also facilitate monitoring the

various interventions for improving human healthspan and rejuvenation experiments.

1.2.2 A variety of ageing biomarkers

In 2013, a highly influential review summarised nine important hallmarks of ageing from cel-

lular and molecular levels, including stem cell exhaustion, cellular senescence, mitochondrial

dysfunction, deregulated nutrient sensing, loss of proteostasis, telomere attrition, epigenetic

alterations, genomic instability and altered intracellular communication (Figure 1.2) [32]. In

the last decade, a variety of ageing biomarkers that were derived from different ageing hall-

marks, such as telomere attrition [38], DNA methylation changes [39, 40] and alterations in

gene expression [41, 42] and metabolite concentration [43, 44], have attracted even more at-

tention and were used to build age estimators or age clocks attempt to measure the biological

age [45].

Relative leukocyte telomere length is one of the first biological phenomena that showed

promising potential as biomarkers of biological ageing [46, 38]. Telomeres are repetitive DNA-

protein complexes located at the ends of chromosomes. They shorten every time cells divide,

when their telomere length reaches a critical length, cells stop dividing or die. However,

telomere length and chronological age are only loosely correlated, with Pearson’s correlation

coefficient usually under 0.5 [47], thus it can not provide accurate and reliable age estimations
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Figure 1.2: The nine hallmarks of ageing, this diagram is adopted from [32].

on an individual level. Studies have reported thousands of genes differentially expressed with

chronological age [48, 49], as a result of this, several transcriptome age clocks were developed

and reported the deviations between the transcriptomic age and the chronological age are

associated with several clinical features [48, 41, 50, 42]. However, the transcriptome age

predictors also suffer from an accuracy issue, with mean absolute errors usually greater than

5 years [45]. Similarly, there are age estimation models trained on metabolomic data, the so-

called metabolomic ages also showed strong chronological age correlation and the residuals

of the predicted metabolomic age also demonstrated to be associated with several clinical
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phenotypes [43, 44]. In contrast, age clocks based on DNAm changes, also called epigenetic

clocks, were demonstrated to be the most accurate and robust age estimators, they are the

most promising ageing biomarker that can be applied to individuals [51].

1.2.3 DNAm clocks

The discovery of CpG methylation as a potential epigenetic inheritance mechanism has led

to speculations that it may be involved in the ageing process [52]. Early studies relying on

techniques measuring total 5-mC content reported a subtle and gradual loss of methylation

in different animals and occurs in several different tissues, such as the brain, liver, heart

and T cell [53, 54, 55, 56]. With modern technology development, especially microarray

and sequencing-based technology, massive measuring base-level methylation statuses are

widely adopted to discover phenotype-associated methylation changes in CpG sites across the

genome. Since then, age-related DNA methylation changes have been found to be widespread

across the genome, throughout the life course [57, 39, 58, 59] and exist in a wide variety of

tissues [40, 60]. Depending on the gene and the tissue, methylation changes with age can

be either positive or negative, i.e. hypermethylated or hypomethylated. A well-reported

hypermethylated example is the CpG site targeted by the probe of cg16867657, locates at

the promoter of ELOVL2 gene, and consistently gains methylation with age across many

different tissue types [60]. It was also reported as the top age-associated CpG in the blood by

different studies [61, 62], with its methylation level increasing from around 20% to nearly 90%

when the person grows from birth to 100 years old. Whereas the locus targeted by the probe

of cg10501210, located upstream of miR-29b-2 gene, with its methylation level in blood close

to 100% in newborns and gradually decreases to about 30% when the subject grew to 100

years old [63]. Generally, CpG sites exhibiting similar age-associated methylation changes

across multiple tissues are more likely to be hypermethylated, whereas those hypomethylated
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age-associated CpG sites are mostly tissue specific.

The discovery of many highly age-associated CpGs has led researchers to work on building

chronological age prediction models by simply weighted averaging the methylation values of

a group of age-associated CpG sites. As a first attempt, Sven Bocklandt and colleagues built

a first DNAm-based age prediction model by including only two CpG sites and they reported

the model explains 73% of the variance in age within a small dataset [64]. Since 2013, many

more DNAm-based age models have been published and those later models achieved much

higher age prediction accuracy by including much more informative CpGs, from dozens to

nearly a thousand, and were trained on much larger datasets, with sample sizes ranging from

several hundred to ten thousand. In this field, all kinds of age prediction models are also

called epigenetic age clocks. Among them, Hannumn’s clock [39] and Horvath’s clock [40] are

the two most widely known DNAm clocks. Hannum et al. built the first multivariate DNAm

age model which included 71 CpG sites and the model was trained on microarray samples

of the whole blood from 656 adult human individuals [39]. In the same year 2013, Steve

Horvath trained an age model on 8,000 microarray samples comprising 51 healthy tissues and

cell types, the finalised Horvath multi-tissue clock demonstrated a relatively accurate age

prediction (median absolute error of 3.6 years) is possible for a broad range of human tissues

and cell types via a single linear model that includes only a small number of CpGs (353 CpG

sites) [40]. Since then, many more age clocks have been published [65, 66, 67]. Different

tissue types not only have different methylation profiles, they may also have distinct age-

related DNA methylation change patterns, therefore many tissue-specific clocks have been

developed and demonstrated better age prediction performance than a single multi-tissue

clock. Until now, tissue-specific clocks have been developed for skeletal muscle [68], buccal

cells [69], brain cortex [70], skin [71] and so on.

So many different clocks were developed not just to estimate the subject’s chronological
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age accurately, even though this may be useful for forensic scientists to infer an individual’s

age only from a biological sample, many researchers are more interested in evaluating the

ageing status of the tissue they studied by applying the epigenetic clocks. Many researchers

believed the epigenetic age residues—the difference between the epigenetic age estimated by

DNAm clocks and the actual chronological age, are not just errors derived from the under-

performance of poor models, but represent a significant proportion of biological meaningful

ageing signals. The epigenetic age residue is better known as epigenetic age acceleration in

this field, a straightforward interpretation is, that the epigenetic age is a kind of approxima-

tion for biological age, thus a positive age acceleration means the person is biologically older

than his actual age, while a negative age acceleration indicates the person is biologically

younger than his age. Motivated by this premise, several studies have reported significant

associations between epigenetic age acceleration and disease or health-related issues, such as

obesity [72], HIV infection [73], Down syndrome [74], Huntington’s disease [75] and Werner

syndrome [76]. A more striking finding is from Marioni and colleagues, who reported a

higher age acceleration derived from both Hannum’s clock and Horvath’s clock is signifi-

cantly associated with a higher all-cause mortality risk [77]. However, with the development

of an ever-accurate age prediction model for blood samples by leveraging the largest ever

training dataset, Zhang et al. demonstrated that the association between epigenetic age ac-

celeration and mortality risk decreased to non-significant by applying epigenetic age models

with improved accuracy of chronological age prediction [78]. A recent study also reported

no significant associations were found between longitudinal functional capacity assessments

and age accelerations derived from several epigenetic clocks [79].

All the above-mentioned age clocks were built by using chronological age as the only

dependent variable within the training regression algorithms, however, when further im-

proving the precision of chronological age prediction, the application of using the estimated

epigenetic age as a biomarker of biological age inevitably runs into the well-known “paradox
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of biomarkers” as recomposed by Hochschild: “A hypothetical biomarker that approaches

perfect correlation with chronological age could be replaced by chronological age and would

be insensitive to differences in ageing among individuals.” [80, 37]. As a way to walk around

the paradox and also to disentangle biological age from chronological age, some researchers

turned to use mortality risk score rather than chronological age as the dependent vari-

able to regress, when training clocks. In 2018, Morgan et al. incorporated nine mortality

risk-associated clinical biomarkers and chronological age into a mathematic function as an

estimator of phenotypic age, then the phonotypic age was regressed on over 20,000 CpGs

across the genome, the finalized model also named PhenoAge comprised of 513 CpGs in

which their weighted average of methylation levels are taken as estimation of the phenotypic

age [81]. Subsequently, Lu et al. developed GrimAge, a DNAm-based clock aimed to better

predict mortality risk, which was built by regressing time-to-death due to all-cause mortality

on eight DNAm-based estimators for seven plasma protein levels and smoking pack years,

chronological age and sex [82]. Both PhenoAge and GrimAge were reported to better pre-

dict ageing-related outcomes, especially all-cause mortality than previous clocks regressed

on chronological age [83, 84]. Despite many DNAm-based clocks have been developed and

applied to predict ageing-related issues, it is still largely unknown whether the methylation

changes of CpGs used to build the clocks are a reflection of other underlying molecular or

cellular processes, or whether they themselves are involved in the ageing process [85, 86].

1.2.4 Motivations

Although many DNAm-based clocks reported high accuracy in predicting epigenetic age

in terms of the high Pearson’s correlation coefficients between estimated DNAm age and

chronological age, the lack of robustness of existing DNAm clocks means they may make

volatile predictions for samples from even technical replicates [87, 88, 89]. The lack of
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robustness may be due to the performances of the probes used to construct the clocks

being easily affected by technical variances, such as sample preparation procedures, probe

hybridization issues and batch effects [90, 91, 88]. Thus, the large technical noise existing

in epigenetic age predictions by existing DNAm clocks means they can only be instructive

and meaningful at population levels. To increase the reliability of DNAm clocks, Higgins-

Chen and colleagues tried to remove those with low signal-to-noise ratio CpGs in the training

model, but only achieved modest improvements [89]. Recently, they proposed to use principal

components (PCs) of methylation values of 78,464 CpGs as input to train clocks and reported

high reliability of the PC-based clocks [89]. Initially, I was thinking to combine big data and

deep learning algorithms to greatly improve the accuracy and also reliability of DNAm

clocks. Most previously published clocks adopted penalised linear regression algorithms,

such as Elastic Net, to select a group of informative CpGs and then weighted averaging their

methylation values as prediction results. However, the linear regression algorithms can not

fully take advantage of a large number of informative CpGs whose methylation levels are

nonlinearly correlated with age. Such as Vershinina et al. reported that methylation levels

of 15% of age-associated CpGs are nonlinearly changing with ageing [92]. In contrast, neural

networks based on deep learning algorithms have proved to be able to fit into any complex

nonlinear patterns provided with enough neurons and hidden layers [93]. Most previous

clocks were trained on several hundred to several thousand samples which are far less than

the available age informative CpGs (more than 40,000 [89]) measured by 450k array or EPIC

array, thus greatly increasing training sample size will alleviate the over-fitting issues in the

training process. To this end, I collected more than twenty thousand DNA methylation

microarray samples from public repositories.

The collected samples were produced from different laboratories and in different years,

it thus poses a challenge to confidently integrated them into any downstream analysis. Sex

has previously been reported to have a strong impact on DNA methylation variation [94, 95,
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96]. Females have higher life expectancy than males across countries worldwide with females

generally living 3 to 7 years longer than males [97], it has also shown that males have faster

epigenetic ageing rates compared to females [39, 98]. It is generally suggested practice to

include sex as a covariant in EWAS analysis. However, many DNAm datasets deposited

in public repositories do not include sex annotations. It thus promoted me to construct a

robust sex classifier to estimate sex for DNAm samples. After assigning sex to unannotated

samples and removing mismatched samples, the DNAm samples from different datasets have

to be normalized to remove most of the technical noises. When I was choosing which method

to normalize the DNAm datasets, I found existing quantile-based normalization methods all

introducing artifactual sex bias into normalized data, when processing female samples and

male samples together, therefore, I was motivated to address this issue by creating a new

normalization strategy, the detail solution is documented in Chapter 3. Afterwards, clean

and normalized datasets have been generated, tissue or cell types have to be considered

when choosing DNAm samples to construct epigenetic age clocks, DNA methylation plays

a vital role in helping differentiated cell types maintain their distinct identities. It was

previously reported that the cerebellum ages slower in comparison to other tissue types,

however, this claim was drawn from a single clock using a small sample size and so warrants

further investigation. In recent years, many more cerebellum DNA methylation samples have

become publicly available and many diverse DNAm age clocks have also been developed [86].

In Chapter 4, the claim that the cerebellum ages slowly is thoroughly examined, and the

mechanisms are explored.
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1.3 Aims of this Thesis

1. Chapter 2 describes a new sex classifier to accurately estimate the sex of DNA methyla-

tion samples, this method can be used to make sex annotations for unlabelled samples

and also used to identify wrong-labeled samples when encountering sex mismatches.

2. Chapter 3 presents a novel two-step strategy called interpolatedXY to normalize DNA

methylation microarray data avoiding sex bias. In addition, it also demonstrates how

artifactual sex bias is introduced into normalized data by traditional methods and

further justifies the benefits of applying between-array normalization methods.

3. Chapter 4 reexamines the claim that the cerebellum ages slowly. It presents ageing

rate comparisons for the cerebellum by epigenetic clocks and reveals how the epigenetic

ages of cerebellum samples are severely underestimated.
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DNA methylation-based sex classifier

to predict sex and identify sex chro-

mosome aneuploidy

The work presented in this chapter has been published in BMC Genomics [99].
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2.1 Introduction

Epigenome-wide Association Studies (EWAS) are a powerful way to study the relationships

between epigenetic variation and human diseases [100]. Apart from sex chromosomes, thou-

sands of CpG sites on autosomes also show very different DNA methylation patterns between

males and females [101, 102]. As a result of this, sex has been considered an important co-

variate, when undertaking methylation and phenotype association studies.

Many researchers have submitted their methylation microarray datasets to the Gene

Expression Omnibus (GEO). Currently, there are over 100,000 HM450k samples and over

18,000 EPIC samples which are publicly available. Most of these have phenotype annotations

accompanying them, thus they can be used by other researchers to perform meta-analyses or

as independent references to validate their hypothesis. However, many mismatches have been

found between annotations and samples, Toker et al. discovered widespread mislabelling in

transcriptomics datasets of GEO [103], Heiss et al. found 25% of the datasets they studied

contained sex-mismatched samples, particularly in three datasets, more than 30% of the

samples were identified as being mislabelled [104]. A large portion of these discrepancies may

stem from data entry errors. Researchers should deal with these sex-mismatched samples

carefully; the safest way is to remove them directly before downstream analysis.

McCarthy and colleagues performed meta-analysis of sex-specific methylation patterns

and demonstrated that the first two principal components of X chromosome methylation

data on 27k arrays can differentiate between sexes [105]. Currently, there are several methods

which can be used to predict the sex of samples from DNA methylation data. The ‘getSex’

function of minfi package estimates sex based on the median values of measurements on the

X and Y chromosomes respectively [106]; the ‘estimateSex’ method of sEst package groups
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beta values and detection p-values of probes mapped on sex chromosomes into different

intervals and achieved sex prediction by looking at the different distribution patterns of

these intervals from two sexes. [107]; The ‘check sex’ method within the ewastools package

predict sex based on normalized average signal intensity values on the sex chromosomes [104].

We propose a novel method to predict the sex of samples using solely DNA methylation

beta values. We identify a set of significant sex-associated CpG sites, perform principal

component analysis (PCA) on these sites to obtain a sex classifier, and evaluate our method’s

performance across a wide range of human tissues. The proposed sex classifier allows users

to attribute sex to unannotated samples on public databases, and also identify samples with

sex aneuploidy.

2.2 Methods

2.2.1 Data collection and preprocessing

We downloaded publicly available methylation microarray datasets from GEO

(https://www.ncbi.nlm.nih.gov/geo/), for those datasets in which raw IDAT files were not

available, such as GSE78874 and GSE137884, the intensity values of methylated and un-

methylated signals were extracted from raw intensity text files. While for most of the

datasets in which raw IDAT were provided, we used the function ’iadd2’ from bigmelon

package [2] to read and load intensity values from IDAT files. After that, beta values are

calculated as:

β =
M

M + U + 100
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where β is beta value, M denotes methylated densities and U represents unmethylated

densities. Beta values are ranged between 0 and 1, beta value close to 1 means high-level

methylation and a near-zero beta value represents low-level methylation. With manual

inspection, those samples with apparent abnormal beta value density distributions were

removed prior to downstream analysis. Also, those samples with more than 10% missing

data were excluded.

There are 453,152 probes that exist in both 450k array and EPIC array, therefore, we

only keep the shared 453,152 probes for downstream analysis. For each sample, the missing

values of each probe were replaced by their corresponding means across all samples. Then,

Z-score normalization was applied to each sample separately to reduce technical variance,

which means all beta values were transformed to their Z-score values by subtracting the mean

of all autosomal beta values and then divided by the standard deviation of all autosomal

beta values within a sample. Z-score transformed beta values were used to construct PCA

models and were used to make sex predictions.

2.2.2 Model construction

GSE105018 was used to screen for sex-associated CpGs, it includes 1658 whole blood DNA

methylation samples from participants in the Environmental Risk Longitudinal Twin Study,

there are 826 female samples and 832 male samples in this dataset, with all participants

aged at 18, among them, 1468 participants who were members of complete twin pairs (430

MZ pairs and 304 DZ pairs).

To identify sex-associated probes, T-test was applied to raw beta values of each of the

453,152 probes for the two sex groups, after Bonferroni multiple comparison correction, those
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probes with p-value less than 0.01 and absolute beta value difference between sexes greater

than 0.2 were selected as significant sex-associated probes.

In order to have equal ratios of sexes, we randomly selected 800 females and 800 males

from GSE105018, the Z-score transformed beta values of the identified sex-associated probes

mapped on sex chromosomes were used as input data. To be specific, the Z-score transformed

beta values of the sex-associated probes mapped on X chromosomes were processed by PCA,

and the coefficients of the first principal component were used in the final model to distinguish

whether a sample contains one copy X chromosome or two copy X chromosomes. Similarly,

the Z-score transformed beta values of the sex-associated probes mapped on Y chromosomes

were processed by another PCA, and the coefficients of the result first principal component

were used in the final model to distinguish whether a sample has Y chromosomes or not. As

a result, the final model includes two sets of coefficients from two first principal components

of two separate PCAs. Finally, the proposed sex classifier was tested by the UKHLS dataset,

with the labelled sexes as true sex annotations.

2.3 Availability of data and materials

All the DNA methylation datasets except for the validation set analysed during the current

study are publicly available and were obtained from the GEO public repository. The training

set is from GSE105018[108] which includes 832 male and 826 female whole blood samples,

the validation set which includes 1175 whole blood samples is available from the European

Genome-phenome Archive under accession EGAS00001002836 (https://www.ebi.ac.uk/ega/home).

Other datasets: purified blood cell types (GSE103541 [109]), buccal cells (GSE137884 [110]),

brain cells (GSE112179 [111]), saliva (GSE78874 [112]), liver (GSE119100 [113]), placenta
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(GSE100197 [114]), sperms (GSE64096 [115]). The one Klinefelter syndrome positive sample

is available upon request. More details about these datasets are shown in Table 2.1.

2.3.1 Sofware

All the analyses were conducted in R (version 3.6.0) [116] under a Linux environment. The

proposed method has been integrated into the wateRmelon Bioconductor package, which is

freely and easily accessible by calling the ‘estimateSex’ function.
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2.4 Results

2.4.1 Identifying sex-associated CpG loci

To make our method compatible with both 450K and EPIC, we only included 453,152 probes

that are present on both arrays. Two-sample T -tests were applied to GSE105018 [108] to

identify differentially methylated CpG sites between sexes, after Bonferroni multiple compar-

ison correction, those with p-value less than 0.01 and absolute beta value difference between

sexes greater than 0.2 were selected as the most significant sex associated CpG sites. As

a result of this, we obtain 4345 significantly sex-associated sites. In this study, we have

chosen a relatively strict threshold, as we aim to capture those most robust features which

methylate differently and consistently between the two sex groups across various datasets.

As expected, most of the sex-associated sites belong to sex chromosomes, with the majority

(4047, 93%)located on the X chromosome (ChrX), and with a total of 284 (6.5%) CpG sites

located on the Y chromosome (ChrY).

As shown in Figure 2.1a, these sex-associated CpG sites on ChrX are distributed through-

out the whole chromosome, and most of them (3781, 93.4%) are associated with higher

methylation levels in females compared to males, this is mainly because one X chromosome

of the female is inactivated and highly methylated. However, we also observed a small por-

tion of CpG sites (266, 6.6%) on ChrX that have higher methylation levels in males compared

to females, this could attribute to the fact that around 15% of X-chromosome genes often

escape from XCI and another fifteen percentage shows variable degree of ’escape’ [119]. For

example, four out of the 266 probes mapped to Xist which is an escape gene with known

exclusive expression from the inactivated X chromosome [119].
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Figure 2.1: Females and males exhibit distinct methylation patterns at sex-associated CpG sites
on the two sex chromosomes a: The X chromosome: most sex-associated CpG sites from females
have beta values range between 0.2 and 0.8; most of these sites from males are less methylated
(beta values less than 0.2). b: The Y chromosome: the identified sex-associated CpG sites of males
are highly methylated with beta values greater than 0.6 whereas females exhibited low methylation
signals.
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Among the 284 sex-associated CpG sites on ChrY, 211 CpG sites have higher methylation

levels in male samples (Figure 2.1b). Females do not carry Y chromosomes, thus most of

the intensity signals of ChrY we observed from females may due to background noise and

non-specific hybridisation, nevertheless, the mean raw signal intensities of the 284 probes

in females are only around 11% of that in males. Interestingly, 70 of the 284 probes are

on McCartney’s list of 67,609 potential non-specific probes of EPIC array [120], however,

69 of them are hypermethylated in males (mean=0.73, sd=0.11), while hypomethylated in

females (mean=0.35, sd=0.07). The raw signal intensities of the 70 probes in females are

also only around 10% of that in males, suggesting they were less affected by the non-specific

hybridisation issue.

2.4.2 Sex classifier based on sex-associated CpG sites

Since we have obtained a large group of CpG sites which show a significant difference

(p < 0.01) in methylation levels between males and females, we are able to construct a

sex classifier. To begin with, the DNA methylation values of the 4047 sex-associated CpG

sites on ChrX from the same training samples are processed using PCA. PCA takes a linear

approach to generate reduced dimensions by maximizing the captured residual variance in

each further dimension[121]. As shown in Figure 2.2a, the first principal component, which

explained 98% of the total variance, has captured the most sex differences among all training

samples. Thus, we could use this first component to separate samples into two categories:

1) with two copies of X chromosomes and 2) with only one copy of X chromosome.

Similarly, a PCA is performed using the 284 CpG sites of ChrY, and as that of ChrX,

the first principal component accounted for the most variances can make a good separation

between male and female samples (Figure 2.2b). As a result of this, the first component can
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Figure 2.2: A sex classifier is constructed by applying two PCAs on two sex chromosomes separately.
a: The first two components on ChrX. b: The first two components on ChrY. Results of c training
set and d validation set produced by the sex classifier, all samples are classified into four categories:
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be used to divide samples into two categories: 1) with Y and 2) without Y.

Finally, the two first principal components of the two PCAs which both explained the

most sex differences are utilized to build the sex classifier. Normal females have two copies

of X chromosomes and normal males have one copy of X chromosome and one copy of Y

chromosome. By our sex classifer, male samples with 46,XY should locate in the top left

area and female samples with 46,XX should distribute at the bottom right area (Figure

2.2c). It is reasonable to suggest that this model can be applied to identify samples with sex

aneuploidy: samples with 45,XO will be placed at the bottom left corner, and samples with

47,XXY should be distributed at the top right corner.

The codes for the proposed sex classifier are listed below, this function is also available by

calling ’estimateSex’ from the waterMelon bioconductor R package

(https://github.com/schalkwyk/wateRmelon/tree/master).

1

2 #’ Predict sex by using robust sex -related CpG sites on ChrX and

ChrY

3 #’

4 #’ @param betas

5 #’ A matrix with sample IDs as column names , and probe names as row

names ,

6 #’ ideally: beta = M / (M + U + 100). Take a look at an example

betas with:

7 #’ "data(melon); print(betas(melon)[1:10 , 1:3]) ".

8 #’ @param do_plot logical. Should plot the predicted results?

Default: FALSE

9 #’
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10 #’ @return dataframe contains predicted sex information.

11 #’ @export

12 #’ @author

13 #’ Wang , Yucheng , et al. "DNA methylation -based sex classifier to

predict sex

14 #’ and identify sex chromosome aneuploidy ." BMC genomics 22.1

(2021): 1-11.

15 #’

16 #’ @examples

17 #’ data(melon)

18 #’ pred_XY <- estimateSex(betas(melon), do_plot=TRUE)

19 estimateSex <- function(betas , do_plot=FALSE){

20 betas <- as.matrix(betas)

21 single_sample <- FALSE

22 if(ncol(betas) == 1) {

23 betas <- cbind(betas , betas)

24 single_sample <- TRUE

25 }

26 # predict sex by two PCAs on X and Y chromosomes

27 data("sexCoef")

28 # Z score normalization

29 betas <- betas[rownames(betas) %in% sex_coef$IlmnID , ]

30 message(’Normalize beta values by Z score ...’)

31 autosomes <- sex_coef$IlmnID[!(sex_coef$CHR %in% c(’X’, ’Y’))]

32 auto_betas <- betas[rownames(betas) %in% autosomes , ]

33 d_mean <- colMeans(auto_betas , na.rm=TRUE)

34 d_sd <- colSds(auto_betas , na.rm=TRUE)

35 z_beta <- (t(betas) - d_mean) / d_sd

36 message(’Fishished Zscore normalization.’)
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37

38 # Sex prediction

39 pred_XY <- list()

40 for(chr in c(’X’, ’Y’)){

41 coefs <- sex_coef[sex_coef$pca == chr ,]

42 miss_probes <- setdiff(coefs$IlmnID , colnames(z_beta))

43 if(length(miss_probes) > 0){

44 warning(’Missing ’, length(miss_probes), ’ probes!\n’,

paste(c(miss_probes), collapse=", "))

45 coefs <- coefs[!(coefs$IlmnID %in% miss_probes), ]

46 }

47 chr_beta <- z_beta[, coefs$IlmnID]

48 chr_beta[is.na(chr_beta)] <- 0

49 pred_chr <- t(t(chr_beta) - coefs$mean) %*% coefs$coeff

50 pred_XY[[chr]] <- pred_chr

51 }

52 pred_XY <- data.frame(pred_XY)

53

54 pred_XY$’predicted_sex’ <- ’Female ’

55 pred_XY$’predicted_sex’[(pred_XY$X < 0) & (pred_XY$Y > 0)] <-

’Male’

56 pred_XY$’predicted_sex’[(pred_XY$X > 0) & (pred_XY$Y > 0)] <-

’47,XXY’

57 pred_XY$’predicted_sex’[(pred_XY$X < 0) & (pred_XY$Y < 0)] <-

’45,XO’

58 if(single_sample){

59 pred_XY <- pred_XY[1, ]

60 }

61
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62 if(do_plot){

63 plot_predicted_sex(pred_XY)

64 }else{

65 message(’You can visualize the predicted results by set

"do_plot=TRUE ".\n’)

66 }

67 return(pred_XY)

68 }

69

70 plot_predicted_sex <- function(pred_XY){

71 # visualization of predicted sex

72 plot(Y~X, data=pred_XY , pch=1, xlab=’ChrX -PC1’, ylab=’ChrY -PC1’)

73 abline(v=0, lty=’dashed ’)

74 abline(h=0, lty=’dashed ’)

75 abnormls <- pred_XY[!(pred_XY$’predicted_sex’ %in% c(’Male’,

’Female ’)),]

76 if(nrow(abnormls) > 0){

77 points(Y~X, data=abnormls , pch=2, col=’red’)

78 for(i in 1:nrow(abnormls)){

79 text(abnormls$X[i], abnormls$Y[i], rownames(abnormls)[i],

pos=3, col=’red’, cex =0.5)

80 }

81 }

82 text(-10, 2, ’46,XY’, cex=1.2, col=’blue’)

83 text(-10, -2, ’45,XO’, cex=1.2, col=’blue’)

84 text(10, -2, ’46,XX’, cex=1.2, col=’blue’)

85 text(10, 2, ’47,XXY’, cex=1.2, col=’blue’)

86 }



30

2.4.3 Comparison with other tools

To compare the proposed sex classifier with three other existing sex prediction classifiers

for DNA methylation microarray data taken from the R packages (see Table 2.2), minfi

[106], ewastools [104] and sEst [107], we take GSE51032 [118] as a benchmark dataset, as it

was used in developing ewastools and sEst. GSE51032 includes 857 samples (188 men and

657 women) and their source tissue are all from buffy coat. Figure 2.3 shows the results

generated by the four methods, as we can see, there are eight samples (four males and four

females) displaying mismatches between predicted sex and labelled sex, and the mismatches

are consistent in the results from four methods, thus we have high confidence that the

eight samples are mislabelled. Two samples (marked by black circles) are identified by our

classifier as 47,XXY, sEst also identified the two outliers. However, only one of the two

samples appears as an outlier from minfi and ewastools, and the other one stays close to the

main male cluster.
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sEst, d. our classifier in wateRmelon. Two outlier samples are marked by black circles, blue square
represents male and red triangle denotes female.



32

T
a
b
le

2
.2
:
S
u
m
m
ar
y
of

fo
u
r
se
x
p
re
d
ic
ti
on

to
ol
s
fo
r
D
N
A

m
et
h
y
la
ti
on

sa
m
p
le
s.

P
ac
ka
ge

F
u
n
ct
io
n

n
am

e
In
p
u
t
re
q
u
ir
em

en
ts

M
ec
h
a
n
is
m

P
er
fo
rm

a
n
ce

o
n

cl
u
st
er
in
g

fe
m
a
le
s
a
n
d
m
a
le
s

S
C
A

d
et
ec
ti
o
n

M
in
fi

ge
tS
ex

ID
A
T
s

C
o
m
p
a
re

th
e

lo
g
2

tr
a
n
s-

fo
rm

ed
m
ed
ia
n
to
ta
l
in
te
n
-

si
ty

o
f
p
ro
b
es

m
a
p
p
ed

o
n

C
h
rX

a
n
d
C
h
rY

.

G
o
o
d

in
cl
u
st
er
in
g

m
a
le
s

a
n
d

le
ss

w
el
l
in

cl
u
st
er
in
g

fe
m
a
le
s

N
o
t
p
ro
v
id
ed

E
w
as
to
ol
s

ch
ec
k
se
x

ID
A
T
s

C
o
m
p
a
re

th
e

n
o
rm

a
li
ze
d

av
er
a
g
e
si
g
n
a
l
in
te
n
si
ty

o
f

p
ro
b
es

m
a
p
p
ed

o
n

se
x

ch
ro
m
o
so
m
es

E
x
ce
ll
en
t

in
cl
u
st
er
in
g

m
a
le
s
a
n
d
g
o
o
d
in

cl
u
st
er
-

in
g
fe
m
a
le
s

N
o
t
p
ro
v
id
ed

sE
st

es
ti
m
at
eS
ex

B
et
a

va
lu
es

a
n
d

d
e-

te
ct
io
n
p
-v
al
u
es

G
ro
u
p
b
et
a
va
lu
es

a
n
d
d
e-

te
ct
io
n

p
-v
a
lu
es

in
to

d
e-

fi
n
ed

in
te
rv
a
ls

a
n
d

P
C
A
s

o
n

th
e

d
is
tr
ib
u
ti
o
n

p
a
t-

te
rn
s
o
f
th
es
e
in
te
rv
a
ls
.

E
x
ce
ll
en
t

in
cl
u
st
er
in
g

m
a
le
s
a
n
d
fe
m
a
le
s

P
ro
p
o
se
d

b
u
t

n
o
t

va
li
d
a
te
d

W
at
er
R
m
el
on

es
ti
m
at
eS
ex

B
et
a

va
lu
es

(w
h
ic
h

ca
n

b
e

ea
si
ly

g
en
er
-

at
ed

fr
om

si
g
n
a
l
in
-

te
n
si
ty

te
x
t

fi
le
s

o
r

ID
A
T
s
)

P
C
A
s

o
n

b
et
a

va
lu
es

o
f

se
x

d
iff
er
en
tl
y

m
et
h
y
la
te
d

C
p
G
s
o
n

C
h
rX

a
n
d

C
h
rY

se
p
a
ra
te
ly
.

E
x
ce
ll
en
t

in
cl
u
st
er
in
g

m
a
le
s
a
n
d
fe
m
a
le
s

P
ro
p
o
se
d

a
n
d

va
li
d
a
te
d

b
y

fi
ve

T
u
rn
er

sy
n
d
ro
m
e

ca
se
s

a
n
d

o
n
e

K
li
n
ef
el
te
r

sy
n
-

d
ro
m
e
ca
se



33

In general, all four methods show good performance in clustering male samples, however

the method from minfi performs much poorer in clustering female samples compare to the

other three tools, as some females are not distinguishable from males along the x-axis. The

female cluster produced by ewastools exhibits a long tail towards the male cluster; the sex

prediction tools in minfi and ewastools are both based on signal intensity therefore they

produce more similar results than the other two tools. Our sex classifier and the method

from sEst are both beta value-based, although the two methods utilised beta values very

differently and sEst requires detection p-values, the patterns of their results are similar. It

should be noted, detection p-values are used as an index of usability for each probe but

are not well defined. It is implemented as a test for signal intensity above background

level in the proprietary GenomeStudio software, the detection p-values calculated by the

minfi package are better documented but not equivalent. Overall, compared to the other

three sex prediction tools, our proposed method is highly robust and shows better or similar

performance in clustering females and males.

2.4.4 Performance evaluation

The DNA methylation profiles of samples from the training set and validation set are assessed

by 450k array and EPIC array respectively. As we can see from the results (Figure 2.2),

the proposed model has correctly classified all samples in the two datasets, proving that the

proposed classifier is highly robust and compatible with both platforms.

The proposed sex classifier is trained and validated using whole blood samples. As

whole blood is a heterogeneous collection of different cell types, to investigate whether our

classifier is biased by blood cell types, we tested its performance on DNA methylation data

derived from five purified blood cell types—B cells, CD4 T cells, CD8 T cells, monocytes and



34

granulocytes from 28 individuals. As shown in Figure 2.4a and Figure 2.4b, all the five cell

types are clustered into two sex groups and we could not find any or very minor differences

between cell types. Collectively, these results suggest that the proposed sex classifier is

robust to blood cell types.

Although blood is the most studied tissue in EWAS, there are also many DNA methyla-

tion studies that use samples from other types of human tissue. To evaluate our sex classifier’s

range of application, we further tested its performance on several other most studied human

tissues, including saliva, buccal cells, brain cells, liver, placenta, and sperm. Results from

Figure 2.4c to Figure 2.4f demonstrate that the proposed classifier is robust in these vastly

different types of tissues—saliva, buccal cells, brain cells, and liver. However, even though

we can observe two clusters within the placenta samples, the female samples are more loosely

distributed along the x-axis than that in other tissues, and all of them are more close to the

zero point of x-axis, with several samples even having negative values (Figure 2.4g).

Interestingly, all sperm samples were clustered into a single group by our sex classifier,

located in the bottom left region (Figure 2.4h). This area is typically recognised by our

sex classifier as 45,XO. As sperm cells are a mixture of two types of haploid cells (23,X

and 23,Y) this suggests that their methylation levels are lower on ChrY compared to other

mature human tissues.

2.4.5 Predicting sex chromosome aneuploidy

DNA methylation has been an important way to study the various developmental symptoms

caused by copy number aberrations of the sex chromosome [122]. Earlier, we proposed that

our classifier can be applied to identify samples with abnormal sex chromosomes, including
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Figure 2.4: The sex classifier was evaluated across five blood cell types (a and b) and six other
human tissues (c-h). a. Scatter plot showing results from five blood cell types: B cells, CD4 T
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45,XO and 47,XXY. To further validate its ability, we searched the public repositories for pos-

itive samples with clinical diagnoses. As a result, we obtained five cases (Table 2) diagnosed

with Turner syndrome from two studies [123, 124]. As hoped, they are all clearly classified

as 45,XO by our model (Figure 2.5), proving our classifier’s ability to predict females with

only one X chromosome.
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47, XXY (predicted)
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Figure 2.5: The proposed classifier is verified its ability to predict sex chromosome aneuploidy in
five Turner syndrome samples and one Klinefelter syndrome case, it also predicted eight potential
47,XXY cases from GEO.

Viana et al. reported a male with schizophrenia carrying an extra X chromosome [125]

which is also clearly classified as 47,XXY by our method (Figure 2.5). Unfortunately, we

did not find any publicly available DNA methylation samples from those diagnosed with

Klinefelter syndrome. Unlike Turner syndrome, most patients with Klinefelter syndrome

have only mild symptoms and are never diagnosed. It is interesting to check if there are any

samples in GEO having a karyotype of 47,XXY but not linked to a diagnosis. By applying

our classifier to scan the GEO datasets, we find a total of eight samples (Table 2.3) which are
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highly likely to be 47,XXY (Figure 2.5). It should be noted that we only include these samples

sourced from blood or brain cells related tissues and their DNA methylation level are assessed

by 450K or EPIC arrays; we also do not include those samples located near the boundaries

which may be low-level sex chromosome mosaics (46,XX/47,XXY). It is interesting that two

of the eight suspected abnormal samples were diagnosed with schizophrenia. Martin et al.

found that Klinefelter patients have nearly a four times higher risk of schizophrenia [126],

which may explain why we have predicted more 47,XXYs with schizophrenia. Studying the

methylation patterns of these syndromes will provide more insights into these diseases.
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2.5 Discussion

There are two principal reasons to require a good and simple sex classifier based on methy-

lation data. First, there are still many samples in GEO that do not have sex annotations,

thus an accurate classifier can provide reliable sex information. Second, due to data entry

errors, there are non-negligible proportions of mislabelled samples in the public database.

A mismatch between reported sex and predicted sex would be a clear indication of a wrong

annotation and introduces doubt on the accuracy of the rest of the phenotype information for

that sample, hence it is reasonable to remove these mislabelled samples before downstream

analyses. We would recommend sex checking to be a standard part of all DNA methyla-

tion QC pipelines. Here in this study, the proposed sex classifier is straightforward and the

outcomes are highly intuitive.

In this study, we first obtained a group of significant sex-associated CpG sites. 90% of

these located on the X chromosome are more methylated in females than that in males, this

is mainly due to the effect of X-chromosome inactivation: one of the two X chromosomes in

females is randomly chosen for inactivation (highly methylated) to balance the extra gene

expression dosage [134, 135]. This also justified that our classifier was built on blood samples

that could work well across a wide range of other tissue types.

The proposed sex classifier shows robust performance across a wide range of tissue types

despite it being built upon whole blood samples. We choose blood samples because they are

easily accessible and are the most widely used tissue for measuring DNA methylation and

have been adopted in most large cohort studies. However, whole blood is a heterogeneous

collection of different cells, and their cell composition changes across age [136]. Different

cell types can have distinct methylation profiles even though they share identical genetic
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makeup [137]. Here as our results have shown that the proposed model is not biased among

different blood cell types; we also demonstrated the proposed classifier performs well across

a wide range of human tissues, including saliva, buccal cells, brain cells and liver. These

results suggest that our model is not driven by blood-specific sex differences, but it has

captured the more general sex-associated differences across human tissues and cell types.

However, we have also found some tissues such as placenta (Figure 2.4h) showing an am-

biguous boundary between the two sexes. The placenta is a fetal-maternal endocrine organ

responsible for ensuring proper fetal development throughout pregnancy [138]. The fetal

part of the placenta has the same genetic composition as the fetus, whereas it exhibits ap-

parent different DNA methylation patterns. Our results demonstrate placenta samples are

less distinguishable between the two sex groups, showing both ChrX in female placentas and

ChrY in male placentas are less methylated than that in other normal tissues. During the

early development of the human embryo, sperm cells are highly methylated and then become

hypomethylated after fertilization [139]. Our results have shown that those sex-associated

CpG on X chromosomes of sperm cells exhibited similar methylation patterns with other

normal male tissues, however, the Y chromosomes are much less methylated. Collectively,

our method can also be used to compare the methylation level of the two sex chromosomes

in different tissues.

Our method can be readily applied to almost all DNA methylation datasets in GEO.

Nearly half of the DNA methylation datasets uploaded to GEO are not in IDAT format,

which is a prerequisite by using minfi and ewastools, many of these datasets only include

intensity values of the methylated and unmethylated signals. Our sex classifier developed

in this paper is based on beta values of those differently methylated CpG loci between the

two sexes, users are only required to feed the whole beta value matrix, which can be easily

computed from the signal intensity text files to the ‘estimateSex’ function in wateRmelon to

obtain final sex predictions.



41

The underlying mechanism of our sex classifier is very intuitive: females have higher levels

of methylation on ChrX, on the contrary, males are less methylated on ChrX and show strong

methylation signals on ChrY. We have also demonstrated that the proposed classifier can

be applied on both 450K and EPIC arrays. Compared to signal density-based methods such

as minfi and ewastools, the methylation ratio-based method from our sex classifier and sEst

provide better separation between the two sexes (Figure 2.3). In addition, both minfi and

ewastools require at least one female and one male in the input samples to make correct sex

predictions, however, our method and sEst do not have such limitation. Lastly, our method

has a much higher advantage over sEst on running speed and this is especially the case when

applied to a large sample size, for example, our method is more than four times faster than

sEst when the number of input samples exceeds 1,000. Our speed advantage lies in that we

saved the pre-trained weights for the sex-associated CpGs and only matrix multiplication is

required to make sex classification, however, sEst requires performing two separate PCAs

which are very time-consuming.

We have provided a powerful tool that can identify sex chromosome aneuploidies (45,XO

and 47,XXY) from DNA methylation data. This function has been verified in five Turner

syndrome samples and one Klinefelter syndrome case, we should acknowledge that we need

many more positive cases to testify its sensitivity and specificity. It is a pity that we did not

find any DNAmethylation samples labelled as Klinefelter syndrome in the public repositories.

Nevertheless, we found eight cases in the GEO database with great potential to be 47,XXY

by applying our classifier, with the knowledge that most patients with Klinefelter syndrome

have only mild symptoms and are never diagnosed. Those eight suspect Klinefelter syndrome

cases can be good candidates to study the various developmental symptoms caused by copy

number aberrations of sex chromosomes.
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2.6 Conclusion

In this chapter, we constructed a very biologically intuitive sex classifier, simply based on the

most robust CpG sites on the sex chromosomes, which not only can be used for sex predictions

but also applied to identify samples with sex chromosome aneuploidy. Our classifier has been

integrated into the wateRmelon Bioconductor package, which is freely and easily accessible

by calling the ‘estimateSex’ function.

After constructing the new sex estimation tool for DNA methylation data and thoroughly

demonstrating its accuracy and robustness. I then started to preprocess the DNA methyla-

tion datasets that were collected from public repositories. Firstly, the sex of sex-unknown

samples were annotated as their estimated sex and these samples which have mismatches

between their reported and estimated sex are discarded. Subsequently, the DNA methylation

samples need to be normalized to reduce technical variations, the next chapter will explain

why I need to create a new normalisation method and how it is created.
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3.1 Introduction

DNA methylation microarrays, such as Infinium HumanMethylation450 BeadChip [20] and

Infinium MethylationEPIC BeadChip [30], provide cost-effective and high-throughput mea-

surements of the methylation status over half a million CpG sites across the genome will

continue to be the first choice by most DNA methylation related large cohort studies in the

near future. Although whole genome bisulfite sequencing (WGBS) is recognized as the gold

standard to measure the methylation patterns across the human genome, the high costs and

technical complexity still pose significant challenges that prevent application to large-scale

samples [29]. Data normalisation is an important prerequisite step to reduce unwanted tech-

nical variation. Currently, several normalisation methods are available for DNA methylation

microarray samples. Among them, peak-based correction (PBC) [141], Beta MIxture Quan-

tile normalization (BMIQ) [142] and noob [143] are all within-array normalization methods

however they do not reduce between-array variation. By contrast, dasen [2] and funnorm

[1] are the two most widely used between-array normalisation methods, which were reported

to be able to effectively reduce the variation between samples. Dasen in the wateRmelon

package utilises quantile normalisation to normalise methylated and unmethylated intensities

separately, and also addresses the two types of probes, i.e. Infinium I and Infinium II probes,

separately. Prior to the normalisation steps, there are linear regression procedures in dasen

to reduce the density distribution difference between Type I and Type II probes [2]. The

functional normalisation employed by funnorm is also an extension to quantile normalisation

that removes variation explained by a set of selected covariates. In funnorm, the covariates

are set as the first two principal components of the control probes, and linear regression is

used to determine the proportion of variation explained by the covariates [1].

Females have two copies of the X chromosome, while males have one X chromosome and
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one Y chromosome. To compensate for the different dosages of the X chromosome genes, one

X chromosome in female cells is randomly subjected to inactivation in each cell lineage, with

most parts of the inactive X being highly methylated [134, 135, 144]. As a result of this, the

mean methylation values of the X chromosomes between sexes are very different [105, 99,

96]. The distinct methylation patterns of sex chromosomes between females and males raise

a great challenge to unbiasedly normalising sex chromosome data. The existing between-

array normalisation methods do not provide good solutions for normalising sex chromosome

data. For example, dasen ignores this issue and normalises autosomes and sex chromosomes

together, while funnorm is designed to normalise male samples and female samples separately

for X chromosomes and Y chromosomes. Some DNA methylation related studies simply

remove those probes mapped to the X and Y chromosomes prior to the normalisation step

and do not include them in the downstream analysis. All these strategies come with their

own drawbacks, either through losing some potentially interesting and biologically relevant

signals from sex chromosomes or by introducing systematic technical differences between

sexes.

Here we first demonstrate that the existing normalisation methods used to handle probes

mapped on the X and Y chromosomes lead to introducing artificial sex bias into the nor-

malised data. Then, we present a novel two-step strategy, which is designed to unbiasedly

normalise both autosome data and sex chromosome data, is applicable to all quantile-based

normalisation methods.
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3.2 Materials and methods

3.2.1 Datasets

Two main datasets (Table 3.1) were used in this study. The first dataset includes 1195

individuals from the Understanding Society: UK Household Longitudinal Survey (UKHLS).

Details about this UKHLS dataset are described by Gorrie-Stone et al. [145]. In brief, DNA

methylation levels in whole blood within 489 male and 686 female healthy individuals were

measured by EPIC array. The UKHLS dataset is available under request from the European

Genome-phenome Archive under accession EGAS00001002836

(https://www.ebi.ac.uk). Since funnorm was developed and tested on 450k array samples,

in this study we produce subsets from GSE142512 [146] to evaluate funnorm. GSE142512

includes 87 individuals with type 1 diabetes (T1D) and 87 individuals without T1D. The

peripheral blood samples were collected from the subjects between 1 and 5 time points,

with DNA methylation levels measured by either 450K or EPIC array, further details were

documented by Johnson et al. [146]. We randomly selected 16 450k samples (12 males and

4 females) from GSE142512 as dataset one which is used to evaluate the performance of

funnorm on small size dataset, and randomly selected 48 450k samples (23 males and 25

females) as dataset two to test funnorm’s performance on relatively larger size dataset. For

reproducibility, the sample IDs in the two subset datasets are listed in Table 3.2. GSE142512

is publicly available from Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/).

Table 3.1: Characteristics of the datasets used in this study.

Name Array type Samples (female/male) Age range (years) Source

Dataset one 450k 16 (4/12) 0.8–13.6 GSE142512
Dataset two 450k 48 (25/23) 0.8–14.1 GSE142512
UKHLS EPIC 1195 (686/489) 28–98 UKHLS
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Table 3.2: Lists of sample ID used in dataset one and dataset two.

Sample Sex
Dataset one
(n=16)

Dataset two
(n=48)

GSM4230892 Female TRUE TRUE
GSM4230891 Male TRUE TRUE
GSM4230890 Male TRUE TRUE
GSM4230889 Female TRUE TRUE
GSM4230888 Female TRUE TRUE
GSM4230887 Male TRUE TRUE
GSM4230886 Male TRUE TRUE
GSM4230885 Female TRUE TRUE
GSM4230884 Male TRUE TRUE
GSM4230883 Male TRUE TRUE
GSM4230882 Male TRUE TRUE
GSM4230881 Male TRUE TRUE
GSM4230880 Male TRUE TRUE
GSM4230879 Male TRUE TRUE
GSM4230878 Male TRUE TRUE
GSM4230877 Male TRUE TRUE
GSM4230876 Male FALSE TRUE
GSM4230875 Male FALSE TRUE
GSM4230874 Female FALSE TRUE
GSM4230873 Female FALSE TRUE
GSM4230872 Female FALSE TRUE
GSM4230871 Female FALSE TRUE
GSM4230870 Female FALSE TRUE
GSM4230869 Female FALSE TRUE
GSM4230868 Female FALSE TRUE
GSM4230867 Female FALSE TRUE
GSM4230866 Female FALSE TRUE
GSM4230865 Female FALSE TRUE
GSM4230864 Female FALSE TRUE
GSM4230863 Female FALSE TRUE
GSM4230862 Female FALSE TRUE
GSM4230861 Female FALSE TRUE
GSM4230860 Female FALSE TRUE
GSM4230859 Female FALSE TRUE
GSM4230858 Female FALSE TRUE
GSM4230857 Female FALSE TRUE
GSM4230856 Female FALSE TRUE
GSM4230855 Female FALSE TRUE
GSM4230854 Female FALSE TRUE
GSM4230853 Male FALSE TRUE
GSM4230852 Male FALSE TRUE
GSM4230851 Male FALSE TRUE
GSM4230850 Male FALSE TRUE
GSM4230845 Male FALSE TRUE
GSM4230844 Male FALSE TRUE
GSM4230843 Male FALSE TRUE
GSM4230842 Male FALSE TRUE
GSM4230841 Male FALSE TRUE
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3.2.2 DNA methylation data processing

The DNA methylation raw data (IDAT files) were read into R by either using iadd2 function

in bigmelon or read.metharray.exp function in minfi. The methylation level of any given CpG

locus is measured by its beta value which is defined as β = (M) / (M + U + 100), where

M is methylated intensity and U is unmethylated intensity for a given CpG locus. Basic

quality control steps were performed to identify outliers, as recommended by Gorrie-Stone

et al. [145]. Further, the reported sexes of samples were checked against the predicted

sexes from DNA methylation data by using the estimateSex function in watermelon package

[2], which predicts sex by comparing the methylation levels on sex chromosomes [99]. The

original dasen normalisation is performed by calling the dasen function with default settings

in the watermelon package, the original funnorm normalisation is performed by calling the

preprocessFunnorm with default settings in the minfi package [147], which is actually applies

noob method [143] as a first step for background correction and then perform the functional

normalisation.

All analyses were performed using R 3.6.0 under Linux environment.

3.2.3 A two-step strategy to unbiasedly normalise DNA methyla-

tion samples

The framework of the interpolatedXY strategy is illustrated in Figure 3.1. The explicit

procedures of the proposed new strategy to unbiasedly normalise both autosomal CpGs and

sex chromosome-linked CpGs are as follows:
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1. Step one: normalise the autosomal CpGs by one of the conventional normalisation

methods, such as funnorm or dasen. It should be noted, that the probes mapped to

sex chromosomes should not be included in this step to avoid potential influence.

2. Step two: infer the corrected values of sex chromosome-linked CpGs by looking for

their nearest neighbours on autosomes, this is achieved by linear interpolation, here is

the very efficient implementation:

(a) Sort the corrected values of autosomal CpGs and build a function F which reflects

correspondence of the rank of a CpG to its corrected value: Corrected valuei =

F (ranki).

(b) Sort and get the ranks of autosomal CpGs based on their raw values.

(c) Estimate the ranks of sex chromosome-linked CpGs by linear interpolation on the

rank distribution from procedure b.

(d) Put the inferred ranks of sex chromosome-linked CpGs into the function F to get

their final corrected values.

The above steps are ideally performed on raw signal intensities (M and U) and on each

probe type (IGrn, IRed and II in funnorm, I and II in dasen) individually. After that, the

normalised intensities can be converted into beta values as: β = (M) / (M + U + 100). We

name this strategy interpolatedXY. When dasen is used to normalise autosomal CpGs in the

first step, we call this new normalisation method as “interpolatedXY adjusted dasen”, the

codes for this function are listed in Appendix codes A1. Similarly, “interpolatedXY adjusted

funnorm” refers to another new normalisation method in which functional normalisation is

applied in the first step, codes are listed in Appendix codes A2.
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Figure 3.1: Overview of the interpolatedXY framework. Raw intensities are extracted from IDAT
files or intensity text files, and then, the raw intensities of methylated and unmethylated signals
are processed separately by the interpolatedXY procedure. Above all, chromosome annotation
is performed on all probes to separate the raw input intensities into autosome-linked signals and
sex chromosome-linked signals. These autosomes linked intensity signals are then normalised by
a conventional normalisation method, such as dasen or funnorm. These sex chromosomes linked
intensity signals are corrected as approximations of their nearest neighbours on autosomes, this is
achieved by: 1) obtaining their approximate rankings by linear interpolation on the raw intensity
distribution of autosomes mapped probes; 2) constructing a mapping function which deduces the
corrected intensity value from its intensity rank by linear interpolation on the corrected intensities
of autosome mapped probes. Finally, the corrected beta values are deduced from the corrected
intensities signals
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3.2.4 Performance evaluation for the interpolation approach

The proposed new approach infers the corrected values of sex chromosome-linked CpGs

by linear interpolation on autosomal CpGs. To investigate whether the inferred data is

accurate and reliable, we need a gold standard to evaluate the estimation accuracy. Females

and males have very different methylation patterns on sex chromosomes, that is the main

reason that we avoid normalising female samples and male samples together, with autosomes

and sex chromosomes treated indiscriminately. However, when the targeted dataset includes

only unisexual samples (only females or only males), then the sex chromosomes should be

normalised together with other autosomes.

Inspired by this, we designed single sex groups: one that includes only female samples and

the second that consists of only male samples. Firstly, the two groups are both normalised

by conventional methods (e.g. dasen and funnorm) with the sex chromosomes being treated

as general autosomes, thus the corrected values of those sex chromosome-linked CpGs could

serve as the golden references (i.e. expected values). Secondly, based on our proposed

interpolation approach, we infer the corrected values of sex chromosome-linked CpGs by

interpolating on the normalised values of the autosomal CpGs. Lastly, the interpolated

values are compared with their corresponding reference values. Root mean squared error

(RMSE), which is sensitive to outliers, is used here to measure the deviations from the

inferred values to their expected values:

RMSE =

√√√√ 1

m

m∑
i=1

(
βi − β̂i

)2

(3.1)

where βi is the methylation beta value of the ith CpG, β̂i represents the expected methylation

beta value of the ith CpG, m represents the total number of CpGs studied.
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3.2.5 Evaluation of the technical sex biases

The original dasen performs quantile normalisation with autosomal CpGs and sex chro-

mosome CpGs processed together even when the dataset to be normalised is composed of

both females and males. To investigate whether such an approach would introduce artificial

sex biases, we compared the normalisation results of the UKHLS dataset generated by the

original dasen and the interpolatedXY adjusted dasen.

The human methylome is not constant but responsive to many internal and external fac-

tors, such as genetic backgrounds and environmental factors [148]. As a result, the overall

variance of the measured methylation values across all the CpG sites in the studied popula-

tion can be described as:

Vtotal =
1

n

1

m

n∑
i=1

m∑
j=1

(
βij − βj

)2
(3.2)

Where Vtotal represents the total variance of the studied samples, n is the total number of all

samples, m is the total number of studied CpGs, βij represents the methylation beta value of

the jth CpG in the ith sample, βj represents the mean methylation beta value of the jth CpG

across all samples. Theoretically, we can then split the overall variance into the following

two parts:

Vtotal = Vbiological + Vtechnical =
1

n

n∑
i=1

(Vi) (3.3)

The first part Vbiological represents variance caused by meaningful biological reasons, such

as cell types, age, gender, health status and other reasonable factors. The second part

Vtechnical represents variance resulting from technical issues, such as batch effect, random

fluctuation and other unknown issues.

Vbiological = Vcelltype + Vage + Vsex + Vothers (3.4)
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Vtechnical = Vbatch + Vrandom + Vunknown (3.5)

Sex is one of the major biological factors which influences the methylation status of

many autosomal CpGs, as a result, hundreds of autosomal CpGs have been reported showing

significant different methylation levels between sexes [105, 102, 96]. The fraction of variances

which are explained by sex can be deduced as follows:

Fsex =
Vsex

Vtotal

= 1− nfemalesVtotal in females + nmalesVtotal in males

(nfemales + nmales)Vtotal

(3.6)

Ideally, a good normalisation method should be able to not only greatly reduce the

variances that are resulted from technical issues (Vtechnical), but also need to keep variances

which have meaningful biological reasons (Vbiological). This means, after the normalisation

process, the overall variance should be reduced significantly while the sex explained fraction

of variance should be increased. In this paper, to study the potential sex bias introduced by

the mix normalisation method dasen, we compared the mean variance and the fraction of

sex explained variances of the methylation values of CpGs after no normalisation (raw beta

values), dasen normalisation and interpolatedXY adjusted dasen normalisation within the

three chromosome groups (i.e. autosomes, X chromosomes and Y chromosomes).

3.2.6 Artifactual sex differences

If the conventional mixed normalisation approaches do introduce systematic artificial sex

biases into the autosomal CpGs, then some autosomal CpGs could be falsely sex-associated.

Epigenome-wide association studies (EWAS) are commonly used to systematically assess
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the association between DNA methylation levels at genetic loci across the genome and a

phenotype of interest. In this study, we apply EWAS to identify sex-associated CpG sites

and then compare the EWAS results resulting from different preprocess approaches.

To perform EWASs for sex, the champ.dmp function in champ package [149], which

utilises linear regression and F -test to identify differentially methylated positions is applied in

this study to identify sex-associated CpGs. After Bonferroni multiple comparison correction,

those CpG sites with p-value less than 0.05 were selected as significantly sex-associate. For

simplicity and better comparison, we do not include age, cell type proportions and other

covariates within the EWASs.

3.2.7 Comparison of the funnorm and the interpolatedXY ad-

justed funnorm

Funnorm is reported to be suitable for normalising methylation data with substantial global

differences. The main difference between the original funnorm and the proposed interpolat-

edXY adjusted funnorm is how to normalise the methylation values of sex chromosome-linked

CpGs. The original funnorm is designed to normalise X chromosomes separately and differ-

ently with Y chromosomes, as well as processes female samples and male samples separately.

In contrast, the interpolatedXY adjusted funnorm does not require prior sex annotations and

process both genders equally, which generates the corrected values of sex chromosome-linked

CpGs by interpolation on the normalised values of autosomal CpGs.

To compare the normalisation effects on sex chromosome data between the original fun-

norm and the adjusted funnorm, we studied both the density distributions and the variances

of the methylation values of CpG sites after no normalisation (raw beta values), funnorm



55

normalisation and adjusted funnorm normalisation within three chromosome groups (i.e.

autosomes, X chromosomes and Y chromosomes) in two 450k datasets. The first dataset

(dataset one) includes 12 male samples and 4 female samples, while the second dataset

(dataset two) contains 23 male samples and 25 female samples.

3.3 Results

3.3.1 Estimation using the interpolation approach

We first investigated the performance of the interpolation approach employed by the in-

terpolatedXY adjusted funnorm method. The deviations from the inferred values by the

interpolation approach to their corresponding reference values are measured by RMSE. As it

can be seen from Figure 3.2, the resulting RMSEs are all very small, especially for those in

both X chromosomes and male Y chromosomes: the mean RMSE of X chromosome-linked

CpGs is 1.15e-05 (sd=8.7e-06) in females and is 1.11e-05 (sd=4.8e-06) in male samples, while

the mean RMSE of estimations for male Y chromosomes is 6.61e-06 (sd=3.2e-06). Though

the RMSEs of Y chromosome-linked CpGs in females are slightly higher (mean=8.98e-04,

sd=6.0e-04), they are still very subtle. With the knowledge that females do not carry Y

chromosomes, and those observed signal intensities result from background noises and non-

specific hybridization, there is no need to look much into the methylation values of female Y

chromosomes. In the same way, we could observe similar performances of the interpolation

approach employed by the interpolatedXY adjusted dasen method (Figure 3.3).

In summary, the above results demonstrate the proposed interpolation approach provides

accurate and robust estimations for the corrected values of sex chromosome-linked CpGs.
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Figure 3.2: Difference between interpolated values and expected values within the adjusted fun-
norm. RMSEs are grouped into four categories: male X chromosomes, female X chromosomes, male
Y chromosomes and female Y chromosomes. Female samples are in red colour and male samples
are in blue colour. Dots represent X chromosomes, while triangles represent Y chromosomes.
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Figure 3.3: Difference between interpolated values and expected values within the adjusted dasen.
RMSEs are grouped into four categories: male X chromosomes, female X chromosomes, male Y
chromosomes and female Y chromosomes. Female samples are in red colour and male samples are
in blue colour. Dots represent X chromosomes, while triangles represent Y chromosomes.
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Table 3.3: The fraction of variance explained by sex in the UKHLS dataset with no nor-
malisation (raw), dasen normalisation, interpolatedXY adjusted dasen normalisation and
interpolatedXY adjusted funnorm normalisation.

Fraction of variance
explained by sex (%)

Raw Dasen Adjusted dasen Adjusted funnorm

Autosomes 0.34 0.57 0.45 0.46
X chromosome 73.18 77.24 77.57 76.93
Y chromosome 85.34 87.64 87.50 88.82

3.3.2 Artificial sex biases are introduced into autosomal CpGs by

the conventional mixed normalisation method

The first round of the UKHLS dataset [145] includes 1175 whole blood samples whose DNA

methylation levels were measured using the EPIC array. After quality control, 685 female

samples and 486 male samples were kept for this analysis. To study the normalisation effects,

the variance of beta values with three different pre-processing methods (no-normalisation,

dasen and interpolatedXY adjusted dasen) are compared within three different chromosome

groups (i.e. autosomes, X chromosomes and Y chromosomes) separately. As shown in Figure

3.5, both dasen and adjusted dasen significantly (Wilcoxon signed-rank test, p-value less than

2.2e-16) reduce the variance in all three chromosome groups. For instance, the mean variance

of autosomes in both sexes decreased from around 0.0025 in non-normalised beta values to

about 0.0018 after either dasen or adjusted dasen normalisation. The beta values density

plots also demonstrate that both dasen and adjusted dasen greatly reduce the distribution

variation (Figure 3.4). However, the difference in normalisation effects between dasen and

adjusted dasen is not significant from the variance level.

Table 3.3 describes the sex explained fraction of variance between three methods in three

chromosome categories. We can see that the sex explained variance in sex chromosomes by

the three methods all exceeds 70%, while it accounts to only around 0.5% in autosomes.

That is in line with our expectation, as sex is a dominant factor causing difference in methy-



58

Figure 3.4: Comparisons in methylation beta value density distributions for UKHLS dataset. The
three columns illustrate results from raw data (left column), funnorm normalised data (middle
column) and the adjusted funnorm normalised data (right column). The three rows show density
distributions of autosomal CpGs (first row), X chromosome linked CpGs (second row) and Y
chromosome linked CpGs (third row). Red lines represent females and blue lines represent males.
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lation levels of sex chromosomes, while the majority of autosomal CpGs are not influenced

by sex. Interestingly, the sex explained fraction of variance of raw beta values in autosomes

is 0.34%, it rises to 0.45% after normalising by the adjusted dasen, indicating the adjusted

dasen method retained the meaningful biological difference when reducing technical variances

(Figure 3.5A). However, the sex explained variance is much higher (0.57%) by normalising

with the original dasen, can we conclude that the original dasen is better than the adjusted

dasen to retain meaningful biological difference? On the contrary, these results indicate the

original dasen has introduced artificial sex bias into to the normalised data. Combining the

facts that only autosomal CpGs were included to compute the variance, and the difference

in normalising the autosomal CpGs between the two methods is that the correction of au-

tosomal CpGs is affected by the enrolling of sex chromosome data within the original dasen

procedures, but not influenced within the adjusted dasen method. We can conclude that the

observed higher fraction (sex explained fraction of variance in autosomes) with the original

dasen normalisation is partly driven by the involvement of sex chromosome data, and this

higher figure (i.e. than the adjusted dasen) indicates that technical sex biases have been

introduced into to autosomal CpGs by the original dasen.

3.3.3 Confirmation of the introduced sex biases

We performed EWASs of sex based on autosomal beta values of UKHLS samples with three

different pre-processing: no normalisation, dasen normalisation and interpolatedXY adjusted

dasen normalisation. The identified number of sex significant (Bonferroni p-value less than

0.05) differentially methylated positions (saDMPs) are shown in Figure 3.6.

As illustrated in the Venn diagram (Figure 3.6A), there are 10,778 CpG sites been iden-

tified as saDMPs in the raw data, with 96.7% of them (10,427) also been captured after ad-
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Figure 3.5: Variance comparisons in the UKHLS dataset. Boxplots comparing the variance of
methylation beta values with three different pre-processing methods (i.e. no normalisation, dasen
normalisation and adjusted dasen normalisation) in autosomes (A), X chromosomes (B) and Y
chromosomes (C). Females and males are dealt with separately.

justed dasen normalisation. In addition, compared to raw data, the adjusted dasen approach

enables the identification of another 4,201 saDMPs. Once again, these results demonstrate

that while the adjusted dasen greatly reduces the variation of beta values (Figure 3.5A), it

preserves the meaningful biological differences.

We found a total of 32,929 saDMPs after the original dasen normalization, which is more

than three times the number with no normalisation or 2.25 times the number with adjusted

dasen normalisation. Even so, 1,600 CpGs which are identified by both no normalisation and

adjusted dasen normalization, are missed by the original dasen method. When comparing the

dasen and adjusted dasen (Figure 3.6B), there are 12,021 saDMPs shared between the two

methods. Interestingly, among the 20,908 dasen specific saDMPs, 96.0% of them (20,070)

have higher methylation values in males than that in females. On the contrary, 2,318 out of
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Figure 3.6: EWAS results of UKHLS dataset. A. The Venn diagram shows the number of unique
and shared saDMPs between three approaches: no normalisation (raw), dasen normalisation and
adjusted dasen normalisation. B. The Euler diagram describes the number of unique and shared
saDMPs between dasen normalisation and adjusted dasen normalisation, with the three bar plots
showing the number of CpGs which have higher methylation values in females (red) or males (blue)
in three categories separately.

the 2,607 adjusted dasen specific saDMPs (88.9%) show higher methylation values in females

than males. Again, with the fact that the interpolatedXY adjusted dasen only differs from the

original dasen by not enrolling sex chromosome data when normalising the autosomal data,

the above results suggest the original dasen did introduce artificial sex biases into autosomal

CpGs by making the methylation values of many CpGs slightly higher in male samples and

lower in female samples. This explains why nearly all the dasen specific saDMPs have higher

methylation values in male samples, and there are more than two thousand CpG sites which

have higher methylation values in female samples that were identified as significant saDMPs

by the adjusted dasen approach but missed by the original dasen.
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3.3.4 InterpolatedXY adjusted funnorm provides better normal-

isation results for sex chromosome-linked CpGs than the

original funnorm

Since the original funnorm has two different designs to deal with datasets with different sizes,

we compared the normalisation effects between the original funnorm and the interpolatedXY

adjusted funnorm in two datasets. The adjusted funnorm does not differ from the original

funnorm in normalising the autosomal CpGs, so the corrected values of autosome data from

the two methods are the same, we can thus observe identical results for autosomal CpGs by

the two methods (Figure 3.7B and 3.7C, Table 3.4, Figure 3.8B and Figure3.8C, Table 3.5).

Table 3.4: The fraction of variance explained by sex in dataset one (n=16) with no normal-
ization (raw), funnorm normalization and interpolatedXY adjusted funnorm normalization.

Fraction of variance ex-
plained by sex (%)

Raw Funnorm Adjusted funnorm

Autosomes 9.48 10.93 10.93
X chromosome 92.68 82.82 92.99
Y chromosome 91.48 97.09 93.89

For the X chromosome-linked CpGs, when applied to small datasets, whose number of

female samples or male samples is less than ten, such as dataset one, funnorm is designed

to normalise female X chromosomes and male X chromosomes together by functional nor-

malisation. Compared to the non-normalised raw beta values, the density distributions of

the corrected data generated by funnorm turn out to be much discordant in both female

samples and male samples (e.g. Figure 3.7E). On the contrary, after the adjusted funnorm

normalisation, the density distributions become more consistent in both sexes (Figure 3.7F).

We can also observe the same trends from the bar plots in Figure 3.9B, the original funnorm

greatly increases the variance in both sex groups, while the adjusted funnorm keeps the

variance low. Furthermore, the sex explained fraction of variance was reduced to 82.8% by

the original funnorm, which is 92.7% in raw data and 93.0% after the adjusted funnorm nor-
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Figure 3.7: Comparisons in methylation beta value density distributions for dataset one. The three
columns list results from raw data (left column), funnorm normalised data (middle column) and
the adjusted funnorm normalised data (right column). The three rows show density distributions
of autosomal CpGs (first row), X chromosome-linked CpGs (second row) and Y chromosome-linked
CpGs (third row). Red lines represent females and blue lines represent males.



64

Figure 3.8: Comparisons in methylation beta value density distributions for dataset two. The three
columns illustrate results from raw data (left column), normalised data (middle column) and the
adjusted funnorm normalised data (right column). The three rows show density distributions of
autosomal CpGs (first row), X chromosome linked CpGs (second row) and Y chromosome linked
CpGs (third row). Red lines represent females and blue lines represent males.
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Table 3.5: The fraction of variance explained by sex in the dataset two (n=48) with no
normalisation, funnorm normalisation and interpolatedXY adjusted funnorm normalisation.

Fraction of variance ex-
plained by sex (%)

raw funnorm
interpolatedXY ad-
justed funnorm

Autosomes 6.39 7.05 7.05
X chromosome 93.37 93.33 93.21
Y chromosome 88.45 97.75 89.12

malisation (Table 3.4). Taken together, the above results indicate that the original funnorm

is actually adding technical variation into the methylation data of X chromosomes for those

small sample size datasets.

When applied to larger datasets, such as in the case of dataset two, funnorm performs

separate functional normalisations on female X chromosomes and male X chromosomes,

with the underlying consideration that females and males have very different methylation

patterns on X chromosomes. When comparing the normalisation effects between the original

funnorm and the adjusted funnorm based on dataset two, we did not observe any significant

differences in the methylation profiles of X chromosomes (Figure 3.8, Figure 3.10 and Table

3.5).

For the Y chromosome-linked CpGs, the original funnorm does not use functional nor-

malisation as it does on other chromosomes, such as autosomes. Instead, only quantile

normalisation is employed by the original funnorm to normalise the Y chromosome data,

with female samples and male samples processed separately. This may explain why the sex

explained variance within the original funnorm is much higher (i.e. 97.75%) than that in the

raw data (i.e. 88.45%) and adjusted funnorm (i.e. 89.12%) (Table 3.5). We can also observe

a similar trend from Table 3.4. These results suggest the separate normalisation strategy

employed by the original funnorm will increase the difference between the two sex groups,

and thus introduce artificial technical bias.
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Figure 3.9: Variance comparisons in dataset one. Boxplots comparing the variance of methylation
beta values with three different pre-processing methods (i.e. no normalisation, dasen normalisation
and adjusted dasen normalisation) in autosomes (A), X chromosomes (B) and Y chromosomes (C).
Females and males are dealt with separately.
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Figure 3.10: Variance comparisons in the dataset two. Boxplots comparing the variance of methyla-
tion beta values with three different pre-processing methods (i.e. no normalisation, dasen normalisa-
tion and adjusted dasen normalisation) in autosomes (A), X chromosomes (B) and Y chromosomes
(C). Females and males are dealt with separately.
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3.3.5 Comparison between the interpolatedXY adjusted funnorm

and interpolatedXY adjusted dasen

We have demonstrated that the fraction of variance explained by sex is very useful to measure

the normalisation effects for different methods and have also shown that the adjusted the

dasen and the adjusted funnorm are both superior to their original versions. Then we

compared their normalisation effects on a large healthy population: the UKHLS dataset

(n=1171). The results are shown in Table 3.3, the first obvious observation is that both the

adjusted dasen and the adjusted funnorm clearly increased the fraction of variance explained

by sex in all chromosome groups (i.e. autosomes, X chromosome and Y chromosome) than

the raw data, demonstrating that the use of either normalisation method is beneficial and

worthwhile. As compared to the two adjusted normalisation methods, we can see their

effects are comparable in the studied dataset (Table 3.3): the adjusted funnorm marginally

outperforms the adjusted dasen in normalising the autosome data (0.46% vs. 0.45%) and

Y chromosome data (88.82% vs. 87.5%), while the adjusted dasen is slightly better in

normalising the X chromosome data (77.57% vs. 76.93%).

3.4 Discussion

We have described a two-step sex-unbiased data normalisation strategy for normalising DNA

methylation microarray samples, which can be applied to almost all quantile-based normali-

sation methods, such as dasen and funnorm. By this strategy, the autosomal CpGs are nor-

malised independently and separately from the sex chromosome CpGs, while the corrected

values of sex chromosomes CpGs are estimated as the weighted average of the corrected

methylation values of their nearest neighbour atusosomal CpGs.
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The two steps are necessary. Since the average methylation levels of CpGs on X chromo-

some in females are very different from that in males, normalising them together with the

autosomal CpGs, especially by the quantile-based methods, will introduce technical biases

for both autosomes and sex chromosomes. By comparing the normalisation effects of the

original dasen and the interpolatedXY adjusted dasen, we confirmed that the technical sex

biases were introduced into the autosomal CpGs by the mix normalisation approach (orig-

inal dasen)—with the sex explained fraction of variance in autosomes rising to 0.57% from

0.44% in the adjusted dasen normalised data. We further propose a rational explanation for

this (Figure 3.11): within the quantile normalisation steps in dasen, there are procedures

to sort and return ranks for all the probes, as the mean methylation values of the most

X chromosome-linked CpGs in females are higher than nearly half of the autosomal CpGs,

whereas the methylation values of the corresponding positions in males are relatively low,

thus the quantile normalisation algorithm used to make all studied samples fit into the same

distribution creating a systematic negative shift for many autosomal CpGs (their methyla-

tion values are lower than most X chromosome-linked CpGs) in females and a systematic

positive shift for those CpGs in males. As a result of this, when we perform EWAS to look

for autosomal sex-associated CpGs, the original dasen approach identified more than two

times the number as identified by the adjusted dasen or non-normalised data. Moreover,

96.0% of the dasen specific saDMPs show higher methylation values in male samples than

in female samples, by contrast, the majority of the 2,607 CpGs missed by the original dasen

but identified by the adjusted dasen have higher methylation values in female samples than

male samples.

Estimation of the corrected values for sex chromosomes CpGs by looking at their nearest

neighbours on autosomes is made both possible and reliable by the fact that DNA methy-

lation microarrays simultaneously measure over half a million CpG sites across the genome,

and only a relatively small portion (i.e. 2.3% in EPIC and 2.4% in 450K) is mapped on the
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Figure 3.11: A simplified schematic diagram illustrates the difference in the normalisation process
between the original dasen and the interpolatedXY adjusted dasen. The original dasen normalises
autosomes and sex chromosomes together, the mean methylation values of most X chromosome-
linked CpGs in females are higher than nearly half of the autosomal CpGs, whereas the values of
the corresponding locus in males are relatively very low, thus the quantile normalisation algorithm
employed by dasen to make all studied samples fit into a same distribution creating a systematic
shift for many autosomal CpGs in two sexes. The adjusted dasen manages to avoid such an issue
by doing quantile normalisation in autosomes separately and independently with sex chromosomes,
and inferring the corrected values of sex chromosomes by interpolating on autosomes. Red denotes
female sample and blue denotes male sample, the long bar represents sorted autosomal CpGs and
the short bar represents sorted X chromosome-linked CpGs.
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sex chromosomes. Here in this study, we have demonstrated that the linear interpolation

approach provides both accurate and robust estimations for the sex chromosome data, with

the mean RMSE less than 1.2e-5.

Funnorm is favoured for normalising methylation data with substantial global differences,

such as cancer samples [1]. With the consideration that females and males have distinct

methylation patterns for sex chromosomes, funnorm has very explicit rules to normalise X

chromosomes and Y chromosomes differently. Within the functional normalisation in fun-

norm, there is a regression step to infer the explainable technical variants based on control

probes. The authors may have considered the regression models would be less accurate in

the circumstance of only a few samples, so funnorm is designed to perform functional nor-

malisations on female X chromosomes and male X chromosomes together when the number

of either female samples or male samples is less than ten. Our results in Section 3.3.4 have

clearly shown that such a mixed normalisation approach is destructive to the methylation

profiles of X chromosomes in both females and males. Though doing functional normalisa-

tion on females and males separately is a way to avoid such an issue, it may also introduce

potential systematic technical bias between the two separate groups.

For the Y chromosome-linked CpGs, the original funnorm does not actually perform the

functional normalisation as it does on other chromosomes, instead it performs only quantile

normalisations on Y chromosomes, and processes female samples and male samples sepa-

rately. As the proposed interpolatedXY adjusted funnorm could provide near-perfect esti-

mations for corrected values generated by functional normalisation, it could be particularly

useful for studies that focus on sex chromosomes DNA methylation data, especially when the

methylation difference between the studied groups are known to be very different. Moreover,

by the adjusted funnorm method, the corrected values of sex chromosome-linked CpGs are

produced by linear interpolating on the distribution of autosomal CpGs, so in theory, they
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are more comparable with the autosomal CpGs.

In this paper, we not only present a novel two-step strategy to unbiasedly normalise DNA

methylation microarray samples, but also provide a useful concept––the fraction of variance

explained by sex, to quantitively measure the normalisation effect. Sex is an important

biological factor that not only determines the methylation status of sex chromosomes, but

also influences many autosomal CpGs. A good candidate normalisation method should

not only be able to greatly reduce the technical variation between samples, but also should

preserve the meaningful variation that has biological reasons (e.g. sex). Even though quantile

normalisation has been widely employed by several DNAmethylation normalisation methods,

such as SWAN [150], dasen [2] and funnorm [1]. There are still concerns about whether the

use of between-array normalisation methods could bring enough benefits to counterbalance

the potential impairment of data quality [151]. Here, in this study, we demonstrated that

the interpolatedXY adjusted dasen and the interpolatedXY adjusted funnorm are two good

normalisation method candidates, they are able to not only greatly reduce technical variation

but also retain the meaningful biological difference, which will be very useful for large cohort

EWAS projects.

We believe that the proposed novel two-step strategy may have wider application outside

of DNA methylation microarrays and could even be applied in broader technologies such as

RNA-Seq.
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3.5 Conclusion

The proposed two-step strategy of interpolatedXY allows for the normalisation of autosomal

data and sex chromosome data without bias. The two steps are necessary and reliable, the

interpolatedXY approach infers the normalised methylation beta values of sex chromosome-

linked CpGs with deviations, i.e. RMSE, in around 1.15e-05 to their expected values. With

the integration of the interpolatedXY, the adjusted dasen and the adjusted funnorm both

show superior performance than their original versions, i.e. the adjustedDasen avoids the

risk of introducing sex bias into the autosomal data when normalising mixed-sex samples

compared to the original dasen; the adjustedFunnorm reduces artificial sex bias in the sex

chromosome data as compared to the original funnom. In addition, the sex explained variance

analysis reveals the two between-array normalisation methods, dasen and funnorm, both

enable retaining the meaningful biological difference while reducing technical variation.

For the DNA methylation samples I collected from public repositories, after sex annota-

tion and sex checking, the remaining samples are then normalised with a fixed reference by

the newly developed adjusted dasen method. Then, the clean and normalised DNA methyla-

tion samples are ready for downstream analysis, such as being used to build age clocks. Even

whole blood is comprised of different cell types, however, do different cell types or tissues

have different ageing rates, and if so, how to confidently measure them? The next chapter

will present my finding on ageing rate comparisons across tissues by using DNA methylation

clocks.
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4.1 Introduction

Ageing is generally considered a gradual process that happens to the body as a whole. It is

still an open question whether different organs/tissues have different ageing rates. Further-

more, how can we truthfully compare the ageing rates between different tissues? Horvath’s

pan-tissue clock gives excellent accuracy in estimating DNAm age for many different cells

and tissues [40], which may suggest that those different cells and tissue types may have

similar ageing rates. In 2015, Horvath et al. claimed that the cerebellum ages slower than

many other parts of the human body based on the observations that the DNAm age of the

cerebellum is much lower than other tissues based on the pan-tissue clock [153]. In addition,

Horvath and his colleagues also claimed that women’s breast tissues have a relatively higher

DNAm ageing rate [40, 154]. If it is true that some tissues have significantly different DNAm

ageing rates than other tissues, then we can go further to identify what drives the difference.

This is a very important angle to understand the mechanisms of age-associated DNA methy-

lation changes. Even though there have been reported many strong age-associated CpG sites,

there is still very little known about the underlying mechanisms that drive age-associated

DNA methylation changes [155, 156, 157].

In recent years, many more cerebellum DNA methylation samples have become publicly

available and many diverse DNAm age clocks have also been developed [86]. We set out to

examine the claim that the cerebellum ages slowly within a much larger size dataset and find

out the mechanisms. To achieve that, we first collect the largest cerebellum DNAmethylation

sample dataset, then compare their estimated epigenetic ages from six representative DNAm

age clocks. After that, we perform age EWAS for cerebellums and middle temporal gyrus,

separately on the same large-size elderly population (n = 404) to reveal the distinct age-

associated methylomic changes of the cerebellum. Lastly, we construct cerebellum-specific
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clocks and further examine the claim that the cerebellum ages slower.

4.2 Methods

4.2.1 DNAm datasets

The DNAm samples were collected from the public data repository—GEO. The cerebel-

lum samples are from six datasets, including GSE134379 [158], GSE59685 [159], GSE105109

[160], GSE125895 [161], GSE61431 [162] and GSE72778 [75]. They were included according

to the following criteria: contain at least 20 cerebellum samples; with age annotations, and

raw IDAT files or methylated and unmethylated intensity files are available. The cerebel-

lum samples were used to reveal the underestimation issues for the cerebellum tissue by

six representative clocks and were also used to train cerebellum age clocks. Apart from

cerebellum samples, GSE134379 [158] also includes DNAm microarray data of the middle

temporal gyrus from the same 404 individuals, thus it was used to perform age EWASs

on the two brain tissues. GSE59685 [159] includes 531 DNAm samples of five tissues, i.e.

cerebellum, entorhinal cortex, frontal cortex, superior temporal gyrus and whole blood, from

donors (N = 122) archived in the MRC London Brainbank for Neurodegenerative Disease.

GSE59685 and GSE134379 were also used to compare the DNAm ages of different tissues

which were estimated by our trained cerebellum clocks. The DNAm samples of the non-

cerebellar brain tissues in four datasets, i.e. GSE134379 [158], GSE74193 [163], GSE80970

[164] and GSE61431 [162], were used to train the CerebralCortexClockcommon clock, the four

datasets were selected to ensure a relatively equal sample distribution across all age groups

in the adult population.
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4.2.2 Data preprocessing

For all the DNAm datasets, after downloading from the GEO, they were read into R by using

the iadd2 function from the ‘bigmelon’ package [165] when raw IDAT files were available.

For those datasets in which only text-formatted intensity files exist, the methylated and

unmethylated intensities were extracted and read into R directly. Then the raw methylation

beta values is calculated as: β = M
M+U+100

, where M denotes methylated intensities and U

denotes unmethylated intensities. For all those samples, we estimated their sex by using the

estimateSex function [166] from the wateRmelon package [2], any samples with mismatches

between its reported sex and the estimated sex from the DNAm data were excluded for

downstream analysis. Also, the beta value density distributions of samples within each

dataset were manually checked to remove any samples with abnormal distribution profiles.

4.2.3 DNA methylation age prediction

The DNAm age prediction of the six representative clocks, i.e. Hannum2013 [39], Hor-

vath2013 [40], Horvath2018 [155], Levine2018 [81], Zhang2019 [78] and Shireby2020 [70],

was completed by using the methyAge function from the ’dnaMethyAge’ R package [167].

Only methylation beta values are required to feed into the methyAge function. Note, when

calculating the DNAm age of Horvath2013, the raw beta values are firstly normalized with

an adjusted BMIQ which has a fixed reference, this is consistent with Horvath’s original

publication [40]. To calculate the DNAm age of Zhang2019, the beta values of each sample

are first subjected to Z-score normalization [78]. For the remaining clocks, no normalization

steps were applied. The difference between DNAm age and chronological age is measured

as:



77

RMSD =

√√√√ 1

m

m∑
i=1

(yi − ŷi)2 (4.1)

MAD =
1

m

m∑
i=1

|yi − ŷi| (4.2)

where yi represents the chronological age of the ith sample, ŷi represents the predicted DNAm

age of the ith sample, m denotes the number of all samples. RMSD: root mean squared

deviation; MAD: mean absolute deviation.

4.2.4 Epigenome-wide association study

The age EWASs were performed on GSE134379 [158] which includes DNAm microarray data

of two brain tissues (CBL and MTG) in every individual from a large elderly population

(N=404). The CBL samples and MTG samples were normalised by the adjustedDasen

[140] from the ‘wateRmelon’ package [2] separately. These probes target CpGs mapped

to sex chromosomes or reported to have cross-hybridizing issues and were removed from

downstream analysis [168]. To find out age-associated differentially methylated CpGs across

the genome in the two brain tissues, we fitted the following linear regression model for each

CpG site involved in the two tissues separately:

βi ∼ w1i∗Age+w2i∗Sex+w3i∗Plate+w4i∗Beadchip+w5i∗Disease status+intercept (4.3)

where βi is the methylation beta value of the ith CpG, w1i is the coefficient of chronological

age for the ith CpG. Age, sex and disease status describe the biological difference between

different subjects while plate and beadchip describe potential technical differences introduce
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when measuring the methylation level. The t statistic of the coefficient w1i is checked in the

Student’s t distribution to determine the p-value. After that, the p-values of all studied CpGs

were adjusted with the Benjamini & Hochberg method. A CpG is called to be significant

age-associated when its adjusted p-value (or FDR) is less than 0.01.

4.2.5 The construction of DNAm clocks

Prior to any training steps, all DNAm samples were normalized by a modified version of

adjustedDasen [140] method from the ‘wateRmelon’ package [2], in which the modified ad-

justedDasen is supplied with a fixed reference to reduce the batch variance between different

datasets. Also, the chronological age is log-transformed.

The new clocks mentioned in this study were all trained by the penalized linear regression

algorithm—Elastic net [169], which is essentially a linear combination of the L1 and L2

penalties of the lasso regression and ridge regression, L1 regularisation penalises the total

of the weights’ absolute values, whereas L2 regularisation penalises the total of the weights’

squares. The loss function of Elastic net is defined as:

1

2

∑
wi(yi − βT

i c− c0)
2 +

1

2

∑
λγj(1− α)c2 + α|c| (4.4)

where the βi denotes the methylation beta value of ith CpG, c is the coefficient vector of all

the CpG accounted, α is the critical parameter that controls the weights of the L1 and L2

penalties and has been defined prior to the training.

We used the cv.glmnet function from the ‘glmnet’ R package [170] to train the Elastic net

models. To train the CerebellumClockspecific, the input samples are the 752 cerebellum sam-
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ples from six independent datasets, the input CpG set of each sample was restricted to the 613

age-associated CpGs in the cerebellum, alpha was set to 0.5, and 10-fold cross-validation was

used to determine the optimal coefficient combination. We made use of leave-one(dataset)-

out cross-validation to infer the age prediction performance of the CerebellumClockspecific.

Specifically, we have six independent cerebellum datasets, then for each round of the total

six rounds of cross-validation process, one dataset was taken out and their DNAm ages were

estimated by the model trained on the remaining five datasets, after six rounds, the DNAm

ages of samples from the six datasets were derived and they were not overfitted by the

training process. In the same way, the CerebellumClockcommon was trained on the same 752

cerebellum samples but the input CpG sets were restricted to the 201 shared age-associated

CpGs. Another difference was the alpha value was set to 0.2 to let the final model includes

more CpGs from the 201 CpGs.

The training of CerebralCortexClockcommon also employed Elastic net linear regression,

the training samples were those of non-cerebellar brain tissues from four independent datasets,

the input CpG set of each sample was also restricted to the 201 shared age-associated CpGs

and the alpha was set to 0.2. As we only have four separate datasets, and only GSE74193

[163] has a wide age range, we employed a 10-fold cross validation to measure the age predic-

tion performance of CerebralCortexClockcommon. That is to say, we first randomly separate

all the training samples into equal 10 portions, for each round of the total 10 rounds of cross-

validation processes, we took one portion out and their DNAm ages were then estimated by

the model trained on the remaining 9 portions. After 10 rounds, the DNAm ages of samples

from all ten portions were obtained and they were not overfitted by the training process.

BrainCortexClock is trained on 640 cerebellum samples, which are from GSE134379

[158], GSE105109 [160], GSE125895 [161], GSE61431 [162] and GSE72778 [75], and 720

cerebral cortex samples, which are from GSE134379 [158], GSE61431 [162], GSE80970
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Table 4.1: Lists of the four new clocks constructed in this chapter

Clocks Training involved CpGs Training involved tissues Training involved datasets

CerebellumClockspecific
613 age-associated
CpG in CBL

Cerebellum
GSE134379, GSE59685,
GSE105109, GSE125895,
GSE61431, GSE72778

CerebellumClockcommon

201 age-associated
CpG in both CBL
and MTG

Cerebellum
GSE134379, GSE59685,
GSE105109, GSE125895,
GSE61431, GSE72778

CerebralCortexClockcommon

201 age-associated
CpG in both CBL
and MTG

Middle temporal gyrus,
dorsolateral prefrontal
cortex, prefrontal cortex,
prefrontal cortex

GSE134379, GSE74193,
GSE80970, GSE61431

BrainCortexClock
201 age-associated
CpG in both CBL
and MTG

Cerebellum, middle tem-
poral gyrus, dorsolateral
prefrontal cortex, pre-
frontal cortex, prefrontal
cortex

GSE134379, GSE59685,
GSE105109, GSE125895,
GSE61431, GSE72778,
GSE74193, GSE80970

[164], by Elastic net linear regression algorithm, and the input CpG sites were restricted

to the 201 shared age-associated CpGs, and alpha was set to 0.2. As with the training of

CerebralCortexClockcommon, ten-fold cross-validation was used to measure the age prediction

performance of BrainCortexClock, and it was further tested by applying to an independent

dataset of GSE59685 [159].

The four new clocks constructed in this chapter are listed in Table 4.1. The coefficients

of involved CpGs in each model are listed in B.5.

4.2.6 Software

All the analyses were conducted in R (version 3.6.0) [116] under a Linux environment.

The scatter plots in Figure 4.1, 4.3, 4.6 were produced by the getAccel function with

proper settings from the ’dnaMethyAge’ R package [167]. The three constructed models

of CerebellumClockspecific, CerebellumClockcommon and CerebralCortexClockcommon are read-
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ily available to be applied in independent DNAm samples by calling the methyAge function

from the ’dnaMethyAge’ R package [167] with the ’clock’ parameter setting as ’Cerebel-

lum specific’, ’Cerebellum common’ and ’Cortex common’ respectively. GO analyses were

conducted using the gometh function in the ’missMethyl’ package [171] which tests gene

ontology enrichment for significant CpGs while accounting

4.3 Results

4.3.1 Characteristics of the DNAm cerebellum datasets

The cerebellum is a structure of the hindbrain, which plays a vital role in motor control [172].

Unlike peripheral tissues, such as blood or saliva, that can be non-invasively and repeatedly

sampled, cerebellum samples are often collected from postmortem participants, as a result,

there is a very limited number of DNAm cerebellum samples available. After rigorous search-

ing on the Gene Expression Omnibus database, where publicly available DNAm datasets are

often deposited, we found a total of 6 datasets, each including more than ten cerebellum

samples measured by Illumina 450k or EPIC array. After rigorous quality control (see meth-

ods), 752 cerebellum samples remained and were used for downstream analysis. The biggest

contributor for the final large cerebellum dataset is from GSE134379 [158], which contains

404 cerebellum samples. As cerebellum tissues were invasively collected from postmortem

subjects, 90% of the collected samples were from individuals aged above 60 years old, with

the median age at 80 years old. More detailed age, sex and disease distribution information

for each dataset is listed in Table 4.2. The DNAm microarray data from those datasets

were originally produced to investigate disease-associated methylomic variations in the brain

regions, especially for Alzheimer’s disease and Schizophrenia. As a result of this, our col-
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Table 4.2: Characteristics of the clean cerebellum samples from six datasets

ID Number Female, Male Age: mean (range) Disease group Reference

GSE134379 404 200, 204 83.7 (54-103)
Alzheimer: 225
Normal: 179

[158]

GSE59685 111 64, 47 83.9 (40-105)
Alzheimer: 59
Normal: 52

[159]

GSE105109 95 41,54 81.2 (58-99)
Alzheimer: 67
Normal: 28

[160]

GSE125895 66 32, 34 67.3 (51.8-92.3)
Alzheimer: 24
Normal: 42

[161]

GSE61431 44 16, 28 61.6 (25-96)
Schizophrenia: 21
Normal: 23

[162]

GSE72778 32 21, 11 83.2 (15-114)
Alzheimer: 23
Normal: 9

[75]

lected cerebellum samples include 333 samples with normal health status, 398 samples with

Alzheimer’s disease and 21 with Schizophrenia. The cerebellum is a relatively protected re-

gion, unlike other brain regions (such as prefrontal cortex), there generally are no significant

AD-associated differences in the cerebellum [173, 159, 161]. Therefore, we included all these

cerebellum samples, even those with disease diagnosis, for downstream analysis and also the

following cerebellum DNAm age clock construction.

4.3.2 Severe age underestimation

for cerebellum samples by various DNAm age clocks

Since 2013, many specialized and robust DNAm-based clocks have been reported. As

recently suggested by Liu et al., those different clocks may have captured different biological

processes of ageing considering their overall weak associations in the estimated DNAm age

deviations [174]. Inspired by this, we investigated the DNAm ages of our collected 752 cere-

bellum samples predicted by six representative clocks: Hannum’s whole blood clock (Han-

num2013) [39] and Horvath’s pan-tissue clock (Horvath2013)[40] are the two most widely
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used DNAm age clocks and especially Horvath2013 is reported to work well across many

different tissue and cell types; Horvath’s blood&skin clock (Horvath2018) [155] is another

multi-tissue clock and was reported to outperform Horvath2013 in epigenetic age prediction

across several tissues; Levine’s PhenoAge clock (Levine2018) [81] was not directly regressing

on chronological age and reported better prediction performance for all-cause mortality than

other chronological age regressed clocks; Zhang’s blood clock (Zhang2019) [78] is reported

the most accurate and robust age prediction model for blood samples; Shireby’s brain cor-

tex clock (Shireby2020) [70] is a brain cortex specific clock and provides much better age

predictions than other clocks in brain cortex tissues.

As shown in Figure 4.1, for almost all of the cerebellum samples, their ages are severely

underestimated—they are all distributed below the diagonal lines. Hannum2013, Levine2018

and Zhang2019 are three age clocks trained almost exclusively on blood samples, the root-

mean-square deviations (RMSDs) of their predictions are all very large (above 40 years), with

Pearson correlations (r) ranging from 0.182 in Levine2018 and 0.56 in Zhang2019 (Figure

4.1a-c); Horvath2018 is a multi-tissue clock that was trained on eight different tissues cell

types but not including brain-related tissues, it produced a similar prediction trend (Figure

4.1d) for cerebellum samples as the three blood clocks—large deviations (RMSD=66.9 years)

and low correlation (r=0.452). In contrast, the age underestimation effect is less apparent

for Horvath2013 and Shireby2020 (Figure 4.1e and 4.1f), their RMSDs are just above 20

years and the Pearson correlation coefficient reached 0.699 by Shireby2020 and 0.694 by

Horvath2013. We speculate the smaller age underestimation effects by the two clocks are

due to their training datasets having included a small ratio of cerebellum samples or entirely

on brain cortex tissues. Specifically, Horvath2013 was trained on 8000 samples from 51

different tissues and cell types which include several different brain-related tissues including

282 cerebellum samples [40], while Shireby2020 was trained exclusively on brain cerebral

cortices despite cerebellums not being involved [70]. It is worth noting, the regression lines



84

0 20 40 60 80 100 120

0
20

40
60

80
10

0

Pearson's r = 0.547
RMSD = 44.9
MAD = 43.6

a
Hannum2013

y � x
y = 0.17 * x + 23

0 20 40 60 80 100 120

0
20

40
60

80
10

0

Pearson's r = 0.182
RMSD = 74.1
MAD = 73.1

b
Levine2018

y � x
y = 0.071 * x + 1.8

0 20 40 60 80 100 120

0
20

40
60

80
10

0

Pearson's r = 0.56
RMSD = 53.6
MAD = 52.5

c
Zhang2019

y � x
y = 0.13 * x + 18

0 20 40 60 80 100 120

0
20

40
60

80
10

0

Pearson's r = 0.452
RMSD = 66.9
MAD = 65.9

d
Horvath2018

y � x
y = 0.1 * x + 6.5

0 20 40 60 80 100 120

0
20

40
60

80
10

0

Pearson's r = 0.716
RMSD = 25
MAD = 23.4

e
Horvath2013

y � x
y = 0.38 * x + 26

0 20 40 60 80 100 120

0
20

40
60

80
10

0

Pearson's r = 0.699
RMSD = 21.3
MAD = 19.5

f
Shireby2020

y � x
y = 0.31 * x + 37

D
N

A
m

 A
ge

Chronological Age

GSE105109
GSE125895
GSE134379
GSE59685
GSE61431
GSE72778

Figure 4.1: The cerebellum samples are severely underestimated by the six representative DNAm
clocks. Each subplot illustrates results from different clocks: (a) Hannum2013, (b) Levine2018, (c)
Zhang2019, (d) Horvath2018, (e) Horvath2013 and (f) Shireby2020. The colorful dots represent
752 cerebellum samples from six independent datasets, with different colors representing different
datasets. The x-axis is chronological age and the y-axis is the estimated DNAm age. The black
dashed line represents the identical diagonal line between chronological age and DNAm age, the
red dashed line represents the regression line derived from regressing the DNAm age against the
chronological age. RMSD: root mean squared deviation; MAD: mean absolute deviation.
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of the estimated DNAm age against the chronological age by Horvath2013 and Shireby2020

both indicate that the cerebellum samples from young individuals aged below 30 years old

are very likely to be overestimated (Figure 4.1e and 4.1f).

4.3.3 Smaller number of age-associated CpGs in the cerebellum

methylome

We went further to investigate the underlying reasons why the cerebellum is systematically

underestimated by the six age clocks. We hypothesized that, if the cerebellum truly ages

slower than most other brain tissues, then due to a smaller ageing effect, there would be a

much smaller number of CpGs passing the same cutoff to be identified as age-associated and

even those captured age-associated CpGs would mostly exhibit a smaller rate of methylation

level changes with age. Inspired by this, we carried out two epigenome-wide association

studies (EWAS) on age for the cerebellum (CBL) and the middle temporal gyrus (MTG)

separately, based on the same dataset GSE134379 [158] which includes DNA methylation

microarray samples of the two brain regions for every subject from a large elderly population

(n=404).

We identified a total of 613 significant (Bonferroni-corrected P-value≤ 0.01) age-associated

CpGs in CBL, in contrast, 4,213 CpGs were found to be age-associated in MTG (Figures

4.2a, 4.2b and Supplementary Tables 1). The top three age-associated CpGs in CBL are

cg24079702, cg22454769, and cg06639320, which are all mapped to the FHL2 gene, whereas,

the three loci exhibited similar age effect sizes though were less significant in MTG. When

the age-associated CpGs in the two tissues were compared, only 32.8 % (201) of the CpGs

in CBL were also identified as age-associated in MTG (Figure 4.2d). More interestingly,

when looking at the direction of ageing effect, CBL and MTG showed very different patterns
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in their age-associated CpGs. The CBL-only group has almost equal numbers of positive

and negative age associations, in contrast, more than three-quarters (76%) of the MTG-only

CpGs gain methylation with ageing. Moreover, the majority (94%) of the age-associated

CpGs shared in the two tissues increase methylation levels with ageing (Figure 4.2d), this

is not very unexpected, as it has been shown that CpG sites exhibiting age-association in

multiple tissues are more likely to gain methylation with age [60].

If the cerebellum ages slower, then it is reasonable to expect that the age-associated CpGs

in the cerebellum would also have smaller ageing effect sizes. We then compared the ageing

effects of age-associated CpGs between CBL and MTG (Figure 4.2b). Indeed, as shown

in Figure 4.2c, the ageing effect size of positive age-associated CpGs in CBL is generally

smaller than that in the MTG (Wilcoxon test, Bonferroni-corrected p = 0.01), though their

difference is not significant in the negative age-associated CpGs (p = 0.11). As regards the

201 shared age-associated CpGs (Figure 4.2e), the difference in ageing effect size between

CBL and MTG—lower in CBL than MTG, is much more significant (Pairwise Wilcoxon test,

Bonferroni-corrected p <1.5e-15).

Gene ontology analyses showed several enriched terms for the MTG-specific CpGs and

Cerebellum-specific CpGs (Table B.2 and B.1) which included terms related to chromatin

such as DNA binding, nucleosome assembly and negative regulation of transcription by

RNA polymerase II. The MTG-specific CpGs were enriched for pathways such as telomere

organization, noradrenergic neuron differentiation and dopaminergic neuron differentiation.

Telomere shortening and neuron differentiation are both characteristics of cell mitotic divi-

sions in cerebral cortex, thus it suggests the MTG has a higher cell replication rate than

cerebellum. In addition, the enriched GO terms for the cerebellum-specific CpGs were related

to molecular functions such as DNA binding activity.
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4.3.4 Constructing DNAm age clocks for the cerebellum

4.3.4.1 Training the cerebellum specific DNAm clock

Our analyses in the previous section have clearly demonstrated that the six representative

DNAm age clocks, including the pan-tissue clock and the cerebral cortex clock, all severely

underestimated epigenetic ages of cerebellum samples. In addition, we have shown that the

cerebellum has a much smaller number of age-associated CpGs. Then we went further to

find out whether it is possible to build an accurate age prediction model for the cerebellum.

We trained a cerebellum-specific age model, named CerebellumClockspecific, by regressing

the methylation beta values of the 613 age-associated CpGs from the 752 clean cerebellum

samples against their corresponding chronological ages via the Elastic Net penalized linear

regression algorithm [169]. The prediction performance of this model was measured by

leave-one(dataset)-out cross validation (see Methods). As shown in Figure 4.3a, the cross-

validation results demonstrate that the trained cerebellum age models yield accurate age

predictions for nearly all cerebellum datasets, except that most of the elderly subjects in

GSE72778 were relatively underestimated. The overall Pearson correlation is above 0.94,

with RMSD at 4.26 years and MAD is 3.18 years. The accurate age prediction performance

of the cerebellum age model demonstrates that there is a persistent and significant ageing

process undergoing in the cerebellum tissues.
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Figure 4.3: The cerebellum age clocks and their applications in other tissues. The
leave-one(dataset)-out cross validation evaluates the age prediction performance of (a)
CerebellumClockspecific and (b) CerebellumClockcommon in cerebellum samples. Subplots (c), (d),
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perior Temporal Gyrus, WB: Whole Blood.
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4.3.4.2 Applying the cerebellum clocks in other tissues

To further examine the claim that cerebellum ages slower, we made another hypothesis: other

tissues, including cerebral cortex and blood, would be significantly overestimated for their

DNAm ages when measured by the cerebellum clock. To test this hypothesis, we then applied

CerebellumClockspecific along with Horvath2013 and Shireby2020 in two separate datasets:

GSE134379 and GSE59685, which both include cerebellum samples and samples of other

tissues from the same subject. As expected, the cerebellum samples were apparently under-

estimated compared to other tissues by Horvath2013 and Shireby2020 in both GSE134379

and GSE59685 (Figure 4.3). Interestingly, even though blood was also not included in the

training set of Shireby2020, the predicated DNAm ages of blood samples in GSE59685 are

still much higher than their counterparts in the cerebellum tissue (Figure 4.3h).

However, when estimated by the cerebellum clock, the non-cerebellar samples were actu-

ally underestimated rather than overestimated compared to the cerebellum samples (Figure

4.3i). This finding counters our previous expectation, we suggest the underestimation effect

for other tissues by the cerebellum clock may rather imply that this age model is working

poorly in non-cerebellar tissues. In addition, we discovered that the cerebellum clock tends

to overestimate the ages of non-cerebellar samples under 60 years old (Figures 4.3e and 4.3i).

This is further confirmed by looking at the overestimation facts for cortex tissues from young

subjects by the cerebellum clock (4.4). The penalized regression algorithm selected 275 age-

associated CpGs from the 613 age-associated CpGs in the cerebellum, where the majority

of them (73%) are on the CBL-only list, meaning they do not exhibit significant age corre-

lations in MTG. Thus the observed apparent underestimation effect for those non-cerebellar

samples is not biologically meaningful, instead indicating artefacts resulting from improper

usage of the age model CerebellumClockspecific.
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Figure 4.4: Young cortex tissues are overestimated by CerebellumClockspecific. The cortex samples
are from GSE74193.

4.3.5 Slower ageing rate in cerebellum according to two oppositely

designed models

The above model CerebellumClockspecific thus captures cerebellum-specific age-related changes.

In order to make more fair ageing rate comparisons, we then trained another cerebellum age

model with the same regression algorithm and the same training samples except the input

CpG set is restricted to the 201 CpGs that are age-associated in both CBL and MTG. The

leave-one(dataset)-out cross validation demonstrated that the new cerebellum clock, named

CerebellumClockcommon, still gives very good age predictions for those cerebellum samples

(Figure 4.3b). Notably, CerebellumClockcommon substantially overestimated the ages of brain

cerebral cortices in both GSE134379 and GSE59685, though the ages of blood samples in

GSE59685 were still underestimated (Figures 4.3f and 4.3j).
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To further confirm the overestimation effect for non-cerebellar brain tissues by the new

cerebellum clock, we applied the CerebellumClockcommon to two other independent datasets

which, combined, include a large number of samples from three parts of cerebral cortex with

a wide age range (20∼100 years old). The results shown in Figure 4.6a demonstrate that

CerebellumClockcommon substantially overestimates the whole age range of non-cerebellar

brain tissues. The overall Pearson correlation coefficient reached 0.951, indicating the new

cerebellum clock has also captured the strong ageing effect on the methylome of those tissues.

More importantly, the slope of the regression line obtained from regressing the predicted

DNAm age against the chronological age is greater than 1 (Slope = 1.2), indicating that

these non-cerebellar tissues have higher ageing tick rates than the cerebellum.

Likewise, we constructed another cerebral cortical clock, in which the training dataset

includes samples from different parts of cerebral cortex, and the input CpG set was limited to

201 shared age-related CpGs. The resulting model, named CerebralCortexClockcommon, per-

formed well for samples from tissues that have been included in the training dataset (Figure

4.5). We then applied it to the clean cerebellum dataset (n=752) we collected. As expected,

all the cerebellum samples were largely underestimated by CerebralCortexClockcommon. Fur-

thermore, the increasing deviations of the estimated DNAm ages from their chronological

ages and the lower than 1 slope value of the regression line (Slope = 0.54) indicate that the

cerebellum ticks at a slower rate than other brain cortex tissues.

Altogether, we arrive at the same conclusion from the two different analyses—the cere-

bellum has a smaller ageing tick rate when measured by models constructed by the same set

of CpGs which were selected given they are age-associated in both CBL and MTG.
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Figure 4.5: The leave-one(fold)-out cross validation evaluate the age prediction performance of
CortexClockcommon. Colors represent samples from different datasets.

4.3.6 Why does the cerebellum appear to age slowly

We then sought to understand the underlying reasons why the cerebellum clock

(CerebellumClockcommon) overestimated the ages of non-cerebellar brain tissues and the

cerebral cortex clock (CerebralCortexClockcommon) underestimated the cerebellum tissue.

Comparing the overall methylation levels, the cerebellum has an apparent lower median

methylation level than MTG (Figure 4.7a) and it also has the lowest median methylation

level among the five tissue types included in GSE59685 (Figure 4.7b). When grouping all

CpGs into four genomic categories, i.e. island, open sea, shelf and shore, the mean (Figure

4.7c) and median (Figure 4.7d) methylation comparison analysis both agreed that the cere-

bellum is less methylated in the island and the shore. Thus, it is reasonable to conclude

that the overall lower methylation level in the cerebellum mainly originated from its lower
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Figure 4.6: (a) The DNAm ages of samples of three different parts of human cerebral cortex (DPC:
Dorsolateral Prefrontal Cortex, PC: Prefrontal Cortex, STG: Superior Temporal Gyrus) in two
datasets are systematically overestimated by CerebellumClockcommon. (b) the cerebellum samples
are all severely underestimated by the CerebralCortexClockcommon. The CerebellumClockcommon

and CerebralCortexClockcommon were trained from the same set of CpGs (n=201) but in different
tissues. The blue dashed line represents the identical diagonal line between chronological age and
DNAm age, the red dashed line represents the regression line derived from regressing the DNAm
age against the chronological age.
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methylation level in the CpG island and the shore. It should be noted we did not detect any

significant correlations between mean methylation level change with age in any tissue types

or the four genomic categories (Figure 4.8 and 4.9), indicating the overall lower methylation

level in the cerebellum is not due to a different ageing rate.

Next, we focused on the 201 common age-associated CpGs that were used to build

CerebellumClockcommon and CerebralCortexClockcommon. Firstly, we have shown that 94%

of them gained methylation with age. Secondly, there are 140 CpGs on the island and 48

CpGs on the shore, they accounted for 93.5% of the 201 common CpGs (Figure 4.7e). Con-

sistent with that CBL has generally lower methylation levels in the CpG islands and shores

than MTG, we found that the majority (85%, 171) of the common age-associated CpGs also

have lower mean/median methylation levels in the cerebellum (Figure 4.7f). Lastly, more

than three-quarters of the 201 CpGs turned out to have a smaller ageing effect size in the

CBL than MTG when regressing the methylation beta values against age, sex and batches

(Figure 4.7f), meaning those CpGs have higher rates of age-associated methylation change

in the MTG than the cerebellum. Altogether, the lower methylation levels, the positive age

associations and smaller ageing effect sizes of the majority of the common 201 CpGs in the

cerebellum explain why CerebellumClockcommon not only systematically overestimated the

ages of non-cerebellar brain tissues (Intercept=11) but also with overestimation effect more

prominent with age (Slope=1.2). Similarly, they also explain why the cerebellum samples

were systematically underestimated by the CerebralCortexClockcommon.
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Figure 4.8: The fluctuation of the median methylation level is not correlated with chronological
age either in the CBL or in the MTG.
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Figure 4.9: The fluctuation of the median methylation level is not correlated with chronological age
in any of the four genomic regions, i.e. island, open sea, shelf and shore.Red denotes CBL sample
and cyan denotes MTG sample.
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4.3.7 A single clock unbiasedly estimates DNAm age of cerebel-

lum and cerebral cortex

Though we have demonstrated that cerebellum shows different ageing patterns even on the

shared 201 CpGs compared with cerebral cortex, the successful construction of

CerebellumClockcommon and CerebralCortexClockcommon inspired us to investigate whether

it is possible to build a single clock that works well, i.e. no systematic offset, for samples

from both cerebral and cerebellar cortices.

To start with, we selected a comparable number of cerebral cortex samples to cerebellar

samples, while also ensuring that they have similar age distributions (Figure 4.10a). Then

the Elastic Net was applied to regress the methylation values of the 201 CpGs against the

chronological age of samples from the two brain cortex tissues. Remarkably, the leave-one-

fold-out cross-validation assessment showing the new brain cortex clock, named as Brain-

CortexClock, did accurately predict the age of samples from both cerebral and cerebellar

cortices—the Pearson correlation coefficient reaches 0.906 and MAD is 3.83 years (Figures

4.10b and 4.10c). We further tested its performance on an independent dataset—GSE59685

which includes DNAm samples from multiple tissues from 122 participants. Set aside the

blood samples, the evaluation matrix generated from the brain cortex tissues further con-

firmed BrainCortexClock’s accurate age prediction performance (Figures 4.10d). The box-

plots in Figure 4.10e demonstrate the cerebellum samples were not systematically underesti-

mated and the cerebellum and cerebral cortex have similar levels of DNAm ages as estimated

by this new clock, in contrast, the blood samples were apparently underestimated due to

a lack of representation of this tissue in the training dataset. Furthermore, age acceler-

ation comparisons between any two tissues from the same subjects showed the variations

of age acceleration between cerebellum and other three parts of cerebral cortex were mod-
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erately correlated, with Pearson’s r ranging from 0.37 to 0.52 (Figure 4.10e). Altogether,

BrainCortexClock provides unbiased DNAm age prediction for brain cortex tissues including

cerebellum.

4.4 Discussion

In order to examine the claim that the cerebellum ages slower, we collected a large set of

cerebellum samples (N=752) and assessed their DNAm ages from six representative clocks,

including Horvath’s multi-tissue clock, i.e. Horvath2013. The results showed that these six

representative clocks severely underestimated almost all cerebellum samples. This is consis-

tent with previous reports [74, 157]. However, we should not conclude that the cerebellum

ages slower only based on these results, as the underestimations may mainly reflect the im-

proper usage of DNAm clocks, i.e. applying DNAm clocks in tissues which do not have ade-

quate representations in the clocks’ training datasets. We found the underestimations were

much more severe with the four clocks that were trained with no brain-related tissues—three

clocks were trained mainly on blood tissues and Horvath2018 was trained on eight other dif-

ferent tissues. In contrast, the underestimations were much attenuated in Shireby2020 whose

training samples comprised non-cerebellar cortex tissues and Horvath2013 which included

282 cerebellum samples in its total 8000 training samples. Different tissues may have dis-

tinct DNA methylation profiles, and the dynamic changes of their methylomes in response

to ageing also vary [60]. Horvath’s multi-tissue clock produces relatively accurate age predic-

tions for many vast different tissue/cell types [40]. Still, there is no evidence or guarantee to

claim that it has captured the intrinsic mechanism that drives the DNAm changes across the

whole body. We do not think it is justified to compare the ageing rates of different tissues

by simply comparing their DNAm ages derived from the multi-tissue clock.
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Wilcoxon, p = 0.83
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Figure 4.10: The clock of BrainCortexClock unbiasedly estimates DNAm age of cerebellum and
cerebral cortex. (a) Age distributions of cerebellum samples and cerebral cortex samples in the
training dataset. (b) Leave-one-fold-out cross-validation reveals the high performance of Brain-
CortexClock in training dataset. (c) Comparing age accelerations of samples from cerebellum and
cerebral cortex in the training dataset demonstrates BrainCortexClock is not biased in the two
tissues. The P-value was obtained from unpaired Wilcoxon Tests. (d) The performance of Brain-
CortexClock is evaluated in an independent dataset—GSE59685 which includes DNAm samples of
five different tissues from 121 individuals. Note, the evaluation matrixes were drawn from sam-
ples that excluded whole blood. (e) Boxplots showing cerebellum samples are not systematically
underestimated than three other parts of cerebral cortex, in contrast, whole blood is apparently
underestimated. The P-values were obtained from pairwise Wilcoxon Tests. (f) Correlation matrix
showing variations of age acceleration between cerebellum and other three parts of cerebral cortex
were moderately correlated and all four brain tissues were poorly correlated with whole blood.
CBL: cerebellum, MTG: middle temporal gyrus, EC: Entorhinal Cortex, FC: Frontal Cortex, STG:
Superior Temporal Gyrus, MTG: Middle Temporal Gyrus, PFC: Prefrontal Cortex, WB: Whole
Blood.
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There exists a strong and consistent ageing effect on the DNA methylome of the cerebel-

lum. By performing age EWAS on the cerebellum, we found 613 significantly age-associated

CpGs from an elderly population, they were scattered across all autosomes. By taking advan-

tage of penalised linear regression algorithm and a large training dataset, we constructed a

highly accurate age clock for cerebellum (CerebellumClockspecific, r=0.941, MAE=3.18 years).

As a comparison, we identified many more age-associated CpG sites in a representative cere-

bral cortex tissue—MTG, and we found the CBL has smaller age effect sizes than the MTG

although it is only significant in the positive age-associated CpGs. We found 201 CpGs

exhibiting age associations in both CBL and MTG, based on these 201 CpGs, we trained

two clocks, i.e. CerebellumClockcommon and CerebralCortexClockcommon, on all cerebellum

samples and non-cerebellar cortex samples separately, they both performed well in age pre-

diction for tissues that have included in their training dataset. When the two clocks are

applied to samples from the cerebellum and non-cerebellar cortex tissues and the estimated

DNAm ages are compared, they both agree that the cerebellum has a younger epigenetic

age and a lower ageing rate. Furthermore, we have demonstrated that this is caused by 94%

of the 201 CpGs gaining methylation with age, 85% are less methylated in CBL, and more

than 75% have a smaller ageing effect size in CBL.

Even though our finding supports that the cerebellar methylome is more resistant to

change with ageing, we should be cautious about whether this can be translated to the

conclusion that the cerebellum is biologically younger than other human tissues. It should

be noted that the above comparisons of ageing rates between cerebellum and MTG are based

on the clocks trained on the same 201 age-associated CpGs. In fact, there is more than twice

the number of CpGs found to be age-associated in the cerebellum and even more in MTG.

When we apply the cerebellum-specific clock (CerebellumClockspecific), which was trained by

using all age-associated CpGs in the cerebellum, in predicting DNAm ages of other brain

tissues, we could no longer observe a systematic overestimation for samples across all age
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groups, instead only the individuals aged below 60 years old were overestimated, by contrast,

the above 60 years old group was clearly underestimated (Figures 4.3e, 4.3i and 4.4). We

conclude that this is due to the improper usage of the clock, as the CerebellumClockspecific

consists of many cerebellum-specific CpGs.

Why does the cerebellum have a much smaller number of age-associated CpGs? The ob-

served age-associated methylation level change of CpGs sites in tissues with mixed cell types

could arise through epigenetic drifts with mitotic divisions, cell type composition changes and

intrinsic changes affected by cell inner metabolism. Above 80% of cells in the cerebellar grey

matter are non-replicating neuronal cells [175]. As a result of this, retrospective birth dating

of cells through 14C bomb-pulse method indicates the average cell turnover rate in cerebellum

is extremely low. In contrast, a much higher proportion of non-neuronal cells (mainly glial

cells) in cerebral cortex makes it have a higher average cell turnover than the cerebellum

[176]. ELOVL2 hypermethylation has been demonstrated as a marker of cell divisions that

occur throughout human ageing [177], the hypermethylation of a locus in ELOVL2 which

targeted by the probe of cg16867657, has been reported to show highest age correlation in

whole blood [178, 179, 60]. Our results show that hypermethylation of cg16867657 is still

significant (p=7.0e-08, effect size=0.0011) correlated with age in cerebellum though is much

less significant than that in MTG (p=1.5e-12, effect size=0.0023), this is consistent with

very low average mitotic rates in cerebellum. FHL2 is another well-documented gene whose

hypermethylation is strongly correlated with age [61, 180, 179]. Unlike ELOVL2, FHL2

hypermethylation is not closely associated with cell replication [177]. Remarkably, the top

three age-associated CpG sites in cerebellum are all mapped to FHL2 gene and they exhib-

ited similar age effect sizes in MTG (Supplementary Tables 1), confirming hypermethylation

of FHL2 gene is not mainly accompanied by cell divisions. Taken together, we speculate the

smaller number of age-associated CpG sites found in cerebellum is largely attributed to its

extremely low average cell replication rates.
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It is easy to understand DNAm age comparisons between samples from the same tissues,

i.e. we are confident that sample A is biologically younger than sample B when the DNAm

age of sample A is much smaller than sample B and they are from the same tissue. However,

we still lack sufficient evidence to compare the biological ages of samples from different tissues

confidently. For example, as recently reported by Jonkman and colleagues, Horvath’s multi-

tissue clock predicts naive T cells to be up to 30 years younger than activated T cells from

the same donor [181]. Can we conclude that naive T cells are biologically 30 years younger

than activated T cells? Similarly, when predicted by our CerebellumClockcommon, the non-

cerebellar brain tissues are predicted to be at least 11 years older than the cerebellum (Figure

4.6a), however, we can not claim that those non-cerebellar brain tissues are biologically 11

years older than the cerebellum, as we could easily find one CpG or several CpGs combined

that distinguishes the cerebellum from other brain tissue, then add it/them to the existing

model and assigns it with a coefficient to counteract the 11 years gap. Then the new adjusted

clock should not produce DNAm age predictions with systematic large differences between

the cerebellum and other brain tissues. As proposed by Liu et al., the many non-age-related

CpGs in Horvath’s multi-tissue clock [40] may actually be reflecting and adjusting for tissue

differences [174]. We have adequately demonstrated a single equation, BrainCortexClock,

relying on only a subset of the 201 shared age-association CpGs provides unbiased DNAm age

prediction for both cerebellum and cerebral cortex since given they have equal representation

in the training dataset.

Another angle for ageing rate comparisons is to look at the Telomere Length (TL) short-

ening rates. Telomeres are protective DNA-protein complexes at the termini of chromosomes

[182] and telomere attrition is considered an important hallmark of human ageing [32]. As

comprehensively studied by Demanelis et al. [183], the average relative TL (RTL) varies

across different tissue types, for instance, the average RTL is the lowest in whole blood and

the longest in testis. Even though they found TL can shorten at different rates with ageing
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between several tissue types, the majority of tissues do not show a significant difference in

age-dependent shortening rates, and there is no evidence to claim that different tissue types

age at rates proportional to their TL shortening rates.

We should acknowledge some limitations of this study. First, due to the scarcity of cere-

bellum samples, the majority of our collected cerebellum samples are from elderly individuals

aged above 60 years old. It would be very valuable to test our hypothesis that the Horvath’s

multi-tissue clock would systematically overestimate the ages of cerebellum samples from

young individuals aged below 30 years old. Second, our age EWASs on the cerebellum and

MTG were also based on a very elderly population which has a relatively narrow age range,

as demonstrated by Vershinina and colleagues [92], lots of age-associated CpGs do exhibit

nonlinear methylation changes with age. Thus our age EWASs may have missed many CpGs

that are strongly age-associated in the younger age group but be a much-attenuated associ-

ation in the aged group. Future studies that include more young individuals should reveal a

more complete picture of age-associated changes in the cerebellar methylome.

4.5 Conclusion

The large underestimations of age estimations for the cerebellum by widely used DNAm

clocks are mainly due to inadequate cerebellum samples in their training datasets. We

suggest the smaller number of age-associated CpG sites in cerebellum is largely attributed

to its extremely low average cell replication rates. We have constructed a cerebellum-specific

clock that can accurately predict cerebellum age and demonstrate conclusion from ageing

rates comparison by DNA methylation clocks can be arbitrary by manipulating input CpG

sites and the proportion of tissue types included in the training dataset. We believe our
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findings can have wider implications for the use of ageing clocks.



Chapter5

Conclusion

In order to improve the precision of age prediction from methylation data, I collected a

large number of DNA methylation microarray samples from public repositories. During the

processing of those collected samples that are produced by different laboratories in different

years, two new bioinformatic methods are proposed when realised the limitations of existing

tools. The first one is a user-friendly sex classifier to accurately estimate sample sex from

DNA methylation data. The second one is a novel two-step strategy to normalize DNA

methylation microarray data avoiding sex bias. The two methods are useful in preprocessing

methylation microarray samples, especially necessary when performing large cohort EWAS

analysis. Lastly, in studying the epigenetic ageing rate differences between different tissues,

the unique characteristics of age-associated methylome changes of the cerebellum are re-

vealed, furthermore, I trained an accurate cerebellum age clock and suggest more evidence

is required to support the claim that the cerebellum ages slower.

The sex classifier was built based on that females and males have different sex chromo-

some combinations, thus the overall methylation levels of the sex chromosomes between the

two sexes are very different. By performing epigenome-wide sex association studies, 4047

CpGs on X chromosomes and 284 CpGs on Y chromosomes were found to be significantly

differentially methylated between females and males. Then the sex classifier that consists of
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two first principle components of the variance of methylation value of sex-associated CpGs

on X chromosomes and Y chromosomes could clearly separate females and males. The sex

classifier was demonstrated to perform well across a wide range of tissues or cell types de-

spite it being originally built on methylation data from whole blood samples. It could be

used to assign sex annotations for samples collected from public repositories that do not

have such associations, and it also should be a common practice to compare the reported

sex and the estimated sex from samples to identify questionable samples and then remove

them from downstream analysis. Moreover, the sex classifier could identify samples with sex

chromosome aneuploidy.

The two-step strategy provides an ideal solution to normalise female samples and male

samples together without introducing technical sex bias. By this strategy, the first step

is to normalize autosomal data separately by conventional normalization methods; then

the second step is to infer the corrected values of sex chromosomes-linked CpGs by weighted

averaging the normalised values of their nearest neighbours in the autosomes, this step is effi-

ciently achieved by applying the interpolation algorithm. Furthermore, a useful parameter—

the fraction of sex-explained variance, is proposed to be able to quantitatively measure a

proportion of meaningful biological variance. It also demonstrated the beneficial effects of

employing between-array normalisation methods to remove technical variance while retaining

meaningful biological variance. The novel two-step strategy can be also employed by other

quantile-based normalisation methods that are dedicated to dealing with other biological

data such as RNA-seq data.

The claim that the cerebellum ages slowly was made upon a small subset of cerebellum

samples and a single clock. To effectively verify this claim, a large set (N=752) of cerebel-

lum samples from GEO was collected and their DNA methylation ages were estimated by

six representative clocks. All cerebellum samples were severely underestimated compared to
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their chronological ages by the six clocks, the underestimation effects were much more se-

vere by clocks whose training datasets do not include brain cortex-related tissues, suggesting

the observed huge underestimation effects mainly reflect the improper usage of the clocks.

Comparative analysis of the epigenome-wide age association studies between the cerebellum

and MTG from the same population reveals the cerebellum has a much smaller number

of age-associated CpGs. And the age-associated CpGs between the two tissues are largely

non-overlapped, indicating the unique age-related methylome changes of the cerebellum. A

highly accurate age prediction model for the cerebellum is constructed demonstrating the

strong and consistent ageing signals in the methylome of the cerebellum. Improper applying

this cerebellum-specific model to other brain cortex tissues leads to systematical severe un-

derestimations of their epigenetic ages compared to their chronological age. Clocks trained

on only shared age-associated CpGs did show the cerebellum has smaller epigenetic ages,

however, this is only valid on models constructed on a small proportion of CpGs (201),

in which 94% (189) of them gain methylation with age, and cerebellum has lower median

methylation levels for the majority of CpGs (85%, 171). To better perform ageing rate com-

parisons, future studies should look into other omic data as well, such as the transcriptome,

proteome and metabolome.

Until now, there have been published many DNA methylation age clocks, nevertheless,

only a very small proportion of, if not zero, CpGs are shared by any of the two clocks. For ex-

ample, only 6 CpGs sites, i.e. cg09809672, cg04474832, cg22736354, cg06493994, cg19722847,

cg05442902, exist in both Hannumn’s clock and Horvath’s multi-tissue clock. This seems

to discourage these researchers who want to dissect the epigenetic clocks by diving into the

individual clock-important CpGs. However, the small proportion of overlapping CpGs is not

very unexpected considering the amount of CpGs whose methylation status changes with

ageing are huge and they are widespread across all chromosomes. For example, Hannum et

al. found 70,387 CpGs are age-associated among the 473,034 CpGs they examined. In gen-
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eral, the observed age-associated methylation changes may derive from mitotic features, cell

type composition changes, environmental influences and other disruptions that occur over

time. Training of DNAm clocks often employs penalized linear regression, especially Elastic

Net, to select a small number of CpGs among the huge amount of candidate age-associated

CpGs. As many of the CpGs share similar changing patterns, any subtle difference in the

training dataset or adjustments of the super-parameters of the training algorithms would

result in very different outcome CpGs combinations even though the models have similar

prediction performance. In this field, some researchers were very keen to discover biological

meanings from the deviations between clock’s estimated age and chronological age, but at

present, the deviations from existing clocks mainly reflect technical variations, more future

studies are needed to distil true, if exist, age acceleration effect from epigenetic data.
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[126] Martin Cederlöf et al. “Klinefelter syndrome and risk of psychosis, autism and ADHD”.
In: Journal of Psychiatric Research 48.1 (2014), pp. 128–130. issn: 0022-3956.

[127] Anthony S. Zannas et al. “Epigenetic upregulation of FKBP5 by aging and stress
contributes to NF-κB-driven inflammation and cardiovascular risk”. In: Proceedings
of the National Academy of Sciences of the United States of America 166.23 (2019),
pp. 11370–11379.

https://www.understandingsociety.ac.uk/about/about-the-study
https://www.understandingsociety.ac.uk/about/about-the-study


BIBLIOGRAPHY 120
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AppendixA

Appendix Codes

1. The original codes for adjustedDasen:

1 #’

2 #’ adjustedDasen

3 #’

4 #’ @description adjustedDasen utilizes dasen normliasation to

normalise autosomal

5 #’ CpGs , and infers the sex chromosome linked CpGs by linear

interpolation on

6 #’ corrected autosomal CpGs.

7 #’

8 #’ @param mns matrix of methylated signal intensities , samples in

column and

9 #’ probes in row.

10 #’ @param uns matrix of unmethylated signal intensities , samples in

column and

11 #’ probes in row.

12 #’ @param onetwo character vector or factor of length nrow(mns)

indicating assay

13 #’ type ’I’ or ’II ’.
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14 #’ @param chr character vector stores the mapped chromosomes for

all probes , e.g.

15 #’ chr <- c(’1’, ’X’, ’21’, ..., ’Y’).

16 #’ @param offset_fit logical (default is TRUE). To use dasen , set

it TRUE; to use

17 #’ nasen , set it FALSE.

18 #’ @param cores an integer(e.g. 8) defines the number of cores to

parallel processing.

19 #’ Default value is 1, set to -1 to use all available cores.

20 #’ @param ret2 logical (default is FALSE), if TRUE , returns a list

of intensities

21 #’ and betas instead of a naked matrix of betas.

22 #’ @param fudge default 100, a value added to total intensity to

prevent denominators

23 #’ close to zero when calculating betas , e.g. betas <- mns / (mns +

uns + fudge).

24 #’ @param ... additional argument roco for dfsfit giving Sentrix

rows and

25 #’ columns. This allows a background gradient model to be fit.

This is split

26 #’ from data column names by default. roco=NULL disables model

fitting (and

27 #’ speeds up processing), otherwise roco can be supplied as a

character vector

28 #’ of strings like ’R01C01 ’ (only 3rd and 6th characters used).

29 #’

30 #’ @return a matrix of normalised beta values.

31 #’ @export

32 #’ adjustedDasen
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33 #’

34 #’ @references

35 #’ A data -driven approach to preprocessing Illumina 450K

methylation array data ,

36 #’ Pidsley et al , BMC Genomics. \cr

37 #’ interpolatedXY: a two -step strategy to normalise DNA methylation

38 #’ microarray data avoiding sex bias , Wang et al., 2021.

39 #’ @examples

40 #’ data(melon)

41 #’ normalised_betas <- adjustedDasen(mns = methylated(melon), uns =

unmethylated(melon), onetwo = fData(melon)[,fot(melon)], chr =

fData(melon)$CHR , cores =1)

42 #’ ## if input is an object of methylumiset or methylset

43 #’ normalised_betas <- adjustedDasen(melon)

44 #’

45 adjustedDasen <- function(mns , uns , onetwo , chr , offset_fit=TRUE ,

cores=1, ret2=FALSE , fudge =100 ,...){

46 stopifnot(nrow(mns) == length(chr))

47 stopifnot(nrow(uns) == length(chr))

48 stopifnot(nrow(mns) == length(onetwo))

49 stopifnot(nrow(uns) == length(onetwo))

50 stopifnot(length(chr) == length(onetwo))

51

52 if(!is.logical(chr)){

53 is_sex <- grepl(’(X|chrX|Y|chrY |23|24) ’, as.character(chr))

54 } else {

55 is_sex <- chr

56 }

57
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58 if (cores < 1) {

59 cores <- detectCores ()

60 }

61

62 if(Sys.info()["sysname"] != "Linux"){

63 cores <- 1

64 }

65

66 ## to use ’nasen ’, set offset_fit=FALSE

67 if(offset_fit){

68 mns <- p_dfsfit(mns , onetwo , cores=cores)

69 uns <- p_dfsfit(uns , onetwo , roco=NULL , cores=cores)

70 }

71

72 mns[onetwo == ’I’ , ] <- uSexQNengine(A = mns[onetwo == ’I’ ,

], is_sex = is_sex[onetwo == ’I’ ], cores = cores)

73 mns[onetwo == ’II’, ] <- uSexQNengine(A = mns[onetwo == ’II’,

], is_sex = is_sex[onetwo == ’II’], cores = cores)

74 uns[onetwo == ’I’ , ] <- uSexQNengine(A = uns[onetwo == ’I’ ,

], is_sex = is_sex[onetwo == ’I’ ], cores = cores)

75 uns[onetwo == ’II’, ] <- uSexQNengine(A = uns[onetwo == ’II’,

], is_sex = is_sex[onetwo == ’II’], cores = cores)

76

77 betas = (mns) / (mns+uns+fudge)

78 if(ret2){

79 return(list(betas = betas , methylated = mns , unmethylated =

uns))

80 } else {

81 return(betas)
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82 }

83 }

84

85

86 sort_order <- function(d, tie=TRUE){

87 ## obtain the sorted values and their index

88 Si <- sort(d, method = "quick", index.return = TRUE) # NA will

be ignored or removed.

89 if (tie){

90 Si$ix <- NA

91 }

92 # deal with NA in input d

93 nobsj <- length(Si$x)

94 n_1 <- length(d)

95 isna <- is.na(d)

96 if (sum(isna) > 0) {

97 i <- (0:(n_1 - 1))/(n_1 - 1)

98 Si$x <- approx ((0:( nobsj - 1))/(nobsj - 1), Si$x, i, ties =

list("ordered", mean))$y # Si$x will not contain NAs

any more.

99 if (!tie) {

100 O_i <- rep(NA, n_1)

101 O_i[!isna] <- ((1:n_1)[!isna])[Si$ix]

102 Si$ix <- O_i

103 }

104 }

105 return(Si)

106 }

107
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108

109 tie_norm <- function(d, is_sex , rank2mean){

110 ## normalise d differently on autosomes and XY

111 d_sex <- d[is_sex]

112 d_autosome <- d[!is_sex]

113 r_autosome <- rank(d_autosome) # NA will be counted and placed

at the end.

114 # Get the ranks of sexual cpgs based on ranks of autosomal

cpgs;

115 # rule=2 means the value at the closest data extreme is used

when new x is greater than max(x)

116 r_sex <- approx(d_autosome , r_autosome , d_sex , ties = mean ,

rule =2)$y

117

118 # Produce the final values of non -NA autosomal cpgs based on

their ranks

119 notna <- !is.na(d_autosome)

120 nobsj <- sum(notna)

121 d[!is_sex][ notna] <- rank2mean ((r_autosome[notna] - 1)/(nobsj -

1))

122 # Produce the final values of non -NA sexual cpgs based on their

ranks

123 notna_sex <- !is.na(d_sex)

124 d[is_sex][ notna_sex] <- rank2mean ((r_sex[notna_sex] - 1)/(nobsj

- 1))

125 return(d)

126 }

127

128
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129 uSexQNengine <- function(A, is_sex , cores =1) {

130 ## A: a dataframe or matrix;

131 ## chr: a vector , like c(’1’, ’2’, ’X’, ’Y’)

132 stopifnot(nrow(A) == length(is_sex))

133 A <- data.frame(A, check.names=FALSE)

134 A_autosome <- A[!is_sex , ]

135 n_1 <- nrow(A_autosome)

136 sort_Aa <- mclapply(A_autosome , sort_order , mc.cores=cores ,

tie=TRUE)

137 S_autosome <- sapply(sort_Aa , function(x) x$x)

138 m_autosome <- rowMeans(S_autosome)

139

140 # Get a function which gives relationships between orders and

mean values.

141 i <- (0:(n_1 - 1))/(n_1 - 1)

142 rank2mean <- approxfun(i, m_autosome , ties = list("ordered",

mean))

143

144 #rm(S_autosome , A_autosome , sort_Aa)

145 # For each sample , find its normalised values

146 A <- mclapply(A, tie_norm , is_sex=is_sex , mc.cores=cores ,

rank2mean=rank2mean)

147 A <- sapply(A, function(x) x)

148

149 return(A)

150 }

151

152

153 p_dfsfit <- function (mn, onetwo , cores=1,
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roco=substring(colnames(mn), regexpr("R0[1-9]C0[1-9]",

colnames(mn))), ...){

154 mn <- data.frame(mn, check.names=FALSE)

155 mdf <- mclapply(mn , dfs2 , onetwo , mc.cores=cores)

156 mdf <- sapply(mdf , function(x) x)

157 if (!is.null(roco)) {

158 scol <- as.numeric(substr(roco , 6, 6))

159 srow <- as.numeric(substr(roco , 3, 3))

160 fit <- try(lm(mdf ~ srow + scol), silent = TRUE)

161 if (!inherits(fit , "try -error")) {

162 mdf <- fit$fitted.values

163 }

164 else {

165 message("Sentrix position model failed , skipping")

166 }

167 }

168 otcor <- matrix(rep(mdf , sum(onetwo == "I")), byrow = T, nrow =

sum(onetwo == "I"))

169 mn[onetwo == "I", ] <- mn[onetwo == "I", ] - otcor

170 mn

171 }

2. The original codes for adjustedFunnorm:

1 ### ORIGINAL AUTHOR: Jean -Philippe Fortin , Sept 24 2013 (Functional

normalization of 450k methylation array data improves

replication in large cancer studies , Genome Biology , 2014)

2 ### Adopted by Yucheng Wang

3
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4 ######################################################

5 ## Functional normalization of the 450k array

6 ## Jean -Philippe Fortin

7 ## Sept 24 2013

8 #####################################################

9

10 ##

11

12

13 #’ adjustedFunnorm

14 #’

15 #’ @description adjustedFunnorm utilizes functional normliasation

to normalise autosomal

16 #’ CpGs , and infers the sex chromosome linked CpGs by linear

interpolation on

17 #’ corrected autosomal CpGs.

18 #’

19 #’ @param rgSet An object of class "RGChannelSet ".

20 #’ @param nPCs Number of principal components from the control

probes PCA.

21 #’ @param sex An optional numeric vector containing the sex of the

samples.

22 #’ @param bgCorr Should the NOOB background correction be done ,

prior to

23 #’ functional normalization (see "preprocessNoob ")

24 #’ @param dyeCorr Should dye normalization be done as part of the

NOOB

25 #’ background correction (see "preprocessNoob ")?

26 #’ @param keepCN Should copy number estimates be kept around?
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Setting to ’FALSE ’

27 #’ will decrease the size of the output object significantly.

28 #’ @param ratioConvert Should we run "ratioConvert", ie. should the

output be a

29 #’ "GenomicRatioSet" or should it be kept as a "GenomicMethylSet ";

the latter

30 #’ is for experts.

31 #’ @param verbose Should the function be verbose?

32 #’

33 #’ @return an object of class "GenomicRatioSet", unless

"ratioConvert=FALSE" in

34 #’ which case an object of class "GenomicMethylSet ".

35 #’ @export

36 #’ adjustedFunnorm

37 #’ @references

38 #’ Functional normalization of 450k methylation array data improves

replication

39 #’ in large cancer studies , Fortin et al., 2014, Genome biology. \cr

40 #’ interpolatedXY: a two -step strategy to normalise DNA methylation

41 #’ microarray data avoiding sex bias , Wang et al., 2021.

42 #’

43 #’ @examples

44 #’ \dontrun{

45 #’ GRset <- adjustedFunnorm(RGSet)

46 #’ }

47 #’

48 adjustedFunnorm <- function(rgSet , nPCs=2, sex = NULL , bgCorr =

TRUE , dyeCorr = TRUE , keepCN = TRUE , ratioConvert = TRUE ,

verbose = TRUE) {
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49

50 .isMatrixBackedOrStop(rgSet , "adjustedFunnorm")

51

52 .isRGOrStop(rgSet)

53 rgSet <- updateObject(rgSet) ## FIXM: might not KDH:

technically , this should not be needed , but might be nice

54

55 # Background correction and dye bias normalization:

56 if (bgCorr){

57 if(verbose && dyeCorr) {

58 message("[adjustedFunnorm] Background and dye bias

correction with noob")

59 } else {

60 message("[adjustedFunnorm] Background correction with

noob")

61 }

62 gmSet <- preprocessNoob(rgSet , dyeCorr = dyeCorr)

63 if(verbose) message("[adjustedFunnorm] Mapping to genome")

64 gmSet <- mapToGenome(gmSet)

65 } else {

66 if(verbose) message("[adjustedFunnorm] Mapping to genome")

67 gmSet <- mapToGenome(rgSet)

68 }

69

70 subverbose <- max(as.integer(verbose) - 1L, 0)

71

72 if(verbose) message("[adjustedFunnorm] Quantile extraction")

73 extractedData <- .extractFromRGSet450k(rgSet)

74 rm(rgSet)
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75

76 if (is.null(sex)) {

77 gmSet <- addSex(gmSet , getSex(gmSet , cutoff = -3))

78 sex <- rep(1L, length(gmSet$predictedSex))

79 sex[gmSet$predictedSex == "F"] <- 2L

80 }

81 if(verbose) message("[adjustedFunnorm] Normalization")

82 if(keepCN) {

83 CN <- getCN(gmSet)

84 }

85 gmSet <- .adjusted_normalizeFunnorm450k(object = gmSet ,

extractedData = extractedData ,

86 sex = sex , nPCs = nPCs ,

verbose = subverbose)

87 preprocessMethod <- c(preprocessMethod(gmSet),

88 mu.norm = sprintf("Funnorm , nPCs=%s",

nPCs))

89 if(ratioConvert) {

90 grSet <- ratioConvert(gmSet , type = "Illumina", keepCN =

keepCN)

91 if(keepCN) {

92 assay(grSet , "CN") <- CN

93 }

94 grSet@preprocessMethod <- preprocessMethod

95 return(grSet)

96 } else {

97 gmSet@preprocessMethod <- preprocessMethod

98 return(gmSet)

99 }
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100 }

101

102

103 .getFunnormIndices <- function(object) {

104 ## WYC

105 .isGenomicOrStop(object)

106 probeType <- getProbeType(object , withColor = TRUE)

107 # autosomal <- (seqnames(object) %in% paste0 ("chr", 1:22))

108 indices <- list(IGrn = (probeType == "IGrn"),

109 IRed = (probeType == "IRed"),

110 II = (probeType == "II" ),

111 XY = as.vector(seqnames(object)) %in% c("chrX",

"chrY"))

112 indices

113 }

114

115

116 .adjusted_normalizeFunnorm450k <- function(object , extractedData ,

nPCs , sex , verbose = TRUE) {

117 #normalizeQuantiles <- function(matrix , indices , sex = NULL) {

118 # matrix <- matrix[indices ,,drop=FALSE]

119 # ## uses probs , model.matrix , nPCS , through scoping)

120 # oldQuantiles <- t(colQuantiles(matrix , probs = probs))

121 # if(is.null(sex)) {

122 # newQuantiles <- .returnFit(controlMatrix =

model.matrix , quantiles = oldQuantiles , nPCs = nPCs)

123 # } else {

124 # newQuantiles <- .returnFitBySex(controlMatrix =

model.matrix , quantiles = oldQuantiles , nPCs = nPCs , sex =
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sex)

125 # }

126 # .normalizeMatrix(matrix , newQuantiles)

127 #}

128

129 interpolatedXY <- function(ra_signal , na_signal , ru_signal){

130 # construct a function which reflects relationships between

orders and final norm values.

131 n_1 <- length(ra_signal)

132 rank2mean <- approxfun ((0:(n_1 - 1))/(n_1 - 1),

sort(na_signal , method = "quick"), ties =

list("ordered", mean))

133

134 rank_autosome <- rank(ra_signal) # NA will be counted and

placed at the end.

135 # Get the ranks of sexual cpgs based on ranks of autosomal

cpgs;

136 # rule=2 means the value at the closest data extreme is

used when new x is greater than max(x)

137 rank_sex <- approx(ra_signal , rank_autosome , ru_signal ,

ties = mean , rule =2)$y

138

139 # Produce the final values of non -NA sexual cpgs based on

their ranks

140 notNA <- !is.na(ru_signal)

141 ru_signal[notNA] <- rank2mean ((rank_sex[notNA] - 1)/(n_1 -

1))

142 ru_signal

143 }
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144

145 unbiased_normalizeQuantiles <- function(mat , indices , sex_probe

= NULL) {

146 mat_auto <- mat[( indices & !sex_probe),,drop=FALSE]

147 mat_sex <- mat[( indices & sex_probe),,drop=FALSE]

148 ## uses probs , model.matrix , nPCS , through scoping)

149 oldQuantiles <- t(colQuantiles(mat_auto , probs = probs))

150 newQuantiles <- .returnFit(controlMatrix = model.matrix ,

quantiles = oldQuantiles , nPCs = nPCs)

151 n_matrix <- .normalizeMatrix(mat_auto , newQuantiles)

152 for(j in 1:ncol(n_matrix)){

153 mat_sex[, j] <- interpolatedXY(mat_auto[, j],

n_matrix[, j], mat_sex[, j])

154 }

155 mat[( indices & sex_probe), ] <- mat_sex

156 mat[( indices & !sex_probe), ] <- n_matrix

157 mat

158 }

159

160 indicesList <- .getFunnormIndices(object)

161 model.matrix <- .buildControlMatrix450k(extractedData)

162 probs <- seq(from = 0, to = 1, length.out = 500)

163 Meth <- getMeth(object)

164 Unmeth <- getUnmeth(object)

165 if (nPCs > 0){

166 for (type in c("IGrn", "IRed", "II")) {

167 indices <- indicesList [[type]]

168 if(length(indices) > 0) {

169 if(verbose) message(sprintf("[InterpolatedXY
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adjustedFunnorm] Normalization of the %s

probes", type))

170 Unmeth <- unbiased_normalizeQuantiles(Unmeth ,

indices=indices , sex_probe=indicesList$XY)

171 Meth <- unbiased_normalizeQuantiles(Meth ,

indices=indices , sex_probe=indicesList$XY)

172 }

173 }

174 }

175 assay(object , "Meth") <- Meth

176 assay(object , "Unmeth") <- Unmeth

177 return(object)

178 }

179

180

181 ### To extract quantiles and control probes from rgSet

182 .extractFromRGSet450k <- function(rgSet) {

183 rgSet <- updateObject(rgSet)

184 controlType <- c("BISULFITE CONVERSION I",

185 "BISULFITE CONVERSION II",

186 "EXTENSION",

187 "HYBRIDIZATION",

188 "NEGATIVE",

189 "NON -POLYMORPHIC",

190 "NORM_A",

191 "NORM_C",

192 "NORM_G",

193 "NORM_T",

194 "SPECIFICITY I",
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195 "SPECIFICITY II",

196 "TARGET REMOVAL",

197 "STAINING")

198

199 array <- annotation(rgSet)[["array"]]

200 ## controlAddr <- getControlAddress(rgSet , controlType =

controlType , asList = TRUE)

201 ctrls <- getProbeInfo(rgSet , type = "Control")

202 ctrls <- data.frame(ctrls)

203 if(!all(controlType %in% ctrls$Type))

204 stop("The ‘rgSet ‘ does not contain all necessary control

probes")

205

206 ctrlsList <- split(ctrls , ctrls$Type)[controlType]

207 redControls <- getRed(rgSet)[ctrls$Address ,,drop=FALSE]

208 redControls <- lapply(ctrlsList , function(ctl)

redControls[ctl$Address ,,drop=FALSE])

209 greenControls <- getGreen(rgSet)[ctrls$Address ,,drop=FALSE]

210 greenControls <- lapply(ctrlsList , function(ctl)

greenControls[ctl$Address ,,drop=FALSE])

211

212 ## Extraction of the undefined negative control probes

213 oobRaw <- getOOB(rgSet)

214 probs <- c(0.01 , 0.50, 0.99)

215 greenOOB <- t(colQuantiles(oobRaw$Grn , na.rm = TRUE , probs =

probs))

216 redOOB <- t(colQuantiles(oobRaw$Red , na.rm=TRUE , probs =

probs))

217 oob <- list(greenOOB = greenOOB , redOOB = redOOB)
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218

219 return(list(

220 greenControls = greenControls ,

221 redControls = redControls ,

222 oob = oob , ctrlsList = ctrlsList ,

223 array = array))

224 }

225

226

227 ## Extraction of the Control matrix

228 .buildControlMatrix450k <- function(extractedData) {

229 getCtrlsAddr <- function(exType , index) {

230 ctrls <- ctrlsList [[index ]]

231 addr <- ctrls$Address

232 names(addr) <- ctrls$ExtendedType

233 na.omit(addr[exType ])

234 }

235

236 array <- extractedData$array

237 greenControls <- extractedData$greenControls

238 redControls <- extractedData$redControls

239 controlNames <- names(greenControls)

240 ctrlsList <- extractedData$ctrlsList

241

242 ## Bisulfite conversion extraction for probe type II:

243 index <- match("BISULFITE CONVERSION II", controlNames)

244 redControls.current <- redControls [[ index ]]

245 bisulfite2 <- colMeans2(redControls.current , na.rm = TRUE)

246
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247 ## Bisulfite conversion extraction for probe type I:

248 index <- match("BISULFITE CONVERSION I", controlNames)

249 if (array =="IlluminaHumanMethylation450k"){

250 addr <- getCtrlsAddr(exType = sprintf("BS Conversion

I%sC%s", c(" ", "-", "-"), 1:3), index = index)

251 } else {

252 addr <- getCtrlsAddr(exType = sprintf("BS Conversion

I%sC%s", c("-", "-"), 1:2), index = index)

253 }

254 greenControls.current <- greenControls [[ index

]][addr ,,drop=FALSE]

255 if (array =="IlluminaHumanMethylation450k"){

256 addr <- getCtrlsAddr(exType = sprintf("BS Conversion

I-C%s", 4:6), index = index)

257 } else {

258 addr <- getCtrlsAddr(exType = sprintf("BS Conversion

I-C%s", 3:5), index = index)

259 }

260 redControls.current <- redControls [[ index ]][addr ,, drop=FALSE]

261 if (nrow(redControls.current)==nrow(greenControls.current)){

262 bisulfite1 <- colMeans2(redControls.current +

greenControls.current , na.rm = TRUE)

263 } else {

264 bisulfite1 <- colMeans2(redControls.current , na.rm=TRUE) +

colMeans2(greenControls.current , na.rm = TRUE)

265 }

266

267

268 ## Staining
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269 index <- match("STAINING", controlNames)

270 addr <- getCtrlsAddr(exType = "Biotin (High)", index = index)

271 stain.green <- t(greenControls [[ index ]][addr ,,drop=FALSE ])

272 addr <- getCtrlsAddr(exType = "DNP (High)", index = index)

273 stain.red <- t(redControls [[ index ]][addr ,, drop=FALSE ])

274

275 ## Extension

276 index <- match("EXTENSION", controlNames)

277 addr <- getCtrlsAddr(exType = sprintf("Extension (%s)", c("A",

"T")), index = index)

278 extension.red <- t(redControls [[index ]][addr ,,drop=FALSE ])

279 colnames(extension.red) <- paste0("extRed",

1:ncol(extension.red))

280 addr <- getCtrlsAddr(exType = sprintf("Extension (%s)", c("C",

"G")), index = index)

281 extension.green <- t(greenControls [[index ]][addr ,,drop=FALSE ])

282 colnames(extension.green) <- paste0("extGrn",

1:ncol(extension.green))

283

284 ## Hybridization should be monitored only in the green channel

285 index <- match("HYBRIDIZATION", controlNames)

286 hybe <- t(greenControls [[ index ]])

287 colnames(hybe) <- paste0("hybe", 1:ncol(hybe))

288

289 ## Target removal should be low compared to hybridization probes

290 index <- match("TARGET REMOVAL", controlNames)

291 targetrem <- t(greenControls [[index ]])

292 colnames(targetrem) <- paste0("targetrem", 1:ncol(targetrem))

293
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294 ## Non -polymorphic probes

295 index <- match("NON -POLYMORPHIC", controlNames)

296 addr <- getCtrlsAddr(exType = sprintf("NP (%s)", c("A", "T")),

index = index)

297 nonpoly.red <- t(redControls [[ index ]][addr , ,drop=FALSE])

298 colnames(nonpoly.red) <- paste0("nonpolyRed",

1:ncol(nonpoly.red))

299 addr <- getCtrlsAddr(exType = sprintf("NP (%s)", c("C", "G")),

index = index)

300 nonpoly.green <- t(greenControls [[ index ]][addr , ,drop=FALSE])

301 colnames(nonpoly.green) <- paste0("nonpolyGrn",

1:ncol(nonpoly.green))

302

303 ## Specificity II

304 index <- match("SPECIFICITY II", controlNames)

305 greenControls.current <- greenControls [[index ]]

306 redControls.current <- redControls [[index ]]

307 spec2.green <- t(greenControls.current)

308 colnames(spec2.green) <- paste0("spec2Grn", 1:ncol(spec2.green))

309 spec2.red <- t(redControls.current)

310 colnames(spec2.red) <- paste0("spec2Red", 1:ncol(spec2.red))

311 spec2.ratio <- colMeans2(greenControls.current , na.rm = TRUE) /

312 colMeans2(redControls.current , na.rm = TRUE)

313

314 ## Specificity I

315 index <- match("SPECIFICITY I", controlNames)

316 addr <- getCtrlsAddr(exType = sprintf("GT Mismatch %s (PM)",

1:3), index = index)

317 greenControls.current <-



APPENDIX CODES 146

greenControls [[index ]][addr ,,drop=FALSE]

318 redControls.current <- redControls [[index ]][addr ,,drop=FALSE]

319 spec1.green <- t(greenControls.current)

320 colnames(spec1.green) <- paste0("spec1Grn", 1:ncol(spec1.green))

321 spec1.ratio1 <- colMeans2(redControls.current , na.rm = TRUE) /

322 colMeans2(greenControls.current , na.rm = TRUE)

323

324 index <- match("SPECIFICITY I", controlNames) # Added that line

325 addr <- getCtrlsAddr(exType = sprintf("GT Mismatch %s (PM)",

4:6), index = index)

326 greenControls.current <-

greenControls [[index ]][addr ,,drop=FALSE]

327 redControls.current <- redControls [[index ]][addr ,,drop=FALSE]

328 spec1.red <- t(redControls.current)

329 colnames(spec1.red) <- paste0("spec1Red", 1:ncol(spec1.red))

330 spec1.ratio2 <- colMeans2(greenControls.current , na.rm = TRUE) /

331 colMeans2(redControls.current , na.rm = TRUE)

332 spec1.ratio <- (spec1.ratio1 + spec1.ratio2) / 2

333

334 ## Normalization probes:

335 index <- match(c("NORM_A"), controlNames)

336 normA <- colMeans2(redControls [[index]], na.rm = TRUE)

337 index <- match(c("NORM_T"), controlNames)

338 normT <- colMeans2(redControls [[index]], na.rm = TRUE)

339 index <- match(c("NORM_C"), controlNames)

340 normC <- colMeans2(greenControls [[index]], na.rm = TRUE)

341 index <- match(c("NORM_G"), controlNames)

342 normG <- colMeans2(greenControls [[index]], na.rm = TRUE)

343
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344 dyebias <- (normC + normG)/(normA + normT)

345

346 oobG <- extractedData$oob$greenOOB

347 oobR <- extractedData$oob$redOOB

348 oob.ratio <- oobG[2,]/oobR[2,]

349 oobG <- t(oobG)

350 colnames(oobG) <- paste0("oob", c(1 ,50 ,99))

351

352 model.matrix <- cbind(

353 bisulfite1 , bisulfite2 , extension.green , extension.red ,

hybe ,

354 stain.green , stain.red , nonpoly.green , nonpoly.red ,

355 targetrem , spec1.green , spec1.red , spec2.green , spec2.red ,

spec1.ratio1 ,

356 spec1.ratio , spec2.ratio , spec1.ratio2 , normA , normC ,

normT , normG , dyebias ,

357 oobG , oob.ratio)

358

359

360 ## Imputation

361 for (colindex in 1:ncol(model.matrix)) {

362 if(any(is.na(model.matrix[,colindex ]))) {

363 column <- model.matrix[,colindex]

364 column[is.na(column)] <- mean(column , na.rm = TRUE)

365 model.matrix[ , colindex] <- column

366 }

367 }

368

369 ## Scaling
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370 model.matrix <- scale(model.matrix)

371

372 ## Fixing outliers

373 model.matrix[model.matrix > 3] <- 3

374 model.matrix[model.matrix < (-3)] <- -3

375

376 ## Rescaling

377 model.matrix <- scale(model.matrix)

378

379 return(model.matrix)

380 }

381

382

383 ### Return the normalized quantile functions

384 .returnFit <- function(controlMatrix , quantiles , nPCs) {

385 stopifnot(is.matrix(quantiles))

386 stopifnot(is.matrix(controlMatrix))

387 stopifnot(ncol(quantiles) == nrow(controlMatrix))

388 ## Fixing potential problems with extreme quantiles

389 quantiles [1,] <- 0

390 quantiles[nrow(quantiles) ,] <- quantiles[nrow(quantiles) - 1,]

+ 1000

391 meanFunction <- rowMeans2(quantiles)

392 res <- quantiles - meanFunction

393 controlPCs <- prcomp(controlMatrix)$x[,1:nPCs ,drop=FALSE]

394 design <- model.matrix(~controlPCs)

395 fits <- lm.fit(x = design , y = t(res))

396 newQuantiles <- meanFunction + t(fits$residuals)

397 newQuantiles <- .regularizeQuantiles(newQuantiles)
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398 return(newQuantiles)

399 }

400

401 .returnFitBySex <- function(controlMatrix , quantiles , nPCs , sex) {

402 stopifnot(is.matrix(quantiles))

403 stopifnot(is.matrix(controlMatrix))

404 stopifnot(ncol(quantiles) == nrow(controlMatrix))

405 sex <- as.character(sex)

406 levels <- unique(sex)

407 nSexes <- length(levels)

408 if (nSexes == 2) {

409 sex1 <- sum(sex == levels [1])

410 sex2 <- sum(sex == levels [2])

411

412 } else {

413 sex1 <- sum(sex == levels [1])

414 sex2 <- 0

415 }

416

417 ## When normalization should not be performed by sex separately:

418 if ((sex1 <= 10) | (sex2 <= 10)) {

419 newQuantiles <- .returnFit(controlMatrix = controlMatrix ,

420 quantiles = quantiles ,

421 nPCs = nPCs)

422 } else {

423 quantiles1 <- quantiles[, sex == levels [1]]

424 controlMatrix1 <- controlMatrix[sex == levels [1], ]

425

426 newQuantiles1 <- .returnFit(controlMatrix = controlMatrix1 ,



APPENDIX CODES 150

427 quantiles = quantiles1 ,

428 nPCs = nPCs)

429

430 quantiles2 <- quantiles[, sex == levels [2]]

431 controlMatrix2 <- controlMatrix[sex == levels [2], ]

432

433 newQuantiles2 <- .returnFit(controlMatrix = controlMatrix2 ,

434 quantiles = quantiles2 ,

435 nPCs = nPCs)

436

437 newQuantiles <- quantiles

438 newQuantiles[, sex == levels [1]] <- newQuantiles1

439 newQuantiles[, sex == levels [2]] <- newQuantiles2

440 }

441

442 return(newQuantiles)

443 }

444

445

446 ### Normalize a matrix of intensities

447 .normalizeMatrix <- function(intMatrix , newQuantiles) {

448 ## normMatrix <- matrix(NA , nrow(intMatrix), ncol(intMatrix))

449 n <- nrow(newQuantiles)

450 normMatrix <- sapply (1: ncol(intMatrix), function(i) {

451 crtColumn <- intMatrix[ , i]

452 crtColumn.reduced <- crtColumn[!is.na(crtColumn)]

453 ## Generation of the corrected intensities:

454 target <- sapply (1:(n-1), function(j) {

455 start <- newQuantiles[j,i]
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456 end <- newQuantiles[j+1,i]

457 if (!isTRUE(all.equal(start ,end))){

458 sequence <- seq(start , end ,( end -start)/n)[-(n+1)]

459 } else {

460 sequence <- rep(start , n)

461 }

462 return(sequence)

463 })

464 target <- as.vector(target)

465 result <- preprocessCore :: normalize.quantiles.use.target(

matrix(crtColumn.reduced), target)

466 return(result)

467 })

468 return(normMatrix)

469 }

470

471 # To ensure a monotonically increasing and non -negative quantile

function

472 # Necessary for pathological cases

473 .regularizeQuantiles <- function(x){

474 x[x<0] <- 0

475 colCummaxs(x)

476 }

477

478

479 ## WYC

480 .isMatrixBackedOrStop <- function(object , FUN) {

481 if (!.isMatrixBacked(object)) {

482 stop("’", FUN , "()’ only supports matrix -backed minfi
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objects.",

483 call. = FALSE)

484 }

485 }

486

487

488 .isMatrixBacked <- function(object) {

489 stopifnot(is(object , "SummarizedExperiment"))

490 all(vapply(assays(object), is.matrix , logical (1L)))

491 }

492

493

494 .isRGOrStop <- function(object) {

495 if (!is(object , "RGChannelSet")) {

496 stop("object is of class ’", class(object), "’, but needs

to be of ",

497 "class ’RGChannelSet ’ or ’RGChannelSetExtended ’")

498 }

499 }

500

501

502 .isGenomicOrStop <- function(object) {

503 if (!is(object , "GenomicMethylSet") && !is(object ,

"GenomicRatioSet")) {

504 stop("object is of class ’", class(object), "’, but needs

to be of ",

505 "class ’GenomicMethylSet ’ or ’GenomicRatioSet ’")

506 }

507 }
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AppendixB

Appendix Tables

Table B.1: Enriched GO terms of age-associated CpGs from the CBL

ONTOLOGY TERM N DE P.DE FDR

MF
DNA-binding transcription factor activity,
RNA polymerase II-specific

1537 66.17 4.41E-08 0.000770003

MF
DNA-binding transcription repressor activ-
ity, RNA polymerase II-specific

224 19 3.78E-06 0.022599894

MF
DNA-binding transcription activator activ-
ity, RNA polymerase II-specific

390 26.5 3.88E-06 0.022599894

MF
RNA polymerase II proximal promoter
sequence-specific DNA binding

379 25.5 9.89E-06 0.043204613

154
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Table B.2: Enriched GO terms of age-associated CpGs from the MTG

ONTOLOGY TERM N DE P.DE FDR

MF
DNA-binding transcription factor activity,
RNA polymerase II-specific

1537 311.83 2.50E-30 4.37E-26

MF sequence-specific DNA binding 297 85 2.75E-17 2.40E-13

MF
DNA-binding transcription activator activ-
ity, RNA polymerase II-specific

390 104.5 8.54E-16 4.98E-12

BP
positive regulation of transcription by RNA
polymerase II

975 197 2.11E-15 9.20E-12

BP
homophilic cell adhesion via plasma mem-
brane adhesion molecules

129 44.27 1.00E-12 3.51E-09

CC nucleosome 97 24.5 3.65E-10 1.06E-06
MF DNA-binding transcription factor activity 480 103.83 4.55E-10 1.14E-06

BP
negative regulation of transcription by
RNA polymerase II

707 135.5 9.92E-09 2.17E-05

BP proximal/distal pattern formation 24 14 2.64E-07 0.0005
BP neuron differentiation 87 27 1.29E-06 0.00
CC transcription factor complex 145 38.5 2.01E-06 0.003
MF transcription factor binding 264 60.5 2.30E-06 0.003
BP dopaminergic neuron differentiation 19 11 4.21E-06 0.01
BP embryonic skeletal system morphogenesis 34 15 5.38E-06 0.01
MF protein heterodimerization activity 497 83.5 6.53E-06 0.01
BP nucleosome assembly 101 20.5 7.22E-06 0.01

MF
RNA polymerase II regulatory region
sequence-specific DNA binding

162 40 7.71E-06 0.01

BP anterior/posterior pattern specification 62 21 1.06E-05 0.01
BP female pregnancy 86 22 1.23E-05 0.01
BP noradrenergic neuron differentiation 5 5 1.35E-05 0.01
CC nuclear nucleosome 38 10.5 1.56E-05 0.01

MF
DNA-binding transcription repressor activ-
ity, RNA polymerase II-specific

224 50 1.84E-05 0.01

BP regulation of signaling receptor activity 439 59 2.41E-05 0.02

MF
RNA polymerase II proximal promoter
sequence-specific DNA binding

379 74.5 2.76E-05 0.02

MF DNA binding 1329 178.67 3.84E-05 0.03

BP
DNA replication-dependent nucleosome as-
sembly

32 9.5 4.35E-05 0.03

BP telomere organization 27 8.5 5.85E-05 0.04

BP
G protein-coupled receptor signaling path-
way

868 101.5 6.68E-05 0.04

BP regulation of transcription, DNA-templated 420 72 7.27E-05 0.04
BP embryonic digit morphogenesis 56 19 8.02E-05 0.05
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Table B.3: Coefficients of probes used in the clock of CerebellumClockspecific

Probe Coefs Probe Coefs Probe Coefs

Intercept 4.615397483 cg18598861 -0.025145678 cg15477738 -0.030625033
cg24079702 0.023080342 cg13933080 0.004864906 cg00540067 -0.055091553
cg06639320 0.168340984 cg21071793 0.010390503 cg27181013 0.010391212
cg14919554 0.135228392 cg10533159 -0.262225284 cg02058002 -0.026179963
cg07131451 0.027926811 ch.12.1023240F-0.048993901 cg10225197 0.025456288
cg10621377 0.116252714 cg18984151 0.025311564 cg16748413 0.006224362
cg19958021 0.045621199 cg25540854 0.064849453 cg03968755 0.029299748
cg11520866 -0.033161158 cg22851200 0.142842697 cg25159610 -0.012999504
cg17758721 0.068516975 cg24099956 0.013842244 cg02624770 -0.004602038
cg25801292 0.056992305 cg23464360 0.032982053 cg12093180 0.022573024
cg23040782 0.078381562 cg23052669 -0.0509996 cg05006304 -0.007417847
cg19451698 0.010059917 cg07570470 0.047478856 cg09457766 -0.062591081
cg23981354 0.118808334 cg18473521 0.06885145 cg02114954 -0.031664712
cg02721182 0.04343659 cg26092675 0.042695351 cg13289553 0.015110518
cg15386103 -0.133766339 cg17885226 0.026552041 cg01504656 0.00964106
cg14085673 0.054167078 cg13850871 -0.022887637 cg19691659 -0.025469587
cg21182694 0.142794467 cg23995914 0.029850588 cg07983394 -0.042923899
cg06648759 0.142948773 cg09824900 -0.041203042 cg05666820 0.019658612
cg27529628 0.080521326 cg12141030 0.016392159 cg07620889 0.059441433
cg03742763 0.165274639 cg14020846 0.010521608 cg26529516 -0.000406048
cg14848772 0.041272709 cg02784202 0.050291121 cg09126541 0.003380488
cg04234190 0.029699297 cg09132058 0.011297103 cg14161159 -0.023423127
cg04271792 0.050007943 cg25401874 0.066767009 cg08842907 0.016287509
cg21493505 0.049264117 cg14206898 0.106371241 cg19673233 0.057396527
cg25230305 -0.033123222 cg16029256 -0.024679029 cg06479142 -0.034768728
cg22510037 -0.027707104 cg24136700 -0.004587933 cg10457539 0.039726801
cg04880546 0.058030791 cg01774335 -0.056447729 cg04861640 0.015030797
cg06734271 0.009960723 cg15962547 -0.025071243 cg08702413 0.022465449
cg26392005 0.006969648 cg22830707 0.114392318 cg00823526 0.004314051
cg14042099 -0.104432704 cg10715640 -0.066410483 cg25393429 0.164980051
cg15571405 -0.078733025 cg13632655 0.105151493 cg16312552 0.136943138
cg06144905 0.070221183 cg17486101 0.011148657 cg00088042 0.057445818
cg21572722 0.000503664 cg10097215 -0.002517205 cg15678861 -0.0505892
cg13575161 -0.014866112 cg15154411 -0.013758118 cg16849201 -0.086156493
cg16867657 0.023892664 cg04099767 -0.160057272 cg23201938 -0.021559198
cg00734683 -0.006087136 cg22118147 0.09170626 cg24691835 0.091818491
cg01968178 0.009844345 cg05020257 -0.021559953 cg04502490 0.02114072
cg23941599 0.073364656 cg03314644 0.040439428 cg21113478 -0.00982121
cg20701901 -0.038097599 cg01555253 -0.07817859 cg03320170 -0.077616957
cg19996355 0.000554958 cg12023246 -0.000320073 cg13644645 -0.074853868
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cg01259029 0.031875129 cg27509306 0.021796033 ch.2.20642108R-0.003824863
cg24883601 0.037688603 cg27513684 -0.120064989 cg18868483 0.008508021
cg23376861 0.025921371 cg12203250 -0.083282445 cg15919105 -0.023976384
cg17535314 0.046054948 cg16475423 -0.10494099 cg11930955 -0.038526599
cg19399220 0.045685254 cg01912119 0.020092496 cg04339860 0.02203238
cg08342886 0.061119263 cg18348836 -2.97E-05 cg15852490 -0.056741955
cg13873655 -0.027035933 cg08606497 -0.016002454 cg14989316 0.015218331
cg07146912 0.10837175 cg00087244 0.008841517 cg04362096 -0.117178904
cg13327545 0.092207636 cg18515031 -0.041644991 cg05555455 0.005949724
cg01607258 -0.023622724 cg17082959 0.084513841 cg04511702 0.014170549
cg18240400 0.001084152 cg26490949 0.012850493 cg22130673 -0.026204679
cg08855249 -0.038756613 cg16591502 0.075984488 cg27108925 -0.011217146
cg11999288 -0.085046807 cg02520768 -0.132671166 cg00580230 -0.004076676
cg16738971 0.01624021 cg13165009 0.028965348 cg04044664 0.109479384
cg15686615 0.02585977 cg26472684 -0.061851766 cg24888049 0.081266381
cg23506842 0.048777747 ch.8.1011566R -0.021161426 cg16052972 -0.075718869
cg17117277 0.101211633 cg23530707 -0.005104421 cg15642666 -0.002617533
cg16489193 0.026075575 cg08621277 0.081705154 cg02251315 0.013387769
cg17328472 0.055219497 cg05460965 -0.04016868 cg13814485 0.00959014
cg14611683 0.071013312 cg23352942 -0.019932186 cg15696627 0.027896023
ch.9.126316596R-0.032335964 cg17951244 0.026243212 cg09576978 -0.061385091
cg13933043 -0.026806121 cg04837533 0.012797114 cg01436550 -0.033901622
cg05708550 0.018393835 cg26672098 -0.045146994 ch.18.189111R -0.01196404
cg00533390 0.04117117 cg23251798 -0.044956663 cg10775173 0.028147659
cg11071401 0.05313246 cg00863378 -0.041966231 cg05331472 -0.056819163
cg16367511 0.032969583 cg06851240 -0.08761131 cg22215392 -0.082743141
cg02406092 -0.148092249 cg00563348 -0.023992116 cg24035598 0.027555373
cg16488580 -0.010221948 cg22358580 0.035686192 cg21249595 0.027036319
cg09773897 -0.007301405 cg19343530 0.051937272 cg20085953 -0.011226024
cg26647200 -0.024560635 cg09974780 -0.003726144 cg00049440 -0.054775271
cg07630078 -0.087164948 cg10729854 -0.038369649 cg24332710 0.000930959
cg22663995 -0.066305959 cg19225068 0.05909191 cg06121469 0.019779493
cg05944661 -0.012422877 cg00252781 -0.014766346 cg15243034 0.039437513
cg17315964 -0.054426894 cg15393490 -0.028438948 cg04369903 -0.017892085
cg08903089 0.046354954 cg00576075 0.008832052 cg22234080 -0.063002826
cg16408394 -0.060224481 cg16135310 -0.077762154 cg24481868 0.005466792
cg03702413 -0.116569693 cg07631435 -0.01109643 cg27560229 -0.025820071
cg05213896 0.064054796 cg05256179 -0.076325508 cg20482280 0.030623018
cg16204618 -0.037639265 cg26790247 -0.010472978 cg17521134 -4.82E-05
cg08729686 -0.027797572 cg07617759 0.053064949 cg16018474 0.034059135
cg07158939 -0.101935316 cg03838714 0.069983421 cg21597754 -0.063456306
cg22897522 -0.073963718 cg11935831 0.023354905 cg10628699 0.105896858
cg10949007 -0.098470494 cg19489509 -0.076444281 cg09286183 0.012994038
cg11467638 0.05671211 cg00881372 -0.035160499 cg19955284 -0.089526012
cg01180628 -0.024948059 cg04157658 -0.026945588 cg17412102 0.045543294
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cg25410668 0.141871138 cg01457778 0.044657464 cg15144453 -0.018589979
cg07044414 -0.001617866 cg08157575 0.004021321 cg21209510 -0.050135807
cg14217495 0.018245777 cg26002103 0.00308299 cg06504162 -0.030349137
cg20098887 -0.00783349 cg13343159 -0.054473721 cg08095452 0.172098194
cg10975586 0.004526433 cg23239612 0.004020824 cg11416276 -0.004174949
cg20523947 0.045187257 ch.7.2635062R -0.074672194 cg19500863 -0.016578963
cg11528594 0.019479881 cg27111444 0.082955575 cg05878098 -0.005806675
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Table B.4: Coefficients of probes used in the clock of CerebellumClockcommon

Probe Coefs Probe Coefs Probe Coefs

Intercept 3.602442536 cg14611683 0.097166643 cg20426994 0.011610174
cg06639320 0.470160376 cg13933043 -0.181496052 cg22127570 -0.19351547
cg14919554 0.401790505 cg05708550 0.057027612 cg00252781 -0.064329894
cg07131451 0.061348162 cg11071401 0.118806624 cg05970314 -0.204630796
cg25801292 0.221100444 cg16367511 0.071844042 cg02746869 -0.001023435
cg02721182 0.178851061 cg06711656 0.179393753 cg23174607 0.046721036
cg03020208 0.021348759 cg02385167 -0.000690975 cg15393490 -1.175502996
cg14085673 0.295429673 cg10569694 -0.173044977 cg00576075 0.04450524
cg21182694 0.218942228 cg04090392 0.064016789 cg22331349 0.004182091
cg06648759 0.162991894 cg05213896 0.032985847 cg15648389 0.151756651
cg27529628 0.168589903 cg05024939 -0.034923429 cg25047092 -0.018347218
cg18514820 0.255797625 cg26542283 0.197904418 cg19230755 0.027700808
cg17243289 -0.093274329 cg10658666 0.023591668 cg03925294 0.0892044
cg01196788 0.270757891 cg18984151 0.055717203 cg21522254 0.050420261
cg06261926 0.019268481 cg12100751 0.047006428 cg02624770 0.093429522
cg27541691 0.098574016 cg07570470 0.066865611 cg02375320 -0.020047817
cg01122755 0.012124271 cg18473521 0.024059245 cg01504656 0.091119709
cg21493505 0.151383321 cg22736354 -0.120524934 cg05666820 0.085796742
cg22510037 -0.211290927 cg26092675 0.153170509 cg03660500 0.30927725
cg04880546 0.068327782 cg12141030 -0.004742673 cg26529516 -0.15467987
cg06144905 0.091746187 cg14020846 0.122570462 cg23404330 0.066777368
cg21572722 0.203084005 cg03143886 -0.160982731 cg06479142 -0.239799252
cg13575161 -0.11785417 cg24853724 -0.013974728 cg08702413 0.265128011
cg16867657 0.040961471 cg06704773 0.12885834 cg17140307 0.016594567
cg22310062 -0.010053946 cg13202816 -0.03480696 cg23813012 0.090296977
cg19996355 -0.047739805 cg10864952 -0.220964466 cg09935994 0.264109539
cg03664992 -0.162894449 cg20974724 0.302870286 cg27061971 0.053355691
cg01259029 0.22156056 cg22830707 0.104617502 cg04044664 0.10202789
cg10625705 -0.032553158 cg17486101 0.252054367 cg18184411 -0.021772992
cg08342886 0.090288858 cg19929355 -0.097772641 cg23893898 0.0320832
cg06580318 0.015331169 cg03314644 0.162135306 ch.18.189111R -0.092986133
cg06022942 0.053663208 cg16063312 0.041509305 cg24035598 0.538564173
cg13327545 0.080862072 cg08606497 -0.238644702 cg18943383 0.080650976
cg05009601 -0.000864543 cg05460965 -0.308479657 cg24332710 0.173033933
cg05218976 0.11743311 cg23352942 -0.127213058 cg07935568 -0.099109874
cg16738971 0.200472009 cg26956371 -0.156507046 cg15243034 0.165153932
cg24222995 -0.083280226 cg17365504 0.04245546 ch.1.173201044F-0.063052098
cg01534416 0.036228589 cg26256521 0.064382481 cg17729667 -0.211893843
cg03013329 0.02957672 ch.2.1904845F -0.097059293 cg24481868 -0.022548251
cg17117277 0.162948458 cg22358580 0.15973967 cg20224218 -0.43543136
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cg11614451 0.045614745 cg21878188 0.275490752 cg27560229 -0.138749013
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Table B.5: Coefficients of probes used in the clock of CortexClockcommon

Probe Coefs Probe Coefs Probe Coefs

Intercept 2.899069802 cg26092675 0.098046763 cg16738971 0.024272193
cg13327545 0.124032967 cg15565897 0.004150687 cg18556005 0.225584474
cg13806070 -0.01345442 cg07570470 0.061866246 cg02605173 -0.035888224
cg21572722 -0.03523408 cg19996355 -0.00033944 cg06479142 -0.094544932
cg20591728 -0.002566897 cg19929355 0.045599085 cg02624770 -0.014241251
cg23995914 0.313358375 cg24222995 0.036144106 cg14085673 0.101661778
cg23813012 0.04414117 cg04427498 -0.12811543 cg06711656 0.335178631
cg18514820 0.261478701 cg01196788 0.191756183 cg23376861 -0.048206495
cg18473521 0.463576259 cg07584066 0.044553959 cg02812207 0.009833827
cg05213896 0.045450757 cg03925294 -0.196961171 cg22127570 -0.092560902
cg04792813 8.71E-05 cg18008766 -0.134848674 cg03660500 -0.081092738
cg20692569 0.0086291 cg27061971 -0.048110592 cg01504656 0.018939548
cg09784307 0.017193828 cg20234855 -0.1382834 cg07935568 -0.091220933
cg16867657 0.595893704 cg24035598 0.021908904 cg04710764 -0.215115358
cg24079702 0.042527025 cg07589899 -0.021938945 cg05555455 0.003279565
cg13814485 -0.06638669 cg03020208 0.217607184 cg13202816 -0.134134708
cg12100751 0.019463134 cg06335143 -0.046307374 cg09935994 0.064710477
cg22331349 0.223587802 cg26060489 -0.245588032 cg23352942 -0.096288031
cg07131451 0.180130903 cg04090392 0.111908067 cg25801292 0.201993478
cg16969368 -0.036313278 cg07924892 0.139242162 cg01534416 0.156939942
cg17486101 -0.055849862 cg13543854 0.089015203 cg10235817 -0.056110319
cg15341124 0.31317102 cg25453381 0.153321159 cg26542283 0.161976479
cg17117277 0.079855792 cg00088042 0.226231773 cg24332710 0.054625671
cg17885226 0.125460539 cg02721182 0.045234928 cg16367511 0.110015172
cg02375320 0.111181076 cg21462428 0.171436788 cg17140307 0.098439357
cg15393490 -1.053282745 cg01812045 0.22145375 cg06704773 0.293900522
cg02746869 0.051878906 cg06144905 0.198688018 cg08708711 0.001015099
cg05218976 0.103717114 cg23956238 0.078719163 cg23040782 -0.012175818
cg12141030 -0.251854938 cg24481868 0.023498387 cg26256521 0.094864842
cg21725716 -0.004533933 cg19945840 -0.161008075 cg26490949 0.106826936
cg22454769 0.053018834 cg25047092 0.074038461 cg02385167 -0.071522603
cg04880546 0.496107589 cg13933043 -0.216796839 cg18184411 0.17231342
cg14020846 0.084794981 cg10864952 -0.067104287 cg15648389 0.082224763
cg01429039 0.068758382 cg21868699 -0.022019974 cg22510037 -0.322145178
cg14064148 -0.025077062 cg06648759 0.090731691 cg26529516 -0.092744956
cg26830108 0.041844122 cg10625705 0.059857785 cg25505610 0.009938434
cg18984151 0.063946327 cg10658666 -0.025578742 cg05970314 -0.038574201
cg15731815 0.047360731 cg19230755 0.027242871 cg14311320 -0.00540358
cg12462224 0.43112335 cg08460435 0.006654508 cg04044664 0.086927454
cg17243289 0.02867472 cg20974724 0.072607842 cg10457539 -0.055613751
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cg13933080 0.051069457 cg11614451 0.31008648 cg09816471 -0.022277599
cg03607117 0.032715105 cg05917988 0.036496614 cg06625811 -0.148075207
cg05708550 0.027868238 cg18566594 -0.000505277 cg23404330 0.072987599
cg20426994 -0.042219604 cg21182694 0.130596925 cg05460965 -0.073716982
cg00474746 -0.27550611 cg08342886 0.212944609 cg17365504 -0.153255584
cg14611683 0.071232601 cg23174607 0.339575721 cg14405924 -0.057680043
cg27529628 0.241767112 cg00394316 0.11240713 cg19451698 -0.175360647
cg08798295 0.094618303 cg16063312 0.095437127 cg22830707 -0.155444458
cg16549027 0.030715596 cg20224218 -0.8064096 cg08606497 -0.467921124
cg03013329 -0.05128788 cg03391642 -0.149686166 ch.2.1904845F -0.176878448
cg04374006 0.014291001 cg14919554 0.060210346 cg05009601 0.037444723
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Table B.6: Coefficients of probes used in the clock of BrainCortexClock

Probe Coefs Probe Coefs Probe Coefs

Intercept 3.688794786 cg00394316 0.02445234 cg26490949 0.140039695
cg24079702 0.105352434 cg14611683 0.114884063 cg05460965 -0.205130123
cg06639320 0.127940455 cg13933043 -0.159993091 cg14405924 -0.066648197
cg14919554 0.129796134 cg05708550 0.124039128 cg23352942 -0.165305973
cg07131451 0.181749371 cg15731815 0.015700942 cg26956371 -0.262711559
cg25801292 0.145318971 cg00593900 0.053302144 cg07584066 0.07404641
cg23040782 -0.024494236 cg11071401 0.062153637 cg26256521 0.072170757
cg19451698 -0.076758861 cg16367511 0.062022617 ch.2.1904845F -0.178646479
cg02721182 0.060883435 cg06711656 0.283152471 cg22358580 0.008055857
cg26060489 -0.084459055 cg02385167 -0.029117218 cg21878188 0.15763488
cg09784307 0.0603932 cg19945840 -0.174562875 cg22127570 -0.22342384
cg03020208 0.087979542 cg10569694 -0.099333834 cg05970314 -0.222611225
cg14085673 0.188088238 cg16969368 -0.096217267 cg04710764 -0.019580107
cg21182694 0.214867583 cg06625811 0.08710309 cg15393490 -0.986002212
cg06648759 0.02213437 cg04090392 0.037474715 cg22331349 0.129963827
cg27529628 0.174942081 cg05213896 0.053156048 cg21725716 -0.053997311
cg18514820 0.337489177 cg05024939 -0.175575206 cg15648389 0.161161011
cg17243289 -0.022964103 cg01812045 0.158654567 cg25047092 -0.001320272
cg01196788 0.146308137 cg07924892 0.130291605 cg19230755 0.111021837
cg06261926 0.073916836 cg04374006 0.101672449 cg26002103 0.064567214
cg00474746 -0.010535704 cg18549036 -0.056766404 cg21522254 -0.080959644
cg27541691 0.091901071 cg26542283 0.219885805 cg08460435 0.074420264
cg01122755 0.020558435 cg10658666 -0.077226715 cg02624770 0.089294219
cg21493505 0.231591102 cg04427498 -0.010669874 cg02375320 -0.031895224
cg22510037 -0.305586147 cg13543854 -0.147806704 cg01504656 0.062821012
cg04880546 0.058008174 cg18984151 0.092915504 cg05666820 0.074404984
cg14311320 0.010401243 cg20591472 -0.036959876 cg26529516 -0.129175556
cg06144905 0.087120575 cg12100751 0.133274311 cg23404330 0.009183995
cg13575161 -0.106570556 cg07570470 0.06181963 cg06479142 -0.165540804
cg16867657 0.018796186 cg18473521 0.005458251 cg10457539 -0.033258358
cg22310062 -0.029837424 cg22736354 -0.061951302 cg08702413 0.185595624
cg19996355 -0.14607557 cg26092675 0.142913282 cg17140307 0.10454815
cg02812207 -0.044986453 cg17885226 0.057049496 cg02662658 0.07931523
cg03664992 -0.005095546 cg05917988 -0.040402826 cg00088042 0.05380794
cg01259029 0.267677518 cg23995914 0.020268348 cg21462428 0.386549244
cg23376861 0.063474975 cg25453381 0.096282582 cg21868699 -0.070282407
cg12462224 0.272313917 cg12141030 -0.073090238 cg06335143 -0.02324295
cg10625705 -6.01E-05 cg14020846 0.044453017 cg09935994 0.187681998
cg08342886 0.113049161 cg13806070 0.084309734 cg04044664 0.036733378
cg06580318 0.091325635 cg03143886 -0.020970338 cg23893898 0.057767953
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cg15341124 0.184941278 cg24853724 -0.024324929 ch.18.189111R -0.18012466
cg06022942 0.021317129 cg06704773 0.301418405 cg24035598 0.08226459
cg13327545 0.132689907 cg13202816 -0.085364763 cg18943383 0.095811692
cg05009601 -0.099685991 cg01429039 0.086366709 cg24332710 0.146253278
cg05218976 0.054778806 cg10864952 -0.217354131 cg07935568 -0.202425565
cg16738971 0.005559577 cg20974724 0.245789111 cg15243034 0.079587812
cg24222995 0.049563078 cg17486101 0.005732704 ch.1.173201044F-0.083795909
cg01534416 0.062130936 cg18556005 0.034654625 cg17729667 -0.223709359
cg03013329 0.085327187 cg19929355 -0.002784753 cg24481868 -0.006090312
cg25505610 -0.006142712 cg03314644 0.014435737 cg20224218 -0.445360996
cg17117277 0.079798051 cg16063312 0.042388076 cg16549027 -0.009629751
cg26830108 0.128985952 cg08139499 -0.006171374 cg27560229 -0.036199983
cg11614451 0.161783741 cg08606497 -0.294246678 cg13785883 -0.040965789
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