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Abstract

In the first chapter of this thesis, we introduce and explore three prominent research

areas related to explosive bubbles. We also establish the link between each chapter

in the thesis and consequently, these strands of research.

In Chapter 2, we introduce a novel test that builds upon the existing WLS-based

test proposed by Harvey et al. (2019) to identify explosive bubbles in financial

data with the presence of time-varying volatility. Our test outperforms both the

conventional supremum bubble test of Phillips and Yu (2011) and Harvey et al.

(2019)’s test. Our approach involves replacing the kernel-based volatility function

estimator used by Harvey et al. (2019) with our own volatility estimator that is based

on an iterative cumulative sum of squares algorithm. Similar to Harvey et al. (2019)’s

test, we use the estimated volatility to calculate the WLS-based statistic and employ

a wild-bootstrap procedure to control the size of the test and make it robust under

various time-varying volatility patterns. We suggest using a union of rejections

procedure when the volatility pattern is a late upward shift to capture the better

power available from the two constituent tests for a given alternative.

Chapter 3 introduces a backward supremum KPSS-based test, which extends

the KPSS-based test of Evripidou et al. (2022) to detect short-lived co-explosive

behaviour between a pair of asset prices at the end of the sample period. Finite

sample simulations show that our test has well-controlled size under most volatility

specifications and has higher power than Evripidou et al. (2022)’s test in detecting

periods without co-bubbles. As with Evripidou et al. (2022)’s test, our proposed test

still employs a wild bootstrap algorithm to deliver a robust test for heteroskedasticity

and uses a long-run variance estimate to control the size of the test when serial



II

correlation exists in innovations. By applying both single and double backward

supremum tests to the same dataset as Evripidou et al. (2022), we show new findings

of co-explosive bubbles in pairs of non-ferrous and precious metals in spot and

futures markets.

In Chapter 4, we compare the behaviour of common return predictability tests

(i.e., IVX, Bonferroni-t, and Bonferroni-Q tests) during bubble periods. Overall,

Monte Carlo simulations show that all three tests over-reject the null hypothesis of

no predictability. In that regard, the Bonferroni-t test is the least oversized, while

the IVX test is badly oversized across different bubble specifications. To conduct

the simulations, we introduce a new data generating process that does not require

a predetermined variable in the predictive model. Finally, by comparing results

obtained from subsamples with and without bubbles, our empirical application

shows the over-rejections of the tests to the null using the extended dataset from

January 1927 toDecember 2021 containing 14 financial andmacroeconomic predictors

of Welch and Goyal (2008).

The last chapter of this thesis provides concluding remarks on the significant find-

ings and limitations, as well as presenting suggestions for future research directions.
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Introduction

The study of speculative bubbles in asset prices has been of interest dating back to

the historic tulip market bubble in 1637. These bubbles have been shown to precede

economic instability or crises, as demonstrated by recent occurrences such as the

Dot-Com bubble, the US housing bubble, and the Chinese stock price bubble (cf.

Allen and Gale, 2000). Economists have examined the concept of price bubbles, both

theoretically and empirically, to provide early warning and prevent the unexpected

consequences of bubbles. This thesis focuses on several aspects of explosive bubbles

that have been actively studied in the recent literature.

Recent advances in econometric techniques have enabled the real-time detection

and dating of potential bubbles, attracting increased attention from central banks

and regulators. Researchers have proposed a variety of tests and methods to enhance

the size and power of bubble identification. The supremum recursive right-tailed

unit root tests of Phillips et al. (2011) [PWY hereafter] is a notable example of these

efforts aimed at determining the existence of a bubble. Although the test proposed

by PWY is widely used in practice and empirical research and has also spurred the

development of related test procedures, such as those of Homm and Breitung (2012)

who consider a collection of supremumCUSUM-based test statistics, and Phillips et al.

(2015) [PSY hereafter] who consider a double supremum of forward and backward

recursive Dickey-Fuller statistics, it is relatively simple and not robust to the existence
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of non-stationary volatility (e.g., volatility breaks). In that regard, Harvey et al.

(2016) [HLST hereafter] propose a wild-bootstrap version of PWY test to prevent

misleading inferences in the presence of time-varying volatility. Additionally, in the

context of non-constant volatility, Harvey et al. (2019) proposed a WLS-based test to

improve the power of the PWY test in detecting explosive autoregressive behaviour

at the end of the sample. However, the Harvey et al. (2019) test has lower power

in finite samples where the bubble grows quickly at the end of the sample. This

is because the estimates of volatilities are either inflated or too dependent on the

growth of bubbles.

Building on the principal ideas of Harvey et al. (2019), in the second chapter,

we propose a test that uses an alternative approach for estimating volatilities in the

WLS-based framework. Specifically, instead of using the smoothing kernel estimator,

we employ the algorithm of Inclán and Tiao (1994) to identify volatility breaks using

the squared price difference series. Subsequently, we estimate the volatility by using

a simple volatility estimator in each regime. In the presence of heteroskedasticity,

evidence from asset price simulations reveals the newly proposed test leads to im-

proved size control compared to the test of PWY, while offering significant power

gains compared to the test of Harvey et al. (2019) when an end-of-sample explosive

episode is present. The results are robust across different bubble and volatility specifi-

cations. In the case of a late upward volatility shift, the power of the WLS-based tests,

which include the newly proposed test and the test of Harvey et al. (2019), are worse

than the conventional PWY test, as noted by Harvey et al. (2019). To address this,

we employ a union strategy to improve the power performance of the WLS-based

tests while still maintaining size control. Empirical results show that the proposed

test detects explosive behaviour in the S&P 500 stock price index from January 1980

to March 2000, while no evidence of explosive behaviour is found in the FTSE 100

index from December 1985 to December 1999. These results hold for all considered

frequencies of data.

While there is much research using statistical methods to identify bubbles in
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individual price series, there is substantially less work modelling the relationship

between price series that present bubbles. As part of that smaller body of work, the

paper of Evripidou et al. (2022) focuses on identifying the explosive autoregressive

characteristics of bubble series and develops a regression-based test to determine

whether two series with explosive regimes are co-bubbling. In that context, the

test aims to determine whether a linear combination of the two series is integrated

of order zero, which is referred to as ’co-explosive behaviour’. The test employs a

variant of the stationarity test of Kwiatkowski et al. (1992) [KPSS] to test the null

of co-explosive behaviour, allowing for explosive behaviour to be present in sub-

sample regimes. Strikingly, the test can detect both contemporaneous and dynamic

correlation between series containing explosive regimes and provides information on

the nature of potential explosive regime migration from one price series to another.

To overcome the problem of heteroskedasticity present in financial data, the wild

bootstrap procedure of HLST is adopted and, to deal with any serial correlation in

innovations, estimates of long-run variance are used.

In the third chapter, we extend the work of Evripidou et al. (2022) to develop

a new test statistic which more effectively detects the co-explosiveness in samples

containing short-lived periods where co-bubbles are absent. To accomplish this, we

employ the backward recursive procedure of PWY to run the KPSS-based test of

Evripidou et al. (2022) on recursive subsamples. In addition to demonstrating the

robustness of the newly proposed test to the heteroskedastic conditions when using

the wild-bootstrap, analogously to Evripidou et al. (2022), we also investigate the

sensitivity of the KPSS-based test to the choice of kernel family and lag parameters

in the corresponding kernel. Finite sample simulation results demonstrate that

the new backward recursive KPSS-based test has higher power than the test of

Evripidou et al. (2022) in all bubble profiles and across most volatility specifications,

but it is oversized in some cases where volatility contains a downward shift or trend

patterns. Moreover, although the new test controls the finite sample size well, when

using estimates of long-run variance, it is sensitive to different kernel estimators and
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corresponding lag parameters. In some simulations, we also show the ability of the

tests to identify the timing of explosive regimemigrationwhen co-bubbling is present.

In an empirical exercise, we employ the same dataset of metal spot and futures

prices as Evripidou et al. (2022). Specifically, since empirical applications require

significantly less computing power than Monte Carlo simulations, we employ a

general supremum recursive KPSS-based test, where the general recursive procedure

is designed as in PSY. The empirical results regarding co-explosivity vary among

tests; however, the general recursive test provides more evidence of co-explosivity in

metal pairs than the two other tests.

The fourth chapter begins with an introduction to common stock return pre-

dictability tests. In practice, detecting the predictive ability of lagged variables is

essential in constructing portfolios and risk management. However, as mentioned

in the existing literature (e.g., Cavanagh et al., 1995, Stambaugh, 1999, Campbell

and Yogo, 2006 [CY hereafter], Jansson and Moreira, 2006, Welch and Goyal, 2008,

Kostakis et al., 2015 [KMS hereafter], and Demetrescu et al., 2022a) it is often difficult

to determine whether a given predictor can be relied upon for forecasting. This is

because the putative predictors used often exhibit high persistence and a significant

correlation exists between the predictive regression error and the innovations driving

the predictors (see Cavanagh et al., 1995 and CY). In such circumstances, standard

regression estimation and inference methods, including conventional regression

t-tests, become invalid.

Criticism of the conventional t-test has led to the development of a number of

likelihood-based procedures, such as the Bonferroni-t test by Cavanagh et al. (1995)

and the Bonferroni-Q test by CY for cases where the predictor is endogenous and

exhibits strong persistencewithin the local-to-unity class of processes. However, these

approaches may not be valid for weakly persistent predictors, which has motivated

the search for alternativemethods that are robust to the characteristics of the regressor.

Demetrescu et al. (2022b) suggests that, among various approaches, the IVX test

proposed by KMS and its variants are the most prominent. However, it is important
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to note that the asymptotic behaviour of IVX predictability test statistics may provide

a poor approximation to finite sample behaviour. Later research (e.g., Demetrescu

et al., 2022a and Demetrescu et al., 2022b) has attempted to improve the IVX and

makes it more robust under the stylized facts of financial time series. In any case,

the voluminous literature discussed above typically focuses on issues existing on the

right-hand side of the linear predictive regression model. There is little literature

that deals with issues arising from the returns on the left-hand side of the predictive

model. Among the exceptions, Yang et al. (2022) show that when a bubble exists in

stock returns, the IVX test is severely over-sized in the univariate predictive model

regardless of the degree of endogeneity, especially when the predictive variables are

highly persistent.

As a foundation for further research in this area, we introduce a data generating

process [DGP] based on CY’s DGP, which we find to be more natural and adaptable

than that of Yang et al. (2022). Specifically, we utilize PSY’s explosive price model,

which represents the current stock price as the sum of a fundamental price and a

bubble component. Our predictive regression model is designed to capture the part

of the stock return that can be predicted by the fundamental return, and thus we

do not include an unobservable bubble factor in the predictive regression model as

in Yang et al. (2022). Additionally, while Yang et al. (2022) focus on the size and

power of their extended IVX test with a fixed autoregressive parameter of the bubble,

we instead focus on examining the behaviour of Bonferoni-based tests in CY and

the IVX test of KMS under different bubble specifications incorporating changes in

bubble length, position, and magnitude. Monte Carlo simulation exercises show

that common predictability tests including the Bonferroni-t, Bonferroni-Q, and IVX

test present bad size distortion when the bubble period is at the end of the sample.

When bubbles grow quickly and are more long-lasting, over-rejection of the tests

also increases accordingly. Among the three tests, the Bonferroni-t has a lower

size distortion than the other two. However, when bubbles start and burst in the

sample, the behaviour of the tests becomes more complex. Finally, we also apply
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the three return predictability tests to the well-known empirical dataset of Welch

and Goyal (2008), which includes S&P500 stock index returns and 14 financial and

macroeconomic predictors. Unlike previous research (e.g., Demetrescu et al., 2022a

and Yang et al., 2022), we here carefully separate the full sample into subsamples

with and without bubble periods. The empirical results indicate that the tests reject

the null hypothesis of no predictability in predictors when bubbles exist in the series.
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Testing Explosive Bubble With Changes in In-

novation Variance

We propose a novel test for explosive autoregressive behaviour when the innovation

volatility is time-varying by extending the forward recursive right-tailed Dickey-

Fuller test [sup𝐷𝐹 test] of Phillips et al. (2011)[PWY hereafter] and the existing wild

bootstrap sup𝐵𝑍𝐾 test of Harvey et al. (2019). In that regard, we estimate the time-

varying volatility using the iterative cumulative sum of squares [ICSS] algorithm of

Inclán and Tiao (1994) to detect multiple structural breaks in volatility. Thereafter,

we replace the variance estimated by the kernel estimator of Harvey et al. (2019) with

our estimated variance. By employing finite sample simulations for various volatility

and bubble specifications, we show that the new approach does not cause power

reversal (i.e., the power curve is non-monotonic) when themagnitude of the bubble is

relatively large compared to the sample size. The proposed test also has a more well-

controlled size of the test than the conventional sup𝐷𝐹 test, and we reduce the false

positive rate significantly. Although the modified test outperforms its counterparts in

many bubble and volatility specifications (e.g., the case when the price series contains

both a quickly grown bubble and a downward shift in innovations.), analogously

to Harvey et al. (2019), a union-rejects strategy avoids losing information about the

bubble given a late upward volatility shift. An empirical application to FTSE 100
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and S&P 500 indexes indicates the presence of explosive behaviour in the S&P 500,

which matches the period supposed to contain the origination of the Dotcom bubble

in previous research studies (see e.g., Ofek and Richardson, 2003 and PWY).

2.1 Introduction

Testing for explosive behaviour is an important contemporary topic in economics and

finance (Gürkaynak, 2008 and PWY). Indeed, determining explosive behaviour in

the price of an asset can help us gain information about explosive rational asset price

bubbles. Furthermore, by applying explosive behaviour tests to other types of time

series data (e.g., public debt or commodity prices), we can characterize abnormal

conditions. To limit the economic damage of the collapse of asset bubbles or to

make appropriate decisions given abnormal regimes, we ideally need to identify

such periods as soon as possible Phillips et al. (2015) [PSY hereafter]; in these cases,

constructing an explosive bubble test that is robust to certain properties of financial

time series is an important challenge.

Although the PWY test is commonly used to detect bubble-like behaviour in

financial markets, Harvey et al. (2019) have shown that a Weighted Least Squares

[WLS]-based test, which uses a simple nonparametric kernel smoothing estimator

to estimate the volatility of innovations, can provide greater asymptotic power in

detecting bubbles with various volatility patterns and specifications than the PWY

method. Harvey et al. (2019)’s approach is in line with that of Boswijk and Zu (2018)

in which Boswijk and Zu (2018) proposed an adaptive likelihood ratio test to test a

full sample unit root against a left-tailed stationary alternative. Both Boswijk and Zu

(2018) and Harvey et al. (2019) employ non-parametric estimation of the volatility

process to provide more powerful tests. As a result, the asymptotic local powers of

their proposed tests are significantly more effective than conventional tests (i.e., the

𝐷𝐹 test and sup𝐷𝐹 test, respectively) inmost of the volatility specifications. However,

in finite samples, Harvey et al. (2019) show that with quickly growing bubbles at
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the end of the sample, the power of the WLS-based test is appreciably lower and

non-monotonic. For this limitation, Harvey et al. (2019) conjecture that the reason

causing the power reversals is because the estimated variance is inflated by the quick

growth of the bubble. To avoid power loss in cases of quickly grown bubbles, Harvey

et al. (2019) used a union-rejection strategy inference from their novel test and the

PWY test.

Motivated by the approach of Harvey et al. (2019), it is worth trying another

estimator for time-varying volatility besides the kernel-based estimator used by

Harvey et al. (2019). We propose to replace the kernel-based estimator with our new

estimator. In this sense, the discrete variance breaks are determined by Inclán and

Tiao (1994)’s procedure, and then the variances of innovations in the regimes are

estimated. We argue that the volatility may change abruptly in intervals, instead

of smoothly time-varying, so our estimator will more suitable when dealing with

discrete shifts in the volatility. In fact, the assumption of abruptly changing volatility

is not new, and it is widely mentioned in work detecting a unit root against the left

tail stationary process (see, e.g., Hamori and Tokihisa, 1997, Kim et al., 2002, and

Cavaliere, 2005). Empirical evidence has been found inmany financial market indices,

including Inclán and Tiao (1994) discovering breaks in the unconditional variance

of IBM stock prices, and Andreou and Ghysels (2002) identifying structural breaks

in the conditional variance of multiple stock market indices, which also supports

this assumption. On the other hand, when the bubble grows quickly, it inflates the

estimates of the variance causing power reversals, in which the power of Harvey

et al. (2019)’s test is non-monotonic when the bubble size increases. Therefore, we

consider whether our proposed variance estimator or any future variance estimators

can overcome the limitation of the kernel-based estimator of Harvey et al. (2019).

Along the lines of the approach considered by Harvey et al. (2019), we construct

the feasible WLS estimation-based test statistic [sup𝐵𝑍𝐾 hereafter] which exploits

the ICSS algorithm of Inclán and Tiao (1994), allowing for discrete volatility shifts. In

that sense, our new feasible WLS-based test [sup𝐵𝑍𝐼 hereafter] employs the 𝐼𝑇 test
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statistic and iterative algorithm of Inclán and Tiao (1994) to detect multiple unknown

and discrete volatility breaks in the series, employing the standard deviation of

the difference of stock price in each regime as a corresponding estimator of the

volatility in the price. In other words, this means the variance of innovations is

assumed constant in each regime butwill change to a different value after a breakpoint.

Subsequently, we substitute the estimated volatility into the infeasible WLS-based

statistic as in Harvey et al. (2019). By estimating a set of the statistics on forward

recursive subsamples, we can obtain a supremum test statistic to compare with its

corresponding critical value derived from the bootstrap procedure of Harvey et al.

(2016) [HLST hereafter].

Similar to Harvey et al. (2019), our bubble model portrays normal market be-

haviour with a unit root process until a specific point in the sample, after which point

it displays explosive autoregressive behaviour over the remaining sample. Bubble

specifications are versatilely adjusted, in which the bubble may emerge from the

middle or near the end of the sample period. In fact, according to PSY, this case

has more empirical and practical interest for policymakers (e.g., central banks or

regulators) and business decision-makers than the episode when the bubble bursts.

If ongoing asset price bubbles are detected early, it will serve as a useful warning

system to market participants and stakeholders.

As shown by Harvey et al. (2019), the asymptotic distribution of supremum WLS-

based test statistic depends on the specification of volatility. Therefore, following

HLST, we also use a wild bootstrap algorithm to control the asymptotic size of the

test - detailed steps of the wild bootstrap procedure can be found in Section 2.7 of this

chapter. Additionally, we compare the finite-sample power of our test with that of the

wild bootstrap PWY and Harvey et al. (2019) tests. It should be noted that in spite of

assuming that both variance estimators of the supremum-based tests, sup𝐵𝑍𝐾 and

sup𝐵𝑍𝐼 are exact and the asymptotic distribution of both tests are the same, the finite

sample properties are not analogous. Therefore, we run appropriate simulations and

check how test statistics behave across different sample sizes. Lastly, we use a union
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of rejections strategy to combine these two tests and examine whether there is any

further improvement in power.

Monte Carlo simulations, and the constructed finite sample local curves, show

the power of our proposed test is on a par with the PWY test, while the sup𝐵𝑍𝐾 test

of Harvey et al. (2019) is non-monotonic and has lower power than the two other

tests when the bubble is short-lived at the end of the sample. The union strategy,

which combines rejections of sup𝐵𝑍𝐼 and sup𝐵𝑍𝐾, does not work particularly well

because the sup𝐵𝑍𝐼 dominates sup𝐵𝑍𝐾 and thus reflects its power profile in the local

power curve of the union strategy. Notably, when the sample size is small or the

magnitude of explosive behaviour is relatively large, in almost all cases, the power

of the sup𝐵𝑍𝐾 test is worryingly low and reverses, where the power curve presents

an inverted U-shape following the increase of bubble magnitude. In other words, in

almost all of the volatility specifications with the bubble near the end of the sample,

our test is more robust than that of Harvey et al. (2019).

In the case when volatility presents a late upward shift at the end of the sample

period, the power of the bootstrap sup𝐷𝐹 test is greater than WLS-based tests;

however, the finite sample size of the sup𝐷𝐹 test is seriously oversized. One can

therefore suggest that given the sup𝐷𝐹 tends to the over-reject null hypothesis, this is

what drives the power performance. Despite this, the underperformance of the WLS-

based tests is disappointing, and potentially a result of biased variance estimation. In

this situation, and combining rejection decisions from theWLS-based and OLS-based

tests, the union of rejections test leads to power improvements.

This chapter is organized along the following lines. In the following section, we

review the literature on bubble tests. Section 2.3 discusses the bubble model and its

assumptions. Next, in Section 2.4, we will briefly cover the supremum right-tailed

unit root test of PWY, and discuss the infeasible version of the WLS-based explosive

test of Harvey et al. (2019). In Section 2.5, asymptotic properties of the OLS andWLS-

based tests are established. Section 2.6 outlines a feasible version of the WLS-based

test where the kernel-based estimator of variance will be explained following Harvey
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et al. (2019), and the ICSS-based estimator of variance is also introduced. For all the

test statistics we employ the wild bootstrap procedure to control the size of the test,

so we will use Section 2.7 to discuss the wild bootstrap test statistics and a relevant

union-rejections strategy. Section 2.8 evaluates the finite sample performance of all

tests in this chapter. Section 2.9 provides the empirical results when we apply the

conventional sup𝐷𝐹 test, sup𝐵𝑍𝐾 test of Harvey et al. (2019), our proposed test

(sup𝐵𝑍𝐼), and union strategy-based test (𝒰) to S&P 500 and FTSE 100 stock prices.

The last section concludes this chapter with a summary of the methods, findings,

and possible extensions for future research.

2.2 Literature Review

Among different types of bubbles (e.g., rational and irrational bubbles), rational

bubbles are the object which is tested in this chapter. According to PWY, the rational

bubble model was perhaps the most potential in explaining the explosive behaviour

of economic variables.

According to Tirole (1982) and Diba and Grossman (1988), the current price of

the asset is determined by the present value of the next period’s expected stock price

and dividend payoffs:

𝑃𝑡 = 𝔼𝑡�
𝑃𝑡+1 + 𝐷𝑡+1
1 + 𝑅 � (2.1)

where 𝑃𝑡 is the price of the stock at period t, 𝐷𝑡 denotes the dividend received from

ownership of the stock between 𝑡−1 and 𝑡, and 𝑅 is the discount rate. Accordingly, we

solve the difference Equation (2.1) forward and apply the law of iterated expectations,

which yields:

𝑃𝑡 = 𝔼𝑡�
𝑘
�
𝑗=1

𝐷𝑡+𝑗

(1 + 𝑅)𝑗 �
+ lim
𝑘→∞

𝔼𝑡�
𝑃𝑡+𝑘

(1 + 𝑅)𝑘 �
(2.2)

The first term on the right-hand side is the standard present value of an asset:

𝑃𝑓𝑡 = 𝔼𝑡�
𝑘
�
𝑗=1

𝐷𝑡+𝑗

(1 + 𝑅)𝑗 �
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in which the fundamental price 𝑃𝑓𝑡 of a stock in any period is equal to the present

value of all expected dividend payments from that point onwards. The second term

represents the price bubble, 𝐵𝑡:

𝐵𝑡 = lim
𝑘→∞

𝔼𝑡�
𝑃𝑡+𝑘

(1 + 𝑅)𝑘 �
(2.3)

If the transversality condition holds, it implies:

lim
𝑘→∞

𝔼𝑡�
𝑃𝑡+𝑘

(1 + 𝑅)𝑘 �
= 0

then the current price of the stock, 𝑃𝑡 collapses to its fundamental price, 𝑃𝑓𝑡 , and

it rules out the existence of a bubble. However, if the condition does not hold, an

explosive rational bubble may present itself. Consider a process {𝐵𝑡}∞𝑡=1 satisfying:

𝔼𝑡[𝐵𝑡+1] = (1 + 𝑅)𝐵𝑡 (2.4)

Adding 𝐵𝑡 and 𝑃
𝑓
𝑡 will yield infinitely many solutions for the current price of the

stock in the Equation (2.1), which takes the form:

𝑃𝑡 = 𝑃
𝑓
𝑡 + 𝐵𝑡 (2.5)

In other phrasing, the presence of a stock price rational bubble is explained by

Homm and Breitung (2012) as follows: If a stock price bubble exists, Equation

(2.4.2) states that any rational investor interested in buying that stock must anticipate

the bubble to expand at a rate 𝑅. If this is true and if 𝐵𝑡 is positive, it creates the

opportunity for speculative investment behaviour: a rational investor is willing to

purchase an ”overpriced” stock because they believe that the increase in price will

compensate for the additional payment 𝐵𝑡. If investors anticipate prices to rise at

a rate of 𝑅 and purchase shares, the stock price will indeed increase, resulting in a

self-fulfilling prophecy.
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Campbell et al. (1997) define a rational bubble as a rise of asset prices that are

driven far higher than could be efficiently explained by fundamentals; however, it is

still rational because the rise starts from rational expectations and constant expected

returns of investors, who are betting that other investors will pay for the assets higher

prices in the future. In the early development (e.g., Garber, 1990 andHodrick, 1992) of

economic theory, the rational bubble hypothesis was considered as lacking empirical

support given it is difficult, if not impossible, to both observe expectations and

exclude other alternative explanations of asset prices (e.g., completely fundamental,

or entirely rational) (Meltzer, 2002); however, the emergence and subsequent collapse

of bubbles (e.g., tulip mania in the 18th century and the Mississippi and South Sea

bubble) have been well documented by economists for decades.

Given a theory of rational bubbles, many papers have constructed tests to detect

bubbles in asset prices. Approaches for detecting and/or dating such bubbles include

variance-bound tests (LeRoy and Porter, 1981), West’s two-step test (West, 1987),

fractionally integrated models (Cuñado et al., 2005 and Frömmel and Kruse, 2012),

and integration/cointegration-based test (Diba and Grossman, 1988). In spite of this,

these tests show little evidence of the existence of the bubbles (e.g., bubble in Nasdaq)

(Campbell et al., 1997). According to Gürkaynak (2008), these tests are partly not

suitable or lack power. For example, Blanchard and Watson (1982), Abel et al. (1986),

and Tirole (1982) show that the variance bound may be violated because of the

bubble and is not well suited. Or, Dezhbakhsh and Demirguc-Kunt (1990) argue that

the finite sample size inWest’s two-step test is distorted (high probability to reject the

null when it is true). And, according to Evans (1991), the right-tailed unit root test

of Diba and Grossman (1988), using a full sample, lacks power to detect especially

periodically collapsing bubbles. In this sense, it is necessary to construct better

tests adapted to more complex specifications of bubbles (e.g., multiple periodically

collapsing bubbles, end-sample bubbles) and the stylized facts of financial time series

(e.g., heteroskedasticity and serial correlation).

Recently there has been a renewed interest in the economics and finance literature
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on rational bubble-related topics, where recursive and rolling-recursive bubble tests

have become prevalent. For example, PWY and PSY develop causal linear methods

which are able to identify and date previous asset price bubbles, responding to

the criticism of Evans (1991) regarding the assumptions in the traditional unit root

testing methods of Diba and Grossman (1988). Also, to some extent, these tests can

capture the existence of empirical bubbles in popular stock indexes and asset prices.

Later, several other papers attempt to relax assumptions and improve the supremum-

based tests of PWY and PSY. Specifically, newly proposed models can incorporate

the stylized facts of financial time series data such as time-varying volatility, serial

correlations, and time trend. For instance, HLST use a wild bootstrap algorithm to

control the size of the test under heteroskedasticity, Whitehouse (2019) considers

the linear trend inside the model of the explosive asset price, Harvey et al. (2019)

use a kernel-based estimator and WLS-based test to improve the test of HLST which

presents heteroskedasticity in the innovations, and Pedersen and Schütte (2020)

consider explosive bubble in the presence of serial correlation.

Together with the development of technical papers on rational bubble testing

which aims to improve the power and reduce the size distortion in the current tests,

researchers also contribute greatly to the literature on applications of explosive

autoregressive behaviour tests. We may name a few papers here: In the exchange

rate market, Bettendorf and Chen (2013) found solid evidence of rational explosive

bubbles in the Sterling-dollar exchange rate using𝐺𝑆𝐴𝐷𝐹 and 𝑆𝐴𝐷𝐹 tests of PWY and

PSY, respectively. In the stock market, Phillips and Yu (2011), PWY, PSY, Phillips

and Shi (2018), and Phillips and Shi (2019) found evidence of rational explosive

processes in the NASDAQ, and S&P 500. Bohl et al. (2013) detected bubbles in

German renewable energy stocks using the 𝑆𝐴𝐷𝐹 test. Breitung and Kruse (2013)

proposed structural break-based test statistics with a monitoring strategy (Chu et al.,

1996) to identify bubbles in NASDAQ and Hang Seng indexes. Astill et al. (2017),

Astill et al. (2018) developed test statistics to examine bubbles at the end of the sample

and real-timemonitoring of bubbles employing awide range of stock indexes (DAX30,
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FTSE All Share, Nikkei 225, S&P 500, and Nasdaq Composite Index); moreover,

Harvey et al. (2019) used kernel-based test to detect bubbles in S&P 500 and FTSE

indexes. In the cryptocurrency market, Harvey et al. (2020) and Astill et al. (2021)

showed evidence of a Bitcoin bubble using a signed-based unit root test and CUSUM-

based test under assumptions of time-varying volatility, respectively. In addition,

several researchers also identify bubbles in the housing market (Harvey et al., 2020

and Kurozumi, 2021). Finally, in the commodity market, other bubbles are detected

(Etienne et al., 2014, Figuerola-Ferretti et al., 2015, HLST, Tsvetanov et al., 2016, and

Evripidou et al., 2022). Those papers show statistical evidence of rational bubbles,

which precede the empirical financial crashes in various markets.

Additionally, different tests for change in persistence can use a recursive algorithm

to detect the explosive autoregressive behaviour, such as the sup𝐷𝐹 test; however,

the sup𝐷𝐹 test is still popular andwidely used. This is partly because of its simplicity

and availability which is built-in various open-source software. Indeed, to conduct

sup𝐷𝐹, we only need to run theDickey-Fuller [DF] test through forward or backward

subsamples to obtain a sequence of statistics, then get the maximum value of the

sequence to compare with the corresponding critical value. Indeed, Homm and

Breitung (2012) also use the same recursive algorithm with other break testing

procedures such as the Bhargava statistic, Busetti-Taylor statistic, Kim statistic, and

Chow-type unit root statistic. Under assumptions of a single originating phrase

of the bubble in Homm and Breitung (2012), the Chow-type based test has the

best performance. However, the sup𝐷𝐹 test of PWY is still recommended in many

research studies because Homm and Breitung (2012) indicate that the Chow-type-

based test requires the positions of breakpoints in the mean, which may be estimated

by the maximum likelihood estimator of Bai and Perron (1998). Together with that,

the sup𝐷𝐹 test works more robustly than any other tests in Homm and Breitung

(2012) to identify multiple bubbles and bubbles in real-time.

As we have just mentioned, recursive tests of PWY and PSY have had a significant

impact on the development of rational bubble tests and applications in testing bubbles
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in practice. However, those tests do not account for some stylized facts of financial

time series data (e.g., non-constant volatility). In such circumstances, size distortion

will occur in the tests, leading to over-rejection of the null hypothesis that the process

is a unit root. This is because, in their papers, PWY and PSY construct their supremum

recursive tests under assumptions of stationary volatility implying the unconditional

variance of innovations is unchanged over the whole sample. Indeed, many research

papers (Rapach et al., 2008 and McMillan and Wohar, 2011) have demonstrated

that structural breaks in unconditional volatility often coincide with the formation

and bursting of stock price bubbles. As HLST suggest, it is possible that changes in

volatility in time series innovations are caused by explosive behaviour, but changes

in volatility can also occur without the presence of an explosive period. Therefore, it

is important to have a test that is robust to the existence of heteroskedasticity.

According to HLST, using the PWY test on price series could lead to misrepre-

sentation if there is a significant financial or macroeconomic crisis that results in an

increase in unconditional volatility. In line with Cavaliere and Taylor (2007), and

employing the wild bootstrap to PWY tests, HLST demonstrate that the asymptotic

null distribution of the sup𝐷𝐹 test depends on the nature of the volatility. If the

test is implemented using critical values derived under a homoskedastic volatility

assumption, the size of the test will be distorted for nonstationary volatility pat-

terns. Therefore, HLST combine the sup𝐷𝐹 test of PWY with the wild bootstrap

algorithm to reduce the size distortion. Their bootstrap procedure uses direct sim-

ulation methods based on a consistent estimate of the variance profile to obtain

approximate quantiles from the asymptotic null distributions of the standard test

statistics. However, since the sup𝐷𝐹 test and its related bootstrap variants use OLS

estimation in testing for a unit root against an explosive alternative, in the presence

of heteroskedasticity, Harvey et al. (2019) consider whether replacing OLS by WLS

estimation, can improve the power of the test but still retain the correct asymptotic

size. Applying the non-parametric kernel-based procedure of Boswijk and Zu (2018),

Harvey et al. (2019) show that WLS-based tests are more powerful than OLS based



2.3 Heteroskedastic Bubble Model and Assumptions 18

approach (sup𝐴𝐷𝐹 test) in detecting the presence of a bubble.

2.3 Heteroskedastic Bubble Model and Assumptions

As noted by PWY, stock prices must be non-negative and a function of dividend

series and unobservable fundamentals (like changes in discount rate). Under the

assumption that the fundamental component is either 𝐼(1) or 𝐼(0), if 𝐵𝑡 = 0, then the

current stock price will follow an 𝐼(1) or 𝐼(0) process respectively. However, in most

of the empirical evidence, the stock price is found to be 𝐼(1) (Fama, 1965 and Narayan

and Smyth, 2005); therefore, it is natural to assume that the fundamental part will be

an 𝐼(1) process. On the other hand, if 𝐵𝑡 > 0, the bubble component will dominate

the fundamental price, no matter whether the fundamental component is 𝐼(1) or 𝐼(0)

at any point in time during the sample. In other words, the actual price will increase

significantly as the bubble grows because the magnitude of the bubble component is

relatively bigger compared to that of the fundamental part. Since rational bubbles

burst after exponential growth, there is a subsequent structural break that allows

the bubble component to fall back into some arbitrary constant value (see e.g., HLST

and Evripidou et al., 2022). However, we in this chapter only model the origination

phase of bubbles and do not model their collapsing phase. Combined with first-

order autoregressive process, an asset price bubble can be modeled by using data

generating process [DGP] for 𝑦𝑡 of the following form:

𝑦𝑡 = 𝜇 + 𝑥𝑡 (2.6)

𝑥𝑡 = 𝜌𝑡𝑥𝑡−1 + 𝑢𝑡 (2.7)

𝑢𝑡 = 𝜎𝑡𝜖𝑡 (2.8)

𝜌𝑡 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if t = 2,...,[𝑟∗T]

1 + 𝑐/𝑇 if t = [𝑟∗T]+1,...,T
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where [.] denotes the integer part of its argument. When c > 0, 𝑦𝑡 follows a unit root

process up to time [𝑟∗T], after that point it displays a mildly explosive process over

the remaining sample period 𝑡 = [𝑟∗𝑇] + 1, ..., 𝑇. 𝑟∗ indicates a fraction of the sample

where the process switches from a unit root to an explosive process. In the context of

testing for explosive autoregressive behaviour, our null hypothesis isℋ0 ∶ 𝑐 = 0 ∀𝑡

(so, 𝜌𝑡 = 1 ∀𝑡), so that the series is a unit root process throughout. The corresponding

alternative hypothesisℋ1 ∶ 𝑐 > 0, the series is an explosive process. Since all of the

tests in this chapter use a forward recursive algorithm, the alternative hypothesis

implies that explosive behaviour exists if it is present in at least one subsample of the

data. Therefore, an approach based on the maximum of the sequence of subsample

test statistics considered would be appropriate. In line with Harvey et al. (2019),

thisℋ1 model indicates the asset price follows a random walk till time (𝑟∗𝑇), then a

bubble occurs at the point (𝑟∗𝑇 + 1) and grows explosively to the end of the sample

period. The model simulates the first phase of the bubble when it starts to grow at

the end of the sample and bursts somewhere out of the sample. Hence, our intention

is to see how our tests behave in temporary or short-lived bubble episodes.

The model error term, 𝑢𝑡 is assumed to be a martingale difference, where 𝜖𝑡 is

multiplied by a time-varying scale factor, 𝜎𝑡. In addition, we make two assumptions

following Harvey et al. (2019) for 𝜖𝑡 and 𝜎𝑡:

Assumption 2.1 𝜖𝑡 is a vector martingale difference sequence (m.d.s) with respect toℱ𝑡, a

natural filtration generated by {𝑢𝑠}𝑠⩾1, and 𝐸[𝜖4𝑡 ] < ∞, to which it is satisfying: 𝐸[𝜖𝑡|ℱ𝑡−1] =

0, 𝐸[𝜖2𝑡 |ℱ𝑡−1] = 1.

Assumption 2.2 𝜎𝑡 = 𝜎(𝑡/𝑇) where 𝜎(.) is a strictly positive function with 𝜎(.) ∈ 𝐷[0, 1],

the space of right continuous (càd) with left limit (làg) functions on [0,1].

Assumption 2.1 states that 𝜖𝑡 is a martingale difference sequence [m.d.s], which is

conditionally first-order uncorrelated but may be dependent via higher moments (Xu

and Phillips, 2008). For Assumption 2.2, adopted from Cavaliere and Taylor (2007)

and Cavaliere and Taylor (2009), the time-varying scale factor is a time-dependent
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continuous or discontinuous function. 𝜎(.) is integrable on the interval (0, 1] to any

finite order. This implies the innovation variance is represented by non-stochastic

and bounded models and may contain a countable number of jumps (e.g., single

or multiple abrupt volatility shifts, polynomially trending volatility, and smooth

transition volatility breaks). Under Assumptions 2.1 and 2.2, the invariance principle

holds in the context of both unit root and explosive processes:

𝑇−1/2
[𝜏𝑇]
�
𝑡=2

𝑢𝑡
𝑤−→ �

𝜏

0
𝜎(𝑠)𝑑𝑊(𝑠)

where 𝑤−→ denotes weak convergence and𝑊(𝑠) is a standard Wiener process.

2.4 Explosive Behaviour Tests

2.4.1 An Ordinary Least Squares-based Test

Existing unit root tests typically have an alternative hypothesis of stationarity, and

are left-tailed tests, looking at test statistic on the left of the asymptotic distribution.

In that context, Diba and Grossman (1988) conducted left-tailed unit root tests

on differences in stock prices or tested for cointegration between the prices and

its dividends assuming a time-invariant discount rate. Finding dividends to be

nonstationary in levels, a rational bubble is rejected when the price is a unit root

in levels but is stationary in differences. This is because they argue that explosive

characteristics still exist in the first difference of an explosive process. In addition,

they also employ Bhargava (1986) tests to show stock prices and dividends are

cointegrated, which supports the evidence of no bubble in the index since there is a

long-run relationship between stock price and fundamentals. Diba and Grossman

(1988) reject the null hypothesis of a unit root in the real S&P500 stock price index

over the period between 1871 and 1986. This means there is insufficient evidence of

rational bubbles in the aggregate real stock prices. Although Diba and Grossman

(1988) show the usefulness of unit root and cointegration tests in identifying rational
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bubbles, Evans (1991) explores the shortcomings of the standard unit root and

cointegration tests in detecting the periodically collapsing bubbles, showing that

periodically collapsing bubbles in series lowers the power of full sample left-tailed

unit root tests.

To handle Evans (1991)’s criticism that full sample tests are not well equipped to

identify short-lived bubbles, PWY proposes a forward recursive right-tailed Dickey-

Fuller test [sup𝐷𝐹 test] which is capable of distinguishing periodically collapsing

bubbles from pure unit root processes:

sup𝐷𝐹 ∶= sup
𝜏∈[𝜏0,1]

𝐷𝐹𝜏 (2.9)

𝐷𝐹𝜏 ∶=
�̂�𝜏

��̂�
2
𝐷𝐹,𝜏/∑

⌊𝜏𝑇⌋
𝑡=2 (𝑦𝑡−1 − �̄�𝜏)

2
(2.10)

where 𝐷𝐹𝜏 denotes a standard Dickey-Fuller test statistic with the constant for sub-

sample 𝑡 = 1, ..., ⌊𝜏𝑇⌋, �̂�𝜏 is the estimated coefficient from the OLS regression, Δ𝑦𝑡 =

�̂�𝜏 + �̂�𝜏∑
⌊𝜏𝑇⌋
𝑡=2 𝑦𝑡−1 + �̂�𝑡,𝜏. �̄�𝜏 = (⌊𝜏𝑇⌋ − 1)

−1∑⌊𝜏𝑇⌋
𝑡=2 𝑦𝑡−1, and �̂�

2
𝐷𝐹,𝜏 = (⌊𝜏𝑇⌋ − 3)−1∑

⌊𝜏𝑇⌋
𝑡=2 �̂�𝑡,𝜏

. The minimum sample length in the subsample regressions is ⌊𝜏0𝑇⌋.

In the sup𝐷𝐹 test, the right-tailed Dickey-Fuller test statistic is estimated re-

peatedly on subsets of sample data, in which each subset is incremented by one

observation at each iteration. The first test statistic is regressed by using a subsample

with the minimum sample length [𝜏0𝑇]. According to Harvey et al. (2016), caution

should be exercisedwhen choosing the value of 𝜏0 since it requires balancing the need

to detect an early and short-lived bubble against incorporating sufficient observations

for estimations in the first subsample. The Figure A-2 illustrates the PWY procedure.

As we can see, the supremum test iterates through the series to check whether the

series transitions from a unit root process to an explosive process by finding where

the maximal test statistic exceeds a relevant critical value. It means the test rejects

the null if at least one test statistic is greater than the corresponding critical value of

the test.

In addition, the DF test (Dickey and Fuller, 1979) here is preferred to the aug-



2.4 Explosive Behaviour Tests 22

mented DF (ADF test of Said and Dickey, 1984) in the recursive test. Therefore, PSY

indicates that the size of the test will be distorted if we try to add fixed transient

dynamics to the test statistic. In that case, size distortion increases following the

increase in lag length. Even though they use information criteria to choose the lag

length, the size of the test is still slightly distorted. Since our innovations are not

autocorrelated (see Equation 2.7), we set the lag order to zero. Omitting the lags

in the model can help to simplify our test, but it can also be criticised given the

model cannot reflect the higher-order autoregressive processes in actual financial

time series. Additionally, PSY argue that adding a deterministic time trend under

the alternative hypothesis of mildly explosive behaviour seems to be unrealistic, so

we also do not add a deterministic trend in the DGP and do not de-trend the process

before testing. However, since our DGP in (2.6)-(2.8) still contain a constant mean,

we have to account for the intercept in calculating the test statistics or demean the

price series before conducting test regression.

According to HLST, although the sup𝐷𝐹 has its size well-controlled under the

assumption of constant volatility, the test is substantially oversized if the data presents

heteroskedasticity. This implies that sup𝐷𝐹 tends to over-detect spurious bubbles in

data. Using different volatility specifications, HLST shows the size distortion of the

sup𝐷𝐹 test is caused by the dependency of the limiting null distribution of the test on

nuisance parameters derived from the patterns of volatility present in the innovations.

This takes them to combine the sup𝐷𝐹 test with the wild bootstrap procedure which

we will recap in Section 2.7. Nevertheless, the sup𝐷𝐹 test after bootstrapped still has

its size distorted in many volatility profiles. This causes over-rejections and increases

false positives of the presence of explosive bubbles in the series.

2.4.2 A Weighted Least Squares-based Test

In the presence of conditional heteroskedasticity, and in order to improve the power

of the conventional PWY test, Harvey et al. (2019) replace OLS-based Dickey-Fuller

statistic with a WLS-based equivalent while still employing the wild bootstrap algo-
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rithm of HLST to guarantee the size of the test well-controlled under the presence of

heteroskedasticity. Considering first the underlying 𝑥𝑡 process in (2.7), assuming 𝜎𝑡

is known for constructing the infeasible test, the transformed model can be written

as:
Δ𝑥𝑡
𝜎𝑡

= 𝜌𝑡
𝑥𝑡−1
𝜎𝑡

+ 𝜖𝑡, 𝑡 = 2, ..., 𝑇

From that, they have an infeasible test statistic written as follows:

sup𝐵𝑍 ∶= sup
𝜏∈[𝜏0,1]

𝐵𝑍𝜏 (2.11)

𝐵𝑍𝜏 ∶=
∑⌊𝜏𝑇⌋
𝑡=2

Δ�̃�𝑡�̃�𝑡−1
𝜎2𝑡

�
∑⌊𝜏𝑇⌋
𝑡=2

�̃�2𝑡−2
𝜎2𝑡

(2.12)

where �̃�𝑡 ∶= 𝑦𝑡 − 𝑦1 is 𝐺𝐿𝑆 demeaned in the sense of Elliott et al. (1996) using �̄� = 1.

Therefore, after demeaning, we will not use an intercept in the test regression. As

mentioned in Elliott et al. (1996), compared with OLS demeaning, 𝐺𝐿𝑆 demeaning

gives the higher power to the 𝐷𝐹 − 𝐺𝐿𝑆 test when an unknown mean is present in

small samples. 𝐵𝑍𝜏 is the test statistic calculated on each subsample [𝑦1, ..., 𝑦⌊𝜏𝑇⌋].

sup𝐵𝑍 test statistic is the maximum value of the sequence of subsample statistics

derived from subsamples. As we can see, before calculating the test statistic in (2.11),

we have to estimate the volatility because in practice the volatility is unknown. In this

case, the Harvey et al. (2019)’s test statistic will become feasible when 𝜎𝑡 is replaced

by its estimator. Procedures to calculate 𝜎𝑡 estimators will be discussed in Section 2.6.

2.5 Asymptotic Behaviour Of Tests

2.5.1 Asymptotic Properties of PWY Test

In this section, we outline the limiting alternative distribution of the sup𝐷𝐹 test statis-

tic, which is constructed from the DGP outlined in (2.6) to (2.8). The corresponding

distribution of test under null being obtained as a special case thereof.
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Theorem 2.1 Let 𝑦𝑡 be generated by Equation (2.6) - (2.8). Under Assumptions 1-2, HLST

show that:

sup𝐷𝐹 ∶= sup
𝜏∈[𝜏0,1]

𝐷𝐹𝜏
𝑤→ sup

𝜏∈[𝜏0,1]
𝐽𝑐(𝜏) ∶= 𝕄𝐷𝐹

𝑐

𝐽𝑐(𝜏) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫𝜏
0
�̃�𝑐(𝑟)𝑑𝑈𝑐(𝑟)

(𝜏−1∫
𝜏
0
𝜎(𝑟)2𝑑𝑟∫

𝜏
0
�̃�𝑐(𝑟)2𝑑𝑟)1/2

, 𝜏 ⩽ 𝜏∗

∫𝜏
0
�̃�𝑐(𝑟)𝑑𝑈𝑐(𝑟)+𝑐∫

𝜏
𝜏∗
�̃�𝑐(𝑟)2𝑑𝑟

(𝜏−1∫
𝜏
0
𝜎(𝑟)2𝑑𝑟∫

𝜏
0
�̃�𝑐(𝑟)2𝑑𝑟)1/2

, 𝜏 > 𝜏∗

where �̃�𝑐(𝑟) = 𝑈𝑐(𝑟) −
1
𝜏
∫𝜏
0
𝑈𝑐(𝑠)𝑑𝑠 ,and

𝑈𝑐(𝑟) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫𝑟
0
𝜎(𝑠)𝑑𝑊(𝑠), 𝑟 ⩽ 𝜏∗

𝑒𝑐(𝑟−𝜏∗)∫
𝜏∗

0
𝜎(𝑠)𝑑𝑊(𝑠) + ∫

𝑟

𝜏∗
𝑒𝑐(𝑟−𝑠)𝜎(𝑠)𝑑𝑊(𝑠), 𝑟 > 𝜏∗

𝕄𝐷𝐹
𝑐 is the limit distribution of sup𝐷𝐹 for each corresponding c in (2.7), 𝐷𝐹𝜏 is the test

statistic calculated on a closed interval in (2.10). The limiting null distribution of sup𝐷𝐹 is

obtained from the result in Theorem 2.1 simply by setting 𝑐 = 0, so that sup𝐷𝐹 𝑤→𝕄𝐷𝐹
0 .

As a result, both null and local alternative distributions of this infeasible DF test statis-

tic depend on nuisance parameters derived from the pattern of heteroskedasticity

presented in the innovations. Therefore, HLST suggest a wild bootstrap algorithm to

replicate the pattern of volatility in the original innovations. From that, the modified

test of HLST is effective in controlling the size of the test.

2.5.2 Asymptotic Properties of BZ Test

In this section, we derive the asymptotic properties of sup𝐵𝑍 based test statistic in

(2.11). The limit distribution of sup𝐵𝑍 is depicted below.

Theorem 2.2 Let 𝑦𝑡 be generated by (2.6) - (2.8); under Assumptions 2.1 and 2.2, HLST
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and Boswijk and Zu (2018) show that:

sup𝐵𝑍 ∶= sup
𝜏∈[𝜏0,1]

𝐵𝑍𝜏
𝑤→ sup

𝜏∈[𝜏0,1]
𝐿𝑐(𝜏) ∶= 𝕄𝐵𝑍

𝑐

𝐿𝑐(𝜏) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫𝜏
0
𝑉𝑐(𝑟)𝑑𝑊(𝑟)

(∫
𝜏
0
𝑉𝑐(𝑟)2𝑑𝑟)1/2

, 𝜏 ⩽ 𝜏∗

∫𝜏
0
𝑉𝑐(𝑟)𝑑𝑊(𝑟)+𝑐∫

𝜏
𝜏∗
𝑉𝑐(𝑟)2𝑑𝑟

(∫
𝜏
0
𝑉𝑐(𝑟)2𝑑𝑟)1/2

, 𝜏 > 𝜏∗

with 𝑉𝑐(𝑟) = 𝑈𝑐(𝑟)/𝜎(𝑟), 𝑈𝑐(𝑟) is defined in Section 2.5.1, and 𝐵𝑍𝜏 is the test statistic in

(2.12).

Remark 2.1 Analogously to the limit distribution of the infeasible DF test statistic above,

the distribution of 𝐵𝑍 test statistic also depends on the unknown volatility path. Despite that,

as argued in the previous subsection, volatility is typically unknown in practice. Therefore,

we also employ the wild bootstrap procedure as in HLST.

Remark 2.2 The limiting null distribution of sup𝐷𝐹 is derived when 𝑐 = 0, then sup𝐵𝑍 𝑑→

𝕄𝐵𝑍
0 .

In their paper, Harvey et al. (2019) assume the volatility paths are known and

have some common patterns that we will present in Section 2.8, demonstrating that

the size-corrected local asymptotic power of the infeasible WLS-based test is higher

than that of the sup𝐷𝐹 test under the same wild bootstrap procedure.

2.6 Feasible Estimator Based Tests

2.6.1 Kernel Estimator Based Test

Given the volatility path is unknown in practice, the test statistics in (2.10) and (2.12)

are infeasible. Therefore, we need to find the estimation of 𝜎𝑡, �̂�𝑡. In that sense,

Harvey et al. (2019) show the feasible test statistic of sup𝐵𝑍, that is, sup𝐵𝑍𝐾, is as
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follows:

sup𝐵𝑍𝐾 ∶= sup
𝜏∈[𝜏0,1]

𝐵𝑍𝐾,𝜏 (2.13)

𝐵𝑍𝐾,𝜏 ∶=
∑𝜏𝑇
𝑡=2

Δ�̃�𝑡�̃�𝑡−1
�̂�2𝑡

�
∑𝜏𝑇
𝑡=2

�̃�2𝑡−2
�̂�2𝑡

(2.14)

with �̂�𝑡 the time-varying volatility, estimated by using kernel smoothing regression.

Harvey et al. (2019) use a kernel-based variance estimator, 𝜎2𝑡 , given by:

�̂�2𝑡 =
∑𝑇
𝑖=2 𝐾ℎ(

𝑖−𝑡
𝑇 )(Δ𝑦𝑖)

2

∑𝑇
𝑖=2 𝐾ℎ(

𝑖−𝑡
𝑇 )

where 𝐾ℎ(𝑠) = 𝐾(𝑠/ℎ)/ℎ and 𝐾(.) is a kernel function with bandwidth parameter ℎ.

Furthermore, to construct the asymptotic distribution of sup𝐵𝑍𝐾, Harvey et al. (2019)

added four more assumptions below:

Assumption 2.3 𝜖𝑡 follows a symmetric distribution, and 𝐸[𝜖8𝑡 ] < ∞.

Assumption 2.4 𝜎(.) is a Lipschitz continuous function on [0, 1] except on a finite number

of discontinuity points.

Assumption 2.5 𝐾(.) is a bounded non-negative function defined on a real line with an

integral, ∫
∞

−∞
𝐾(𝑟)𝑑𝑟 = 1.

Assumption 2.6 As 𝑇 → ∞, ℎ → 0 and 𝑇ℎ2 →∞.

Assumption 2.3 as given above, 𝐸[𝜖8𝑡 ] < ∞, is a stronger form of Assumption 2.1,

and requires the existence of 8𝑡ℎ moments of 𝜖𝑡 for all 𝑡. This moment condition is

given by Xu and Phillips (2008) to simplify the proof of the main theorem; therefore,

it may be stronger than necessary. Furthermore, Harvey et al. (2019) let 𝜖𝑡 have a

symmetric distribution for technical reasons and is typically easily satisfied for the

type of equity returns examined in this chapter. Assumptions 2.4 and 2.5 are tomodify

previous assumptions in kernel estimators of Xu and Phillips (2008). Assumption
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2.4 presents volatility as a continuous nonparametric function in which the values

of 𝜎𝑡 only depend on the relative position of the error in the sample. This is to relax

the parametric settings of volatility dynamics and provide suitable models with the

wider properties of financial time series. As in Boswijk and Zu (2018), continuity of

𝜎(.) is a necessary condition for uniform consistency of the kernel estimator; however,

although this non-parametric estimator works well with smooth transition functions

like logistic functions, it typically will underperform around abrupt changes. Thus,

a condition allowing a finite number of discontinuities as in Xu and Phillips (2008)

is enough to keep the volatility estimator converging in probability as the sample

size increases. Assumption 2.5 relaxes the conditions on the kinds of kernel used

in Boswijk and Zu (2018) and Xu and Phillips (2008). Finally, in accordance with

Harvey et al. (2019), we also use the rate condition in Assumption 2.6 as in Xu and

Phillips (2008).

In comparison with the sup𝐷𝐹 test, the sup𝐵𝑍𝐾 test of Harvey et al. (2019)

presents higher asymptotic local power and is more powerful and has more well-

controlled size under finite samples; however, as shown in the simulated results of

Harvey et al. (2019), the finite sample power of the sup𝐵𝑍𝐾 tends to reverse after

increases in the magnitude of the bubble after a certain point. In fact, for the same

parameter 𝑐, the power of the sup𝐵𝑍 test shows a more significant reversal in a small

sample size, 𝑇. This is due to the fact that the ratio 𝑐/𝑇, which represents the relative

magnitude of the bubble, is greater when 𝑇 is smaller. Also, in Harvey et al. (2019),

the test power in cases of discrete volatility shifts is worse than with continuous

volatility dynamics. Consequently, our proposed tests might be able to deal better

with the situation of power reversal since the kernel estimator used previously is

more suitable for the continuous volatility models rather than discrete cases. This is

part of the rationale motivating the construction of a new test.

Remark 2.3 According to the proof of Theorem 2 in Harvey et al. (2019), when the variance

of the series 𝜎2𝑡 is replaced by �̂�2𝑡 , the limit distribution of feasible sup𝐵𝑍 (discussed in the

Section 2.7.2) will converge to the distribution of the infeasible one. Indeed, we conjecture
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that as long as the volatility estimator is consistent, the asymptotic distribution of infeasible

statistic sup𝐵𝑍 is the same no matter what estimator is used to estimate the volatility. This

is the basis for us to propose a second test based on a different variance estimator in Section

2.6.2.

2.6.2 ICSS based Test

It could be the case that, in practice, the path of volatility has one or more discrete

shifts. In this case, the kernel estimatorwould not bewell suited, but we could employ

the ICSS procedure of Inclán and Tiao (1994) to detect breakpoints in volatility. Then,

using the garnered information on the positions of breakpoints, we could estimate

the volatility in each interval. Although the ICSS has an improved version to deal

with conditional heteroskedasticity while detecting multiple change points (cf. Sansó

et al., 2003), the use of this latter procedure may make it difficult to estimate the

volatility later. This is because wewould have to make assumptions about conditional

volatility models which might be hard to justify or make our proposed test too

complex. Therefore, for simplicity, we only use the original ICSS algorithm in this

chapter. In the following paragraphs, we will discuss volatility estimation by using

ICSS and ICSS-based explosive tests in detail.

In light of the paper of Harvey et al. (2019), our first approach employs the WLS

version of the sup𝐷𝐹 test procedure; however, we do not calculate the estimates of

𝜎2𝑡 using kernel-based estimator, but using an ICSS based estimator. Our approach is

to determine breakpoints of volatility, then estimate the volatility in each interval.

Then, we replace 𝜎𝑡 in (2.12) by our estimated volatility. We do this to construct a

feasible version of the WLS-based test as in Harvey et al. (2019) and assuming that

the ICSS algorithm would be a better approach when discrete volatility shifts occur.

To find the breakpoints in variance, we have to use all the information on the

series. Consider a series of uncorrelated random variables with mean 0 and variance

𝜎2𝑡 = 𝜎21𝐷𝑡(1/𝑇, 𝜏1) + 𝜎22𝐷𝑡(𝜏1, 𝜏2) + 𝜎23𝐷𝑡(𝜏2, 𝜏3) + ... + 𝜎2𝑁𝐷𝑡(𝜏𝑁, 𝑇), where 𝐷𝑡(𝑎, 𝑏) =

1(⌊𝑎𝑇⌋ < 𝑡 ≤ ⌊𝑏𝑇⌋), 𝑁 is the number of breakpoints. In this chapter, the series used
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as input to detect multiple breakpoints is Δ𝑦2𝑡 , 𝑡 = 1, ..., 𝑇. Define the following

expression:

𝐷𝑘 ∶=
𝐶𝑘
𝐶𝑇

−
𝑘
𝑇
, 𝑘 = 0, 1, ..., 𝑇

𝐷𝑘 is the centered (and normalized) cumulative sum of squares; 𝐶𝑘 = ∑
𝑘
𝑡=1 Δ𝑦

2
𝑡

is the cumulative sum of 𝑘 + 1 uncorrelated random variables Δ𝑦𝑡. Following the

formula above, if the series has a homogeneous variance, the plot of 𝐷𝑘 against 𝑘will

oscillate around 0, and the presence of a structural break is somewhere 𝐷𝑘 varies

away distinguishably from 0. 𝑘/𝑇 is a scaling factor to center the cumulative sum of

squares. Therefore, the Inclán and Tiao (1994)’s test [𝐼𝑇 test] is developed to find

the variation of 𝐷𝑘 that is statistically significant, which takes the form below:

Theorem 2.3 Under the Assumption of Δ𝑦𝑡 ∼ 𝑁𝐼𝐼𝐷(0, 𝜎2), Inclán and Tiao (1994) show:

𝐼𝑇 ∶= sup
𝑘
√𝑇/2|𝐷𝑘|

𝑑→ sup
𝑟
|𝑊(𝑟) − 𝑟𝑊(1)|

where 𝑟 = 𝑘
𝑇 ∈ [0, 1].

Inclán and Tiao (1994) also derive the asymptotic distribution of the IT test statistics

under a more generalized assumption of Δ𝑦𝑡, in which Δ𝑦𝑡 ∼ 𝐼𝐼𝐷(0, 𝜎2) as follows:

Proposition 2.1

𝐼𝑇 = sup
𝑘
√𝑇/2|𝐷𝑘|

𝑑→
�
𝜂4 − 𝜎4

2𝜎4
sup
𝑟
|𝑊(𝑟) − 𝑟𝑊(1)|

where 𝜂4 denotes the fourth-moment of Δ𝑦𝑡.

Nonetheless, if using the 𝐼𝑇 test on the full sample, we will only find a single point

of change, and this single point may not be the true break. Therefore, we have to use

𝐼𝑇 test statistic together with the iteration algorithm of Inclán and Tiao (1994); the

so-called ICSS algorithm. Details of the algorithm will be described below in order

to estimate multiple changing points of variance.
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Step 1: We calculate the 𝐼𝑇 test statistic on the closed interval [1, 𝑇]. The test

statistic is roughly derived as the maximal point of a set including the cu-

mulative sum of squares from observations 1 through 𝑘, 𝐶𝑘, divided by the

total sum of squares of the sample, 𝐶𝑇. Then, the fraction is used to calculate

√𝑇/2𝐷𝑘, where √𝑇/2 is a scaling factor to make the test statistic converge to

the Brownian Bridge process. If this test statistic 𝐼𝑇 on the interval [1, 𝑇] has

the maximum value at 𝑘1 and is greater than a predetermined critical value,

then we find out one break point at 𝑘1 where 𝐷𝑘 establishes the largest value

on the examined interval. If the break in variance does not exist, we will stop

this algorithm and immediately announce that our series has no break in its

variance.

Step 2: We will find a set of breakpoints by using a symmetric procedure on two

intervals that are separated by 𝑘1.

(a) If a breakpoint is determined in step 1, we continue to this next step.

Here, we will determine the breaking point 𝑘2,𝑎 in the interval [1, 𝑘1] in

the same manner as step 1. If 𝑘2,𝑎 is identified, we will repeat this step

to find 𝑘3,𝑎 as the change point between [1, 𝑘2,𝑎] and to apply step 2b to

find breakpoints between [𝑘2,𝑎, 𝑘1]. Then we will have a set of break points

{𝑘𝑛,𝑎, ..., 𝑘3,𝑎, 𝑘2,𝑎, 𝑘1}. Indeed, this step will stop only when no more break-

points are found, or 𝑘𝑛,𝑎 = 1.

(b) Similarly, if the breakpoint is determined in step 1, we can come to this step.

Here, we will determine the breaking point 𝑘2,𝑏 in the interval [𝑘1 + 1, 𝑇] as

the way in step 1. If 𝑘2,𝑏 presents, we will repeat this step to find 𝑘3,𝑏 is the

change point between [𝑘2,𝑏 + 1, 𝑇] and step 2a to find break points between

[𝑘1 + 1, 𝑘2,𝑏]. Then we will have a set of break points {𝑘1, 𝑘2,𝑏, 𝑘3,𝑏, ..., 𝑘𝑛,𝑏}.

Indeed, this step will stop only when no more breakpoint is found, or

𝑘𝑛,𝑏 = 𝑇.

Step 3: Total breakpoints found from step 2 is a set {𝑘𝑛,𝑎, ..., 𝑘3,𝑎, 𝑘2,𝑎, 𝑘1, 𝑘2,𝑏, 𝑘3,𝑏, ..., 𝑘𝑛,𝑏}.
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We appended 1 and𝑇 into these break point set to have a set {1, 𝑘𝑛,𝑎, ..., 𝑘2,𝑎, 𝑘1, 𝑘2,𝑏,

..., 𝑘𝑛,𝑏, 𝑇}which will used to check spurious break points. In this step, we will

apply step 1 to find the breaking point between intervals set by nonconsecutive

numbers of the set. For example, we find whether 𝑘𝑛,𝑎 is the break point of

the interval (1, 𝑘𝑛−1,𝑎), 𝑘𝑛−1,𝑎 is the break point of the interval (𝑘𝑛,𝑎, 𝑘𝑛−2,𝑎), and

so on. It means we have to apply step 1 on the interval (𝑘𝑛,𝑎, 𝑘𝑛−2,𝑎) to find

the test statistic and compare it with the critical value at a significance level

of 5%. If the test statistic is still smaller than the critical value, we eliminate

the breakpoint 𝑘𝑛−1,𝑎. If the test statistic is greater than the critical value, we

will consider whether the breakpoint is still determined at 𝑘𝑛−1,𝑎 or not. If the

breakpoint is the same as 𝑘𝑛−1,𝑎, we keep it. If it is different, we replace it with

a new point. This step will run iteratively until no other point is changed or

removed.

Inclán and Tiao (1994) use an example to illustrate the steps in the ICSS algorithm.

Their data sample includes 700 observations (𝑇 = 700). As in FigureA-1, after the first

iteration to calculate the value of maximum test statistic 𝐼𝑇 at 𝑘1, which is greater than

the critical value, we then obtain the breakpoint at 𝑘1 = 342. This is corresponding to

step 1 in the algorithm. Next, the procedure keeps running to find the breakpoints in

the first part of the sample, [1, 342] as step 2a. As a result, at this time, the iteration

stops at Figure 2a when there is no break point in the interval [1, 342]. However, the

algorithm still continues on the second half of the sample [343, 700]. Figure 2b - 2f

is to apply step 2b in the algorithm to find as many breakpoints as possible in this

second part. Finally, when no more possible breakpoints are found, the algorithm

enters step 3 where possible points are verified. Figures 2g - 2l are to reject false

points and confirm true ones. As a consequence, the series shows two break points:

one is at 376 and another is at 526. In brief, the ICSS algorithm iteratively computes

the test statistic to detect all potential additional breakpoints. It searches for unknown

breakpoints in each of the subsamples created by newly found breakpoints. If new

breakpoints are no longer found, the search stops. This algorithm can help us to test
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the null hypothesis of the constant unconditional variance of 𝑦𝑡 against the alternative

that unknown breaks exist at some points in the series.

Although the ICSS of Inclán and Tiao (1994) is popular because of its straightfor-

ward implementation and satisfactory statistical inferences, recent studies (Andreou

and Ghysels, 2002, Sansó et al., 2003 and de Pooter and van Dijk, 2004) argue that

the 𝐼𝑇 test can over-detect the number of change points especially when applied

to financial time series. In fact, when designing the 𝐼𝑇 test, Inclán and Tiao (1994)

assume that the disturbances of the targeted series are independent and normally

distributed, which is highly unlikely for financial time series as they evidently show

fat-tailed distributions and serial dependence. Therefore, Sansó et al. (2003) modify

the 𝐼𝑇 test by taking into consideration the fourth-moment properties of the data

series in Proposition 2.1 alongwith the conditionally heteroskedastic processes which

are not properly addressed in ICSS. However, the modified test of Sansó et al. (2003)

requires stronger assumptions about the volatility model, reducing the generality of

Assumption 2.2 where we do not know the true form of the volatility function.

After finding the breakpoints, we estimate the persistent volatility �̃�𝑡 by using

the standard deviation of Δ𝑦𝑡 in each regime. As a result, in each interval of the

regime, the estimated volatility is a corresponding constant of �̃�𝑡. Under the same

WLS estimation, we replace the kernel-based variance estimator �̂�2𝑡 in Equation (2.14)

with our proposed estimator, �̃�2𝑡 above. From that, we have a different feasible test

statistic named sup𝐵𝑍𝐼. Following feasible sup𝐵𝑍𝐾 test statistics derived in Equation

(2.14), a similar feasible test statistic using ICSS-based estimator test is expressed in

the form:

sup𝐵𝑍𝐼 = sup
𝜏∈[𝜏0,1]

𝐵𝑍𝐼,𝜏 (2.15)

𝐵𝑍𝐼,𝜏 =
∑𝜏𝑇
𝑡=2

Δ�̃�𝑡�̃�𝑡−1
�̃�2𝑡

�
∑𝜏𝑇
𝑡=2

�̃�2𝑡−2
�̃�2𝑡

(2.16)

where 𝐵𝑍𝐼,𝜏 is our new statistic which corresponds to subsample from 𝑦1, ..., 𝑦𝜏𝑇. 𝜏0
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is the minimum length of the subsample. sup𝐵𝑍𝐼 is the maximum of the sequence

of subsample statistics, 𝐵𝑍𝐼,𝜏 with 𝜏 ∈ [𝜏0, 1]. When 𝜏 = 𝜏0, 𝐵𝑍𝐼,𝜏0 is the test statistic

obtained from the initial recursive subsample (i.e., the shortest subsample). Accord-

ingly, 𝐵𝑍𝐼,1 is the full sample test statistic in sup𝐵𝑍𝐼 test.

As conjectured at the end of Section 2.5.2, if our variance estimator is consistent,

our feasible test statistic has the same limiting properties as an infeasible test statistic

in 2.12. However, our proposed test statistic may have finite sample properties

differing from that of the test statistic, sup𝐵𝑍𝐾, of Harvey et al. (2019). Therefore, it

is appropriate to examine the finite sample power profiles of both tests.

2.7 Wild-Bootstrap Test

2.7.1 Wild-Bootstrapped Procedure of HLST

From Section 2.5, we can see that the limit distribution of test statistics (i.e., under

both null and alternative) depends on the form of variance in the innovations. In

this case, the robustness of the tests is not guaranteed when we compare our test

statistic with homoskedastic critical values as usual. Indeed, the size of the test is

distorted. Therefore, we here employ the wild bootstrap algorithm as in HLST to

bring the information of variance in innovations into the critical values. In this way,

the size of the test may be controlled at a nominal significance level. Later, in this

subsection, we will use simulatory evidence to show wild bootstrap tests are robust

with various time-varying volatility patterns in terms of the size of the test. This is

because the test statistics are compared with wild bootstrap critical value, which is

calculated from the information of volatility in the data itself.

Applying a bootstrap method can reduce bias and increase the accuracy of in-

ference if the sample does not have the same distribution as assumptions in the

standard test. Using that idea, HLST combined the wild bootstrap scheme into the

PWY test. This wild bootstrap algorithm is employed to replicate the pattern of

heteroskedasticity in the original data. The steps of the algorithm to generate critical
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values in the tests are constituted as follows:

Step 1: Generate a wild bootstrap sample by constructing innovations, 𝜖𝑏𝑡 as below

and cumulatively summing up those innovations.

𝜖𝑏𝑡 = 𝑤𝑡Δ𝑦𝑡, 𝜖𝑏1 = 0, where 𝑤𝑡 ∼ 𝑁𝐼𝐼𝐷(0, 1), 𝑡 = 2, ..., 𝑇

𝑦𝑏𝑡 =
𝑡
�
𝑗=1
𝜖𝑏𝑗 , 𝑦𝑏1 = 0

Step 2: Using wild bootstrap samples to calculate the sup𝐷𝐹 and sup𝐵𝑍𝑖 test

statistics with 𝑖 ∈ {𝐾, 𝐼} from Equations (2.10) and (2.12).

Step 3: Repeat the Step 1 and 2M times to get sets of test statistics, {sup𝐷𝐹𝑏1,𝑖, sup𝐵𝑍𝑏1,𝑖}, ...,

{sup𝐷𝐹𝑏𝑀,𝑖, sup𝐵𝑍𝑏𝑀,𝑖}.

Step 4: Obtain the wild bootstrap 𝜉% level null critical values 𝑞𝑏,𝐷𝐹𝜉 , and 𝑞𝑏,𝐵𝑍𝜉

of sup𝐷𝐹 and sup𝐵𝑍 tests, respectively by taking (1 − 𝜉) quantile of a se-

quence of𝑀 realisation of two test statistics generated under null hypothesis

{sup𝐷𝐹𝑏1,𝑖, sup𝐵𝑍𝑏1,𝑖}, ..., {sup𝐷𝐹𝑏𝑀,𝑖, sup𝐵𝑍𝑏𝑀,𝑖}. In other words, corresponding

to the test statistics, the wild bootstrap tests reject the null hypothesis of a unit

root,ℋ0 if sup𝐷𝐹 > 𝑞
𝑏,𝐷𝐹
𝜉 , sup𝐵𝑍𝐾 > 𝑞

𝑏,𝐵𝑍𝐾
𝜉 , or sup𝐵𝑍𝐼 > 𝑞

𝑏,𝐵𝑍𝐼
𝜉 .

In addition, HLST propose a few forms of the volatility function to assess the

impact of different volatility specifications on the finite sample local power curves.

Those, for example, are the single volatility shift, double volatility shift, a logistic

smooth transition in volatility, and trending volatility. Additionally, Harvey et al.

(2019) consider the case of stochastic volatility which is not involved by Assumption

2.2 since this case is common in empirical finance. Analgously to Harvey et al.

(2019), we also consider approximately the same volatility specifications as below

for evaluating the reliability of the tests:

(a) Constant volatility: 𝜎(𝑟) = 1, ∀𝑟.

(b) Early upward shift: 𝜎(𝑟) = 1 + 51(𝑟 ⩾ 0.3).
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(c) Mid upward shift: 𝜎(𝑟) = 1 + 51(𝑟 ⩾ 0.5).

(d) Late upward shift: 𝜎(𝑟) = 1 + 51(𝑟 ⩾ 0.8).

(e) Early downward shift: 𝜎(𝑟) = 1 + 51(𝑟 < 0.3).

(f) Mid downward shift: 𝜎(𝑟) = 1 + 51(𝑟 < 0.5).

(g) Late downward shift: 𝜎(𝑟) = 1 + 51(𝑟 < 0.8).

(h) Uptrend volatility: 𝜎(𝑟) = 1 + 5𝑟.

(i) Downtrend volatility: 𝜎(𝑟) = 6 − 5𝑟.

(j) Double shift: 𝜎(𝑟) = 1 + 51(0.4 < 𝑟 ⩽ 0.6).

(k) Logistic smooth transition in volatility: 𝜎(𝑟) = 1 + 5
1+exp{−50(𝑟−0.5)} .

(l) Autoregressive volatility: 𝜎𝑡 = 0.5𝜎𝑡−1 + 𝜖𝑡, 𝜖𝑡 ∼ 𝑁𝐼𝐼𝐷(0, 1)

(m) Stochastic volatility: 𝑑𝜎2(𝑟) = 0.03(0.25 − 𝜎2(𝑟))𝑑𝑟 + 0.1�𝜎2(𝑟)𝑑𝑊(𝑟)

where𝑊(𝑟) is a standard Brownian motion process and the model to simulate the

stochastic volatility above is called the square root process (considered by Bollerslev

and Zhou, 2002). Here, we use 𝑁𝐼𝐼𝐷(0, 1) to approximate the Brownian motion

increments. Additionally, 1(.) denotes the indicator function which have value 1 for

domain (.) and 0 otherwise. 𝑟 is the proportion of 𝑡/𝑇. Besides volatility specifications

proposed by Harvey et al. (2019) (e.g., cases a), b) d), e), g) h), i), j) and m)), we

added more forms of volatility functions including: Case (k) to present a smooth

volatility with a midpoint transition and transition speed of 50; and Case (l) to

show the presence of serial correlation in the variance of the innovations, 𝑢𝑡 in (2.8).

Despite not being covered by Assumption 2.2, it is worth considering this latter case

since serial correlation in volatility is quite common in financial time series. In the

case of stochastic volatility, we argue that the tests are still reliable in these cases

because of the employment of a wild bootstrap algorithm. In fact, the wild bootstrap

method works well to replicate the non-stationary volatility patterns in the data.
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Table A-1 illustrates how the size of sup𝐷𝐹 tests is distorted under heteroskedas-

ticity (with the sample size, 𝑇 = 200). The distortions are serious without using

wild bootstrap. This is due to the critical values not containing information on het-

eroskedastic variance in the innovations. However, even after we use a wild bootstrap

procedure to control the size, the results still show distorted sizes compared with

a significance level of 5% in some cases. Specifically, the wild-bootstrap sup𝐷𝐹 is

under-sized in cases of downward shift, down-trending volatility, and autoregres-

sive volatility and oversized with upward shift, double shift, and logistic smooth

transition in volatility.

Although the sup𝐵𝑍 test whitens the series in the WLS estimation, it still needs

the wild bootstrap algorithm to control the size of the test, given the null distribution

of the test statistic still depends on the pattern of heteroskedasticity. In Table A-2,

the size of sup𝐵𝑍𝐾 is distorted without the wild bootstrap algorithm. However,

after using a wild bootstrap, the sup𝐵𝑍𝐾 test has the corrected size which is well-

controlled under a 5% significance level. These results motivate us to keep using

the wild bootstrap in our proposed test, sup𝐵𝑍𝐼. Although the main motivation for

Harvey et al. (2019) is to increase the power of the PSY test by using WLS estimation

to replace OLS estimation inside the supremum test, their proposed method indeed

outperforms the PSY test in terms of controlling the size of test. Column 2 in Table

A-2 shows the size of the test is well-controlled under a nominal significance level of

5%. The results are robust through many different volatility specifications. Finally,

although it is not mentioned in Harvey et al. (2019), from Table A-1 and A-2, we can

see that sup𝐵𝑍𝐾 outperforms sup𝐷𝐹 test in controlling the size of the test.

2.7.2 Asymptotic Properties of Wild Bootstrap Tests

In Theorem 2.1 and 2.2, the limiting distribution of the sup𝐷𝐹 and sup𝐵𝑍𝑖 tests

(where 𝑖 ∈ 𝐾, 𝐼) depend on the unknown volatility path in practice. Hence, to

address this limitation, we use the wild bootstrap procedure of HLST to generate

bootstrap critical values. From now on, all critical values of sup𝐷𝐹 and sup𝐵𝑍𝑖 tests
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are calculated under the wild bootstrap algorithm.

Theorem 2.4 Let 𝑦𝑡 be generated by Equations (2.6) - (2.7) under Assumptions 2.1-2.6,

HLST and Boswijk and Zu (2018) show that:
⎛
⎜⎜⎜⎜⎜⎜⎝
sup𝐷𝐹𝑏𝑚

sup𝐵𝑍𝑏𝑚,𝑖

⎞
⎟⎟⎟⎟⎟⎟⎠
𝑤−→𝑝

⎛
⎜⎜⎜⎜⎜⎜⎝
𝕄𝐷𝐹

0

𝕄𝐵𝑍𝑖
0

⎞
⎟⎟⎟⎟⎟⎟⎠

jointly, for 1 ⩽ 𝑚 ⩽ 𝑀, where 𝑤−→𝑝 denotes weak convergence in probability, 𝑖 = 𝐾, 𝐼 indicates

the variances are estimated by kernel or ICSS method.

Theorem 2.4 shows that as 𝑇,𝑁 → ∞ empirical distribution functions of sup𝐷𝐹𝑏𝑚

and sup𝐵𝑍𝑏𝑚 calculated from𝑀 bootstrap replications converge in distribution to the

asymptotic null distributions of the sup𝐷𝐹 and sup𝐵𝑍 statistics underℋ1 (which

includes ℋ0 as a special case). Note that the asymptotic validity of the marginal

bootstrap sup𝐷𝐹 statistic is shown in HLST, while the marginal convergence of the

bootstrap sup𝐵𝑍𝐾 statistic is derived by Harvey et al. (2019). As also noted by HLST,

when the sample size increases to infinity, the first-order null distribution of the

wild bootstrap test statistics is as same as that of the conventional one. However, the

usefulness of the wild bootstrap procedure is the ability to control the asymptotic

size of the test. Asymptotically, it keeps the size of the test correct because the wild

bootstrap p-values are a random variable having asymptotically uniform distribution;

therefore, the size will be corrected in the existence of conditional heteroskedasticity

as Assumptions 2.1-2.2. Although wild bootstrap-based tests have an advantage in

preventing size distortion, if the magnitude of the bubble is non-local to zero (fixed

magnitude), the wild bootstrap test will not be as powerful as its original test. Using

the same arguments, the finding is shown by HLST below:

Theorem 2.5 Let 𝑦𝑡 be generated by (2.6) - (2.7) under Assumptions 2.1-2.2 and with 𝜌𝑡

> 0. Then, when T→∞, sup𝐷𝐹 = 𝑂𝑝(⌊𝑟∗𝑇1/2⌋(1 + 𝜌𝑡)(𝑇−⌊𝑟
∗𝑇⌋)) , sup𝐷𝐹𝑏 = 𝑂𝑝(𝑇1/2).
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2.7.3 A Union of Rejections Testing Strategy

We consider a union of rejections testing approach following that of Harvey et al.

(2009), Harvey et al. (2012), and Harvey et al. (2019). In this way, the rejection

decision will be a combination of inferences from two tests. Later, in the simulation

section, the union strategy-based test is also applied over various volatility and bubble

specifications, analogously to the individual sup𝐵𝑍𝐾 and sup𝐵𝑍𝐼 tests.

Under Assumptions 2.1-2.6, HLST shows the joint convergence of tests in the

Theorem 2.4 given those statistics are calculated from the samewild bootstrap sample.

Hence, we also consider a similar union of rejections approach in line with that of

Harvey et al. (2012) and Harvey et al. (2019) to combine inference from two chosen

tests. Simply put, the union of rejections strategy is to reject if either of the individual

tests rejects the null hypothesis. In this section, we focus on combining inference from

sup𝐵𝑍𝐾 and sup𝐵𝑍𝐼 tests, but as the same as Harvey et al. (2019) a combination

of inference from sup𝐵𝑍𝐾 and sup𝐷𝐹, and that from sup𝐵𝑍𝐼 and sup𝐷𝐹 can be

constructed and reasoned as the same way.

As Subsection 2.7.1, 𝑞𝑏,𝐵𝑍𝐾𝜉 and 𝑞𝑏,𝐵𝑍𝐼𝜉 denote wild bootstrap critical values of cor-

responding tests at 𝜉% level. These critical values are calculated from the empirical

distribution functions of sup𝐵𝑍𝑏𝑚,𝐾 and sup𝐵𝑍𝑏𝑚,𝐼 obtained from M wild-bootstrap

replications, respectively. Our proposed union of rejection decision rule is given by:

𝒰 ∶ Reject 𝐻0 if � sup𝐵𝑍𝐼 > 𝑞
𝑏,𝐵𝑍𝐼
𝜉 or sup𝐵𝑍𝐾 > 𝜓𝑏𝜉𝑞

𝑏,𝐵𝑍𝐾
𝜉 �

where 𝜓𝑏𝜉 =
𝑞𝑏,𝐵𝑍𝐼𝜉

𝑞𝑏,𝐵𝑍𝐾𝜉

is a scaling constant ensuring 𝒰 asymptotically correctly sized. It

is chosen to ensure the wild bootstrap size of 𝜉 underℋ0 is well-controlled under a

nominal 𝜉 level. As in the Theorem 2.4, the wild bootstrap critical value, 𝑞𝑏,𝐵𝑍𝑖𝜉 with

𝑖 ∈ {𝐾, 𝐼}weakly converges in probability to 𝑞𝐵𝑍𝑖𝜉 which is the asymptotic critical value

of the sup𝐵𝑍𝑖 test.
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Decision rule on union statistic can be written as follows:

Rejectℋ0 when 𝜌𝑡 = 0 if𝒰 > 𝑞𝑈𝜉

where 𝑞𝒰𝜉 is the critical value for the union statistic at 𝜉 level and𝒰 presents union

statistic,

𝒰 = max � sup𝐵𝑍𝐼,
𝑞𝐵𝑍𝐼𝜉

𝑞𝐵𝑍𝐾𝜉
sup𝐵𝑍𝐾�

Therefore, the wild bootstrap of union statistic𝒰 𝑏
𝑚 is given by:

𝒰 𝑏
𝑚 = max � sup𝐵𝑍𝑏𝑚,𝐼,

𝑞𝑏,𝐵𝑍𝐼𝜉

𝑞𝑏,𝐵𝑍𝐾𝜉
sup𝐵𝑍𝑏𝑚,𝐾�

Consequently, we can prove that 𝒰 𝑏
𝑚

𝑝
→ max �𝕄𝐵𝑍

0 ,
𝑞𝑏,𝐵𝑍𝜉

𝑞𝑏,𝐵𝑍𝜉
𝕄𝐵𝑍

0 � = 𝕄𝐵𝑍
0 by using

continuous mapping theorem. From that, as in Harvey et al. (2019), a feasible

version of𝒰 can be derived when we rejectℋ0 when𝒰 > 𝑞𝑏,𝑈𝜉 , where 𝑞𝑏,𝑈𝜉 is the wild

bootstrap critical value of the union test and

𝒰 = max � sup𝐵𝑍𝐼,
𝑞𝑏,𝐵𝑍𝐼𝜉

𝑞𝑏,𝐵𝑍
𝑏
𝐾

𝜉

sup𝐵𝑍𝐾� = max � sup𝐵𝑍𝐼, 𝜓𝑏𝜉 sup𝐵𝑍𝐾�

Remark 2.4 In practice, we do not need to calculate the scaling constant and just use the

wild bootstrap version of the test to obtain the critical value. In each bootstrap replication, we

compute the bootstrap version of sup𝐵𝑍𝐼 and sup𝐵𝑍𝐾 and take the maximum to give you

the value of the𝒰 for that replication. Then, we repeat this M times and take the quantile of

your M bootstrap stats to get the critical value. Consequently, the wild bootstrap procedures

are size corrected in the limit underℋ0, and inherit exactly the same asymptotic local power

functions underℋ1.

Because the limit distribution of the test is identical given our proposed variance

estimator is as consistent as the kernel-based estimator of Harvey et al. (2019); we
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can compute the scaling factor of the union test,
𝑞𝑏,𝐵𝑍𝐼𝜉

𝑞
𝑏,𝐵𝑍𝑏𝐾
𝜉

= 𝜓𝑏𝜉 = 1 in a large sample.

In this chapter, we actually run the asymptotic size of the test controlled under 5%

and the scaling factor is approximately equal to 1, with 𝜖 > 0. Furthermore, under

conditions of having consistent variance estimators, the limit distribution of sup𝐵𝑍𝐼

is as same as that of sup𝐵𝑍𝐾. As a result, the power profile of 𝒰 is identical to the

profile of sup𝐵𝑍.

Although sup𝐵𝑍𝐾 and sup𝐵𝑍𝐼 will have the same asymptotic properties under

the condition that the estimated variance in WLS estimation has to be unbiased. It is

worth establishing a union of rejections strategy of those two to see how it can improve

the power of the test by capturing the respective finite sample power advantages of

both variants WLS-based test.

2.8 Finite Sample Properties

In this section, we will evaluate the finite sample size and power properties of tests

using Monte Carlo simulations. Specifically, our main purpose is to compare two

wild bootstrap tests, 𝐵𝑍𝐾 and 𝐵𝑍𝐼 and union strategies,𝒰, which combine rejection

decisions from two sup𝐵𝑍 tests. In order to do so, data are simulated following

the DGPs from (2.6) to (2.8) with the finite volatility function 𝜎𝑡 given one of cases

(i.e., a-m) in Subsection 2.7.1. Of course,ℋ0 (with 𝜌𝑡 = 0) is used to investigate the

size of the test (i.e falsely rejecting the null hypothesis), and ℋ1 (with 𝜌𝑡 > 0) is

applied to examine the power properties. All the results are calculated at the nominal

asymptotic 0.05 level (i.e., 𝜉 = 0.05).

The length of finite sample simulations is chosen as 𝑇 ∈ {100, 200, 400} and 𝜖𝑡

are generated as 𝑁𝐼𝐼𝐷(0, 1). For ease of comparison between our test and those of

Harvey et al. (2019), we have chosen the same break fractions (𝑟∗) as in their study:

0.6 for the long explosive in-sample period and 0.8 for the short explosive end-sample

period. Volatility specifications used are the same that we present at the end of

Section 2.5. Furthermore, we here use a grid of values 𝑐 ∈ [0, 20] for both 𝑟∗ = 0.6
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and 𝑟∗ = 0.8. This is different from what Harvey et al. (2019), in which a grid of

values 𝑐 ∈ [0, 8] is used as an x-axis to show the power curve of a long explosive

in-sample bubble, and 𝑐 ∈ [0, 20] only for short-lived bubble. This is because we

intend to show how power reversal, the non-monotonic power curve, occurs in both

cases as long as the magnitude of bubbles is relatively large, in which we emphasize

the advantage of our proposed test compared to its counterparts. In addition, we

use 1, 000Monte Carlo replications to simulate results. Each test uses𝑀 = 499 wild

bootstrap replications to calculate the bootstrap critical value. Although the number

of Monte Carlo simulations and wild bootstrap steps seems relatively small, those

are sufficient to give robust results according to Harvey et al. (2019). Moreover,

following the recommendation of PWY, the minimum window size is selected as

𝜏0 = 0.01 + 1.8/√𝑇. In this chapter, since the innovations, 𝜖𝑡 is unknown, we consider

Δ𝑦2𝑡 as 𝜖2𝑡 , which is used as a single input to find the breaks in the volatility and

estimate the volatility of 𝜖𝑡. Indeed, both the kernel-based volatility estimator of

Harvey et al. (2019) and our ICSS-based volatility estimator useΔ𝑦2𝑡 as approximately

𝜖2𝑡 .

In terms of kernel-based volatility estimator, there are many different kernel

functions (e.g., Gaussian, Uniform, Triangle, Epanechnikov, Biweight, Triweight, etc),

which can be used to estimate �̂�2𝑡 ; however, Gaussian kernel is the most commonly

used and is employed by Harvey et al. (2019):

𝐾(𝑠) =
1

√2𝜋
exp(−

𝑠2

2
)

The bandwidth ℎ is determined by using a standard leave-one-out cross-validation

bandwidth selection procedure:

𝐶𝑉(ℎ) =
𝑇
�
𝑡=2
((Δ𝑦𝑡)2 − �̂�2𝑡,−)

with �̂�2𝑡,− denotes Gaussian kernel-based variance estimator �̂�2𝑡,− with 𝐾(0) = 0, the
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optimal bandwidth is chosen as below:

ℎ𝑐𝑣 = arg min
ℎ∈[ℎ𝐼,ℎ𝑢]

𝐶𝑉(ℎ)

Harvey et al. (2019) set ℎ𝐼 = 1/(2𝑇) and ℎ𝑢 = 1/6, ensuring the interval of observations

for kernel weights ranges from 3 to 𝑇.

After running Monte Carlo simulations on differing specifications of volatility

and explosive processes, we construct the size and power of tests. Those results are

grouped by the specific finite sample sizes. We can read the results of the size of tests

by observing tables or looking at the power curve at 0. The power curves of tests are

in figures, in which the y-axis presents the rejection rate and the x-axis shows the

magnitude parameter of the bubble, 𝑐. When 𝑐 = 0, it impliesℋ0 model; otherwise,

model ofℋ1.

To begin, note that Table A-3 shows the size of tests with a sample size of 100,

while Figures (A-3) and (A-4) show finite sample local power curves with the bubble

originating in the sample at 𝑟∗ = 0.6, and 0.8, respectively. Overall, the size of 𝐵𝑍

tests is controlled better than sup𝐷𝐹 test, and sup𝐵𝑍𝐼 is more stable and has higher

power than sup𝐵𝑍𝐾.

Looking in more detail, we can see in Table A-3 that the size of sup𝐷𝐹 test is

distorted badly in cases of a mid upward shift in volatility - (A-3c), (A-4c), late

upward shift in volatility - (A-3d), (A-4d), down-trending volatility - (A-3i), (A-4i),

a double shift in volatility - (A-3j), (A-4j), logistic smooth transition - (A-3k), (A-4k),

and autoregressive volatility - (A-3l), (A-4l). Despite that, whitening the series may

lose partly information on the explosive behaviour as in the case of late upward

shift (A-3d and A-4d) and uptrend volatility (see Figures (A-3h) and (A-4h)). In

those cases, the sup𝐷𝐹 test has higher power than sup𝐵𝑍 tests. Potentially, a union

strategy between sup𝐷𝐹 and sup𝐵𝑍 tests can save this case.

In cases a), b), c), e), f), h), i), j), k), l), and m) of both Figures (A-3) and (A-4),

the power curves of sup𝐵𝑍𝐾 bear close resemblance to sup𝐵𝑍𝐼 when the magnitude

of the bubble is small. Then, the power of the sup𝐵𝑍𝐾 test reduces markedly after
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that given the magnitude of the bubble becomes relatively large compared with its

sample size. As mentioned by Harvey et al. (2019), the size of the bubble causes the

estimated volatility (using non-parametric estimation) to be inflated and significantly

biased. When the volatility shift appears later in the sample - Figures (A-3d) and

(A-4d), the power of sup𝐵𝑍𝐾 test is low compared to the two other tests. Similarly

to the bubble starting close to the end of the sample, the power curve of sup𝐵𝑍𝐾 also

has an inverted U-shape; however, this non-monotonic representation in the local

power curve is more severe in the case of the short-lived bubble. In such cases, the

power reversal appears nearly everywhere in volatility patterns and the power of the

sup𝐵𝑍𝐾 test is significantly low even when volatility is homoskedastic.

In contrast, in the case of the long-lasting bubble (Figure A-3), except for case

(A-3e) of early downward shift, the curves of sup𝐵𝑍𝐼 test are still monotonic and

outperform sup𝐷𝐹 test. Overall, the sup𝐵𝑍𝐼 is more robust and powerful than

sup𝐵𝑍𝐾; therefore, the union strategy 𝒰 profile is dominated by sup𝐵𝑍𝐾. In that

regard, a union strategy combining sup𝐵𝑍𝐼 and sup𝐵𝑍𝐾 test provides the power

curve on par with the sup𝐵𝑍𝐼 with the well-controlled size. Only in the case of

autoregressive volatility does the union strategy𝒰 becomes useful to improve power.

Although both sup𝐵𝑍 tests have non-monotonic power profiles, the number of cases

having power reversals in sup𝐵𝑍𝐼 are far less than those of sup𝐵𝑍𝐾: 4/13 cases for

the former and 13/13 cases for the latter.

Table A-4 presents the size of the tests with a sample size of 200. Overall, the

size of sup𝐵𝑍 tests and union strategy, which combines sup𝐵𝑍𝐼 and sup𝐵𝑍𝐾 are

well-controlled under a nominal significance level of 5%; however, as the size of

sup𝐷𝐹 test is still distorted in some volatility specifications (e.g., family of upward

shift, double shift, and logistic smooth transition). In these cases, the sup𝐷𝐹 test is

easy to detect spurious bubbles in the data. Compared to Table A-3, except for a few

mentioned cases of sup𝐷𝐹 test and an under-sized case (in early downward shift) of

sup𝐵𝑍𝐼, the size of the tests tend to converge closer to the nominal significance level.

In the Figure (A-5), when bubble originates in the sample at 𝑟∗ = 0.6 and 𝑇 = 200,
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we find that the power of bootstrap sup𝐵𝑍𝐼 test is always on a par with its counterpart

(sup𝐵𝑍𝐾) in cases (A-5a), (A-5b), (A-5c), (A-5h), (A-5j), and (A-5k). In cases

(A-5d), and (A-5g), our sup𝐵𝑍𝐼 test outperforms the sup𝐵𝑍𝐾 test. Under several

volatility specifications (A-5e, A-5f, A-5i, A-5l, andA-5m)while the power envelope of

our proposed test (sup𝐵𝑍𝐼) is monotonic, the power of sup𝐵𝑍𝐾 tends to be reversed

when the magnitude of the bubble is getting larger. (A-5d) and (A-5h) are two cases

showing WLS-based tests seem to be slightly less powerful than sup𝐷𝐹 test, but also

in the former case, the size of sup𝐷𝐹 test is seriously distorted. For the case (A-5l)

where series contains serially correlated volatility, our test (sup𝐵𝑍𝐼) is less powerful

than the sup𝐵𝑍𝐾 test of Harvey et al., (2019) and sup𝐷𝐹 test. A lower power curve

occurs when the bubble magnitude parameter 𝑐 stays from 5 to 20. However, by

using the union strategy, we can improve the power of the test sup𝐵𝑍𝐼 and also save

the power reversal of sup𝐵𝑍𝐾 in the case of autoregressive volatility. In comparison

with the sup𝐷𝐹 test of HLST, WLS-based tests (sup𝐵𝑍𝐾 and sup𝐵𝑍𝐼) control the

size better. All sizes of 𝐵𝑍 tests are controlled at the nominal asymptotic 0.05 level

while sizes of sup𝐷𝐹 test are distorted in many cases (e.g., mid upward shift, late

upward shift, double shift, and logistic smooth transition).

Figure (A-6) demonstrates that while the power of the wild bootstrap sup𝐵𝑍𝐾

test is non-monotonic in all cases, the sup𝐵𝑍𝐼 test is still robust across different

magnitudes of the short bubbles living at the end of the sample (𝑟∗ = 0.8). Harvey

et al. (2019) explain that the estimates of 𝜎2 are inflated when 𝑐/𝑇 is large. For small 𝑐,

the power of sup𝐵𝑍𝐾 test is significantly better than that of sup𝐷𝐹 test in scenarios of

downward shifts in volatility (Figures (A-6e), and (A-6f)), down-trending volatility

(A-6i) and double shift in volatility (A-6j); however, in the same cases, the power of

sup𝐵𝑍𝐾 test reverse for large 𝑐.

As we can see, although the union strategy increases the power of the sup𝐵𝑍𝐾

and sup𝐵𝑍𝐼 tests when volatility is autoregressive, in almost all of the other cases

the union profiles are identical to the sup𝐵𝑍𝐼 test. The case of (A-6d) shows the

significant outperformance of the sup𝐷𝐹 test compared with the WLS-based tests,
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but in this case, the sup𝐷𝐹 test is the most oversized. Overall, when the bubble exists

at the end of the sample, the sup𝐵𝑍𝐼 and𝒰 tests are robust and have higher power

than sup𝐷𝐹 in most cases, but under finite sample size, sup𝐵𝑍𝐾 seems unsuitable in

this type of bubble.

From Table A-5, we can see WLS-based tests (sup𝐵𝑍𝐾 and sup𝐵𝑍𝐼) keep the size

well close to the normal 0.05 level of significance. Similarly, the size of the𝒰 test is

also well-controlled. However, the size distortion of the sup𝐷𝐹 test still obviously

occurs in scenarios of upward shift and double shift in volatility.

In Figure (A-7), we examine the powers and sizes of the tests with the presence

of a bubble in the sample (𝑟∗ = 0.6) as simulations in Figures (A-5) and (A-3),

but now we use the larger sample size (𝑇 = 400). Under homoskedastic volatility,

none of the tests is significantly better than the others. In terms of heteroskedastic

volatility, similar to the profiles in (A-5), for relatively small 𝑐, the sup𝐷𝐹 test has

less power than sup𝐵𝑍𝐾 and sup𝐵𝑍𝐼 in almost all cases (A-7b), (A-7c), (A-7e),

(A-7f), (A-7g), (A-7i), (A-7j), and (A-7k). Although in case (A-7l), sup𝐵𝑍𝐾 test

outperforms sup𝐵𝑍𝐼 test, in the case of late upward shift (A-7d) and late downward

shift (A-7g) in volatility, sup𝐵𝑍𝐼 test is more powerful. In addition, power reversals

of the sup𝐵𝑍𝐾 test still appear in two first cases of downward shift (A-7e and A-7f).

These cases show the obvious drawbacks of the sup𝐵𝑍𝐾 when the magnitude of the

bubble is large. Finally, while profiles of𝒰 test are dominated by sup𝐵𝑍𝐼 in almost

all cases, it is good to use to boost the power of the test in the case of autoregressive

volatility.

In terms of the short-lived bubble at the near end of sample (A-8), the power

reversals of sup𝐵𝑍𝐾 tend to improve when the sample size doubly increases. Yet

the power is still very much lower than its counterparts when the magnitude of the

bubble is large. Many cases show the size distortion of sup𝐷𝐹, but the case of a

late upward shift in volatility is the most obvious. Also, this upward shift case and

uptrend volatility provide solid evidence of outperformance of sup𝐷𝐹 compared

with WLS based tests, where the power of sup𝐷𝐹 is significantly higher than sup𝐵𝑍
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tests. That is the reason Harvey et al. (2019) still keep sup𝐷𝐹 and combine it with

sup𝐵𝑍𝐾 tests to create the union of rejection strategies. In all cases, (A-8e) and (A-8f)

the power curves of sup𝐵𝑍𝐼 are monotonic and do not reverse when 𝑐 is large.

Since the power of sup𝐷𝐹 test is higher than sup𝐵𝑍 tests, wemay construct union

rejections strategies between sup𝐷𝐹 and each sup𝐵𝑍 test. Similar to the strategy of

𝒰 test in Subsection 2.7.3, our new strategies will have the decision rules as follows:

𝒰𝐾 ∶ Reject 𝐻0 if � sup𝐵𝑍𝐾 > 𝑞
𝑏,𝐵𝑍𝐾
𝜉 or sup𝐷𝐹 > 𝜓𝑏𝜉,𝐾𝑞

𝑏,𝐷𝐹
𝜉 �

𝒰𝐼 ∶ Reject 𝐻0 if � sup𝐵𝑍𝐼 > 𝑞
𝑏,𝐵𝑍𝐼
𝜉 or sup𝐷𝐹 > 𝜓𝑏𝜉,𝐼𝑞

𝑏,𝐷𝐹
𝜉 �

where 𝜓𝑏𝜉,𝐾 and 𝜓𝑏𝜉,𝐼 are constant scaling factors which respectively make 𝒰𝐾 and

𝒰𝐼 asymptotically correctly sized. 𝑞𝑏,𝐷𝐹𝜉 is wild-bootstrap critical value of sup𝐷𝐹

test. Based on the same arguments in Subsection 2.7.3, union statistics are given

accordingly,

𝒰𝐾 = max � sup𝐵𝑍𝐾, 𝜓𝜉,𝐾 sup𝐷𝐹�

𝒰𝐼 = max � sup𝐵𝑍𝐼, 𝜓𝜉,𝐼 sup𝐷𝐹�

Figure A-9 illustrates how𝒰𝐾 and𝒰𝐼 union tests boost the power of the sup𝐵𝑍

tests in the case of a late upward shift in volatility and the bubble is short-lived

near the end of the sample. The new union strategy tests, which combined rejection

decisions of sup𝐷𝐹 and sup𝐵𝑍 tests, are slightly oversized as in Table A-6. The union

strategy indeed improves the power of sup𝐵𝑍 tests. The results from the figures are

not surprising when the power curve of 𝒰𝐾 seems matched with 𝒰𝐼 although the

power of sup𝐵𝑍𝐾 test is significantly lower than sup𝐵𝑍𝐼 test. This is because the

power profiles of𝒰𝐾 and𝒰𝐼 are dominated by the profile of the sup𝐷𝐹 test. Despite

those results, we do not recommend using the union strategy in every scenario, this

is because we always have to trade off a little bit of size distortion for a higher power.
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2.9 Empirical Illustrations

2.9.1 Data

In this section, we apply the mentioned wild bootstrap test statistics as introduced in

Section 2.8 (i.e., sup𝐷𝐹, sup𝐵𝑍𝐾, sup𝐵𝑍𝐼,𝒰,𝒰𝐾, and𝒰𝐼) to two datasets with three

different sampling frequencies (i.e., daily, weekly, andmonthly). The datasets include

(the logarithms of) the inflation-adjusted S&P 500 index from January 1980 to March

2000 and FTSE 100 index from December 1985 to December 1999. These two series

are in the same sample periods with the data used by Homm and Breitung (2012)

and Harvey et al. (2019). Series adjusted for stock splits and dividend distributions

are obtained from Yahoo Finance while the Core Consumer Price Index (CPI1) is

retrieved from the Federal Reserve Bank of St. Louis database to compute the real

indexes. Since the CPI data is collected at a monthly frequency, we cannot adjust

inflation directly in weekly and daily indexes; therefore, as Homm and Breitung

(2012) we linearly interpolate the CPI data. After interpolation, we subtract from all

the data the initial value. In this manner, we are using the 𝐺𝐿𝑆 demeaning method

on the series, with all the series starting from zero. Descriptive statistics of series

by their frequencies can be found in Table A-7. The last column shows a number of

breaks in volatility which are found by using the ICSS algorithm.

Figures A-10 and A-11 show graphically the series for (the logarithm of) the real

S&P 500 index and real FTSE 100 index. respectively. Unsurprisingly, the figures

show that the higher frequency of the sample, the more each series varies in terms of

price and return. As we can see in Figures a), b) and c) below, the series is supposed

to show the origination phase of the bubble only since visually the prices increase

during the period considered and reach their peaks at the sample endpoints. In

fact, the sample period coincides with the timeline during which the Dotcom bubble

existed as discussed and analyzed by Homm and Breitung (2012). In the considered
1Consumer Price Index for All Urban Consumers: All Items Less Food and Energy in U.S. Monthly,

Seasonally Adjusted
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period, we can see a flash crash - Black Monday 1987. This may or may not affect our

test results; however, so the sample periods and data match with those in Homm and

Breitung (2012) and Harvey et al. (2019), we do not remove the crash. In addition,

since we estimate the volatility for sup𝐵𝑍 tests, Figures A-10g-l and A-11g-l show

how our estimates approximate clustering volatility and generalize the shape of

squared log returns.

Overall, when estimating the variance of the stock price, while the estimated vari-

ances based on the kernel estimator display a smooth line that follows the fluctuation

of the squared log return, the ICSS-based estimates of variances are represented as a

step function. It means the former will vary in each time step, but the latter will only

change after an interval of time. Both kinds of volatility estimators depend on the fre-

quency of the data. This can be seen when we observe their shape in each frequency.

For instance, at a monthly frequency, the kernel-based estimated variances tend to

be very smooth, and the variance also changes less under the ICSS-based estimator.

In S&P 500 index, the ICSS algorithm detects 4 break points in the monthly volatility,

9 breaks in the weekly volatility, and 11 breaks in the daily volatility. Similarly, in

the FTSE 100 index, when the frequency of data increases, the number of detected

breaks also increases. The monthly FTSE 100 data has 2 breaks, there are 4 breaks in

the weekly data, and 16 breaks in daily data (see Table A-7).

2.9.2 Testing for Explosive Bubbles

We apply six tests including sup𝐷𝐹, sup𝐵𝑍𝐾, sup𝐵𝑍𝐼, 𝒰, 𝒰𝐾, and 𝒰𝐼 to six series

i.e., the two indexes with three time frames for each. The results are presented in

Table A-8.

Examining the S&P 500 index, we can see sup𝐵𝑍𝐾 and sup𝐵𝑍𝐼 have the same

conclusion; the existence of a bubble in the sample at all frequencies at the 0.05 level

of significance. Strikingly, the sup𝐷𝐹 fails to reject the null hypothesis in all cases

given sup𝐷𝐹 test has relatively little power to detect the explosiveness in the series.

The conclusions from sup𝐷𝐹 and sup𝐵𝑍𝐾 also match with those shown by Harvey
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et al. (2019). Under the union of rejection strategy, the combined sup𝐵𝑍 tests, 𝒰,

confirm the results obtained from sup𝐵𝑍𝐾 and sup𝐵𝑍𝐼 tests. 𝒰𝐾 and𝒰𝐼 also provide

the same conclusion of a bubble in S&P 500; however, the p-value shows slightly

weaker evidence compared with those of sup𝐵𝑍 tests and𝒰. In fact,𝒰𝐾 rejects the

null hypothesis of no bubble at a significance level of 10% instead of 5%. From that

we may argue that 𝐵𝑍 tests are a bit oversized but the power is still dominated by

sup𝐵𝑍 tests, meaning the union strategies𝒰𝐾 and𝒰𝐼 have slightly lower power than

a single sup𝐵𝑍 test.

Examining the FTSE 100 index, the higher frequency of the data, the smaller the

p-values of sup𝐵𝑍 and 𝒰 strategy-based test. This means the 𝐵𝑍-based tests and

corresponding𝒰 tests tend to reject the null hypothesis of a non-existing explosive

process at a higher level of frequency. Our proposed test, the sup𝐵𝑍𝐾 test, and 𝒰

test cannot reject the null hypothesis in favor of the existing explosive bubble at

weekly and monthly frequencies at the 5% significance level, while the results of the

sup𝐷𝐹 tests fail to reject the null hypothesis in all frequencies at a significance level

of 10%. While sup𝐵𝑍𝐼 finds weak evidence of the bubble in the daily FTSE 100 index,

the sup𝐵𝑍𝐾 test rejects the null hypothesis of no bubble in the price series at a 5%

significance level. The results of𝒰𝐼 fail to reject the null hypothesis of the unit root

process and are consistent under all frequencies. Finally, although 𝒰 and𝒰𝐾 tests

fail to reject the presence of unit root process under monthly data, those tests reject

when data is at a daily frequency.

In conclusion inHarvey et al. (2019), the sup𝐵𝑍𝐾 test and its union strategy-based

test actually work better than the sup𝐷𝐹 test in detecting the bubble in stock price.

However, the results are mixed over different frequencies. If we choose the daily

data as the norm, then our proposed test sup𝐵𝑍𝐼 and sup𝐵𝑍𝐾 provide the same

conclusion about the existence of a bubble in both S&P 500 and FTSE 100 series.

However, empirical results in our test are more robust to different frequency levels

of the data. Historically, it confirms that those tests can early detect the bubble in the

origination phase before it bursts.
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2.10 Conclusion

In this chapter we propose a wild bootstrap WLS-based variant of the sup𝐷𝐹 test,

which is different from the sup𝐵𝑍𝐾 test of Harvey et al. (2019), for explosive bubbles

in a financial time series. In particular, the new test aims to be suitable when volatility

shifts are discrete. In line with Harvey et al. (2019), we estimate the volatility and

scale them out from the price series before testing for explosiveness; however, instead

of using a kernel-based estimator, we estimate the volatility in each regime where

those regimes are divided by breakpoints found from the ICSS algorithm. In that

regard, our test aims to improve the power of the test of Harvey et al. (2019) in the

case of small sample sizes and when the magnitude of the bubble is relatively large.

Although the new test employs a WLS-based estimator, robust to heteroskedasticity

inside a forward recursive mechanism, we still employ the wild bootstrap algorithm,

proposed by HLST, to control the size of the test under time-varying volatility.

In comparison to the wild bootstrap sup𝐷𝐹 test, our proposed test (the sup𝐵𝑍𝐼)

controls the size of the test better and in most cases, our test has better power. Ad-

ditionally, when compared to the sup𝐵𝑍𝐾 test of Harvey et al. (2019), the new test

better handles power reversals when the magnitude of the bubble is large and the

bubble exists in a small sample. From this perspective, our proposed test has the

monotonic power curve under finite-sample simulations, especially when the bubble

is short-lived near the end of the sample. Nonetheless, the power profile of our

test is slightly behind compared with sup𝐵𝑍𝐾 of Harvey et al. (2019) in the case of

autoregressive volatility but a union of rejections strategy (combined sup𝐵𝑍 tests)

helps us to improve the power. Moreover, although WLS-based estimators have

significant advantages compared with sup𝐷𝐹 test in retaining correct asymptotic

size when volatility has a late upward shift we have to use another union strategy

combining rejection decisions between sup𝐷𝐹 and sup𝐵𝑍 test to improve the power

of sup𝐵𝑍 test. Finally, by applying the tests to logarithmic real FTSE 100 and S&P 500

stock price data, we show the ability to detect explosive autoregressive behaviour in
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practice. Since the sup𝐵𝑍 tests, including the new test, reject the null hypothesis of

the unit root process when the sup𝐷𝐹 test does not, we show the relatively improved

ability of such tests to detect bubbles during the origination phase.

There are several directions in which to conduct new research conditional on

the findings in this chapter. For example, we could replace the forward recursive

supremum by backward recursive or double supremum mechanism as in PSY to

conduct the explosive test in the presence of multiple collapsing bubbles. Moreover,

the bubble test using CUSUM test statistics in Homm and Breitung (2012) can be

modified to consider heteroskedasticity using volatility estimators. We will discuss

these in more detail in Chapter 5.
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Testing Co-explosive Behaviour Using Backward

Supremum Approach

In thework of Evripidou et al. (2022) co-explosive behaviour, also termed co-bubbling,

occurs when a linear combination of two explosive price series is stationary across

all sub-regimes. To detect co-explosive behaviour in pairs of asset prices, in this

third chapter, we propose a backward supremum KPSS-based test, which is an

extension of the test proposed in Evripidou et al. (2022). Unlike the approach used

by Evripidou et al. (2022) where they compute their test statistic on the full sample

data, our method involves calculating the supremum value of a series of Evripidou

et al. (2022)’s test statistics, where each test statistic is computed on a subsample of the

data. Notably, the new test has advantages over the test of Evripidou et al. (2022) in

capturing short-lived periods where co-bubbles are absent. This is essential because,

in practice, policymakers usually require a quick and accurate evaluation of the

market (e.g., co-bubble in two asset prices) based on the available data. Analogously

to Evripidou et al. (2022), the new test employs a wild bootstrap algorithm to control

the size of the test under heteroskedasticity and uses a long-run variance estimate

to deal with over-rejections caused by serial correlation. We demonstrate through

finite sample simulations that the new test exhibits superior power properties to

the test proposed by Evripidou et al. (2022) in almost all bubble and innovation
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specifications. However, the proposed approach is still oversized in a few cases of

heteroskedasticity where the variance of the innovations exhibits a downward shift,

downward trend, or double shift.

In this chapter, we also conduct an empirical application using the same dataset

of precious and non-ferrous metal spot and futures prices as Evripidou et al. (2022).

In contrast to the simulation section, here can run both single and double supremum-

based tests to compare with the full sample KPSS-based test without much concern

about computational power. In fact, a double supremum test is a series of recursive

tests that examine a range of flexible windows by changing the starting points. This

enables the test to cover a larger number of ranges, but it also results in significant

time complexity. As a result, we find evidence of co-bubbles in pairs of metal prices

such as Lead/Tin, Tin/Silver, Silver/Lead, Copper/Tin, Copper/Silver, Copper/Lead,

Gold/Tin, Lead/Gold, Copper/Gold, Palladium/Nickel, and Platinum/Gold, but

reject the co-bubbling of Nickel/Zinc and Copper/Platinum, which were reported by

Evripidou et al. (2022). Additionally, with the same method as in Evripidou et al.

(2022), we demonstrate how to identify the timing of explosive behaviour migration

by using estimated regression residuals.

3.1 Introduction and Literature Review

Detecting asset price bubbles at a particular point in time is a widely studied topic.

In the past, well-documented bubbles such as the Dot-Com bubble, the US housing

market bubble, the US stock price bubble, and the Asian exchange rate bubble have

caused significant economic damage. Therefore, it is of interest to many economists

and researchers to detect these bubbles as early as possible to minimize the harm

caused by their subsequent collapse.

The study of explosive behaviour in asset prices has led to various explanations

and models of their existence in the literature, such as rational bubbles, irrational

exuberance, and herd behaviour. However, rational bubbles, as described by Phillips
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et al. (2011) [PWY hereafter], perhaps are the most prominent. The concept of

rational bubbles was first mentioned in early research papers by inter alia Tirole

(1982), Diba and Grossman (1988), Flood and Hodrick (1990), and Garber (1990).

According to Homm and Breitung (2012), these papers describe rational bubbles as

a discrepancy between the actual market price of an asset and the price that would

be expected based on rational expectations. This discrepancy occurs because the

fundamental price model does not account for arbitrary and self-fulfilling elements

in expectations.

A natural approach to identifying rational bubbles is to determine a structural

change from a random walk to an explosive process. In light of this, a number

of econometric methods for asset price bubble detection have been proposed; for

instance, variance bounds tests (LeRoy and Porter, 1981 and Shiller, 1981), West

(1987)’s two-step test, applications of full sample left-tailed unit root and cointegra-

tion tests Diba and Grossman (1988), fractionally integrated models (Cuñado et al.,

2005 and Frömmel and Kruse, 2012). Gürkaynak (2008)’s review revealed that such

bubble tests are not effective in distinguishing between misinterpreted fundamentals

and bubbles. In fact, Gürkaynak (2008) argues for every bubble test above that there

is a counterargument disputing the bubble interpretation. Thus, these tests do not

provide clear evidence of the existence of bubbles. Nonetheless, these tests help us

understand important stylized facts regarding the areas in which the present value

model of stock prices fails.

Subsequently, PWY as well as Phillips et al. (2015) [PSY hereafter] introduced

an autoregressive approach to bubble testing and proposed recursive tests that

determine the presence of bubbles in a price series by examining whether it contains

an explosive autoregressive component that the corresponding fundamentals series

does not exhibit. These tests have gained significant popularity in empirical studies.

Accordingly, the PWY and PSY procedures and their variants that use the recursive

procedure are applied to detect bubbles in various kinds of assets such as commodity

prices (Gilbert, 2010; Homm and Breitung, 2012; Gutierrez, 2012; Etienne et al., 2014;
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Figuerola-Ferretti et al., 2015; Figuerola-Ferretti and McCrorie, 2016; Harvey et al.,

2016 [HLST hereafter]), housing prices (Yiu et al., 2013; Jiang et al., 2015; Pavlidis

et al., 2016; Engsted et al., 2016; Shi et al., 2016; Greenaway-McGrevy and Phillips,

2016, Shi, 2017; Gomez-Gonzalez et al., 2018), energy markets (Bohl et al., 2013;

Sharma and Escobari, 2018, Caspi et al., 2018), stock prices (PWY, PSY, Escobari

et al., 2017; Deng et al., 2017; Astill et al., 2017), and cryptocurrency markets (Hafner,

2018 and Corbet et al., 2018).

According to Evripidou et al. (2022), despite a large amount of research on bubble

detection in individual price series, there is relatively little literature on modelling

the relationship between explosive price series. It is crucial for those in charge

of managing risks, portfolios, and monetary policies to comprehend the potential

connection between bubbles in various markets. An essential question to consider is

whether bubbles in one market have a likelihood of spreading to another market, as

this would increase their systemic risk to the financial sector as a whole compared

to if they remained isolated. In recent research, Phillips and Yu (2011) used PWY’s

procedure to estimate the origination and collapse dates of bubbles in the housing,

oil, and bond markets. By placing the estimated dates on a timeline, the results of

Phillips and Yu (2011) suggest that the subprime crisis spread to the oil and bond

markets. In another study, Pavlidis et al. (2016) used the tests proposed by PSY to

detect multiple bubbles in the housing market indicators of the OECD (Organisation

for Economic Co-operation and Development) countries. They demonstrated that

the synchronization of the origination and collapsing of the bubbles are related

to global macro and financial factors by using macroeconomic variables to predict

the probability of a rational bubble in a probit model. Engsted and Nielsen (2012)

and Engsted et al. (2016) show that the hypothesis of a rational bubble can be

tested in the context of a co-explosive and cointegrated vector autoregression. By

capturing that idea to provide a new framework for testing bubble migration across

markets, Evripidou et al. (2022) developed a KPSS-based test to determine co-bubble

behaviour and extended it to lead/lag cases to understand the bubble migration of
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paired asset prices. They argued that if two series exhibit co-bubble behaviour, there

exists a linear combination of the series integrated of order zero, 𝐼(0). Therefore,

applying a stationary test, such as the KPSS test, on the residuals obtained from a

linear regression of the two corresponding series will reveal the co-bubble behaviour

of the series. Additionally, the test can provide information on bubble migration

between asset prices if we test the co-bubble behaviour on residuals obtained by

regressing a price series (𝑦𝑡) on lags/leads of another price series (𝑥𝑡). To elaborate,

if we fail to reject the stationarity of the residuals from regressing 𝑦𝑡 on the lag of

𝑥𝑡, we can conclude that the explosive behaviour migrates from 𝑥𝑡 to 𝑦𝑡. Similarly, if

we fail to reject the stationarity of the residuals from regressing 𝑦𝑡 on the lead of 𝑥𝑡,

we can infer that the explosive behaviour migrates from 𝑦𝑡 to 𝑥𝑡. Furthermore, the

lead and lag values provide an estimate of the time it takes for migration to occur

between the two series.

In this chapter, we extend the work of Evripidou et al. (2022) to test the co-bubble

behaviour of asset price series. However, we focus on the case when the co-bubble

is short-lived at the end of the sample; therefore, the mechanism of our co-bubble

test developed here allows for backward recursive regressions on the subsamples of

the data as proposed by PSY. In this regard, our method should have more power

to detect a short-lived departure from the co-bubble hypothesis at the end of the

sample than the full sample test of Evripidou et al. (2022). This is because recursive

tests that run through subsamples are more flexible and informative about the points

where the observations change from a unit root behaviour to explosive behaviour.

In particular, backward recursive tests are more powerful than forward recursive

tests to detect bubbles at the end of the sample. To evaluate the size and power

of the tests, we perform simulations of both our new test and the Evripidou test

on a modified co-bubble model. Our null hypothesis (𝐻0) model is the same as in

Evripidou et al. (2022), which assumes the presence of a co-bubble in two series.

In contrast, under our alternative hypothesis (𝐻1) model, instead of assuming no

co-bubbling throughout the entire sample, we only assume no co-bubbling near the
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end of the sample. Since financial data is known to exhibit non-constant volatility

and serial correlation in the innovations, we also apply the wild bootstrap procedure

of HLST to reduce size distortions when volatility is non-constant and use a long-run

variance estimator to control for possible serial correlation in the innovations as in

Evripidou et al. (2022).

Through Monte Carlo simulations, we evaluate the size and power performance

of our tests on bubbles that start at the end of the sample under various volatility

specifications. As in Evripidou et al. (2022), we also use awild bootstrap procedure to

generate critical values for the tests because we cannot depend on the homoskedastic

critical values of KPSS to ensure the robustness of the test in subsamples under

heteroskedastic cases. Overall, our finite sample simulation results show that our test

has greater finite sample power than that of Evripidou et al. (2022) with relatively

well-controlled size in almost all cases. The results show that our proposed test

outperforms the tests of Evripidou et al. (2022) for all scenarios where there is no

short-lived co-bubbling at the end of the sample. These results hold under most of

the heteroskedastic volatility specifications, but the size of the test is slightly distorted

in a few scenarios where the patterns of variance in the innovations exhibit an abrupt

downward shift, two abrupt shifts or is trending downward. In the context of serial

correlation in innovations, simulation results demonstrate that employing a long-

run variance estimator is effective in controlling size. We also compare the finite

sample power profiles of our proposed test with those of the KPSS-based test of

Evripidou et al. (2022) using different kernel-based long-run variance estimators

(Bartlett and quadratic spectral [QS]). Results show that with suitable lag selection

parameters (i.e., lag selection parameter is a parameter which is used in Newey and

West (1994)’s optimal choice of bandwidth procedure), the test of Evripidou et al.

(2022) ismore robust and has awell-controlled size under theQS kernel while our test

has better-controlled size than Evripidou et al. (2022)’s test under the Bartlett kernel.

Furthermore, our Monte Carlo simulations demonstrate that our tests are capable

of detecting the co-movements between pairs of series by employing the co-bubble
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test on a range of lead/lag predictors. As with the test proposed by Evripidou et al.

(2022), our test may be invalid if we select the wrong lead/lag of the series. Therefore,

we suggest using a broad range of lead and lag values to locate the co-bubble and

track the bubble migration between the two series having co-explosive relationship.

An empirical application of these methodologies is conducted to the commodity

market in order to investigate whether bubbles in metal prices migrate to other kinds

of precious and non-ferrousmetal prices in the samemarket. Accordingly, this chapter

first uses the wild-bootstrap generalized supremum ADF [GSADF] test of PSY to

test whether explosive bubbles exist in asset prices. After that, we employ our new

method to identify co-explosive behaviour in the lag/lead of pairs of different metals

spot and futures prices. Our results confirm the presence of co-movements in six

pairs of metal prices (including Silver/Lead, Tin/Silver, Copper/Tin, Copper/Gold,

Palladium/Nickel, and Platinum/Gold) while failing to confirm such co-movements

in two pairs of Zinc/Nickel and Copper/Platinum identified in the co-explosivity

analysis conducted by Evripidou et al. (2022).

The rest of this chapter is organized as follows. In section 3.2, we present the data

generating process [DGP] of bubble models for individual series. In Section 3.3, we

model the linear relationship between series, which is used to derive the null of the

presence of co-explosivity between the series, and the alternative hypothesis of no

co-explosivity at the end of the sample. Section 3.4 outlines the test of Evripidou et al.

(2022) and our new extended test procedure. In this Section, we also present the

asymptotic behaviour of the test statistic and outline the wild bootstrap procedure

used to generate critical values for the tests. In Section 3.5 we report results from a

Monte Carlo simulation exercise examining the finite sample size and power of the

tests for various parameterizations of our DGP as well as exploring the capability of

the tests to correctly determine the timing of bubble migration. Section 3.6 reports

the results of the bubble migration test and the timing of bubble migration when

applied to empirical data. Section 3.7 concludes.
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3.2 The Bubble Model

We consider the following DGP for a generic series 𝑥𝑡, observed from 𝑡 = 1, ..., 𝑇.

𝑥𝑡 = 𝜇𝑥 + 𝑢𝑥,𝑡 (3.1)

𝑢𝑥,𝑡 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝑢𝑥,𝑡−1 + 𝜖𝑥,𝑡, 𝑡 = 2, ..., ⌊𝜏𝑥𝑇⌋

(1 + 𝛿𝑥)𝑢𝑥,𝑡−1 + 𝜖𝑥,𝑡, 𝑡 = ⌊𝜏𝑥𝑇⌋ + 1, ..., 𝑇
(3.2)

where 𝑥𝑡 behaves is assumed to be an 𝐼(1) unit root process up until time 𝑡 = ⌊𝜏𝑥𝑇⌋

before exhibiting mildly explosive behaviour which persists until the end of the

sample at time 𝑡 = 𝑇. The initial condition 𝑢𝑥,1 is assumed to be 𝑜𝑝(𝑇1/2). 𝛿𝑥 = 𝑐𝑥𝑇−𝛼𝑥

with 𝛼𝑥 ∈ (0, 1). 𝑐𝑥 > 0 is a constant controlling the magnitude of the bubble, 𝑇 is

the sample size, the parameter 𝛼𝑥 is a localizing coefficient as 𝑇 → ∞, and 𝜖𝑥,𝑡 is an

innovation process with mean equal to zero and is stationary. As we mentioned

in Section 3.1, we only focus on the bubble originating at the end of the sample.

For this reason, our bubble model here only includes model (1) of Evripidou et al.

(2022) who also allows for bubble collapse and the reversion to unit root behaviour

in other model specifications. In that regard, the bubble phase starts at ⌊𝜏𝑥𝑇 + 1⌋

and runs up to the sample end; however, while Evripidou et al. (2022) examines

various 0 < 𝜏𝑥 < 1, here we only consider 𝜏𝑥 ≥ 0.8 to indicate the explosive regime

emerges somewhere near the end of the sample. This is because practitioners are

usually concerned more with early bubble detection, and so would also likely be

more interested in departures from the co-bubble null at the sample end.

3.3 The Co-explosive Model

As in Evripidou et al. (2022), let 𝑦𝑡 and 𝑥𝑡 be two observed series where 𝑥𝑡 exhibits

explosive behaviour as generated from (3.1) - (3.2). Additionally, let 𝑧𝑡 be a latent

process generated from the same DGP like 𝑥𝑡, but with the symbols of 𝑥 replaced by

corresponding ones of 𝑧. In that regard, 𝜏𝑧 denotes the fraction of data sample when
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the bubble in 𝑧𝑡 begins and 𝑐𝑧 indicates the factor that used to set the magnitude of

the bubble. From that, we construct a DGP for 𝑦𝑡 as given below,

𝑦𝑡 = 𝜇𝑦 + 𝛽𝑥,𝑡𝑥𝑡−𝑖 + 𝛽𝑧,𝑡𝑧𝑡 + 𝜖𝑦,𝑡 (3.3)

where 𝜖𝑦,𝑡 is a mean-zero and stationary error term, 𝛽𝑥,𝑡, 𝛽𝑧,𝑡 denote the coefficients in

linear combination between 𝑦𝑡 and 𝑥𝑡, 𝑧𝑡, respectively. Here, 𝑦𝑡 is an explosive process

which is driven by 𝑥𝑡−𝑖 if 𝛽𝑥,𝑡 > 0, or by 𝑧𝑡 if 𝛽𝑧,𝑡 > 0. In Equation (3.3), if 𝛽𝑧 = 0

and 𝛽𝑥 > 0, it can be assumed that 𝑦𝑡 and 𝑥𝑡−𝑖 are co-bubbling, which means that a

linear combination of these processes, namely 𝑦𝑡 − 𝜇𝑦 − 𝛽𝑥,𝑡𝑥𝑡−𝑖, is stationary across

all sub-regimes. In other words, it means under our co-explosive bubble model, co-

explosivity between 𝑦𝑡 and 𝑥𝑡−𝑖 involves cointegration in the unit root regime as well

as co-explosivity in the explosive regime. On the other hand, if 𝛽𝑧 > 0 and 𝛽𝑥 = 0, then

𝑦𝑡 includes an explosive episode that is influenced by the unobserved process 𝑧𝑡, and

the observed process 𝑥𝑡 is not relevant as a co-explosive variate for 𝑦𝑡. Therefore, the

two series are not co-exploding. In Equation (3.3), the delay parameter 𝑖 determines

the direction of migration. Specifically, if 𝑖 > 0, the series 𝑥𝑡 is lagged relative to

𝑦𝑡, whereas if 𝑖 < 0, 𝑥𝑡 is leading. When 𝑖 = 0, co-bubbling occurs simultaneously.

In the case of 𝑖 > 0, the bubble is delayed by 𝑖 periods before migrating from 𝑥𝑡 to

𝑦𝑡, and vice versa for 𝑖 < 0. Finally, similar to the 𝜖𝑥,𝑡 term in Equation (3.2), we

have 𝜖𝑦,𝑡 to indicate the innovations of 𝑦𝑡, and implicitly, 𝜖𝑧,𝑡 are the innovations of 𝑧𝑡.

Correlations among the innovation terms, 𝜖𝑥,𝑡, 𝜖𝑦,𝑡, and 𝜖𝑧,𝑡, are allowed.

With regard to testing co-bubble between observed series, 𝑦𝑡 and 𝑥𝑡, our hypothe-

ses can be given by,

𝐻0 ∶ 𝛽𝑥,𝑡 > 0, 𝛽𝑧,𝑡 = 0, ∀𝑡 ∈ [0, 𝑇] (3.4)

𝐻1 ∶

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝛽𝑥,𝑡 > 0, 𝛽𝑧,𝑡 = 0, 𝑡 ∈ [0, 𝜏𝑇]

𝛽𝑥,𝑡 = 0, 𝛽𝑧,𝑡 > 0, otherwise
(3.5)

Regardless of the migration direction if 𝛽𝑧,𝑡 = 0 and 𝛽𝑥,𝑡 > 0 ∀𝑡, then 𝑦𝑡 and 𝑥𝑡 are
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said to be co-bubbling. Under the alternative hypothesis, the series 𝑦𝑡 is co-explosive

with 𝑥𝑡 from the beginning until time ⌊𝜏𝑇⌋. However, the explosive behaviour in 𝑦𝑡 is

driven by 𝑧𝑡 instead of 𝑥𝑡 for the remainder of the sample, indicating that 𝛽𝑧,𝑡 > 0 and

𝛽𝑥,𝑡 = 0. Our bubblemodel differs from that of Evripidou et al. (2022) in that it aims to

capture departures from the co-bubble null for a small number of observations at the

end of the sample instead of the full sample. In summary, the null hypothesis states

that two series are co-integrated and co-explode throughout the entire sample period.

On the other hand, the alternative hypothesis suggests that the two series share a

long-run relationship only for some proportion of the sample. We only consider

positive co-explosivity 𝛽𝑥,𝑡 > 0 here, in line with Evripidou et al. (2022); however,

both their and our procedures can be applied when 𝛽𝑥,𝑡 < 0 also.

Similar to Evripidou et al. (2022), following Cavaliere and Taylor (2007) we make

the following assumption for the innovation series, 𝜖𝑦,𝑡.

Assumption 3.1 Let 𝜖𝑦,𝑡 = 𝜎𝑡𝑣𝑡 where 𝑣𝑡 ∼ 𝐼𝐼𝐷(0, 1) with 𝔼|𝑣𝑡|𝑟 < 𝐾 < ∞ for some 𝑟 ≥ 4,

where 𝐾 is is some constant depending only upon 𝑟. The volatility 𝜎𝑡 satisfies 𝜎𝑡 = 𝜔(𝑡/𝑇),

where 𝜔(.) is a non-stochastic and strictly positive function.

Remark 3.1 Under Assumption 3.1, the innovation variance is non-stochastic and bounded

with a countable number of jumps. The test allows for variance profiles that include single or

multiple variance shifts, smooth transition variance shifts, or shifts in trend. For example,

the model of a single abrupt change in volatility of Hamori and Tokihisa (1997), Kim et al.

(2002), Busetti and Taylor (2003), and Cavaliere (2005) also falls under this assumption,

which corresponds to the function 𝜔(𝑡/𝑇) ∶= 𝜎0 + (𝜎1 − 𝜎0)1(𝑡/𝑇 ≥ 𝜏), 0 < 𝜏 < 1. This

function shows the volatility shift from 𝜎0 to 𝜎1 at time ⌊𝜏𝑇⌋.

In later sections, we make use of the variance profile of the process,

𝜂(𝑠) = ��
1

0
𝜔(ℎ)2𝑑ℎ�

−1

�
𝑠

0
𝜔(ℎ)2𝑑ℎ

This variance profile is homoskedasticwhen 𝜂(𝑠) = 𝑠, and is heteroskedastic otherwise.
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�̄�2 = ∫
1

0
𝜔(ℎ)2𝑑ℎ is an asymptotic average error variance, which is equivalent to the

limit of 𝑇−1∑𝑇
𝑡=1 𝜎

2
𝑡 .

Also, under Assumption 3.1, we make use of the invariance principle from Theo-

rem 1(i) of Cavaliere and Taylor (2009) which establishes that:

𝑇−1/2
⌊𝑟𝑇⌋
�
𝑡=1

𝜖𝑦,𝑡
𝑤−→ �̄�𝑊𝜂(𝑟)

where𝑊𝜂(𝑟) = ∫
𝑟

0
𝑑𝑊(𝜂(𝑠))with𝑊(𝑟) denoting a standard Brownian motion on [0, 1],

is known as a variance-transformed Brownian motion.

3.4 Testing For Co-explosiveness

As mentioned in previous sections, Evripidou et al. (2022) define co-explosivity

as a linear combination that is stationary across all sub-regimes. Therefore, to test

𝐻0 against 𝐻1, Evripidou et al. (2022) suggest the KPSS-type statistic, which is the

Lagrange multiplier (LM) or score statistic, for testing the full sample OLS residuals

frommodel (3.3) is stationary around amean against the alternative of non-stationary

due to a unit root given by:

𝑅 ∶= 𝑅10 (3.6)

where

𝑅1𝑟1 = �̂�(𝑟1)
−2
𝑦 (𝑇 − ⌊𝑟1𝑇⌋ − |𝑖|)−2

𝑇+𝑖1(𝑖<0)
�

𝑡=𝑖1(𝑖>0)+⌊𝑟1𝑇⌋+1
�

𝑡
�

𝑠=𝑖1(𝑖>0)+⌊𝑟1𝑇⌋+1
�̂�(𝑟1)𝑦,𝑠,𝑖�

2

with �̂�(𝑟1)𝑦,𝑡,𝑖 = 𝑦𝑡 − �̂�𝑦 − �̂�𝑥,𝑡𝑥𝑡−𝑖 with ⌊𝑟1𝑇⌋ + 𝑖1(𝑖 > 0) + 1 ≤ 𝑡 ≤ 𝑇 + 𝑖1(𝑖 < 0) are

OLS residuals from regressing 𝑦⌊𝑟1𝑇⌋+𝑖1(𝑖>0)+1≤𝑡≤𝑇+𝑖1(𝑖<0) on 𝑥⌊𝑟1𝑇⌋+𝑖1(𝑖>0)+1≤𝑡≤𝑇+𝑖1(𝑖<0)−𝑖

and a constant, and �̂�(𝑟1)2𝑦 = (𝑇 − ⌊𝑟1𝑇⌋ − |𝑖|)−1∑
𝑇+𝑖1(𝑖<0)
𝑡=𝑖1(𝑖>0)+⌊𝑟𝑇⌋+1 �̂�(𝑟1)

2
𝑦,𝑡,𝑖 is the short run

variance estimator. 𝑟1 = 0 implies the test statistic is calculated on the full sample of

data. Although the original purpose of KPSS test statistic is to distinguish between
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model errors being 𝐼(0) and 𝐼(1) under the context that 𝑥𝑡 is 𝐼(1), Evripidou et al.

(2022) argue that the KPSS-based test statistic in Equation (3.6) is able to distinguish

between the stationary linear combination between 𝑦𝑡 and 𝑥𝑡 and no co-explosive

processes. On that point, we also construct a modified version of the test statistic,

𝑅, with the hope that our new test can improve the ability to detect the (lack of)

co-explosivity between two series at the end of the sample.

To evaluate whether current data indicate the presence of co-bubbling, regulators

and central banks require an assessment of whether any observation near the end of

the sample belongs to a co-explosive phase in the overall trajectory. The backward

supremum procedure proposed by PSY is the approach we use in order to improve

the power of the full sample test of Evripidou et al. (2022) when the co-explosive

relationship potentially breaks down at the end of the sample. Our backward supre-

mum KPSS-based test, 𝑆 test, involves recursively re-estimating the OLS model for

each subsample to obtain different residuals. Consequently, different residuals enter

into each test statistic, 𝑅, in the sequence. 𝑆 test statistic is the largest value of the

series of 𝑅 test statistics we calculated. Since we use the backward procedure of

PSY, we perform a sequence of KPSS-based tests on a backward expanding sample

sequence, where the endpoint of each sample is fixed at 𝑇 and the start point for

each sample varies for 𝑡 ∈ [1, ⌊(1 − 𝑟0)𝑇⌋]where 𝑟0 denotes the minimum fraction of

the dataset used for testing. In other words, the corresponding 𝑅 statistic sequence

is {𝑅1𝑟1}𝑟1∈[0,1−𝑟0], where 𝑅1𝑟1 denotes the 𝑅 statistic performed on subsample data of

𝑦𝑡 and 𝑥𝑡−𝑖 with 𝑡 ∈ [⌊𝑟1𝑇⌋ + 1, 𝑇]. In this regard, the full sample test of Evripidou

et al. (2022) is 𝑅10 that means 𝑅 statistic performed on full sample of 𝑦𝑡 and 𝑥𝑡−𝑖 with

𝑡 = [2, 𝑇]. Our statistic 𝑆 is defined as the largest value of the sequence of 𝑅 statistics

calculated over all subsamples ending at the end of the sample subject to a minimum

window size 𝑇 − ⌊𝑟0𝑇⌋, so that

𝑆 ∶= sup
𝑟1∈[0,1−𝑟0]

𝑅1𝑟1 (3.7)
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3.4.1 Asymptotic behaviour

Theorem 3.1 According to the proof of Evripidou et al. (2022), let Assumption 3.1 hold,

then under the null hypothesis, 𝐻0,

𝑅 𝑤−→ �
1

0
𝑉𝜂(𝑟)2𝑑𝑟 (3.8)

where 𝑉𝜂(𝑟) = 𝑊𝜂(𝑟) − 𝑟𝑊𝜂(1). Applying continuous mapping theorem to our test statistics

(3.7), the large sample behaviour of 𝑆 under the null hypothesis is given as below:

𝑆 𝑤−→ sup
𝑟1∈[0,1−𝑟0]

��
1

𝑟1
𝑉𝜂(𝑟)2𝑑𝑟� (3.9)

On the other hand, under 𝐻1, the test statistic 𝑅 = 𝑆 = 𝑂𝑝(𝑇2𝛼𝑧+1).

The limiting null distributions of 𝑅 and 𝑆 under the null depend on the volatility

path of 𝜖𝑦,𝑡. According to Evripidou et al. (2022), the limit critical values coincide

with those of KPSS (the demeaned case) in the homoskedastic case where𝑊𝜂(𝑟) =

∫𝑟
0
𝑑𝑊(𝑠) = 𝑊(𝑟). However, in cases where heteroskedasticity is present, the critical

values of KPSS are inappropriate as they are affected by the heteroskedasticity. Under

the alternative, if the localizing coefficient, 𝛼𝑧,1, in the unobservable series 𝑧𝑡 belongs to

the half-open interval (0, 1/2], then the 𝑅 and 𝑆 tests do not diverge. If 𝛼𝑧,1 falls within

the range of (1/2, 1), Theorem 3.1 suggests that comparing 𝑅 or 𝑆 with any finite

critical values will lead to a consistent test under the alternative hypothesis. However,

Evripidou et al. (2022) proved that, by using wild-bootstrap critical values, the 𝑅 test

will be consistent on the whole range of 𝛼𝑧,1 ∈ (0, 1). We conjecture that the same is

also true for the 𝑆 test. To perform large sample size-controlled inference, comparison

of sup𝑟1∈[0,1−𝑟0] 𝑅
1
𝑟1 with the upper-tail critical values from sup𝑟1∈[0,1−𝑟0] �

∫1
𝑟1
𝑉𝜂(𝑟1)2𝑑𝑟1�

makes it possible to test for a stationary process against a unit root, given a known

pattern of heteroskedasticity. However, in practice, it is infeasible to determine the

pattern of heteroskedasticity required to calculate the limiting distribution under

both the null hypothesis and the alternative hypothesis. For this reason, in the next
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subsection, we propose a bootstrap procedure, as in Evripidou et al. (2022), to ensure

the large sample size robustness of the 𝑅 and 𝑆 tests to heteroskedasticity.

Also, according to Evripidou et al. (2022) the partial sum process of �̂�𝑦,𝑡 can be

denoted as follows:

𝑇−1/2
⌊𝑟𝑇⌋
�
𝑡=1

�̂�𝑦,𝑡 = 𝑇−1/2
⌊𝑟𝑇⌋
�
𝑡=1
(𝜖𝑦,𝑡 − �̄�𝑦) + 𝑂𝑝(𝑇(𝛼(𝑥,1−1)/2) (3.10)

Remark 3.2 From the Equation (3.10), the effect of 𝑥𝑡 is asymptotically negligible when 𝑥𝑡

is a mildly explosive process with 𝛼𝑥,1 ∈ (0, 1). Because of the asymptotic negligibility of 𝑥𝑡,

Evripidou et al. (2022) show that we can allow 𝜖𝑥,𝑡 to be an 𝐼(0) process and be correlated to

𝜖𝑦,𝑡. In the case that 𝜖𝑥,𝑡 is heteroskedastic, the Theorem 3.1 still holds.

The results of Theorem 3.1 above hold under Assumption 3.1. In the case, 𝜖𝑦,𝑡 are

serially dependent, we can estimate �̂�(𝑟1)2𝑦 by using a long-run variance estimator

with suitable kernel functions. In that case, assuming that the estimator is consistent,

our test statistics are consistent, and the limiting null distribution of tests continues

to hold.

3.4.2 A wild bootstrap procedure

Wenowoutline how bootstrap implementation of our proposed 𝑆 test can be achieved,

where we follow Evripidou et al. (2022) and utilise the wild bootstrap algorithm of

HLST, recalling that we cannot use asymptotic critical values due to the limiting null

distribution of the tests depending on the pattern of heteroskedasticity in the data.

In fact, via finite sample simulations, Evripidou et al. (2022) show that the size of

their test is distorted significantly when heteroskedasticity exists in the co-explosivity

model if using the standard homoskedastic critical values of KPSS.

The bootstrap algorithmbelow is used to replicate the pattern of heteroskedasticity

in the original data. Using this method, the distribution of test statistics computed

from the bootstrap data will replicate their asymptotic null distribution under the

forms of heteroskedasticity allowed for in Assumption 3.1. The steps of the algorithm
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to generate critical values for the tests is as follows:

Step 1: Generate a wild-bootstrap samples, 𝑦𝑡,𝑏.

𝑦𝑡,𝑏 = 𝑤𝑡�̂�𝑦,𝑡, where 𝑤𝑡 ∼ 𝑁𝐼𝐼𝐷(0, 1), 𝑡 = 𝑖1(𝑖 > 0) + 1, ..., 𝑇 + 𝑖1(𝑖 < 0)

Step 2: Regress 𝑦𝑡,𝑏 on a constant and 𝑥𝑡−𝑖 to obtain 𝑂𝐿𝑆 residuals, �̂�𝑡,𝑏. Then, calcu-

late the bootstrap analogues of 𝑅 and 𝑆, denoted 𝑅𝑏 and 𝑆𝑏, according to:

𝑅𝑏 = 𝑅10,𝑏 (3.11)

𝑆𝑏 = sup
𝑟1∈[0,1−𝑟0]

𝑅1𝑟1,𝑏 (3.12)

where

𝑅1𝑟1,𝑏 = �̂�(𝑟1)
−2
𝑏 (𝑇 − ⌊𝑟1𝑇⌋ − |𝑖|)−2

𝑇+𝑖1(𝑖<0)
�

𝑡=𝑖1(𝑖>0)+⌊𝑟1𝑇⌋+1
�

𝑡
�

𝑠=𝑖1(𝑖>0)+⌊𝑟1𝑇⌋+1
�̂�(𝑟1)𝑏,𝑠,𝑖�

2

with �̂�(𝑟1)𝑏,𝑡,𝑖 = 𝑦𝑡,𝑏 − �̂�𝑏 − �̂�𝑥,𝑡𝑥𝑡−𝑖 with ⌊𝑟1𝑇⌋+ 𝑖1(𝑖 > 0)+ 1 ≤ 𝑡 ≤ 𝑇 + 𝑖1(𝑖 < 0) are

OLS residuals from regressing 𝑦⌊𝑟1𝑇⌋+𝑖1(𝑖>0)+1≤𝑡≤𝑇+𝑖1(𝑖<0),𝑏 on 𝑥⌊𝑟1𝑇⌋+𝑖1(𝑖>0)+1≤𝑡≤𝑇+𝑖1(𝑖<0)−𝑖

and a constant, and �̂�(𝑟1)2𝑏 = (𝑇 − ⌊𝑟1𝑇⌋ − |𝑖|)−1∑
𝑇+𝑖1(𝑖<0)
𝑡=𝑖1(𝑖>0)+⌊𝑟𝑇⌋+1 �̂�(𝑟1)

2
𝑏,𝑡,𝑖.

Step 3: Repeat step 1 and step 2𝑀 times to obtain pairs of statistics {𝑅𝑏,1, 𝑆𝑏,1}, ..., {𝑅𝑏,𝑀, 𝑆𝑏,𝑀}

and calculate the (upper tail) 𝜋-level critical value, 𝑐𝑅𝜋,𝑀 and 𝑐𝑆𝜋,𝑀 say, of the

empirical CDF of 𝑅𝑏 and 𝑆𝑏, respectively.

Step 4: Rejection rule: Reject𝐻0 in flavour of𝐻1 if 𝑅 > 𝑐𝑅𝜋,𝑀 in the test of Evripidou

et al. (2022) and 𝑆 > 𝑐𝑆𝜋,𝑀 in our supremum test.

3.4.3 Asymptotic behaviour of wild bootstrap test statistics

Theorem 3.2 As provided by Evripidou et al. (2022), under Assumption 3.1 and null

hypothesis, 𝐻0,

𝑅𝑏
𝑤−→𝑝 �

1

0
𝑉𝜂(𝑟)2𝑑𝑟 (3.13)



3.4 Testing For Co-explosiveness 67

Also, under 𝐻1

𝑅𝑏 = 𝑂𝑝(𝑇𝛼𝑧,1−1) (3.14)

Similarly, using continuous mapping theorem, under𝐻0 we obtain the asymptotic distribution

for backward sup𝐾𝑃𝑆𝑆 test as given:

𝑆𝑏
𝑤−→𝑝 sup

𝑟1∈[0,1−𝑟0]
��

1

𝑟1
𝑉𝜂(𝑟)2𝑑𝑟� (3.15)

Using the same arguments as in Evripidou et al. (2022), when the null hypothesis𝐻0

is true, the distribution of 𝑅𝑏 coincides with that of 𝑅. Similarly, the result also holds

for 𝑆𝑏. As a result, if the number of bootstrap replications𝑀 is large, the empirical

cumulative distribution function (𝐶𝐷𝐹) of 𝑅𝑏 ensures that 𝑃𝑟(𝑅 > 𝑐𝑅𝜋,𝑀) = 𝜋, which

means that the size of 𝑅 is asymptotically controlled. This robustness is achieved

because the heteroskedasticity pattern present in the original errors 𝜖𝑦,𝑡 is replicated

in the bootstrap data 𝑦𝑡,𝑏 = 𝑤𝑡�̂�𝑦,𝑡.

Remark 3.3 According to Remark 2 in Evripidou et al. (2022), it is possible to construct the

bootstrap residuals �̂�(𝑟1)𝑏,𝑡,𝑖 without including the regressor 𝑥𝑡−𝑖. This is because the limiting

null distribution of 𝑅𝑏 does not involve 𝑥𝑡. However, the impact of the regression effect of 𝑥𝑡

on 𝑅 might still be significant in finite samples when 𝛼𝑥,1 is close to 1. Therefore, excluding

𝑥𝑡−𝑖 when constructing �̂�(𝑟1)𝑏,𝑡,𝑖 could result in the finite sample distributions of 𝑅𝑏 and 𝑅

being less similar compared to when 𝑥𝑡−𝑖 is included. Based on simulation evidence that has

not been reported, the Evripidou et al. (2022) recommend including 𝑥𝑡−𝑖 in the bootstrap

regressions. We conjecture that the arguments above also hold for 𝑆𝑏.

According to Evripidou et al. (2022), under alternative hypotheses, theorems

3.2 and 3.1 indicate that when 𝛼𝑧,1 falls in the range of (1/2, 1), R tends to infinity

while 𝑅𝑏 converges to zero. When 𝛼𝑧,1 is equal to 1/2, 𝑅 is 𝑂𝑝(1), and 𝑆𝑏 tends to zero.

Conversely, when 𝛼𝑧,1 falls in the range of (0, 1/2), 𝑅 tends to zero, but 𝑅𝑏 tends to

zero at a faster rate than 𝑅. Consequently, under the alternative hypothesis 𝐻1, the
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ratio of 𝑅/𝑅𝑏 = 𝑂𝑝(𝑇𝛼𝑧,1), which implies that 𝑅/𝑐𝑅𝜋,𝑀 = 𝑂𝑝(𝑇𝛼𝑧,1). This further suggests

that lim𝑇→∞ 𝑃𝑟(𝑅 > 𝑐𝑅𝜋,𝑀) = 1. Hence the bootstrap-based test is consistent for the

entire range of 𝛼𝑧,1 ∈ (0, 1). We conjecture that the same is also true for our 𝑆 test.

Remark 3.4 Evripidou et al. (2022) also noted that the testing method we use does not

require us to have detailed information about 𝑥𝑡, only that it includes some form of explosive

component. We do not need to know which specific model generated 𝑥𝑡 or 𝑧𝑡, nor do we need

to know the specific attributes of 𝑥𝑡. Additionally, the procedure will remain valid even if

there are multiple explosive episodes in 𝑥𝑡 (or 𝑧𝑡).

When there is a possibility of serial dependence in 𝜖𝑦,𝑡,𝑅𝑏 and 𝑆𝑏 can be constructed

without using a long-run variance estimator because there is no serial dependence

in the wild bootstrap sample 𝑦𝑡,𝑏. Although we do not use the long-run variance

estimator in the wild bootstrap, we still employ it in the original test statistics that

are used to compare with the bootstrapped critical values.

3.4.4 Accounting for serial correlation

Although Assumption 3.1 implies that the innovations 𝜖𝑦,𝑡 are not serially dependent,

we can relax this assumption to allow the serial correlation in the innovations. By

running a few preliminary simulations on series with innovations following AR(1)

with 𝜖𝑦,𝑡 = 0.5𝜖𝑦,𝑡−1 + 𝑣𝑡, and MA(1) with 𝜖𝑦,𝑡 = 0.5𝑣𝑡−1 + 𝑣𝑡, results in Table B-5 show

that the finite sample size of our proposed test and Evripidou et al. (2022)’s test are

seriously distorted. Therefore, we propose utilising a long-run variance estimator to

replace the short-run variance estimator �̂�2𝑦 in the same manner as Evripidou et al.

(2022). In this way, the asymptotic behaviour of Evripidou et al. (2022)’s test and

our proposed test still hold, as stated in Theorem 3.1 under the condition of serial

correlation in the model errors.

The innovation of 𝜖𝑦,𝑡 can be taken to satisfy the assumption of Said and Dickey

(1984), Zivot and Andrews (1992), Phillips and Solo (1992), Chang and Park (2002),

and Whitehouse (2019) as follows:
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Assumption 3.2 Let 𝜖𝑦,𝑡 = 𝜁(𝐿)𝑒𝑡, 𝜁(𝐿) = ∑∞
𝑖=0 𝜁𝑖𝐿

𝑖, 𝐶0 = 1 with 𝜁(𝑧) ≠ 0 for all |𝑧| ≤ 1

and∑∞
𝑖=0 𝑖|𝜁𝑖| < ∞, where 𝜁(𝐿) is the lag polynomial and 𝑒𝑡 is a martingale difference sequence

that follows Assumption 3.1.

When 𝜁𝑖 = 0 for 𝑖 ≥ 1 in Assumption 3.2 this implies the no serial correlation

setting considered in Assumption 3.1. Furthermore, the conditions around 𝜁(𝐿) are

standard conditions of summability and invertibility.

Let 𝛾𝑗 = 𝑐𝑜𝑣(𝜖𝑦,𝑡, 𝜖𝑦,𝑡−𝑗) where ∑∞
𝑗=0 |𝛾𝑗| < ∞ under the Assumption 3.2, and 𝑗 > 0

indicates lag parameter. Then, in line with Newey and West (1987), Andrews (1991),

and Newey and West (1994), the long-run variance estimator for the full sample has

a form of

�̂�(0)2𝑦,𝑙𝑟 = �̂�0 + 2
�̂�
�
𝑗=0

k(𝑗/�̂�(𝑇))�̂�𝑗. (3.16)

where k(𝑗/�̂�(𝑇)) denotes kernel function - a smooth function of a ratio of 𝑗 to the

bandwidth 𝑚 + 1, �̂�𝑗 ∶= 𝑐𝑜𝑣(�̂�𝑦,𝑡, �̂�𝑦,𝑡−𝑗) is an estimated value of 𝛾𝑗 calculated from the

data sample, �̂�(𝑟1)2𝑦,𝑙𝑟 is the long-run variance for a subsample of 𝑦𝑡 with ⌊𝑟1𝑇⌋ + 𝑖1(𝑖 >

0) + 1 ≤ 𝑡 ≤ 𝑇 + 𝑖1(𝑖 < 0). Since we estimate the long-run variance for the full sample

of 𝑦𝑡, 𝑟1 = 0.

By replacing �̂�(𝑟1)2𝑦 by �̂�(𝑟1)2𝑦,𝑙𝑟 (an estimate of long run variance in the subsample

determined by 𝑟1), the test statistics in (3.6) and (3.7) take a different form to handle

the serial correlation inside the innovations 𝜖𝑦,𝑡. That is,

�̃� ∶= �̃�10 (3.17)

where

�̃�1𝑟1 = �̂�(𝑟1)
−2
𝑦,𝑙𝑟(𝑇 − ⌊𝑟1𝑇⌋ − |𝑖|)−2

𝑇+𝑖1(𝑖<0)
�

𝑡=𝑖1(𝑖>0)+⌊𝑟1𝑇⌋+1
�

𝑡
�

𝑠=𝑖1(𝑖>0)+⌊𝑟1𝑇⌋+1
�̂�(𝑟1)𝑠,𝑖�

2

with �̂�(𝑟1)𝑡,𝑖 = 𝑦𝑡 − �̂�𝑙 − �̂�𝑥,𝑡𝑥𝑡−𝑖 with ⌊𝑟1𝑇⌋ + 𝑖1(𝑖 > 0) + 1 ≤ 𝑡 ≤ 𝑇 + 𝑖1(𝑖 < 0) are OLS

residuals from regressing 𝑦⌊𝑟1𝑇⌋+𝑖1(𝑖>0)+1≤𝑡≤𝑇+𝑖1(𝑖<0) on 𝑥⌊𝑟1𝑇⌋+𝑖1(𝑖>0)+1≤𝑡≤𝑇+𝑖1(𝑖<0)−𝑖 and a
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constant. Similarly, our new proposed backward supremum test statistic will be as

below:

�̃� ∶= sup
𝑟1∈[0,1−𝑟0]

�̃�1𝑟1 (3.18)

where 𝑟0 is the minimum recursive window.

In line with Evripidou et al. (2022), when 𝜖𝑦,𝑡 is serially correlated, we only use

the long-run estimator in calculating the test statistics of interest, but not in the

bootstrapped statistics. This is because the wild bootstrap samples, 𝑦𝑏𝑡 do not contain

serial correlation.

3.5 Finite Sample Properties

In this section, we examine the size and power properties of our proposed wild-

bootstrap 𝑆 test compared to the wild-bootstrap 𝑅 test of Evripidou et al. (2022)

at a significance level of 0.05 (i.e. 𝜋 = 0.05). In other words, all simulations are

conducted at the nominal 0.05 level. To do so, we generate data according to (3.1) -

(3.3) with sample sizes of 𝑇 = 200 and 400, respectively. The DGPs in (3.1) and (3.2)

are used to construct 𝑥𝑡 and 𝑧𝑡 with innovations 𝜖𝑥,𝑡 and 𝜖𝑧,𝑡, a sequence of 𝑁𝐼𝐼𝐷(0, 1)

variates, while model (3.3) is used to simulate the co-explosive relationship between

the processes. We select these two sample sizes so we can observe how the properties

of the tests behave as the sample size increases. To evaluate the finite sample profiles

of the tests, we use 2,000Monte Carlo simulations and𝑀 = 499 bootstrap replications.

For all simulations in this section except for Section 3.5.4, we assume that 𝑖 = 0 so

that we do not need to run the tests under the pre-chosen lag/lead values.

For the bubble specification, we have chosen fixed localizing coefficients, namely

𝛼𝑥 = 𝛼𝑧 = 0.5. We have followed the same approach as Evripidou et al. (2022) and

set 𝜇𝑥 = 𝜇𝑦 = 𝜇𝑧 = 0, without loss of generality. In contrast to 𝑥𝑡 and 𝑧𝑡, where

we always set the innovations to be homoskedastic, the series 𝑦𝑡 is generated with

either homoskedastic or heteroskedastic innovations. As mentioned in Assumption
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3.1, 𝜖𝑦,𝑡 = 𝜎𝑡𝑣𝑡 with 𝑡 ∈ [1, 𝑇], where 𝜎𝑡 = 𝜔(𝑡/𝑇) is the discrete-time analogues of

the volatility functions given by cases a) – k), and 𝑣𝑡 ∼ 𝑁𝐼𝐼𝐷(0, 1). We have set

𝜎𝑡 = 1 for all 𝑡 in the homoskedastic case and have considered eleven heteroskedastic

specifications, which are listed below:

a) Downward shift (Coincidence): 𝜎(𝑟) = 51(𝑟 ≤ 𝜏𝑥) + 1(𝑟 > 𝜏𝑥)

b) Upward shift (Coincidence): 𝜎(𝑟) = 1(𝑟 ≤ 𝜏𝑥) + 51(𝑟 > 𝜏𝑥)

c) Upward trend volatility: 𝜎(𝑟) = 1 + 5𝑟

d) Downward trend volatility: 𝜎(𝑟) = 6 − 5𝑟

e) Early upward shift: 𝜎(𝑟) = 1 + 51(𝑟 ⩾ 0.3).

f) Mid upward shift: 𝜎(𝑟) = 1 + 51(𝑟 ⩾ 0.5).

g) Late upward shift: 𝜎(𝑟) = 1 + 51(𝑟 ⩾ 0.8).

h) Early downward shift: 𝜎(𝑟) = 1 + 51(𝑟 < 0.3).

i) Mid downward shift: 𝜎(𝑟) = 1 + 51(𝑟 < 0.5).

j) Late downward shift: 𝜎(𝑟) = 1 + 51(𝑟 < 0.8).

k) Double shift: 𝜎(𝑟) = 1 + 51(0.4 < 𝑟 ⩽ 0.6).

The first two cases are scenarioswhere volatility break coincideswith the potential

start date of the bubbles in 𝑦𝑡 and 𝑥𝑡. In other cases, the volatility break varies and

is independent of the break of the bubble model. All these volatility specifications

satisfy Assumption 3.2 in Section 3.4. To correct the size of the test from being

distorted by the impact of heteroskedasticity, we use the wild bootstrap algorithm as

suggested in HLST. Finally, we set the minimum window length for our backward

supremum test as the recommendation of PSY, 𝑟0 = 0.01 + 1.8/√𝑇.
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3.5.1 Behaviour under 𝐻0

Under the null hypothesis, we quantify the size of the wild bootstrap tests for ho-

moskedastic, heteroskedastic, and serially correlated innovations. In this subsection,

all the finite sample sizes that are reported are calculated from tests without long-run

variance correction. We only use tests with a long-run variance to assess the test

size in cases where there is serial correlation in innovations, as described in the next

Subsection 3.5.3. The DGP we consider for 𝑥𝑡 is as Equations (3.1) and (3.2) with

settings of parameters as follows:

𝑐𝑥 ∈ {0.2, 0.4, 0.8}

𝜏𝑥 ∈ {0.8, 0.85, 0.9}

TheDGP to create 𝑦𝑡 is as Equations (3.3) and (3.4)with the finite sample volatility

functions 𝜎𝑡 being the discrete time analogs of those given in the cases (i.e., a–k) at

the beginning of Section 3.5. In regard to the finite sample size, in Table B-1, under

the null hypothesis when the innovations are homoskedastic the size of the 𝑅 test is

well-controlled at a significance level of 5%, while our backward supremum test is

slightly oversized. However, when the sample size increases from 𝑇 = 200 to 𝑇 = 400

in Table B-2, our proposed test is shown to have well-controlled when conducted

at a nominal 0.05 level of significance. Similarly, the results with the presence of

upward shifts and upward trends in volatility lie within two percentage points from

the nominal size for 𝑇 = 200 and have well-controlled sizes for 𝑇 = 400. Although the

finite sample size of the 𝑆 test tends to slowly converge to the true nominal rejection

rate when the sample size increases to 400 in all cases, it is still oversized in cases of

downward shift, downward trend, and double shift in volatility. Additionally, the

size of the test is robust with the magnitude and position of co-bubbling. In other

words, there are small differences among the finite sample sizes across different

magnitudes and positions of bubbles with the same heteroskedastic profile.
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3.5.2 Behaviour under 𝐻1

Finite sample simulations in this subsection are used to quantify the power of the

bootstrap procedure under 𝐻1. Our series 𝑧𝑡 is generated using DGPs as in (3.1) and

(3.2) in the same way as we create the series 𝑥𝑡. The innovations of 𝑥𝑡 and 𝑧𝑡, 𝜖𝑥,𝑡 and

𝜖𝑧,𝑡 respectively, are independent and uncorrelated. We construct 𝑦𝑡 as Equations

(3.3) and (3.5), where we can set 𝜏 = 𝜏𝑧 for convenience. Here, 𝜏 represents the point

in time when the series 𝑦𝑡 begins to co-bubble with series 𝑧𝑡 in Equation 3.5, while 𝜏𝑧

denotes the time when the bubble in 𝑧𝑡 begins. Similar to the model under𝐻0, we can

set 𝛽𝑥,𝑡 = 0 because using 𝑥𝑡 or not, in this case, does not impair the generality of the

model since 𝜖𝑦,𝑡 is invariant to 𝛽𝑥,𝑡. Also, 𝜎𝑡 is given by one of the homoskedastic and

heteroskedastic cases at the beginning of Section 3.5. To compare the finite sample

powers of 𝑅 and 𝑆 tests, we let the magnitude of the linear coefficient between 𝑦𝑡 and

𝑧𝑡 change, and the magnitude of the bubble in the unobserved series, 𝑧𝑡, change as

well. 𝑧𝑡 is constructed from the combined sets below:

𝑐𝑧 ∈ {0.2, 0.4, 0.8}

𝜏𝑧 ∈ {0.8, 0.85, 0.9}

The series 𝑦𝑡 is generated as (3.3) with 𝛽𝑧,𝑡 = {0.025, 0.050, 0.075}. This coefficient is

to control the magnitude of the linear relationship between 𝑦𝑡 and latent series 𝑧𝑡. In

that sense, we expect that the larger this coefficient is, the higher chance we reject the

null hypothesis of the existence of co-bubble.

Table B-3 and B-4 provide the finite sample power of the tests under sample

sizes of 200 and 400 when the innovations to 𝑦𝑡 are homoskedastic. Across all the

bubble magnitude settings, our proposed test and Evripidou et al. (2022)’s test has

power that rises monotonically with 𝑐𝑧. To elaborate further, as the magnitude of

the bubble increases in the unobserved series, the rejection rate of both tests also

increases. On the other hand, if the bubble in 𝑧𝑡 appears later in the sample, our

rejection rate tends to decrease. Likewise, if the bubble begins closer to the end of the
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sample, then the probability of rejecting the null hypothesis regarding the presence

of a co-explosive bubble is higher for both tests. Additionally, we can see that our

test marginally outperforms the KPSS-type test of Evripidou et al. (2022) in various

settings of magnitude and origination time of co-bubbles. When the sample size is

increased to 400 (Table B-4), the rejection rates of both tests are higher than they are

in Table B-3. Similarly, the 𝑆 test is still more powerful than the 𝑅 test.

Looking at the results under Figures B-1 and B-3 inwhich the x-axis is the different

values of 𝛽𝑧 and the y-axis indicates the rejection rate from Monte Carlo simulations,

we find again our proposed test is slightly more powerful than the test of Evripidou

et al. (2022) and this result is robust throughout the range of different values of 𝛽𝑧 ∈

[0, 0.12]. The results hold if we change the magnitude of the bubble 𝑐𝑧 ∈ {0.2, 0.4, 0.8}.

In the context of non-constant volatility, finite sample power curves of both tests

are relatively the same under upward patterns of heteroskedasticity of innovations,

𝜖𝑦,𝑡; however, our test is oversized when volatility exhibits downward patterns and

double shift, (see b), d), h), i), j) and k) in Figures B-3 and B-4). Although the

finite sample size reduces when the sample size 𝑇 increases from 200 to 400, the

false positive rate is still high. For that reason, we run the simulation with a massive

sample size. Simulated results show the sizes of the test all ended up around 5%;

therefore, we conjecture the limitation of our proposed test is that its finite sample

distribution converges slowly to the limiting null distribution when downward shift

patterns of volatility are present.

3.5.3 Behaviour of the tests with serially correlated innovations

To investigate how co-explosivity tests behave under serially correlated innovations,

we generate data according to (3.1) and (3.2) adopting the same parameter settings

as Subsections 3.5.1 and 3.5.2 to construct series 𝑥𝑡 and 𝑧𝑡. However, there is a bit of

change to construct 𝑦𝑡, for considering scenarios where serial correlation exists in the

innovations of 𝑦𝑡, the model adopts two settings for innovation terms as follows:

1. Serial correlation - AR(1): 𝜖𝑦,𝑡 = 0.5𝜖𝑦,𝑡−1 + 𝑣𝑡
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2. Serial correlation - MA(1): 𝜖𝑦,𝑡 = 0.5𝑣𝑡−1 + 𝑣𝑡

where 𝜖𝑦,𝑡 denotes the innovation term of the series 𝑦𝑡, and 𝑣𝑡 is 𝑁𝐼𝐼𝐷(0, 1), 𝜎𝑡 = 1 ∀𝑡.

A feasible long-run variance estimator is given by:

�̂�(𝑟1)2𝑦,𝑙𝑟 = �̃�0 + 2
�̃�
�
𝑗=0

k(𝑗/�̃�(𝑇∗))�̃�𝑗.

where �̃�𝑗 ∶= 𝑐𝑜𝑣(�̂�𝑦,𝑡, �̂�𝑦,𝑡−𝑗)with ⌊𝑟1𝑇⌋ + 𝑖1(𝑖 > 0) + 1 ≤ 𝑡 ≤ 𝑇 + 𝑖1(𝑖 < 0), where 𝑇∗ is the

sample length of subsample.

In terms of serial correlation in innovations, normally in practice, it is to use

quadratic spectral (QS) kernel to estimate long-run variance for innovations as below:

k(𝑗) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

25�̃�2

12𝜋2𝑗2
� 5�̃�
6𝜋𝑗𝑠𝑖𝑛

6𝜋𝑗
5�̃� − 𝑐𝑜𝑠

6𝜋𝑗
5�̃�
� for 0 ≤ 𝑗 ≤ �̃�

0, otherwise

where �̃� = ⌊𝑛(𝑇∗/100)2/25⌋ is the optimal choice of bandwidth parameter (or lag

length) following recommendations of Newey and West (1994). 𝑛 is the lag selection

parameter.

To sum up, the test statistics in (3.17) and (3.18) can be re-written as below to

handle the serial correlation inside the innovations 𝜖𝑦,𝑡.

�̃� ∶= �̃�10

�̃� ∶= sup
𝑟1∈[0,1−𝑟0]

�̃�1𝑟1

where

�̃�1𝑟1 = �̂�(𝑟1)
−2
𝑦,𝑙𝑟(𝑇 − ⌊𝑟1𝑇⌋ − |𝑖|)−2

𝑇+𝑖1(𝑖<0)
�

𝑡=𝑖1(𝑖>0)+⌊𝑟1𝑇⌋+1
�

𝑡
�

𝑠=𝑖1(𝑖>0)+⌊𝑟1𝑇⌋+1
�̂�(𝑟1)𝑠,𝑖�

2

It is due to the fact that the Bartlett kernel is another function commonly used to

estimate long-run variance. We would like to run simulations to compare and choose
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between both. For that, a weighting scheme employs Bartlett kernel as given by:

k(𝑗) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − 𝑗
�̃�+1 for 0 ≤ 𝑗 ≤ �̃�

0, otherwise

where �̃� = ⌊𝑛(𝑇∗/100)2/9⌋ indicates another optimal choice of bandwidth parameter

(or lag length) following recommendations of Newey and West (1994).

In our simulations, we use the wild-bootstrap algorithm to control the size of the

tests, similar to Evripidou et al. (2022). However, we replace the short-run estimators

of variance �̂�(𝑟1)2𝑦 of 𝑦𝑡 with the Bartlett or QS long-run variances in calculating

test statistic (3.6). We do not use the long-run variance to construct the bootstrap

statistics as mentioned in Subsection 3.4.4, because Harvey et al. (2016) demonstrate

that the wild bootstrap procedure eliminates any weak dependence present in the

innovations, 𝜖𝑦,𝑡. We investigate the size and power performance of two co-explosive

tests (e.g., 𝑅 and 𝑆) employing the long-run variance estimator obtained from kernel

estimates under finite sample simulations. For that reason, we use notations of �̃�

and �̃� to denote 𝑅 and 𝑆 tests using the long-run variance estimation, respectively.

Simultaneously, we use two types of kernel functions in each test to evaluate the

properties of each kernel function for that test. We select the appropriate kernel and

optimal lag length for each test. To recommend the optimal lag length, we vary the

lag selection parameters, 𝑛, because the choice of 𝑛 can help control the finite sample

size of the tests under a nominal significance level and ensure robustness under

different patterns of serial correlation. For simulations related to the performance

of the test using long-run variance, we set 𝑛 ∈ {2, 4, 6} for the Bartlett kernel and

𝑛 ∈ {5, 10, 15} for the QS kernel.

In terms of serial correlation in innovations, as shown in Table B-5, the 𝑅 and 𝑆

tests are significantly oversized, with rejection rates ranging from 20 to 60% when a

standard short-run variance estimator is employed. This poses a serious problem, as

high false positive rates render the test unreliable in practice. Since serial correlation
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is a common feature of financial time series data, over-rejection of co-bubbling may

occur even when the serial correlation is present in the innovations to 𝑦𝑡. To address

this issue, we follow the suggestions of Evripidou et al. (2022) and replace the test

statistic in Equations (3.6) and (3.7) with an improved statistic of Equations (3.17)

and (3.18), in which the simple estimate of �̂�(𝑟1)2𝑦 is replaced with the long-run

variance estimate �̂�(𝑟1)2𝑦,𝑙𝑟.

By employing the Bartlett kernel and its optimal choice of bandwidth parameter

as described in Newey and West (1994), we present the results in Table B-6. In this

table, we observe that the size of the tests is significantly better compared to the

finite sample size of the tests when not using a long-run variance estimator. Despite

this improvement, the results still vary depending on the lag selection parameter

and across different serial correlation specifications. Specifically, when 𝑇 = 200 and

the innovations are not serially correlated (i.e., 𝑁𝐼𝐼𝐷(0, 1)) almost all finite sample

sizes lie within one percentage point above or below the nominal level of 0.05, except

for the �̃� test with a lag parameter of 4 or 6, which is undersized. In fact, for these

independent cases, the �̃� test controls the size better than the �̃� test over the range

of the lag parameters. When the innovations follow an AR(1) and MA(1) process,

the size of the tests is oversized in almost all cases, except for the �̃� test with a lag

parameter of 6. With the lag selection parameter of 6, the �̃� test is undersized in the

case of MA(1) innovations, but it has a well-controlled size under AR(1) innovations.

Under a sample size of 𝑇 = 400, results in Table B-7 shows the �̃� test using a Bartlett

kernel-based long-run variance estimator with a lag parameter of 6 is well controlled

at a 5% significance level in all co-explosivity settings.

In Table B-8, when using the QS kernel for estimating the long-run variance on

a small sample size of 𝑇 = 200, we find that the ̃𝑆 test is oversized when the lag

parameter is large and undersized when the lag parameter is small. The finite sample

sizes of the �̃� test are well-controlled at a nominal level of 5%, except for the case

where we use a lag parameter of 5 when the innovations follow an AR(1) process.

In other cases, the results are more robust and less sensitive to the choice of lag
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parameter for the �̃� test. In Table B-9 when 𝑇 = 400, the finite sample size of �̃� test

tends to be corrected towards the nominal significance level. In summary, to control

for the size of the test, both tests require different numbers of lag parameters and

types of kernel estimators. However, our ̃𝑆 test tends to be more sensitive to the

choice of kernel types and corresponding lag parameters. Based on the simulated

results, if we manually choose the lag length for the kernel estimations, we suggest

using the Bartlett kernel with a lag parameter of 6 (i.e., lag length �̃� = ⌊6(𝑇∗/100)2/9⌋)

in the �̃� test and the QS kernel with a lag selection parameter of 10 (i.e., lag length

�̃� = ⌊10(𝑇∗/100)2/25⌋) in the �̃� test for empirical applications, after comparing their

power performance. This is because under this choice of lag parameter here, �̃�

test and �̃� test are the most robust to the different patterns of serially correlated

innovations.

We also examine the finite sample power profiles of the tests under the existence

of serial correlation in innovation terms. Here, we use the suggestions for the type of

kernel and the value of the lag parameter as mentioned above. In all cases, when

the innovation terms are not serially correlated, the innovation terms follow the

first-order autoregressive process, and the first-order moving average process, �̃� test

still outperforms the �̃�, as shown in Table B-10. The results are robust in all settings

of the co-bubble model. When the position of the bubble in the latent series 𝑧𝑡 is near

the end of the sample, �̃� test has significantly more power than the �̃� test. As with

other tables mentioned before, the power increases as the bubble of latent variable,

𝑧𝑡 is long-lasting in the data sample, and its magnitude is more significant. Hence,

the �̃� test indeed improves the power to detect the co-bubbles starting nearly at the

end of the sample. Additionally, the conclusions continue to hold in the case of no

serially correlated volatility.

3.5.4 Timing explosive regime migration

In this section, we introduce the method of Evripidou et al. (2022) to estimate the

lag/lead variables. Additionally, wewill use finite sample simulations to demonstrate
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how the co-explosive tests behave under lag/lead parameter selections.

The value of the lead/lag parameter, 𝑖 is unknown under the null hypothesis of co-

bubbling. Therefore, to estimate full sample residuals in 𝑅, 𝑅𝑏, and �̃�, or subsample

residuals in 𝑆, 𝑆𝑏, and �̃�, we all have to use a subjectively chosen value, 𝑗, to replace

for 𝑖. According to Evripidou et al. (2022), we have the fitted full sample residuals

as �̂�𝑦,𝑡,𝑗 = 𝑦𝑡 − �̂�𝑦 − �̂�𝑥,𝑡𝑥𝑡−𝑗. When 𝑗 ≠ 𝑖, �̂�𝑦,𝑡,𝑗 can be decomposed by replacing 𝑦𝑡 in

equation of residuals by 𝑦𝑡 = 𝜇𝑦 + 𝛽𝑥,𝑡𝑥𝑡−𝑖 + 𝜖𝑦,𝑡 as below:

�̂�𝑦,𝑡,𝑗 = 𝛽𝑥,𝑡(𝜇𝑦/𝛽𝑥,𝑡 + 𝑥𝑡−𝑖 − 𝑥𝑡−𝑗) + 𝜖𝑦,𝑡 − �̂�𝑦 − (�̂�𝑥,𝑡 − 𝛽𝑥,𝑡)𝑥𝑡−𝑗

⇔ �̂�𝑦,𝑡,𝑗 = 𝛽𝑥,𝑡𝑟1,𝑡,𝑖,𝑗 + 𝑟2,𝑡,𝑗

where 𝑟1,𝑡,𝑖,𝑗 is a residual from a regression of 𝑥𝑡−𝑖 − 𝑥𝑡−𝑗 on a intercept and 𝑥𝑡−𝑗, while

𝑟2,𝑡,𝑗 is a residual from a regression of 𝜖𝑦,𝑡 on an intercept and 𝑥𝑡−𝑗. When 𝑖 = 𝑗,

�̂�𝑦,𝑡,𝑗 ≈ 𝑟2,𝑡,𝑗. Therefore, in line with Evripidou et al. (2022), we can estimate 𝑖 by

minimizing �̂�2𝑦,𝑡 = (𝑇 − |𝑗|)−1∑
𝑇+𝑗1(𝑗<0)
𝑡=𝑗1(𝑗>0)+1 �̂�

2
𝑦,𝑡,𝑗 with respect to 𝑗 across a range of values

of 𝑗. In other words, let ̂𝑖 is the estimate of 𝑖, we have ̂𝑖 = argmin𝑗∈𝐽 �̂�2𝑦,𝑡, where 𝐽 is

a set of predetermined 𝑗 and it implies 𝑖 ∈ 𝐽. When a pair of prices is co-explosive,

all subsample linear combinations of the pair must be stationary. In this way, we

conjecture that the estimated lag ̂𝑖 proposed by Evripidou et al. (2022) still holds in

the 𝑆 test and its variants.

To measure the ability to detect co-bubble behaviour with different lead/lag

values, we use the same DGP as in (3.3) with a wide range of 𝑗 ∈ {−6, −2, −1, 0, 1, 2, 6}.

At this stage, we generate two series, 𝑥𝑡 and 𝑦𝑡, using Equations (3.1), (3.2), and

(3.3) under the null hypothesis with 𝑐𝑥 = 0.4; however, we apply the test on the

error term obtained from regressing 𝑦𝑡 on the lag/lead of 𝑥𝑡 and a constant. Like

Evripidou et al. (2022), we set the true lead/lag 𝑖 to zero and expect the rejection rate

to increase as the absolute distance from 𝑗 to 0 increases. In this case, the co-bubble

occurs contemporaneously. Furthermore, the leads/lags of the independent variable

indicate the direction of migration from one market to another. For instance, if we
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determine that the residual of the regression of 𝑦𝑡 on the lead (lag) of 𝑥𝑡 is stationary,

then the bubble is more likely to migrate from (to) 𝑦𝑡 to (from) 𝑥𝑡. Moreover, the

value of 𝑖 indicates the length of time a bubble existing in one asset price migrates to

another price, in the case of a co-bubble relationship between them.

The results are presented in Table B-11. As anticipated, both tests reject more

frequently when the lead/lag value is farther away from the actual point of co-

bubbling. The rejection rates for the 𝑆 test tend to be slightly higher than those for

the 𝑅 test. Similar to the results of Evripidou et al. (2022), these rejection rates also

increase notably with 𝛽𝑥,𝑡, which is in line with expectations. This indicates that the

negative effects of selecting the wrong lag length could be exacerbated by the impact

of co-bubbling. These outcomes remain robust across sample sizes of 200 and 400.

Lastly, the rejection rate using estimated values of 𝑖, which are shown in the last two

columns of the table. The rejection rates obtained by using the 𝑅 and 𝑆 tests with the

estimated value of 𝑖, represented by ̂𝑖, are almost identical to those obtained using

𝑗 = 0, indicating that the estimator reliably selects the correct value of 𝑖 = 0. Similar

with findings of Evripidou et al. (2022) in the context of 𝑅 test, our findings also

suggest that the estimator ̂𝑖 performs well, and we, therefore, recommend using it as

standard practice for 𝑆 test. However, it is important to note that in practice, users

must determine the search set 𝑗 and exercise discretion.

3.6 Empirical Illustrations

3.6.1 Data

In recent research studies, Figuerola-Ferretti et al. (2015), Figuerola-Ferretti and

McCrorie (2016), HLST, and Pan (2018) have shown significant evidence of the

existence of explosive autoregressive behaviour in precious metals and non-ferrous

metals during financial crises. These findings all use the recursive autoregressive-

based test of PWY and its variants. Furthermore, Escribano and Granger (1998) show

the long-run (cointegration) relationship of precious metals (i.e., Gold and Silver)
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mainly due to a specific bubble and post-bubble period. Even when using a very

long monthly sample period from 1970 to 2011 (40 years), Baur and Tran (2014)

model shows the same conclusions as Escribano and Granger (1998) did. These

empirical studies taken together possibly imply a co-bubble relationship or bubble

migration. Therefore, in this section, we focus on detecting co-bubble behaviour,

including bubble migration, between pairs of metal prices.

Besides the reasons for focusing on metal prices mentioned above, we use the

same dataset of metal prices as Evripidou et al. (2022)’s to highlight the differences

between Evripidou et al. (2022)’s full sample test and our backward recursive KPSS-

based test. In their paper, Evripidou et al. (2022) show evidence of co-bubbles using

a wild bootstrap form of the KPSS-based test on pairs of spot and futures metal

prices. As a result, we use similar procedures to theirs to come to our results. In that

sense, after detecting explosive behaviour in the individual metal prices using a wild

bootstrap generalized right-tailed recursive test of PSY, we employ our supremum

recursive tests with a wild bootstrap algorithm and long-run variance estimation to

identify the co-bubbles.

Evripidou et al. (2022) use a dataset of spot and futures metal prices to examine

the possibility of co-bubbles between these prices using a wild bootstrap version of

the KPSS-based test on pairs of metal prices. Therefore, to compare our backward

recursive KPSS-based test with the full sample test of Evripidou et al. (2022), we

use the same dataset of Evripidou et al. (2022), which includes monthly spot and

futures prices for four precious metals (Gold, Palladium, Platinum, and Silver) and

six non-ferrous metals (Aluminium, Copper, Lead, Nickel, Tin, and Zinc), obtained

from Datastream. We also computed the real metal prices using Core CPI, which

was obtained from the Federal Reserve Bank of St. Louis database. The entire dataset

comprises 311monthly observations covering the period from July 1993 to May 2019.

Subsequently, we employ an identical procedure to their study to come to our

results. Specifically, after detecting explosive behaviour in individual metal prices

using PSY test, we use our proposed test with a wild bootstrap algorithm and long-
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run variance estimation to identify co-bubbles. For that reason, the notations of the

𝑅 and 𝑆 tests in this section are presented as �̃� and �̃�, respectively. Also, in this

section, we can use a general supremum version of ̃𝑆 test (denoted ̃𝐺𝑆) to identify

the co-explosive behaviour in the pairs of metal prices. As we mentioned in previous

sections, the general supremum algorithm of PSY is very computing-consuming

particularly when used with a wild bootstrap procedure and long-run variance

estimation, as we are doing here.

Figures B-5 - B-10 graphs the trajectories of real metal prices and their squared

log returns. Overall, all the metal prices fluctuate throughout the sample range

reflecting their different primary roles as investment assets andmanufacturing inputs

(see Evripidou et al., 2022). For instance, demand for non-ferrous metals in BRICS

countries1 drove the prices of these metals up significantly in the early- and mid-

2000s. Similarly, after the global financial crisis in 2007-2008, there was a decline

in global demand and production of manufactured goods, leading to a significant

decrease in the prices of all metals, including non-ferrous and precious metals. As

a result, the volatilities of these metals are also high during potential bubbles and

crashes.

3.6.2 Testing for explosive autoregression in the individual series

We first test for the presence of explosive autoregressive behaviour in individual

series before applying the co-bubble test. Although the explosive autoregressive

process may link with the existence of a rational bubble in the prices, it still may

be the case when the explosive behaviour is driven by fundamentals consisting of

the prices. Despite these considerations, in this study, we use the term ”bubble”

interchangeably with the presence of explosive autoregressive features in prices

and avoid considering the case of explosive behaviour in fundamental prices as it is

difficult to determine fundamental prices in practice. In summary, there is no need
1BRICS is a term created by Jim O’Neill, an economist at Goldman Sachs, in 2001 to refer to five

prominent economies - Brazil, Russia, India, China, and South Africa. The term is used to describe
these rapidly developing economies that are expected to have significant global influence by 2050.
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to decompose the price into bubble and fundamental parts in this study, and we can

directly apply the PSY test to the price series.

In our empirical analysis, we utilize the GSADF test proposed by PSY, which

has been shown to be effective in identifying single and multiple bubbles in asset

prices. To determine the appropriate lag length, we use Bayesian Information Criteria

(BIC), with a maximum of six lags. Additionally, we employ the wild bootstrap

procedure introduced by HLST with 1, 999 bootstrap replications to control for any

heteroskedasticity in the data. This enables us to use the resulting p-values to test

the null hypothesis of a unit root against the alternative of explosivity.

As shown in Table B-12, the last two columns present p-values obtained from

the 𝐼𝐼𝐷 bootstrap and wild bootstrap tests proposed by PSY. Since we use the same

dataset of Evripidou et al. (2022), for convenience, the results of PSY tests are taken

from Table 4 of Evripidou et al. (2022). Here, the results showed that all metal prices,

except for Aluminium spot and futures prices, exhibit explosive behaviour. The wild

bootstrap test results are not as strong as those from the 𝐼𝐼𝐷 bootstrap test, but they

lead to the same conclusion of explosive behaviour in metal prices at a significance

level of 10%. These findings are consistent with those of HLST and Figuerola-Ferretti

and McCrorie (2016), who also employed wild bootstrap PWY/PSY critical values in

their empirical applications.

Furthermore, we examine the date-stamping results in Evripidou et al. (2022)

to identify the time periods where bubbles are likely to occur in the prices. Once

again, we have extracted these results from Table 5 of Evripidou et al. (2022). As we

can see in our Table B-13, which corresponds to Table 5 of Evripidou et al. (2022),

the findings for spot and futures prices are fairly similar. Although the explosive

periods vary across prices, most of them exhibit a bubble during 2007-2008 (e.g.,

Gold, Platinum, Silver, Lead, Nickel, Tin, and Zinc). Additionally, Palladium and

Zinc show explosive periods that may be linked to the Dotcom bubble in the 1990s.

Some metal prices, including Gold, Platinum, Copper, Lead, and Tin, experience a

bubble around 2003-2004.
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3.6.3 Results from tests for co-bubble behaviour

According to Barsky et al. (2021), gold plays a very important role in the global

economy as a hedge against inflation and a reserve to protect against recessions.

Therefore, a bubble in gold may migrate to other metals. However, the causal rela-

tionship between pairs of metals is unknown in practice. Therefore, estimating the

true lead/lag of the co-explosive model is necessary to determine the direction of

migration. Indeed, the migration direction can only be revealed when the lead/lag

values show the true direction. Therefore, in this section, we will follow Evripidou

et al. (2022) and apply the test on a combination of metal prices to determine whether

a bubble in one metal price drives the bubble of another metal price or not.

After testing individual series in Subsection 3.6.2, we will exclude Aluminum

from testing co-bubble behaviour with other metals as for this metal the 𝐺𝑆𝐴𝐷𝐹 test

finds no evidence of explosivity. To test co-bubble behaviour in pairs of metals, we

will calculate the �̃� and �̃� (Equations 3.17 and 3.18) and compare them to their corre-

sponding wild-bootstrap critical values. If the tests fail to reject the null hypothesis,

we can conclude that a co-explosive bubble is present in the two tested series.

Additionally, as mentioned above, we do not know exactly when the co-explosive

bubble of two series will occur and the direction of bubble migration in practice. The

estimated lead/lag value will help us determine the direction of bubble migration.

Therefore, to estimate the true lead/lag value and identify the timing and direction

of bubble migration between pairs of metals, we will consider a range of user-chosen

lead/lag values on the independent variable, as discussed in Subsection 3.5.4. Fol-

lowing Evripidou et al. (2022), we will consider lead/lag values up to 1 year, with

𝑗 = {−12, −11, ..., −1, 0, 1, ..., 11, 12}. This range of lead/lag values is reasonable because

the explosive periods of almost all bubbles are around one year (see Table B-13).

As in Evripidou et al. (2022), based on the p-values2 of the tests in Tables B-14 and

B-15, going through the columns from left to right, when the p-value is less than 2.5%,
2A p-value is defined as the probability of obtaining observed results given that the null hypothesis

is true. Here, it is calculated by one subtracts rejection rate, which shows how many the percentages
of bootstrap critical values are smaller than our test statistic.
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we reject the null hypothesis of the presence of co-explosivity against the alternative

hypothesis of no co-explosivity. In other words, we fail to reject the null hypothesis of

the stationary linear combination of two price series when the p-value is greater than

2.5%. While the �̃� test shows evidence of a co-explosive bubble in the paired prices

of Copper/Lead, Platinum/Copper, Copper/Silver, Lead/Gold, Lead/Tin, Gold/Tin,

and Zinc/Nickel, the ̃𝑆 test rejects the null hypothesis of co-bubbling in half of these

cases except for Lead/Gold, Gold/Tin, Copper/Lead, and Gold-Zinc. However, our

proposed test finds another case of co-bubbling: Silver/Lead. Subsection 3.5.2 shows

that our proposed test, �̃�, has higher power than the full sample KPSS-based test of

Evripidou et al. (2022) to reject the null hypothesis when it is false; therefore, it is

unsurprising that we find fewer co-bubble pairs in our results. Furthermore, our

findings on the co-explosivity of spot prices are relatively identical to those of futures

prices.

As we can see in Table B-13, which shows the bubble periods of spot and futures

prices of metals, we may conjecture that the explosive bubbles in metals are in-

sample bubbles. In PSY, evidence is shown of the drawbacks of the single supremum

test to detect in-sample bubbles compared to the generalized supremum test. In

that sense, it is arguable that our backward supremum test may not be powerful

enough compared to the double supremum test for detecting bubbles that exist and

collapse inside the sample periodically. Therefore, using a double supremum co-

bubble test, the 𝐺𝑆 test, is necessary to test co-bubbles that may occur in-sample.

Although we cannot run thousands of simulations of the generalized supremum

KPSS-based test (𝐺𝑆) because of intensive computing power requirements, we can

still employ the test here on pairs of metal prices where we only need to run on a

sample path for each pair. Since we employ long-run variance estimation to address

serial correlation in the test, ̃𝐺𝑆, a variant of 𝐺𝑆 with long-run variance estimator, is

used throughout this section. In fact, from the results in the sixth column of Tables B-

14 and B-15, besides co-bubbles detected by the 𝑆 test, we can see that compared with

the 𝐺𝑆 test, the backward sup𝐾𝑃𝑆𝑆 test is missing a few other co-bubbles such as
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Platinum/Gold, Copper/Gold, Copper/Silver, Silver/Lead, Tin/Silver, Copper/Tin,

and Palladium/Nickel. Similar to the �̃� and �̃� tests, the results of the ̃𝐺𝑆 test on

futures prices are the same as those on spot prices.

Using the estimated lead and lag values ̂𝑖 in Tables B-14 and B-15, we can deter-

mine the migration direction of metal pairs. To keep our discussion brief, we focus

on presenting new findings from �̃� and ̃𝐺𝑆 that do not match the co-bubbling results

reported by Evripidou et al. (2022). Since the results of the �̃� test have already been

reported in Evripidou et al. (2022), we do not repeat them here. Additionally, be-

cause the ̃𝐺𝑆 test uses a more general algorithm than that of the �̃� test, all the bubbles

detected by the �̃� test are also covered in the findings of the ̃𝐺𝑆 test (e.g., Lead/Tin,

Gold/Tin, Lead/Gold, Silver/Lead, and Copper/Lead), but not the converse. Fur-

thermore, Evripidou et al. (2022) discussed the migration direction of their detected

pairs under the �̃� test carefully in their paper. While the ̃𝐺𝑆 test detects co-explosivity

in pairs of Silver/Lead, Tin/Silver, Copper/Tin, Copper/Gold, Palladium/Nickel,

and Platinum/Gold, it is unable to identify co-bubbles in pairs of Zinc/Nickel and

Copper/Platinum, as the �̃� test of Evripidou et al. (2022) did. The estimated lead/lag

values of pairs that are reported in the third column of Tables B-14 and B-15 show

the migration direction of pairs. For example, ̂𝑖 = 0 in the pairs of Silver/Lead,

Tin/Silver, indicating contemporaneous co-explosive relationships in those pairs.

The explosive behaviour in the Nickel price is found to lead to explosive behaviour

in the Palladium price by 12 months. Similarly, the bubble in Platinum is led by the

bubble in Gold by 12 months. The explosive behaviour in Copper lags behind Tin by

1 month. Additionally, the results also show that the explosive bubble in Gold leads

that in Copper by 12 months. As Evripidou et al. (2022) noted, we confirm that the

Lead price leads the Gold price by 7 months. This finding also matches the results

of the bubble in Figuerola-Ferretti et al. (2015) and Figuerola-Ferretti and McCrorie

(2016), where bubbles in non-ferrous metals occurred in the period 2003-2007, and

precious metals like Gold appeared in and after 2007-2009. In addition, the ̃𝐺𝑆 test

supports the evidence of explosive behaviour in the Tin price, lagging that of Lead
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by 2 months. Furthermore, via the ̃𝐺𝑆 test, we find that the Copper lead bubble

occurs in Gold 8 months later. This information matches our data-stamping Table

B-13 and the conclusions in Figuerola-Ferretti et al. (2015), Zhao et al. (2015), and

Figuerola-Ferretti and McCrorie (2016). For the results of the Copper/Tin pair, we

can say that it takes one month for the explosive behaviour in the Copper price to

migrate to the Tin price. Finally, we find an explosive bubble in Platinum leading

that in Gold and a bubble in Nickel leading that in Palladium by 12 months via the

̃𝐺𝑆 test. Although the results are statistically significant, the migration point may

not be accurate because we cannot ensure that the true lead/lag can be outside of a

pre-chosen set of lead/lag 𝐽 or not. Finally, the results of futures prices of metals are

relatively similar to those of the spot prices.

The results of co-explosivity in the empirical application section are illustrated by

figures from Figure B-11 to Figure B-14. In these graphs, the metal prices are nor-

malized and shifted vertically before plotting them with normalized residuals from

corresponding regressions on the same graph. Additionally, the series is trimmed

to match the dependent variable with the estimated lead/lag of the independent

variable in Figures B-14 and B-15. In these figures, we can observe instances in time

where pairs of metals move up together. The reported residuals are estimated on a

full sample. Here, we only report non-overlapped pairs for both spot and futures

metal markets. While Figures B-11 and B-12 show co-explosive pairs on the spot

market, futures market are presented in Figures B-13 and B-14.

3.7 Conclusion

This chapter contributes to the literature on modelling the relationship of explosive

series at the end of the sample by introducing a modified KPSS-based test for testing

co-explosive behaviour. Specifically, our test combines the test of Evripidou et al.

(2022) and the backward recursive procedure of PSY. In the context of heteroskedas-

ticity, Evripidou et al. (2022) prove that the limiting null distribution of test statistics
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still depends on the pattern of heteroscedasticity; therefore, we, in this chapter, still

use the wild bootstrap algorithm of HLST to provide a size-robust test under various

volatility specifications. On the other hand, when the co-explosive model contains

serial correlation, as suggested by Evripidou et al. (2022), we use long-run variance

estimator to correct the finite sample size of the test. As shown in finite sample

simulation results, these treatments are highly effective to guarantee the size of the

test controlled.

Together with that, Monte Carlo simulations demonstrate that our backward

recursive test generally outperforms the full sample test of Evripidou et al. (2022) in

rejecting the spurious co-explosivity. In fact, the results are robust across almost all

different specifications of bubble, heteroskedasticity, serial correlation, and co-bubble

settings. Although our test is more powerful than Evripidou et al. (2022)’s test in

homoskedastic and upward patterns of volatility, the finite sample size of our test

is oversized in some heteroskedastic scenarios (i.e., downward shifts, downward

trend, and double shift). Under serial correlation, our simulated results show the

competence of different kernels with different co-explosive tests, where our test

works better under the Bartlett kernel at a suitable lag parameter. Because the 𝑅 and

𝑆 test are very sensitive to the choice of kernel and lag parameter, we recommend

using the quadratic spectral kernel for the 𝑅 test and the Bartlett kernel for the 𝑆 test.

Applying our proposed test with long-run variance estimator to empirical data on

various metal prices with explosive behaviour, the results demonstrate the presence

of co-explosivity, indicating that bubbles migrate from one metal price to another.

The results of co-bubbles from single backward supremum test are reasonable and

consistent with those using double supremum recursive test. The single backward

supremum test detects the same co-explosivity of metal pairs as the generalized

supremum test, but the latter detects more co-bubbles than the former. In addition,

the supremum tests detect a few more co-bubbles in pairs of metals, but they also

reject some co-bubbles detected by Evripidou et al. (2022) full sample test. The results

show the presence of co-bubbles under both spot and futures prices are relatively
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similar.

Finally, although we could not draw finite sample power curves for the double

supremum test to compare with our test due to limitations in computing power, we

still highly recommend the use of the double supremum test (𝐺𝑆) over the 𝑆 test in

practice. This is because the double supremum test is a generalized supremum test

in which a supremum test is repeatedly implemented on moving windows, which

has advantages in capturing in-sample co-bubbling.
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On the Behavior of Tests for Stock Return

Predictability during Bubble Regimes

The predictability of asset returns is a significant and contentious issue in the fields

of economics and finance. The fourth chapter makes three key contributions to this

topic. Firstly, we introduce a more versatile data generating process [DGP hereafter]

compared to the one described in Yang et al. (2022). Both DGPs aim to incorporate

in the price series from which returns are generated in the period during which the

return predictability test is conducted, however, the more versatile DGP allows us to

adjust the bubble specifications in an uncorrelatedmannerwith the fundamental asset

return. This approach helps to avoid the inclusion of an indirectly observable variable

in our return predictive model. Secondly, based on the proposed DGP, we investigate

the finite sample performance of two widely used predictability tests (i.e., the IVX

test, Bonferroni-t, and Bonferroni-Q tests) through simulations. The results show

that these tests tend to over-reject the null hypothesis of no predictability when the

bubble is large and long-lasting, although the Bonferroni-t test appears to have more

well-controlled size across a majority of bubble and predictive model specifications.

Lastly, using the updated dataset from Welch and Goyal (2008) covering the period

from January 1927 to December 2021, we re-assess the return predictability of 14

financial and macroeconomic predictors. The results of our simulations are further
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validated by our empirical findings in which the predictability tests provide more

rejections during bubble regimes.

4.1 Introduction

The predictability of lagged financial variables over future stock returns is one of the

fundamental topics in finance. This is because understanding return predictability

in practice is very important to select crucial predictors in portfolio management and

risk analysis. In fact, many different predictor variables are used in predictive models

to answer the question: ”Can future returns be predicted by specific independent

variables?”. Early empirical studies, including Fama (1970), Fama (1990a), Keim

and Stambaugh (1986), Campbell and Shiller (1988a), Campbell and Shiller (1988b),

Fama and French (1988b), Fama and French (1989), Fama (1990b), Campbell (1991)

and Cochrane (1992) often show evidence of in-sample predictability of U.S. stock

index returns over a relatively long time horizon.

Despite a large amount of research supporting the existence of return predictabil-

ity, findings are still controversial because the return predictability test might provide

spurious results about the predictability of predictors, in which the predictability

tests tend to over-reject the null hypothesis of no return predictability and those

results are not held through time. For instance, Cavanagh et al. (1995) show that a

standard t-test, which is used in testing a null hypothesis of no predictability, suffers

from severe size distortions when the predictor is both persistent and endogenous,

Ang and Bekaert (2007) show evidence of short-horizon return predictability with

interest rates or the three-month T-bill rate and the presence of predictability is not

robust across countries and different sample periods. Together with that, by using

various prominent variables from previous research, Welch and Goyal (2008) show

poor predictability of models using those variables both in-sample and out-of-sample.

Moreover, when testing for long-horizon predictability, research has shown that there

is a degree of predictability in stock returns over long periods (cf. Fama and French,
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1988a), but it disappears when adjustments aremade for heteroskedasticity and serial

correlation in the error terms induced by cumulative returns (see e.g., Richardson and

Smith, 1991 and Hodrick, 1992). Boudoukh et al. (2006), for example, demonstrated

that when returns cannot be predicted, the estimated return forecasting coefficients

may increase with the horizon due to sampling variation alone.

Besides the expansion of empirical studies to find good predictors for stock re-

turns, theoretical research has provided several new candidate tests for predictability.

Gregory Mankiw and Shapiro (1986), Nelson and Kim (1993), Elliott and Stock

(1994), Stambaugh (1999), Lanne (2002), and Torous et al. (2004) show that strongly

persistent predictors and the correlation between innovations in the predictors and

in returns lead to the asymptotic distribution of the standard t-statistic to depend on

nuisance parameters. Accordingly, the standard t-test over-rejects the null hypothe-

sis if we compare the test statistic with conventional critical values (see Cavanagh

et al., 1995, Campbell and Yogo, 2006 [CY hereafter], Jansson and Moreira, 2006 and

Phillips andMagdalinos, 2008). According to Lewellen (2004), the presence of highly

persistent and endogenous predictors is very common in practice since endogeneity

and high persistence are typical characteristics of commonly used predictors (e.g.,

price-scaled ratios). This finding has motivated researchers to construct improved

tests for the predictability that allow for both strong persistence and endogeneity in

the predictor series. For instance, likelihood-based tests that are robust to a strongly

persistent predictor and endogenous innovations have been proposed (e.g., Bonfer-

roni t-test of Cavanagh et al. (1995), sup-bound Q-test of Lewellen (2004), Jansson

and Moreira (2006)’s conditional test and Bonferroni-Q test of CY). To account for

highly persistent regressors, these tests assume the regressors have the form of a

first-order autoregression with a local-to-unit root 𝜌 = 1+ 𝑐/𝑇, approaching a random

walk as the sample size 𝑇 increases to infinity.

Among likelihood-based tests, the Bonferroni type tests of Cavanagh et al. (1995)

and CY are the most prominent. For a while, before the IVX test come into light,

a great deal of empirical research applied the Bonferroni 𝑄 test of CY to examine
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return predictability. Therefore, in this chapter, we will evaluate the behaviour of

these three tests under the presence of a bubble in return. Although Bonferroni-

based tests are prevalent in practice and empirical research, these procedures are

excessively intricate and have limitations. Indeed, while the Bonferroni-Q test of

CY is quite successful for testing predictability in the cases where endogenous and

highly persistent regressors exist, Ang and Bekaert (2007) show it is oversized if the

persistence of predictors are weak (i.e predictors are stationary or near-stationary)

or the sample size is relatively small. Likewise, CY show that the Bonferroni-t test

of Cavanagh et al. (1995) and sup-bound Q-test of Lewellen (2004) lack power to

detect return predictability relative to the Bonferroni-Q test when the predictor is

strongly persistent and endogenous. Furthermore, because the joint predictability by

combinations of financial predictors cannot be tested, the Bonferroni-based tests are

restricted to the case of univariate regression.

Consequently, various alternative tests have been developed to be robust to the

characteristics of the predictor. In fact, Phillips and Magdalinos (2008) proposed a

new instrumental variable (IV) method, known as the IVX regression, which allows

for robust chi-square inference across a broader range of values near unity than

previous studies that have typically focused solely on the case of a single regressor

with near integration (local to unity). Later, works of Gonzalo and Pitarakis (2012),

Phillips and Lee (2013), Breitung andDemetrescu (2015), Kostakis et al. (2015) [KMS

hereafter], Lee (2016), Demetrescu and Hillmann (2022), Demetrescu et al. (2022a),

and Demetrescu et al. (2022b) extended the instrumental variable [IVX hereafter]

approach of Phillips and Magdalinos (2008) to tests for predictability. In that sense,

the IVX based-tests are improved to be robust to stylized facts of financial time series

data (e.g., heteroskedasticity or serial correlation).

According to Demetrescu et al. (2022a), the IVX test of KMS is themost prominent

return predictability test. In their research, KMS use the extended instrumental vari-

able [IVX] procedure of Phillips and Magdalinos (2008) to estimate the predictive

regression. For each predictor, they construct a corresponding mildly-integrated
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instrument formed from the first differences of the predictor. Because the IVX in-

strument has lower persistence than the near-integrated regressors, predictability

statistics have asymptotically pivotal limiting null distributions robust to the persis-

tence of the predictor. Although IVX-based predictability statistics possess standard

(pivotal) limiting null distributions, regardless of whether the predictor is local-

to-unity or weakly dependent (stationary), it provides a very poor approximation

to their finite sample behaviour, particularly for highly persistent and endogenous

predictors. Therefore, KMS suggest a finite sample correction for the standard error

in the IVX test statistic. However, Demetrescu et al. (2022a) show that the correction

only works well on the two-sided test and the one-sided IVX test suffers from severe

size distortions. Together with that, by simulations, Demetrescu et al. (2022a) show

although the IVX works well for tests against two-sided alternatives, the tests against

one-sided alternatives are badly size-distorted compared to Bonferroni-based tests.

Additionally, under the context of multivariate regression, Xu and Guo (2022) show

that the IVX test tends to discover spurious predictability as the number of predictors

increases. Despite this drawback of the IVX test, for simplicity, we will use it to look

into the behaviour of tests under the existence of a rational bubble.

As we mentioned above, while most papers focus on issues relating to predictors

(e.g., high persistence, endogeneity, heteroskedasticity, and serial correlation), there

is little literature discussing potential issues of predicted variables (i.e., return). By

letting a rational bubble appear in the log price of the asset, Yang et al. (2022) show

that the IVX test is badly size-distorted. This is because the return of a stock price

containing the bubble still has explosive behaviour. Thus, Yang et al. (2022) argue

that estimated coefficients in the predictive regression are biased since two persistent

variables, a variable of bubble effect and an instrumental variable, cause spurious

correlation.

Yang et al. (2022) utilise a log-linear bubble model derived by Campbell et al.

(1997) and Phillips et al. (2011). Because the explosiveness in stock price is driven

by the bubble component, in line with Phillips et al. (2015) [PSY hereafter], log price
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𝑝𝑡 is assumed to follow an explosive autoregressive process with two regimes as

𝑝𝑡 = 𝜌𝑏𝑝𝑡−1 + 𝜖𝑡, where 𝜌𝑏 > 1when a bubble emerges at time t and otherwise when

𝜌𝑏 = 1, it means the prices is a unit root process.

As in Yang et al. (2022), during the bubble period, the logarithmic excess stock

returns, 𝑟𝑡 depend on 𝑏𝑡−1 = (𝜌𝑏 − 1)𝑝𝑡−1 constituted by a pre-determined component

the logarithm of lag one of stock price, and an indirectly observable explosive root in

the bubble model. In that regard, Yang et al. (2022) filter the bubble component out

from the returns. In more detail, they employ the bubble date-stamping algorithm of

PSY to estimate the autoregressive parameter 𝜌𝑏 in the bubble model, then construct

the estimator of the variable 𝑏𝑡−1 from the estimated autoregressive value of �̂�𝑏.

Consequently, after removing the fitted values, which were constructed from the

estimator, from the corresponding predicted variable (i.e., returns) and predictors,

they provide an extended IVX test statistic robust to the bubble effect.

In this chapter, we also consider the predictability tests under bubble period as

Yang et al. (2022); however, we focus more on analyzing how different predictability

tests behave rather than constructing a test statistic robust to the bubble effect as the

way Yang et al. (2022) have done. On the way to do that, we construct a DGP based

on the DGP of CY which is more natural and flexible than that of Yang et al. (2022).

In fact, we employ the price model of PSY where the current stock price, 𝑃𝑡 is equal

to the sum of the fundamental price, 𝑃𝑓𝑡 and bubble component, 𝐵𝑡. We assume that

the part of the stock return that can be predicted by predictors is the fundamental

return; therefore, the original form of the predictive regression model of CY does not

contain the pre-determinant bubble factor as in Yang et al. (2022). Secondly, while

Yang et al. (2022) focus on the size and power of their extended IVX test by letting

the autoregressive parameter of the bubble be fixed, we in this chapter emphasize

examining how the finite sample size of Bonferoni-based tests in CY and IVX test

of KMS behave with various changes in the specification of bubbles (e.g., length,

position, and magnitude of the bubble). Furthermore, in empirical applications,

we will demonstrate the changes in the predictability of a large number of different
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predictors through return predictability tests in subsamples with and without a

bubble. In fact, while Yang et al. (2022) only applied their test to the full sample,

we employ the test on the subsamples to investigate how common predictability

tests behave in practice under the bubble effect. This is another novel aspect of this

chapter.

By using finite sample simulations, we examine the behaviour of the predictabil-

ity tests against one-sided alternatives under various specifications of bubbles and

predictors. Overall, the tests over-reject the null hypothesis of no predictability when

a bubble exists in the stock price. In that sense, the tests will be affected more strongly

if the bubbles are large and long-lasting. The results show that the Bonferroni-t test

has better size control than IVX and Bonferroni-Q test when the bubble exists at the

end of the price series. The Bonferroni-Q test is very sensitive to the presence of

bubbles. When the bubble is large and long-lasting in the sample, the Bonfferoni-Q

test exhibits more severe size distortions than the other two tests. The behaviour

of tests becomes complex when an in-sample bubble exists. In other words, when

the bubble starts and bursts in the sample, the finite sample size of the tests is not

monotonically increasing when the bubble length or the growth rate of the bubble

increase. The reason may come from the effect of the large negative jump in return

caused by the in-sample bubble.

Besides evaluating the behaviour of the predictability tests on simulated data,

we also examine an empirical application that reinforces our numerical results on

the well-known dataset of Welch and Goyal (2008). To predict stock returns, most

researchers often focus on relevant financial variables such as dividend price ratio or

dividend yield ratio, earning price ratio, and common interest rate-related variables

(e.g., treasury-bill rates and long-term rates). Fama (1990a), for instance, examines

the predictability of stock returns using various candidate predictors including in-

terest rates, industrial production, GNP, and capital stock and expenditure, while

CY considers candidate predictors that include the dividend-price ratio, the earning-

price ratio, the three-month T-bill rate, and the long-short yield spread. We here use
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similar financial and macroeconomic predictors as previous researchers which are

collected and updated up to December 2021 by Welch and Goyal (2008) in order

to re-evaluate the return predictability of regressors. Therefore, in the empirical

application section, on the one hand, we still investigate the return predictability of

predictors on the full sample as in previous research studies. On the other hand, we

divide the data sample into subsamples with andwithout the Dot-com bubble period,

which is determined by applying the PSY test to date-stamp the start and end dates

of bubbles in stock prices. Our empirical results actually confirm that commonly

used predictability tests are more likely to reject in the presence of a bubble.

The remainder of this chapter is organized as follows. In Section 4.2 we intro-

duce our predictive regression model that allows for a potential bubble in the stock

price. Section 4.3 describes IVX and Bonferroni-based test procedures and their

limitations. Section 4.4 presents the asymptotic properties of the tests. Section 4.5

provides simulation results illustrating how return predictability tests behave both

with and without bubbles in the stock price. In Section 4.6, we report empirical

results from re-evaluating the return predictability of fourteen popular financial and

macroeconomic variables in full sample and subsamples with and without bubble.

Section 4.7 provides a brief conclusion.

4.2 Predictive Regression and Assumptions

In this chapter, we consider the following predictive regression model.

𝑟𝑓𝑡 = 𝜇𝑟 + 𝛽𝑥𝑡−1 + 𝑢𝑡, 𝑡 = 1, ..., 𝑇 (4.1)

𝑥𝑡 = 𝜇𝑥 + 𝜉𝑡 (4.2)

𝜉𝑡 = 𝜌𝜉𝑡−1 + 𝑣𝑡 (4.3)

where 𝑇 is the sample size, 𝑟𝑓𝑡 is the logarithmic fundamental (excess) return. 𝑥𝑡−1

denotes a putative predictor. 𝑢𝑡 denotes innovations forming a martingale difference

sequence (MDS). 𝛽 is the slope coefficient of the predictive model. 𝜇𝑟 and 𝜇𝑥 are
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intercepts of 𝑟𝑓𝑓 and 𝑥𝑡, respectively.

Although the predictive regression model can be formed in a general set-up that

includes multiple regressors, we here only focus on the univariate form of the model.

In that regard, we can compare the behaviour of the Bonferroni-based tests and the

IVX test since the former is designed to test the return predictability of only a single

variable at one time. Following CY, we make the assumptions as below:

Assumption 4.1 Let 𝐿 be the lag operator, we assume 𝜓(𝐿)𝑣𝑡 = 𝑒𝑡, where 𝜓(𝐿) = ∑
𝑝−1
𝑖=0 𝜓𝑖𝐿

𝑖

with 𝜓0 = 1 and 𝜓(1) ≠ 0 with the roots of 𝜓(𝐿) assumed to be less than one in absolute value.

The initial condition, 𝜉0 , is a mean zero 𝑜𝑝(𝑇1/2) variate. The autoregressive parameter 𝜌

is given by 𝜌 ∶= 1 + 𝑐/𝑇 for a fixed 𝑐. This allows for unit root regressors (𝑐 = 0), mildly

stationary regressors (𝑐 < 0), and mildly explosive regressors (𝑐 > 0).

Remark 4.1 Innovations, 𝑢𝑡, is serially uncorrelated. This condition is appropriate to empir-

ical evidence of serial correlation of the unpredictable component of returns. Furthermore,

Assumption 4.1 permits the dynamics of the predictor variable to be represented by an 𝐴𝑅(𝑝)

model, with the persistence of the predictor (strong or weak) being determined by the parameter

𝜌.

Assumption 4.2 The conditional homoskedasticity in CY and KMS,

(𝑖) 𝔼[(𝑢𝑡, 𝑒𝑡)′, (𝑢𝑡, 𝑒𝑡)] ∶=

⎛
⎜⎜⎜⎜⎜⎜⎝
𝜎2𝑢 𝜎𝑢𝜎𝑒

𝜎𝑢𝜎𝑒 𝜎2𝑒

⎞
⎟⎟⎟⎟⎟⎟⎠

(𝑖𝑖) sup
𝑡
𝔼[𝑢4𝑡 ] < ∞

(𝑖𝑖𝑖) sup
𝑡
𝔼[𝑒4𝑡 ] < ∞

We define 𝛿 ∶= 𝜎𝑒𝑢
𝜎𝑒𝜎𝑢

is the correlation between the innovations {𝑢𝑡} and {𝑒𝑡}. For future

reference, we define 𝜔2𝑣 ∶= lim𝑇→∞𝔼(∑
𝑇
𝑡=1 𝑣𝑡)

2 = 𝜎2𝑒 /𝜓(1)2 as the long-run variance of {𝑣𝑡}.

Remark 4.2 The conditions in Assumption 4.1 are largely similar to those of Assumption 1

presented in CY. These conditions allow for conditional heteroscedasticity in the sequence of

innovations, while imposing unconditional homoscedasticity.
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Assumption 4.3

𝑃𝑡 = 𝑃𝑓𝑡 + 𝐵𝑡 (4.4)

𝑃𝑓𝑡 = 𝑃𝑓𝑡−1 exp(𝑟
𝑓
𝑡 ) ⟺ 𝑟𝑓𝑡 = 𝑝

𝑓
𝑡 − 𝑝

𝑓
𝑡−1 (4.5)

𝐵𝑡 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝜌𝑏𝐵𝑡−1 + 𝜈𝑡, 𝑡 = ⌊𝜏1𝑇⌋ + 1, ..., ⌊𝜏2𝑇⌋

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(4.6)

𝑟𝑡 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝑟𝑓𝑡 , 𝐵𝑡 = 0

𝑝𝑡 − 𝑝𝑡−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(4.7)

The bubble in return is created following rational bubble-generating mechanisms

of Blanchard andWatson (1982); Diba and Grossman (1988); therefore, 𝑃𝑡 is the price

of the asset, which can be decomposed into a market fundamental, 𝑃𝑓𝑡 and a bubble

component, 𝐵𝑡 with 𝐵0 = 𝑜𝑝(𝑇1/2). 𝑝𝑡 and 𝑝
𝑓
𝑡 are the logarithmic price and logarithmic

fundamental price, respectively. In that, 𝜈𝑡 ∼ 𝑁𝐼𝐼𝐷(0, 1) and 𝜌𝑏 = 1 + 𝑐𝑏𝑢𝑏/𝑇 presents

the autoregressive parameter (or the magnitude of the bubble component), which

displays locally explosive autoregressive behaviour. ⌊𝜏1𝑇⌋ + 1 is the position where

the bubble starts from and ⌊𝜏2𝑇⌋ is a position where the bubble ends. It means when

𝜏2 = 1, then we can say the bubble starts from the time, 𝑡 = ⌊𝜏1𝑇⌋ + 1, exists till the

end of the sample, and bursts somewhere out of the sample; however, if 0 < 𝜏2 < 1

we have a bubble that starts at 𝑡 = ⌊𝜏1𝑇⌋ + 1 and bursts at 𝑡 = ⌊𝜏2𝑇⌋ before the sample

ends. 𝐵𝑡 only exists in bubble regime from 𝑡 = ⌊𝜏1𝑇⌋ + 1 to 𝑡 = ⌊𝜏2𝑇⌋, it receives value

of zero outside its bubble period. Here, we assume the bubble is rational and follows

a positive explosive autoregressive process. Tirole (1982) and Diba and Grossman

(1988) argue that rational bubbles cannot be negative. In this chapter, we also ensure

this condition when constructing an explosive process in stock returns. All detailed

procedures will be stated in Section 4.5.
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4.3 Return Predictability Tests

In this section, we outline feasible versions of the IVX test statistic of KMS and the

Bonferroni type tests of Cavanagh et al. (1995), and CY which are used to detect

predictability in practice. All tests are designed to test the null hypothesis 𝐻0 ∶ 𝛽 = 0,

which means the return is not predictable by the predictor.

4.3.1 IVX Test

The basic idea underlying the IVX procedure of Phillips and Magdalinos (2008) is to

instrument the regressor 𝑥𝑡−1 by a variable of controlled persistence, constructed as

𝑧0 = 0 and 𝑧𝑡 = (1 − 𝜚𝐿)−1+ Δ𝑥𝑡 ∶=
𝑡−1
�
𝑗=0
𝜚 𝑗Δ𝑥𝑡−𝑗, 𝑡 = 1, ..., 𝑇. (4.8)

where 𝜚 ∶= 1−𝜁𝑇−𝜂 with 𝜁 > 0 and 0 < 𝜂 < 1. The IVX scale and exponent parameters,

𝜁 and 𝜂 respectively, are tuning parameters set by the practitioner. In that sense,

since 𝜚 converges slowly to 1, one can adjust these two parameters (i.e., 𝜁 and 𝜂) for

a trade-off between the size and power of the test. By employing the instrument

variable, KMS propose the full sample IVX-based t-ratio statistic for testing the return

predictability of a single regressor as given below:

𝑡𝑧𝑥 ∶=
�̂�𝑧𝑥

𝑠.𝑒.(�̂�𝑧𝑥)
, 𝑠.𝑒.(�̂�𝑧𝑥) ∶= ��̂�

2
𝑢∑

𝑇
𝑡=1 𝑧

2
𝑡−1 − Ξ

∑𝑇
𝑡=1 𝑧𝑡−1(𝑥𝑡−1 − �̄�−1)

(4.9)

�̂�𝑧𝑥 ∶=
∑𝑇
𝑡=1 𝑧𝑡−1(𝑟𝑡 − �̄�)

∑𝑇
𝑡=1 𝑧𝑡−1(𝑥𝑡−1 − �̄�−1)

(4.10)

where, �̄�𝑡 = 𝑇−1∑𝑇
𝑡=1 𝑟𝑡, �̄�−1 ∶= 𝑇−1∑𝑇

𝑡=1 𝑥𝑡−1 is the de-meaned value of 𝑥𝑡−1, Ξ ∶=

𝑇�̄�2−1(�̂�2𝑢 − �̂�2𝑙𝑟,𝑢𝑒�̂�−2𝑙𝑟,𝑒) is the finite-sample correction term which is suggested by KMS to

control the finite-sample size. �̄�2−1 ∶= 𝑇−1∑
𝑇
𝑡=1 𝑧𝑡−1. �̂�

2
𝑢, �̂�2𝑙𝑟,𝑒, and �̂�2𝑙𝑟,𝑢𝑒 are estimates of

the short-run variance of 𝑢𝑡, the long-run variance of 𝑒𝑡 and of the long-run covariance

between 𝑢𝑡 and 𝑒𝑡, respectively.
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We can calculate �̂�2𝑢 ∶= ∑
𝑇
𝑡=1 �̂�

2. �̂� is residuals that can be computed in many ways.

In one way, under the null hypothesis, someone can employ �̂�𝑡 ∶= 𝑟𝑡 − �̄�. However,

in another way, which is used by Phillips and Magdalinos (2008), Breitung and

Demetrescu (2015), and KMS, residuals, �̂�𝑡, can be obtained from regressing 𝑟𝑡 on

𝑥𝑡−1 and a constant as in (4.1). With Assumptions 4.1-4.2, under the local alternative

hypothesis that 𝛽 > 0, residuals from these two methods are asymptotic equivalent;

therefore, choosing one over the other does not affect the asymptotic properties

of the IVX test statistic. Besides these two ways to estimate �̂�, it is feasible to use

corresponding IV residuals, �̂�𝑡 ∶= 𝑟𝑡 − �̂�𝑖𝑣,0 − �̂�𝑖𝑣,1𝑥𝑡−1 where �̂�𝑖𝑣,𝑗, 𝑗 ∈ {0, 1} represents

two-stage least square (2SLS) estimator of 𝛼 and 𝛽 in (4.1); however, according to

Demetrescu et al. (2022b), 𝐼𝑉 residuals converge slower than the residuals from two

previous methods, and their finite-sample behaviour is less stable than those of two

other ways for estimating the residuals �̂�𝑡.

4.3.2 Bonferroni Based Tests

In this section, first of all, we will discuss the t-test statistic and Q-test statistic, both of

which are infeasible due to the dependence of their limit distribution on the unknown

non-centrality parameter, 𝑐. Together with that, in subsections, we will show how

the Bonferroni method can be used to implement feasible versions of these tests in

practice.

Regressing 𝑟𝑡 on constant and 𝑥𝑡−1, 𝑡 test statistic is given as below:

𝑡 ∶=
�̂�

𝑠.𝑒.(�̂�)
, 𝑠.𝑒.(�̂�) ∶=

�

�̂�2𝑢
∑𝑇
𝑡=1(𝑥𝑡−1 − �̄�−1)

2
(4.11)

�̂� ∶=
∑𝑇
𝑡=1(𝑥𝑡−1 − �̄�−1)(𝑟𝑡 − �̄�𝑡)
∑𝑇
𝑡=1(𝑥𝑡−1 − �̄�−1)

2
(4.12)

𝑄 test statistic of CY is as follows.

𝑄(𝜌) =
∑𝑇
𝑡=1(𝑥𝑡−1 − �̄�−1)�𝑟𝑡 −

𝜎𝑢𝑒
𝜎𝑒𝜔𝑣

(𝑥𝑡 − 𝜌𝑥𝑡−1)� +
𝑇
2
𝜎𝑢𝑒
𝜎𝑒𝜔𝑣

(𝜔2𝑣 − 𝜎2𝑣)

𝜎𝑢(1 − 𝛿2)1/2�∑
𝑇
𝑡=1(�̄�

𝜇
𝑡−1)2�

1/2 (4.13)
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where 𝜎2𝑣 is the short-run variance of the error process 𝑣𝑡. Under the null hypothesis

when 𝛿 = 0, or when 𝛿 ≠ 0 and the true value of 𝜌 is known, the Q-test statistic can

be shown to follow a standard normal limiting distribution. However, tests based on

𝑄(𝜌) are infeasible because the computation of 𝑄(𝜌) requires knowledge of 𝜌, where

𝑐, and hence 𝜌, is unknown and cannot be estimated consistently. Therefore, CY

propose constructing a confidence interval for 𝑐 as in Stock (1991) and Cavanagh

et al. (1995), by using the known distribution of some unit root test statistic and

using Bonferroni methods to deliver a confidence interval for 𝛽 based on this initial

confidence interval for 𝑐.

Cavanagh et al. (1995) show that the asymptotic distribution of the t-statistic

depends on the nuisance parameter 𝑐 causing over-rejection of the null hypothesis

of no predictability when testing in the right tail both asymptotically and in finite

samples if using standard normal critical values. Therefore, Cavanagh et al. (1995)

constructs a confidence region for 𝛽 that does not depend on 𝑐 by employing the

Bonferroni method. As noted by Elliott and Stock (2001), a more powerful unit root

test leads to a more precise confidence interval for 𝑐. As such, CY replace the DF-OLS

test used by Cavanagh et al. (1995) with the DF-GLS unit root test proposed by

Elliott et al. (1996) when constructing their initial confidence interval for 𝑐. Similar to

the t-test, Q-test is infeasible and is required to know the information of a nuisance

parameter 𝜌 (or equivalently 𝑐). The 𝑄 statistics in Equation (4.13) can be computed

using values of 𝑐 from the confidence interval for 𝑐 obtained by inverting the DF-

GLS unit root test statistic. In other words, by utilizing a confidence interval of

the unknown 𝑐 parameter a Bonferroni-based test can provide a feasible confidence

interval for 𝛽.

Both CY and Cavanagh et al. (1995) use Bonferroni-based methods to implement

test procedures based on these statistics for an unknown value of 𝑐. The procedure

to construct Bonferroni confidence interval for 𝛽 is given:

Step 1: Construct a 100(1 − 𝛼1)% confidence interval for 𝜌, denoted 𝐶𝜌(𝛼1).

Step 2: Construct a 100(1−𝛼2)% confidence interval for 𝛽 given 𝜌, denoted 𝐶𝛽|𝜌(𝛼2).
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It means for each value of 𝜌 in 𝐶𝜌(𝛼1), we obtain a confidence interval 𝐶𝛽|𝜌(𝛼2).

Step 3: Construct a confidence interval independent of 𝜌, denoted 𝐶𝛽(𝛼), where

𝐶𝛽(𝛼) = �
𝜌∈𝐶𝜌(𝛼1)

𝐶𝛽|𝜌(𝛼2)

By Bonferroni’s inequality, the confidence interval, 𝐶𝛽(𝛼), has coverage of at least

100(1 − 𝛼)% where 𝛼 = 𝛼1 + 𝛼2.

Although both Bonferroni-t and Bonferroni-Q tests use the same procedures to

construct the Bonferroni confidence interval for 𝛽, there are many different features

between them. In the next subsections, we will present the detailed procedures of

these two Bonferroni-based tests.

4.3.2.1 The Bonferroni 𝑡 test

Following the paper of Cavanagh et al. (1995), the Bonferroni-t test procedure is

performed as follows:

Step 1: Obtain �̂�, residuals �̂�𝑡 and the standard error for �̂�, 𝑆𝐸(�̂�) by run regression

of 𝑟𝑡 on 𝑥𝑡−1 and a constant.

Step 2: Run ADF regression with the intercept below to obtain 𝐷𝐹 − 𝑂𝐿𝑆 statistic.

Δ𝑥𝑡 = 𝜇Δ𝑥 + 𝜃𝑂𝑥𝑡−1 +
𝑝−1
�
𝑖=1
𝜓𝑖Δ𝑥𝑡−𝑖 + 𝑒𝑡

where Δ denotes the first difference operator, where Δ𝑥𝑡 = 𝑥𝑡 − 𝑥𝑡−1 and t-

statistic for 𝜃𝑂 is 𝐷𝐹 − 𝑂𝐿𝑆 statistic.

Step 3: Given the 𝐷𝐹 − 𝑂𝐿𝑆 statistic from step 2, invert the 𝐷𝐹 − 𝑂𝐿𝑆 statistic to

construct a 100(1 − 𝛼1)% (asymptotic) confidence interval [𝑐, �̄�] for 𝑐 using

pre-defined confidence belts and the associated confidence interval for 𝜌 by

[𝜌, �̄�] = [1 + 𝑐/𝑇, 1 + �̄�/𝑇].
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Step 4: Let 𝑑𝑐,𝜂 be the 𝜂-level critical value of null distribution of 𝑡 for a given value

of 𝑐. Cavanagh et al. (1995) show that a 100(1 − 𝛼2)% asymptotic confidence

belt for 𝛽 can be constructed as [𝛽𝑡(𝛼1, 𝛼2), �̄�𝑡(𝛼1, 𝛼2)]where

𝛽𝑡(𝛼1, 𝛼2) ∶= �̂� − ̄𝑑(𝛼1, 𝛼2)𝑆𝐸(�̂�)

�̄�𝑡(𝛼1, 𝛼2) ∶= �̂� − 𝑑(𝛼1, 𝛼2)𝑆𝐸(�̂�)

with

(𝑑(𝛼1, 𝛼2), ̄𝑑(𝛼1, 𝛼2)) = �min
𝑐≤𝑐≤�̄�

𝑑𝑐,𝛼2/2, max
𝑐≤𝑐≤�̄�

𝑑𝑐,1−𝛼2/2�

For a right-tailed test, the null of no return predictability is rejected if 𝛽𝑡(𝛼1, 𝛼2) > 0,

whereas, for a left-tailed test, the null is rejected if �̄�𝑡(𝛼1), 𝛼2) < 0. The (asymptotic)

coverage of confidence interval for 𝛽 is at least 100(1 − 𝛼)% with 𝛼 = 𝛼1 + 𝛼2.

Cavanagh et al. (1995) show that the Bonferroni interval may be very conser-

vative in practice. In that sense, the actual coverage probability is greater than the

nominal confidence level 100(1 − 𝛼)%, which may cause more false negatives, or the

test is under-sized. In regard to one-sided tests, the asymptotic size of one-sided

tests is smaller than 100(𝛼/2)% for all values of 𝑐. Therefore, Cavanagh et al. (1995)

propose a refinement of the Bonferroni method to make the test less conservative by

shrinking the confidence interval for 𝜌 until the asymptotic size of the Bonferroni

test is maximised at the desired significance level, �̃�, across a grid of values of 𝑐. To

do so they fix 𝛼2 = 0.10 and choose �̄�𝑡1 and 𝛼𝑡1, for each 𝛿 such that

𝑃𝑟(𝛽𝑡(�̄�𝑡1, 𝛼2) > 𝛽) ≤ �̃�/2 and 𝑃𝑟(�̄�𝑡(𝛼𝑡
1
, 𝛼2) > 𝛽) ≤ �̃�/2 (4.14)

holds across a grid of values of 𝑐 ∈ [−5, 50], with equality at some point on the

grid. Consequently, for chosen values of 𝛿, the one-sided tests for predictability

constructed in this manner will have an asymptotic size of exactly �̃�/2 for some

permissible value of 𝑐 while remaining slightly under-sized for all other values
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of 𝑐. We denote the confidence interval of 𝛽 from this refined Bonferroni t-test as

[𝛽𝑡𝑂𝐿𝑆(�̄�𝑡1, 𝛼2), �̄�𝑡
𝑂𝐿𝑆(𝛼𝑡

1
, 𝛼2)] and denote the predictability test based on this confidence

interval as 𝐵𝑜𝑛𝑓.𝑡.

4.3.2.2 The Bonferroni 𝑄 test

In detail, following CY’s discussion in their online appendix, the Bonferroni 𝑄 test is

conducted as follows:

Step 1: Obtain �̂�, residuals �̂�𝑡 and the standard error for �̂�, 𝑆𝐸(�̂�) by run regression

of 𝑟𝑡 on 𝑥𝑡−1 and a constant.

Step 2: Run regression Δ𝑥𝑡 = 𝜇Δ𝑥 + 𝜃𝑥𝑡−1 + ∑
𝑝−1
𝑖=1 𝜓𝑖Δ𝑥𝑡−𝑖 + 𝑒𝑡 to obtain the coeffi-

cients �̂�𝑖, (𝑖 = 1, ..., 𝑝 − 1), where the lag length can be set manually or chosen

automatically by using BIC and the residuals �̂�𝑡. Additionally, an 𝑂𝐿𝑆 is used

to estimate 𝑥𝑡 = 𝜋 + 𝜌𝑥𝑡−1 + 𝑣𝑡 and obtain �̂�, the residuals �̂�𝑡, and the standard

error for �̂�, denoted 𝑆𝐸(�̂�).

Step 3: Calculate the𝐷𝐹−𝐺𝐿𝑆 statistic of Elliott et al. (1996) by regressing (𝑥0, 𝑥1 −

𝜌𝐺𝐿𝑆𝑥0, .., 𝑥𝑇 − 𝜌𝐺𝐿𝑆𝑥𝑇−1)′ on (1, 1 − 𝜌𝐺𝐿𝑆, ..., 1 − 𝜌𝐺𝐿𝑆)′ where 𝜌𝐺𝐿𝑆 = 1 − 7/𝑇 to

obtain the coefficient 𝜇𝐺𝐿𝑆. Run the regression without the intercept below:

Δ�̃�𝑡 = 𝜃𝐺�̃�𝑡−1 +
𝑝−1
�
𝑖=1
𝜓𝑖Δ�̃�𝑡−𝑖 + 𝑒𝑡 (4.15)

where Δ denotes the first difference operator, where Δ𝑥𝑡 = 𝑥𝑡 − 𝑥𝑡−1, �̃�𝑡 =

𝑥𝑡 − 𝜇𝐺𝐿𝑆, and t-statistic for 𝜃𝐺 is 𝐷𝐹 − 𝐺𝐿𝑆 statistic.

Step 4: By using, residuals �̂�𝑡, �̂�𝑡, �̂�𝑡, and �̂�𝑖 from steps 1-2, we compute

�̂�𝑢 =
1

𝑇 − 2

𝑇
�
𝑡=1
�̂�2𝑡 , �̂�𝑒 =

1
𝑇 − 2

𝑇
�
𝑡=1
�̂�2𝑡 ,

�̂�𝑢𝑒 =
1

𝑇 − 2

𝑇
�
𝑡=1
�̂�𝑡�̂�𝑡, �̂�𝑣 =

1
𝑇 − 2

𝑇
�
𝑡=1
�̂�2𝑡 ,

�̂� =
�̂�𝑢𝑒
�̂�𝑢�̂�𝑒

, �̂�2𝑣 =
�̂�2𝑒

(1 − ∑𝑝−1
𝑖=1 �̂�𝑖)

2
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Step 5: Given the𝐷𝐹−𝐺𝐿𝑆 statistic from step 3 and �̂�, we can compute a 100(1−𝛼1)%

(asymptotic) confidence interval for 𝑐, [𝑐, �̄�] using pre-computed confidence

belts in Table 2-11 of CY. As a result, we can obtain an associated 100(1 − 𝛼1)%

confidence interval for 𝜌, called 𝐶𝜌(𝛼1) as [𝜌, �̄�] = [1 + 𝑐/𝑇, 1 + �̄�/𝑇].

Step 6: Run regression of 𝑟𝑡 − �̂�𝑢𝑒(�̂�𝑒�̂�𝑣)−1(𝑥𝑡 − 𝜌𝑥𝑡−1) on 𝑥𝑡−1 and a constant, where

𝜌 = {𝜌, �̄�}. Let �̂�(𝜌) = {�̂�(𝜌), �̂�(�̄�)} denote the estimated coefficient on 𝑥𝑡−1 in

this regression. A 100(1 − 𝛼2)% confidence interval for 𝛽 (called Bonferroni

interval) is constructed by 𝐶𝛽(𝛼2) ∶= [𝛽𝑄(�̄�, 𝛼2), �̄�𝑄(𝜌, 𝛼2)]where

𝛽𝑄(�̄�, 𝛼2) ∶= �̂�(�̄�) +
𝑇 − 2
2

�̂�𝑢𝑒
�̂�𝑒�̂�𝑣

�
�̂�2𝑣
�̂�2𝑣

− 1�𝑆𝐸(�̂�)2 − 𝑧𝛼2/2(1 − �̂�
2)1/2𝑆𝐸(�̂�)

�̄�𝑄(𝜌, 𝛼2) ∶= �̂�(𝜌) +
𝑇 − 2
2

�̂�𝑢𝑒
�̂�𝑒�̂�𝑣

�
�̂�2𝑣
�̂�2𝑣

− 1�𝑆𝐸(�̂�)2 + 𝑧𝛼2/2(1 − �̂�
2)1/2𝑆𝐸(�̂�)

and in which 𝑧𝛼2/2 indicates the 1 − 𝛼2/2 quantile of the standard normal

distribution.

Similar to Bonferroni-t test, the confidence interval for 𝛽 has (asymptotic) coverage

rate of at least 100(1 − 𝛼)% (rather than exactly 100(1 − 𝛼)%) with 𝛼 = 𝛼1 + 𝛼2. For a

right-tailed test, the null hypothesis of no predictability is rejected if 𝛽𝑄(�̄�, 𝛼2) > 0

whereas the null is rejected if �̄�𝑄(𝜌, 𝛼2) > 0, for a left tailed test. Since CY uses the

Bonferroni method to construct the confidence interval for 𝛽, the Bonferroni-Q test

also has to use a refinement to shrink the confidence interval for 𝜌 such that a test for

𝛽with a given (asymptotic) significance level is achieved as Cavanagh et al. (1995)

suggest. In that sense, CY fix 𝛼2 and numerically iterate through a grid of values of

𝑐 ∈ [−5, 50] and 𝛿 to find �̄�𝑄1 and 𝛼𝑄
1
, for each 𝛿 such that

𝑃𝑟(𝛽𝑄(�̄�(�̄�𝑄1 ), 𝛼2) > 𝛽) ≤ �̃�/2 and 𝑃𝑟(�̄�𝑄(𝜌(𝛼𝑄
1
), 𝛼2) > 𝛽) ≤ �̃�/2 (4.16)

All refinements are performed on asymptotic sizes, with the asymptotic distribution

outlined in the next section. Consequently, for given values of 𝛿, the one-sided

tests for predictability constructed in this approach will have an asymptotic size



4.4 Asymptotic Behaviour Of Tests 107

of exactly �̃�/2 for some value of 𝑐while remaining slightly undersized for all other

values of 𝑐. Also, to refine the Bonferroni method to make the size of the one-

sized test have asymptotic size well-controlled under a nominal significance level

of 5%, CY calibrate this procedure as same as what Cavanagh et al. (1995) did by

fixing �̃� = 𝛼2 = 0.1 (equivalently, a 5% one-sided Q-test for predictability). The

confidence interval for 𝛽 in the Bonferroni Q-test after refinement is represented by

[𝛽𝑄
𝐺𝐿𝑆

(�̄�(�̄�𝑄1 ), 𝛼2), �̄�𝑄
𝐺𝐿𝑆(𝜌(𝛼𝑄

1
), 𝛼2)]. We denote this test henceforth as 𝐵𝑜𝑛𝑓.𝑄.

4.4 Asymptotic Behaviour Of Tests

Given the local-to-zero alternative hypothesis 𝐻𝑏 ∶ 𝛽 = 𝑇−1𝑏, where 𝑏 is a finite

constant; and the null hypothesis 𝐻0 ∶ 𝛽 = 0, in this section we will provide limiting

distribution theory for the t, Q, and IVX statistics from Section 4.3, under Assumption

4.1-4.2.

4.4.1 IVX test

We will present the limit distributions of the IVX statistic from Section 4.3 as below.

Proofs for the theorembelow are inKMS andDemetrescu et al. (2022a). For simplicity,

we do not show details of the theorem in different assumptions of the persistence of

predictors.

Theorem 4.1 FollowingKMS andDemetrescu et al. (2022a), consider themodel in (4.1)-(4.3)

and let Assumptions (4.1)-(4.2) hold, then under the null hypothesis, 𝐻0: IVX test statistic

(𝑡𝑧𝑥) has a normal distribution.

Because the limiting distribution under the null hypothesis of IVX is standard

normal, the decision rule of the right-tailed IVX test is as follows: Reject 𝐻0 if 𝑡𝑧𝑥 is

greater than 1 − 𝛼 quantile of the standard normal distribution.
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4.4.2 Bonferroni Based Tests

According to Cavanagh et al. (1995), the limiting distribution of the t statistic in the

local-to-unity setting is a function of the unknown nuisance parameter 𝑐; however,

a confidence interval for 𝛽 based on the 𝑡 test can be constructed by making use of

a confidence interval for 𝑐 obtained from the inversion of a unit root test. Similarly,

because the computation of 𝑄(𝑐) requires information of 𝜌which is constructed from

an unknown parameter 𝑐. Therefore, CY compute 𝑄(𝑐) statistic for some value of 𝑐, ̃𝑐,

where an initial confidence interval for 𝑐 is based on inverting a unit root test.

Theorem 4.2 Let data be generated according to (4.1) - (4.3). Let (𝑊𝑢(𝑠),𝑊𝑒(𝑠)) be a two

dimensional Wiener process with correlation parameter 𝛿, and let𝑊𝑒,𝑐(𝑠) be the Ornstein-

Uhlenbeck process defined by the stochastic differential equation 𝑑𝑊𝑒,𝑐(𝑠) = −𝑐𝑊𝑒,𝑐(𝑠)𝑑𝑠 +

𝑑𝑊𝑒(𝑠) with initial condition𝑊𝑒,𝑐(0) = 0. If Assumption 4.1 and 4.2 holds, then under local

alternative 𝐻𝑏 ∶ 𝛽 = 𝑇−1𝑏

𝑡 𝑤→ 𝑏𝜔𝑣𝜅𝑐
𝜎𝑢

+ 𝛿 𝜏𝑐𝜅𝑐 + (1 − 𝛿
2)1/2𝑍 (4.17)

𝑄( ̃𝑐) 𝑤→ 𝑏𝜔𝑣𝜅𝑐
𝜎𝑢(1−𝛿2)1/2

+ 𝛿( ̃𝑐−𝑐)𝜅𝑐
(1−𝛿2)1/2

+ 𝑍 (4.18)

where𝜅𝑐 ∶= (∫
1

0
𝑊𝜇
𝑒,𝑐(𝑠)2𝑑𝑠)1/2 and 𝜏𝑐 ∶= ∫

1

0
𝑊𝜇
𝑒,𝑐(𝑠)𝑑𝑊𝑒(𝑠)with𝑊

𝜇
𝑒,𝑐(𝑠) ∶= 𝑊𝑒,𝑐(𝑠)−∫

1

0
𝑊𝑒,𝑐(𝑟)𝑑𝑟

where integration is over [0, 1] unless otherwise noted, and 𝑍 is a standard normal random

variable independent of𝑊𝑒(𝑠).

The limiting null distributions of the 𝑡 and 𝑄( ̃𝑐) statistics are obtained by setting 𝑏 = 0 in

the expressions in (4.18) and (4.18), respectively.

The limiting distribution of 𝑡 depends on both 𝑐 through the random variable 𝜏𝑐/𝜅𝑐

and 𝛿; however, according to Cavanagh et al. (1995), 𝛿 is consistently estimated by the

sample correlation between �̂�𝑡, and �̂�𝑡, so we can treat 𝛿 as known for the purposes of

the asymptotic theory. Similarly, the Q-test is also infeasible since it requires 𝜌 (or 𝑐)

and nuisance parameters of variance and covariance of innovations to compute test

statistic; however, we can obtain consistent estimators for the latter. Therefore, in the
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next sections, we will show how to estimate the nuisance parameters following CY.

In this chapter, we focus on the right-tailed test only; therefore, the decision rules

for the Bonferroni-based test (𝛿 < 0) are as below:

• For Bonferroni t-test: Reject 𝐻0 if lower bound of confidence interval for 𝛽

constructed from 𝐵𝑜𝑛𝑓.𝑡 test, 𝛽𝑡𝑂𝐿𝑆(�̄�𝑡1, 𝛼2) > 0.

• For Bonferroni Q-test: Reject 𝐻0 if lower bound of confidence interval for 𝛽

constructed from 𝐵𝑜𝑛𝑓.𝑄 test, 𝛽𝑡𝐺𝐿𝑆(�̄�(�̄�𝑄1 ), 𝛼2) > 0.

The appropriate value of �̄�𝑄1 leads to the right-tailed Bonferroni Q-test with the

maximum asymptotic size of 5% for 𝑐 ∈ [−5, 50] when using the DF-OLS test to

obtain the confidence interval for 𝜌 are provided in the pre-computed tables of CY.

Similar, the pre-computed tables of Cavanagh et al. (1995) provide the suitable value

for �̄�𝑡1 that results in a Bonferroni t-test with a maximum asymptotic size of 5% in

the right tail for 𝑐 ∈ [−5, 50] when using the DF-GLS test to derive the confidence

interval for 𝜌. Under Assumptions 4.1 and 4.2, the values of �̄�𝑡1 and �̄�𝑄1 are pre-

computed by Cavanagh et al. (1995) and CY, respectively, which involve the limiting

null distributions of the t and 𝑄( ̃𝑐) statistics stated in Theorem 4.2 (with 𝑏 = 0), along

with the standard limit distributions of DF-OLS and DF-GLS (as described in Elliott

et al., 1996)

4.5 Finite Sample Size

In this section, we will examine the finite-sample performance of the IVX test proce-

dure of KMS, the Bonferroni-t test of Cavanagh et al. (1995), and the Bonferroni-Q

test of CY.We perform right-tailed tests at a nominal significance level of 5%. The null

hypothesis of no predictability (𝐻0 ∶ 𝛽 = 0) is tested against the alternative hypothesis

𝐻1 ∶ 𝛽 > 0. To determine rejection rates, we utilize 10,000 Monte Carlo simulations

to draw finite sample paths generated from the DGPs described in Equations from
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(4.1) to (4.7), which are restated below:

𝑟𝑓𝑡 = 𝜇𝑟 + 𝛽𝑥𝑡−1 + 𝑢𝑡, 𝑡 = 1, ..., 𝑇

𝑥𝑡 = 𝜇𝑥 + 𝜉𝑡

𝜉𝑡 = 𝜌𝜉𝑡−1 + 𝑣𝑡

𝑃𝑡 = 𝑃𝑓𝑡 + 𝐵𝑡

𝑃𝑓𝑡 = 𝑃𝑓𝑡−1 exp(𝑟
𝑓
𝑡 ) ⟺ 𝑟𝑓𝑡 = 𝑝

𝑓
𝑡 − 𝑝

𝑓
𝑡−1

𝐵𝑡 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝜌𝑏𝐵𝑡−1 + 𝜈𝑡, 𝑡 = ⌊𝜏1𝑇⌋ + 1, ..., ⌊𝜏2𝑇⌋

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑟𝑡 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝑟𝑓𝑡 , 𝐵𝑡 = 0

𝑝𝑡 − 𝑝𝑡−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝜌 = 1 + 𝑐/𝑇, 𝑝𝑡 = 𝑙𝑛(𝑃𝑡). 𝜏𝑏 and 𝜏𝑝 are parameters controlling where the

bubble will originate and terminate, respectively. 𝛽 = 0, 𝑇 is sample size, (𝑢𝑡, 𝑒𝑡) are

homoskedastic, 𝑣𝑡 = 𝑒𝑡, (𝑢𝑡, 𝑒𝑡)′ ∼ 𝑁𝑖𝑖𝑑(0, Σ), with Σ = [1 𝜎𝑢𝑒; 𝜎𝑒𝑢 1].

The initial condition of innovations 𝑥0 = 0, 𝜉0 = 0, 𝑃
𝑓
0 = 100 and 𝐵0 = 0. We focus

only on the positively explosive behaviour of bubbles; therefore, if the last value of

the bubble is negative, we multiply the bubble path, 𝐵𝑡, by minus one to ensure our

bubble is always positive. The nuisance parameters are normalized as 𝛼 = 𝛾 = 0 and

𝜎2𝑢 = 𝜎2𝑒 = 1. The innovations have correlation 𝛿 ∶= 𝜎𝑒𝑢/(𝜎𝑒𝜎𝑢) ∈ {−0.95, −0.5, 0, 0.5, 0.95}

and are drawn from a bivariate normal distribution. We set 𝜇𝑟 = 𝜇𝑥 = 0 without

loss of generality. We report results for six levels of persistence in predictor 𝑐 ∈

{0, −2, −20, −50, −100}. We consider finite sample sizes, 𝑇 ∈ {100, 250, 500, 1000}. To

the instrument predictor, following KMS recommendations, we choose 𝜁 = 1 and

𝜂 = 0.95. Together with that, we use three parameters to adjust the specification of

bubbles including 𝑐𝑏𝑢𝑏 controlling the magnitude of the bubble, ⌊𝜏1𝑇⌋ + 1 setting up

where the bubble originates, and ⌊𝜏2𝑇⌋ for where the bubble terminates. Although

our DGP is very flexible, for simplicity, we only construct series with a single bubble
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period. Also, when constructing the long-run quantities we will follow KMS and use

the Bartlett kernel with bandwidth 𝑇1/3.

The simulations are designed to evaluate the finite sample size of three tests

in various bubble specifications. However, overall, we can classify them into three

groups below:

• There is no bubble present in the price series, 𝑐𝑏𝑢𝑏 = 0. This case will serve as

the benchmark for comparison with cases where a bubble exists in the price.

• The bubble starts within the sample and lasts until the end of the sample. As

defined in Section 4.2, 𝜏2 = 1 is set to ensure that the bubble lasts until the

end. The origination of the bubble is determined by setting 𝜏1 = {0.9, 0.7}. The

magnitude of the bubble, 𝑐𝑏𝑢𝑏, is set to {0.01, 0.05, 0.1}.

• The bubble starts and ends within the sample. At the end of the bubble period,

𝑟𝑡 reverts directly to a unit root dynamics at the same level as before the bubble

started. The beginning position of the bubble is determined by the parameter

𝜏1 ∈ {0.6, 0.4, 0.1}with a bubble length held constant at ⌊0.3𝑇⌋, the correspond-

ing ending points of the bubble are 𝜏2 ∈ {0.9, 0.7, 0.4}, respectively. As with the

previous group, the magnitude of the bubble, 𝑐𝑏𝑢𝑏, is set to {0.01, 0.05, 0.1, 0.2}.

Together with that, for each group, we run the simulations with innovation vectors

[𝑢𝑡, 𝑒𝑡]′ drawn from a bivariate Student’s t-distribution besides those from a bivariate

Gaussian distribution.

TableC-1 shows the size of three right-tailed predictability tests (i.e., IVX, Bonferroni-

t [Bonf.t], and Bonferroni-Q [Bonf.Q] tests) without a bubble period. This table of

results is different from Table C-8 since the pairs of innovations, (𝑢𝑡, 𝑣𝑡), in Table C-8

are drawn from an i.i.d. bivariate fat-tailed distribution (t-distribution) instead of

Gaussian distribution as in C-1. Aswe can see, in terms of the endogeneity correlation

parameter, 𝛿, the IVX test is significantly oversized when the correlation parameter

is negative and is severely undersized for the positive parameter. In that sense, the

test works fairly well (i.e the size is well-controlled under a nominal significance
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level of 5%) when there is no endogeneity in the predictive model. Surprisingly,

the size distortion decrease when the predictor becomes a stationary process. In

other words, the IVX test has its size well-controlled under 5% of the significance

level. The findings related to the size of the IVX test match those of Demetrescu et al.

(2022a). Although the Bonf.t is more undersized when the correlation of innovations

is strongly positive, it has a well-control size of the test when the correlation parame-

ter is negative. Similar to the IVX test, the size distortion is diminishing when the

predictor is stationary. For the Bonf.Q test, it is slightly oversized when the sample

size is small (𝑇 = 100) and the correlation parameter is negative. As in the same

two previous tests, Bonf.Q test is undersized when the 𝛿 are positive but still lightly

better than the two formers. However, in contrast to the first two tests, when the

autoregressive roots in the predictor are away from unity, the Bonf.Q test tends to be

badly oversized but IVX and Bonf.t test has a well-controlled size. Across the different

sample sizes, the finite-sample rejection rates are relatively the same with the same

level of endogeneity, 𝛿, and level of persistence, 𝑐. In addition, there is an exception

for when the predictor is near stationary (𝑐 = −100) and the correlation coefficient 𝛿

is negative or equal to zero. In that scenario, the finite sample size of Bonf.Q test is

badly oversized which exceeds those of the simulations using a large sample size.

The simulation results are held and very similar in the case of innovations has the

fat-tailed distribution of Table C-8.

Subsequently, we monitor the finite-sample size of three tests with the presence of

a bubble. Tables C-2-C-7 and C-9-C-14 report the empirical rejection frequencies at a

5% significance level of predictability tests for cases when bubble emerges in-sample

and exists until the end of sample. The bubble specifications are mainly controlled

by the magnitude parameter 𝑐𝑏𝑢𝑏 and the starting point of the bubble 𝜏1. The ending

point of the bubble will be set constantly at 1. While the results reported from Tables

C-2-C-7 show simulated results when the bubble starts and lives till the end of the

sample with 𝑢𝑡 and 𝑣𝑡 have Gaussian distribution, the results in Tables C-9-C-14

are with innovations drawn from a Student’s t-distribution. Overall, all tests tend



4.5 Finite Sample Size 113

to be oversized when the magnitude of the bubble and/or the time bubble lives in

the sample increase. Among the three tests, Bonf.Q is the most sensitive with the

existence of a bubble in the return, while the IVX test and Bonf.t are ranked behind,

respectively.

When the bubble is near the end of the sample with 𝜏1 = 0.9 and 𝑐𝑏𝑢𝑏 = 0.01 (Table

C-2), the Bonf.t test is still very robust and has its finite sample size well-controlled

in almost all cases except when the sample sizes are large (e.g., T = 500 and 1,000)

and 𝑐 = 0. However, all three tests are still undersized when 𝑐 = 0 and innovations

are positively correlated. Even at the small magnitude of bubble (𝑐𝑏𝑢𝑏 = 0.01), the

empirical sizes of the IVX and Bonf.Q tests are further distorted in cases they used

to be oversized. When the bubble is adjusted to be larger in Tables C-3-C-4, the size

distortion in tests becomes worse. For instance, the cases of IVX test when 𝛿 < 0 and

predictor is close to the unity. At 𝑐𝑏𝑢𝑏 = 0.1, the Bonf.t test still has well-controlled

sizes in nearly all scenarios of 𝑇 = 100 except for the case of 𝑇 = 100, 𝑐 = 0 and 𝛿 > 0,

in which the test is undersized. The sizes of IVX tests become more well-controlled

in a few cases (e.g., 𝛿 > 0 and 𝑇 = 250) and tend to be oversized in most of the cases

where 𝛿 > 0. However, the Bonf.Q test is size-distorted in nearly every scenario.

When the bubble starts earlier at 𝜏1 = 0.7 in Tables C-5-C-7, the signs of size

distortion in tests are obvious across all three tests, even when the magnitude of

the bubble is relatively small (𝑐𝑏𝑢𝑏 = 0.01). Fortunately, the finite sample sizes of

the Bonf.t test are still well-controlled in cases of small sample sizes or when the

regressor is stationary. Only a few results show that the Bonf.Q and IVX tests have

well-controlled sizes. When the predictor is non-stationary, 𝛿 > 0 and 𝑐𝑏𝑢𝑏 = 0.01,

the size of the Bonf.Q test is distorted in nearly all cases. When the magnitude of

the bubble increases from 0.01 to 0.1, the size of all tests in all scenarios of 𝑐 = 0 is

badly distorted. The Bonf.t test and IVX tests still have well-controlled sizes at the

5% significance level when the sample size is small (𝑇 = 100) and the predictor is

stationary with 𝑐 < −50. The conclusions are relatively similar in corresponding

cases when Gaussian innovations are replaced by innovations generated from the
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t-distribution (see Tables C-9-C-14).

Finally, Tables C-15-C-26 report rejection rates from three predictability tests in

the case the bubble bursts inside the sample. In this context, at the point of the

bubble burst in-sample, there is a huge negative jump in return. Overall, the in-

sample bubble makes our tests behave differently than what we saw in the context of

a bubble existing until the end of the sample. When the magnitude of the bubble

is small (𝑐𝑏𝑢𝑏 = 0.01), the presence of a bubble period does not have a strong effect

on finite sample size when compared to the results in Table C-1. The effect of the

bubble becomes more apparent when 𝑐𝑏𝑢𝑏 = 0.05, where the empirical rejection

rates decrease for small sample sizes (𝑇 < 250) and increase for large sample sizes

(𝑇 > 500). However, the decrease is not consistent across the tests as the magnitude

of the bubble increases (see Tables C-16-C-18).

We used simulations to investigate the behavior of the tests when bubbles start

and burst at different positions in the sample. When 𝜏1 = 0.6, 𝜏2 = 0.9, and 𝑇 = 100,

the size of the IVX test is well-controlled at a nominal significance level of 5% for all

𝑐 values. However, the Bonf.t and Bonf.Q tests are undersized when 𝑐 = 0, and the

Bonf.Q test is oversized when 𝑐 = −100. As the magnitude of the bubble increases,

the size distortion in large samples becomes worse. The results in Tables C-19-C-22,

where the bubble starts at 𝜏1 = 0.4 and bursts at 𝜏2 = 0.7, and in Tables C-23-C-26,

where the bubble starts at 𝜏1 = 0.1 and bursts at 𝜏2 = 0.4, lead to similar conclusions.

Tables C-27-C-38 investigate the behaviour of the size of tests with the same

bubble specification and predictive model but the innovations have fat-tailed distri-

bution. Under the presence of an in-sample bubble, the simulated results, in which

innovations are drawn from the t-distribution, are not significantly different from

the previous cases when innovations are generated by the Gaussian distribution.
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4.6 Empirical Illustrations

4.6.1 Data

In this chapter, we re-evaluate the return predictability of regressors in the empirical

research ofWelch and Goyal (2008) by using a one-sided IVX test and Bonferroni 90%

confidence intervals. The dataset is monthly data which is collected from January

1927 and updated to December 20211 (i.e., sample size, 𝑇 = 1, 140). The short

versions of this dataset are also used in the papers of KMS, Demetrescu et al. (2022a),

Demetrescu et al. (2022b), and Yang et al. (2022) to illustrate the application of the

tests in practice. On the other hand, Goyal et al. (2021) updated their original paper

to evaluate the return predictability on 29 variables from 26 well-known papers
2 published after Welch and Goyal (2008) in the top finance journals besides the

original 14 variables. Similar to the findings in the original paper byWelch and Goyal

(2008), Goyal et al. (2021) present empirical results indicating that a majority of the

variables exhibited poor predictability both in-sample and out-of-sample. Despite

the availability of more diverse predictors, the data used in Goyal et al. (2021) study

is not currently accessible and would require replication to extend the time period.

As a result, for the sake of simplicity in this chapter, we will continue to employ the

dataset from the original paper by Welch and Goyal (2008).

A stylized method in the literature of stock return predictability is to obtain the

predicted variable as a log of excess stock return (including dividends). As noted in

Welch and Goyal (2008), this regressand is obtained as the difference of the log value

of monthly return on the value-weighted S&P 500 price index and the log of the

risk-free rate. Also, lag one of 14 financial and macroeconomic independent variables

are obtained by Welch and Goyal (2008) as follows:

• Dividend payout ratio (d/e) is computed as the log dividends minus the log of
1The dataset can be downloaded directly from Professor Amit Goyal’s webpage:

https://sites.google.com/view/agoyal145.
2All the details of papers and their variables can be found in Table 1 of Goyal et al. (2021)
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earnings.

• Long-term yield (lty) is the US yield on long-term US government bonds series

collected from NBER’s Macrohistory database.

• Dividend yield (d/y) is the difference between the log of dividends and the

log of lag one price.

• Dividend Price Ratio (d/p) is the difference between the log of dividends and

the log of prices.

• Treasury bills (tbl) is 3monthly treasury series obtained from sources ofNBER’s

Macrohistory database and Federal Reserve Bank at St. Louis (FRED).

• Earning price ratio (e/p) is obtained by subtracting the log of earnings from

the log of prices.

• Book-to-market ratio (b/m) is the ratio of book value to market value for the

Dow Jones Industrial Average.

• Default yield spread (dfy) is calculated by subtracting AAA-rated corporate

bond yields from BAA-rated ones.

• Net equity expansion (ntis) is computed by dividing 12-month moving sums

of net issues by NYSE listed stock for the total end-of-year market capitalization

of NYSE stocks.

• Term spread (tms) is the difference between the long-term yield on US govern-

ment bond series (lty) and treasury bill rates (tbl).

• Inflation (inf) is represented by Consumer Price Index (All Urban Consumers)

from the Bureau of Labour Statistics.

• Stock variance (svar) is the sum of squared monthly returns on the S&P500.

• Long-term rate of return (ltr) is collected from Ibbotson’s Stock, Bonds, Bills,

and Inflation Yearbook.
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• Default return spread (dfr) is the difference between long-term corporate bond

and long-term government bond rates.

Table C-39 reports the results fromunit root tests on predictors using theirmonthly

data. This is because the IVX test has the advantage to control the size of the test better

than Bonferroni-based tests when the predictors are stationary or nearly stationary.

Overall, because our dataset is an extension of KMS and Yang et al. (2022)’s one, our

results from pretests are similar to theirs. The second column, ADF, exhibits the test

statistic and rejection level of the Augmented Dickey-Fuller test. In this case, the test

fails to reject statical evidence of the existence of unit root process in long-term yield

(lty), dividend yield (d/y), dividend-price ratio (d/p), and T-bill rate (tbl). The

evidence is reinforced by the DF-GLS test and Phillips-Perron test in the third and

fourth columns, respectively.

Prior to applying the return predictability tests, it is important to formally test

whether explosive autoregressive regimes are present in the stock price or not since

this is a precondition for us to examine how the tests behave during bubble periods.

Similar to Yang et al. (2022), we use a new version of the real-time bubble detection

method of PSY to identify all episodes of bubble over the period from Jan-1920 to

Dec-2021. The new test, proposed by Phillips and Shi (2020), is a combination of the

PSY test and a new wild-bootstrap algorithm (called the composite bootstrap). The

improved test allows the presence of heteroskedasticity in the series as suggested

by Harvey et al. (2016) [HLST hereafter] and to address multiplicity issues referred

to the increase in the probability of over-rejection to the null hypothesis when the

number of hypotheses tested rises. Instead of using bootstrapped price series at a

full sample length, Phillips and Shi (2020) suggest using a part of it, 𝑇𝑏, to prevent

the family-wise size control or multiplicity issue in testing. In this way, the method

not only has a well-controlled size but also lessens the computational complexity

in the wild-bootstrap algorithm. As Yang et al. (2022), we use an empirical size

controlled over a 3.5-year period (𝑇𝑏 = 3.5×12 = 42) in the wild bootstrap procedure.

Additionally, as suggestions of PSY and Phillips and Shi (2020), we use the smallest
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window size in PSY test, 𝑟0 = 0.01+ 1.8/√𝑇; therefore, we have the minimum window

width of ⌊𝑟0𝑇⌋ = 75 with 𝑇 = 1, 2253. The PSY test rejects the null hypothesis of no

bubble if its test statistic exceeds 95% bootstrapped critical value generated from

2, 000 bootstrap replications. As in PSY, we select optimal lags by using the Bayesian

information criterion (BIC) with a maximum lag length of 6 in each subsample.

Figure C-1 shows the origin and conclusion of explosive behaviour in the monthly

S&P 500 price index. In the figure, the shaded areas represent periods of explosive

behaviour that have been detected. Seven bubble periods have been identified, of

which the first six align with the findings in Yang et al. (2022). The seventh bubble

period spans from April 2021 to December 2021. The periods from December 1954

to February 1955 and April 1955 to August 1956 are so close together that, following

the findings of Yang et al. (2022), we can consider them as a recurring bubble.

Historically, financial crises are often followed by a bubble crash Allen and Gale

(2000), so, as noted by PSY and Yang et al. (2022), the first bubbles have been named

after the catastrophic financial events they correspond to: the Great Crash (July

1927 to September 1929), the Great Depression (May 1932 to June 1932), the Post-

Korean War Recession (December 1954 to August 1956), Black Monday (June 1987

to September 1987), and the Dotcom bubble (November 1996 to July 2001). The last

bubble we detected is from April 2021 to December 2021 and may have been caused

by the COVID-19 crisis.

By identifying the bubble periods, we can create a strategy for dividing our full

dataset into subsamples. This allows us to investigate whether the results of IVX and

Bonferroni-based tests are impacted by the presence of bubbles.

4.6.2 Evaluating return predictability

In this subsection, we re-examine the return predictability of financial and macroeco-

nomic variables mentioned in the empirical paper of Welch and Goyal (2008) using
3Because PSY test requires an additional subsample for training, we run it on a longer period of

time from January 1920 to December 2021. This ensures that the sample size tested for the bubble
matches the sample size of our dataset.
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return predictability tests against one-sided alternatives. Specifically, on one hand,

we run the tests on the full dataset from Jan-1927 to December 2021. On the other

hand, we also perform testing on subsamples around the Dot-com bubble, which

was detected in the previous subsection. This choice was made because the Dot-com

period, which started in Nov-1996 and ended in Jul-2001, is the longest-lasting bubble

(see Figure C-1). Hence, based on evidence from our finite sample simulations, the

behaviour of predictability tests during bubble periods will be most pronounced in

our analysis. To this end, we choose a subsample fromOct-1987 to Oct-1996 (𝑇 = 109)

as a benchmark, which is the period just before the Dot-com period and does not

contain a bubble. Another subsample, fromOct-1987 to Jul-2001 (𝑇 = 166), is selected

to proxy a sample containing the short-lived bubble at the end of the sample. The last

subsample, from Oct-1987 to Mar-2021 (𝑇 = 402), includes an in-sample collapsed

Dot-com bubble. These three subsamples correspond to the three forms of data

generated in Section 4.5.

As shown in Table C-40 and Table C-41, the results from the return predictability

tests, including the IVX test of KMS, the Bonferroni-t (Bonf.t) test of Cavanagh et al.

(1995), and the Bonf.Q test of CY, are presented. The tests are applied to the full

sample periods and subsamples as follows: Panel A in the tables presents the p-values

for one-sided predictability tests on the full sample. Panels B, C, and D show the

p-values for the following subsamples: Oct-1987 to Oct-1996, Oct-1987 to Jul-2001,

and Oct-1987 to Mar-2021, respectively.

Overall, most of the evidence of predictability is identified when we employ the

tests on full sample data and on subsamples containing bubble periods. Using the

IVX test statistic, we find that the null hypothesis of no predictability can only be

rejected at the 5% level when the lagged e/p is used as a predictor in the subsample

without bubbles. For the Bonf.Q test, the null hypothesis is rejected when ltr is the

predictor, but the Bonf.t test does not reject the null for any predictor. This may be

because the Bonf.t test has lower power than the Bonf.Q test. Additionally, despite no

rejection in either the subsample with or without bubbles, the confidence intervals of
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the Bonferroni-based test are shrunk in the subsample with bubbles, indicating that

the tests tend to over-reject in the sample with bubbles. These findings are consistent

with our simulation results regarding the size properties of the predictability tests.

Dividend Payout Ratio (d/e)

The ratio does not exhibit any predictability across all tested samples and different

tests at the 5% level. This evidence is consistent with the empirical findings on the

full sample by KMS, Yang et al. (2022), and Demetrescu et al. (2022a).

Long-term Yield (lty)

On the full sample from Jan-1927 to Dec-2021, one-sided IVX and Bonf.t tests show

weak predictability at the 5% level. The full sample result of the one-sided IVX

test matches that of Demetrescu et al. (2022a). However, in the short samples from

Jan-1927 to Dec-2012 in KMS and from Jan-1927 to Dec-2016 in Yang et al. (2022),

their two-sided tests do not indicate that the long-term yield has no predictability.

Therefore, it appears that the one-sided IVX test over-rejects the null hypothesis of

no predictability when the correlation of innovations is negative.

Dividend Yield Ratio (d/y)

All three tests demonstrate the predictability of the dividend yield ratio in the full

sample and in the sample containing a collapsing bubble. This may be due to the

effects of the sharp negative jump in returns, as we mentioned in Section 4.5. No

predictability was detected in the sample that had a bubble existing until the end of

the sample. The full sample result of the IVX test matches those of KMS, Yang et al.

(2022), and Demetrescu et al. (2022a).

Dividend Price Ratio (d/p)

No predictability was detected across different tests and samples. The result from

the IVX test is consistent with the empirical findings from the one-sided IVX test in

Demetrescu et al. (2022a). However, it does not agree with the evidence from the

two-sided tests of KMS and Yang et al. (2022). This is because the one-sided IVX test

is undersized when the correlation of innovations is positive.

Treasury-bill Rate (tbl)
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Predictability exists in the full sample only and for all three tests at the 5% level. The

result from the IVX test is the same as those of Yang et al. (2022), and Demetrescu

et al. (2022a).

Earnings Price Ratio (e/p)

IVX test shows weak predictability at 5% in all of the samples except for the one with

an in-sample collapsing bubble. Under the Bonferroni-based tests, we fail to reject

the null hypothesis of no predictability.

Book-to-Market Ratio (b/m)

Predictability is reported in the full sample under the IVX test and Bonferroni-Q test.

Even we failed to reject the null hypothesis of no predictability, if we look carefully

into the confidence interval of Bonferroni-tests, it is easy to realize that the confidence

intervals of subsamples with bubbles are shrunk compared to those in the subsample

without bubbles. It indicates bubble effect increases the rejection rate.

Default Yield Spread (dfy)

Results in Table C-41 do not show any statistical evidence of return predictability in

default yield spread across all samples. The result is similar to those reported in the

papers of KMS, Yang et al. (2022), and Demetrescu et al. (2022a).

Net Equity Expansion Ratio (ntis)

The IVX test rejects the null hypothesis of no predictability at a significance level of

2.5% in the full sample. The Bonferroni-t test also concludes that there is statistically

significant evidence of predictive ability for the net equity expansion ratio in the full

sample. The result of the IVX test on the full sample is consistent with the results

reported in KMS, Yang et al. (2022), and Demetrescu et al. (2022a).

Term Spread (tms)

With the term spread predictor, there is no predictability in all forms of the sample

at any significance levels. The result matches papers using the same dataset (e.g.,

KMS, Yang et al. (2022), and Demetrescu et al. (2022a).)

Inflation (inf)

IVX test shows weak predictability (at a significance level of 5%) of inflation rate
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in the sample containing a bubble that lives till the end of the sample. This result

matches that of the one-sided IVX test in Demetrescu et al. (2022a). This indicates

the over-rejection of IVX in the case of a negative correlation between innovations

and during bubble periods.

Stock Variance (svar)

The Bonferroni-based test provides evidence of predictability in the subsamples

containing bubbles. In these subsamples, the confidence interval of the Bonferroni-Q

test shows more rejection of the null hypothesis than the Bonferroni-t test. This is

because the Bonferroni-t test has better size control than the Bonferroni-Q test in the

presence of a bubble period.

Long-term Rate of Returns (ltr)

The Bonferroni-Q test shows return predictability of the long-term rate of return in

all sample forms except for the period with an in-sample collapsing bubble. The

results show that the confidence intervals of the Bonferroni-Q test are narrower in

subsamples containing bubbles, indicating a higher rejection rate during bubble

periods.

Default Return Spread (dfr)

Bonferroni-Q test and IVX test provide evidence of predictability in only the full

sample. In fact, as we mentioned, the size of the Bonferroni-t test is better controlled

than the two other tests during the bubble period; therefore, they are less likely

to reject the null hypothesis under the bubble effect. In addition, the result of the

one-sided IVX test is different from that of Demetrescu et al. (2022a).

4.7 Conclusion

In this study, we examine the finite sample behaviour of two widely used types of

return predictability tests, the IVX test and Bonferroni-based tests, in the presence of a

bubble in returns. While previous research such as Yang et al. (2022) has investigated

the impact of bubbles on predictive models, our aim is to compare the behaviour of
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these tests from different perspectives. Unlike Yang et al. (2022), our data generating

process is more flexible and natural, allowing us to independently adjust the bubble

specifications from the predictive model.

Our finite sample simulations, based on the proposed data generating process,

indicate that IVX and Bonferroni-based tests tend to over-reject the null hypothesis

of no predictability during bubble periods. This over-rejection is observed for both

positive and negative correlations in innovations, particularly when the bubble is

large or long-lasting. The Bonferroni-t test appears to be more robust to the bubble

effect than other tests, as it better controls the finite sample size under the nominal

significance level in various scenarios. The results remain valid when innovations

are drawn from a fat-tailed distribution.

In addition, by re-applying these predictability tests to a recent dataset of fourteen

financial and macroeconomic variables from Welch and Goyal (2008), we provide

further empirical evidence that the bubble effect can lead to significant over-rejection

of the null hypothesis. This is because the predictability of predictors appears more

frequently in subsamples where bubbles are present than in subsamples without

bubble periods. The shrinking of confidence intervals of Bonferroni-based tests also

implies the size distortion of the Bonferroni-based tests during bubble regimes.

This study opens up several avenues for further research. For example, it would

be interesting to evaluate the proposed test statistic of Yang et al. (2022) using our

data generating process or to develop an improved version of the Bonferroni-based

test using the methodology of Yang et al. (2022). Additionally, it would be valuable

to explore the robustness of proposed tests for the bubble effect under conditions of

heteroskedasticity and serial correlation in the innovations.
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Concluding Remarks

5.1 Conclusions

Bubbles have been a crucial subject in finance and economics for a long time because

they are considered the germs of economic and financial instability. Testing for

explosive behaviour in the price of an asset can provide us with information about

the existence of an explosive rational asset price bubble. In practice, it is essential

to identify such explosive behaviour in asset prices as quickly as possible to help

policymakers make informed decisions and limit the economic damage from the

collapse of asset bubbles. Therefore, this thesis contributes to the rational bubble

literature by improving econometric testing for detecting the existence of explosive

and co-explosive behaviour. It also examines the behaviour of stock predictability

tests during bubble regimes.

In the second chapter of this thesis, we contribute to the literature on bubble

testing by proposing a WLS-based test that is more robust than the WLS-based test

of Harvey et al. (2019) to different heteroskedastic patterns. The main idea of the

new test is to use a different estimator to estimate volatility. Specifically, instead of

using a kernel-based estimator as in Harvey et al. (2019), we propose to use the

𝐼𝐶𝑆𝑆 algorithm of Inclán and Tiao (1994) to detect unknown and discrete volatility

breaks in the series and then employ the standard deviation of the difference of
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stock prices in each regime as the corresponding estimator of persistent volatility.

Simulations show that the finite sample power curve of the newly proposed test is

monotonic, while that of Harvey et al. (2019) is not when the bubble grows quickly.

Finite sample simulation results indicate that the procedure should work well in

practice. In empirical applications, the new test finds explosive behaviour in the

S&P500 price index over a period from January 1980 to March 2000 but not in the

FTSE 100 index from December 1985 to December 1999. The results are robust across

different data frequencies.

In the third chapter, we employ the backward recursive procedure of PWY to

the KPSS-based test of Evripidou et al. (2022) to detect the co-explosivity of two

explosive series. Simulation results show that the new test has higher power than the

test of Evripidou et al. (2022); in particular, to detect co-explosivity in the absence

of short-lived co-bubbling at the end of the sample. Other simulation results show

how the KPSS-based test is sensitive to the choice of kernel estimators and their

corresponding lag parameters. As in Evripidou et al. (2022), we also show how

the new test can efficiently work in timing the migration from one series to another.

Since the empirical application consumes less computing power than the simulation

section, we can use the general supremum recursive procedure of PSY to detect co-

explosivity that may originate and collapse before the sample ends. Using the same

dataset of metal prices over a period from July 1993 to May 2019, our test results are

more varied than those of Evripidou et al. (2022); however, all tests still agree about

the co-explosivity of a few metal pairs - specifically, Lead-Tin, Gold-Tin, Lead-Gold,

and Copper-Lead.

Finally, Chapter 4 demonstrates how predictability tests, including Bonferroni-

based tests and IVX tests, behave during bubble periods. Among other things, Monte

Carlo simulations reveal that these tests are significantly size-distorted when a bubble

exists at the end of the sample. The finite sample size of the tests behaves in a complex

manner when a bubble occurs and bursts within the sample. When applying these

tests to the dataset of Welch and Goyal (2008) over a period between January 1927



5.2 Limitations and Future Research 126

and December 2021, the results indicate that the null hypothesis of no predictability

is rejected more frequently during the bubble regimes.

The results of this thesis suggest that policymakers can use a more powerful

econometric test, the sup𝐵𝑍𝐼 test, which is robust to changes in volatility, to detect

the existence of bubbles. With this test, policymakers can quickly detect bubbles

and provide early warnings to the market, thus preventing economic crashes. Ad-

ditionally, policymakers and practitioners can track the migration of a bubble from

one market to another by employing our backward recursive KPSS-based test (or

even the double recursive test), in addition to the full sample KPSS-based test of

Evripidou et al. (2022). This helps to avoid systemic risk resulting from the conta-

gion of bubbles across different markets. Finally, understanding the effect of bubbles

on return predictability tests is necessary for portfolio managers to make cautious

decisions. This is because when bubbles exist in stock returns, the false positive rate

of return predictability tests significantly increases.

5.2 Limitations and Future Research

As with similar work, a limitation of this thesis is that it could, within the many

simulations, always employ more replications and other examples of bubble and

heteroskedastic patterns. Of course, employing an even larger number of replications

would be preferable to obtain more accurate results and using a greater variety of

profiles for bubbles and volatility, would aid in better understanding the finite sample

size and power of the tests. As an example, we could extend the data generating

process to include cases where a single bubble terminates in-sample with various

forms of adjustments in price level after the bubble bursts (see Harvey et al., 2019,

Whitehouse, 2019, HLST, PSY, and PWY).

Moving on, in the empirical applications presented throughout this thesis, we

present the outcomes based solely on asset price data, acknowledging that the iden-

tification of explosive autoregressive behaviour does not necessarily indicate the
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existence of explosive bubbles if only the price series are considered. Therefore,

future research could attempt to employ reliable methods to decompose price series

into a fundamental component and a bubble component, employing the bubble tests

on the latter to assess the presence of bubbles.

When considering further possible extensions to the work in this thesis note that

in Chapter 2, we utilize the union of rejections strategy by combining WLS-based and

OLS-based tests to enhance the power of the WLS-based tests in certain scenarios

where the WLS-based test exhibits lower power than the OLS-based test. However,

we must exercise caution in using this approach, as we need to balance the trade-off

between a slight size distortion and the increase in the power of the WLS-based test

in finite samples.

Under the existence ofmultiple episodes of exuberance and collapse, the backward

recursive procedure of PWY may suffer reduced power and can be inconsistent in

revealing the existence of a bubble. To overcome this weakness, one could employ

the general supremum recursive procedure of PSY in WLS based test. In such a

way, we may have a test that is robust to multiple bubbles and heteroskedasticity. Of

course, in the context of explosive bubbles, bubble testing procedures often go along

with bubble dating strategies, allowing, policymakers to monitor the origination and

collapse of bubbles closely. We can use the general supremum recursive WLS-based

test to date-stamp bubbles.

In addition, Xu (2015) has shown that CUSUM tests, in general, are not robust to

nonstationary volatility. To address this issue, as suggested by Harvey et al. (2019),

we can modify the CUSUM-based test of Homm and Breitung (2012) using our

estimated volatility. With this modification, we anticipate that a CUSUM-based test

can be developed that delivers a robust approach to bubble detection and dating in

this more general setting.

Chapter 3 could be extended by replacing the KPSS test with any kind of unit root

and stationary test, such as the left-tailed ADF test. In this way, we could detect the

co-explosivity between two series by testing the stationarity of the linear combination
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of two separate explosive series. To compare the finite sample power profiles of the

tests, we will use the same data generating processes that were used in Chapter 3 to

conduct simulations.

For simplicity, in Chapter 3, we focused on detecting the presence of co-bubbles

at the end of the sample. However, we can further examine the behaviour of the co-

explosive tests in cases where co-bubbles start and collapse within the sample, similar

to the data generating processes used by Evripidou et al. (2022). This would allow

us to evaluate the robustness of co-bubble tests across a wider range of co-bubble

profiles.

Finally, in Chapter 4, analgously to Yang et al. (2022), who attempted to improve

the IVX test to make it more robust to the bubble effect, we can extend the research to

find ways to control the size of the Bonferroni-based predictability test during bubble

periods. After ensuring that the finite sample size of the test is well-controlled under

a nominal significance level, we can evaluate the finite sample power profiles of the

tests to determine which tests are more powerful for different bubble profiles.

Similar to Chapters 2 and 3, once we have ensured that the size of the return

predictability tests is well-controlled under the bubble effect, we can extend our

analysis to cases where heteroskedasticity exists in the returns. In such cases, we

can use wild-bootstrap based tests, as in Demetrescu et al. (2022a), to make the

well-controlled size of the test robust to different patterns of heteroskedasticity.



Appendices

Appendix A: Tables and Figures of Chapter 2

Figure A-1: Illustration of iterative algorithm in ICSS by Inclán and Tiao (1994)
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Figure A-2: The sample sequences of the sup𝐷𝐹 test

Volatility profiles1 sup𝐷𝐹 sup𝐷𝐹
without wild bootstrap with wild bootstrap

Early upward shift 0.584 0.075
Mid upward shift 0.593 0.085
Late upward shift 0.481 0.077
Early downward shift 0.016 0.035
Mid downward shift 0.025 0.030
Late downward shift 0.035 0.037
Uptrend volatility 0.324 0.056
Downtrend volatility 0.011 0.029
Double shift 0.528 0.082
Logistic smooth transition 0.600 0.079
Autoregressive volatility 0.089 0.034
Stochastic volatility 0.059 0.048

Table A-1: A few results to show the size distortions in sup𝐷𝐹 test

1Details of these volatility specifications will be shown in Section 7.
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Volatility profiles2 sup𝐵𝑍𝐾 sup𝐵𝑍𝐾
without wild bootstrap with wild bootstrap

Early upward shift 0.330 0.051
Mid upward shift 0.042 0.045
Late upward shift 0.022 0.046
Early downward shift 0.088 0.039
Mid downward shift 0.098 0.036
Late downward shift 0.585 0.043
Uptrend volatility 0.444 0.042
Downtrend volatility 0.592 0.039
Double shift 0.015 0.045
Logistic smooth transition 0.065 0.048
Autoregressive volatility 0.011 0.044
Stochastic volatility 0.000 0.032

Table A-2: A few results to show the size distortions in sup𝐵𝑍 test without wild
bootstrap

Volatility profiles sup𝐷𝐹 sup𝐵𝑍𝐾 sup𝐵𝑍𝐼 𝒰
a) Constant volatility 0.029 0.039 0.041 0.043
b) Early upward shift 0.062 0.039 0.051 0.042
c) Mid upward shift 0.067 0.039 0.048 0.050
d) Late upward shift 0.086 0.048 0.042 0.044
e) Early downward shift 0.029 0.041 0.042 0.036
f) Mid downward shift 0.033 0.039 0.035 0.034
g) Late downward shift 0.032 0.045 0.038 0.034
h) Uptrend volatility 0.054 0.040 0.058 0.047
i) Downtrend volatility 0.024 0.043 0.046 0.039
j) Double shift 0.072 0.042 0.050 0.046
k) Logistic smooth transition 0.031 0.044 0.050 0.045
l) Autoregressive volatility 0.024 0.047 0.048 0.048
m) Stochastic volatility 0.081 0.039 0.049 0.040

Table A-3: Finite-sample sizes under the null hypothesis with 𝑇 = 100

NOTES: Nominal 5% significance level. DGP with 𝑐 = 0.

2Details of these volatility specifications will be shown in Section 7.
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(a) Constant volatility
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(b) Early upward shift
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(c) Mid upward shift
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(d) Late upward shift
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(e) Early downward shift
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(f) Mid downward shift
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(g) Late downward shift
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(h) Uptrend volatility
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(i) Downtrend volatility
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(j) Double shift
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(k) Logistic smooth transition
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(l) Autoregressive volatility
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(m) Stochastic volatility

Figure A-3: Finite sample local power curves with 𝑟∗ = 0.6, 𝑇 = 100

sup𝐷𝐹: ——; sup𝐵𝑍𝐾: ——; sup𝐵𝑍𝐼: ——;𝒰: ——
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(a) Constant volatility
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(b) Early upward shift
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(c) Mid upward shift
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(d) Late upward shift
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(e) Early downward shift
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(f) Mid downward shift
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(g) Late downward shift
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(h) Uptrend volatility
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(i) Downtrend volatility
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(j) Double shift
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(k) Logistic smooth transition
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(l) Autoregressive volatility
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(m) Stochastic volatility

Figure A-4: Finite sample local power curves with 𝑟∗ = 0.8, 𝑇 = 100

NOTES: sup𝐷𝐹: ——; sup𝐵𝑍𝐾: ——; sup𝐵𝑍𝐼: ——;𝒰: ——
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Volatility profiles sup𝐷𝐹 sup𝐵𝑍𝐾 sup𝐵𝑍𝐼 𝒰
a) Constant volatility 0.035 0.044 0.043 0.048
b) Early upward shift 0.078 0.052 0.048 0.046
c) Mid upward shift 0.086 0.049 0.040 0.045
d) Late upward shift 0.073 0.050 0.042 0.044
e) Early downward shift 0.040 0.042 0.025 0.032
f) Mid downward shift 0.036 0.039 0.042 0.037
g) Late downward shift 0.041 0.049 0.035 0.039
h) Uptrend volatility 0.055 0.044 0.052 0.047
i) Downtrend volatility 0.035 0.043 0.046 0.042
j) Double shift 0.090 0.042 0.046 0.049
k) Logistic smooth transition 0.079 0.048 0.046 0.046
l) Autoregressive volatility 0.035 0.048 0.055 0.056
m) Stochastic volatility 0.056 0.048 0.051 0.049

Table A-4: Finite-sample sizes under the null hypothesis with 𝑇 = 200

NOTES: Nominal 5% significance level. DGP with 𝑐 = 0.
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(a) Constant volatility
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(b) Early upward shift
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(c) Mid upward shift
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(d) Late upward shift
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(e) Early downward shift
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(f) Mid downward shift
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(g) Late downward shift
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(h) Uptrend volatility
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(i) Downtrend volatility
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(j) Double shift
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(k) Logistic smooth transition
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(l) Autoregressive volatility
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(m) Stochastic volatility

Figure A-5: Finite sample local power curves with 𝑟∗ = 0.6, 𝑇 = 200

NOTES: sup𝐷𝐹: ——; sup𝐵𝑍𝐾: ——; sup𝐵𝑍𝐼: ——;𝒰: ——
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(a) Constant volatility
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(b) Early upward shift
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(c) Mid upward shift
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(d) Late upward shift
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(e) Early downward shift
0 5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

supDF

supBZ
K

supBZ
I

Union

(f) Mid downward shift
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(g) Late downward shift
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(h) Uptrend volatility
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(i) Downtrend volatility
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(j) Double shift
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(k) Logistic smooth transition
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(l) Autoregressive volatility
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(m) Stochastic volatility

Figure A-6: Finite sample local power curves with 𝑟∗ = 0.8, 𝑇 = 200

NOTES: sup𝐷𝐹: ——; sup𝐵𝑍𝐾: ——; sup𝐵𝑍𝐼: ——;𝒰: ——
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Volatility profiles sup𝐷𝐹 sup𝐵𝑍𝐾 sup𝐵𝑍𝐼 𝒰
a) Constant volatility 0.046 0.047 0.044 0.047
b) Early upward shift 0.077 0.049 0.043 0.044
c) Mid upward shift 0.070 0.053 0.048 0.047
d) Late upward shift 0.077 0.045 0.048 0.050
e) Early downward shift 0.039 0.045 0.039 0.034
f) Mid downward shift 0.046 0.048 0.051 0.043
g) Late downward shift 0.041 0.044 0.048 0.054
h) Uptrend volatility 0.053 0.056 0.044 0.052
i) Downtrend volatility 0.039 0.047 0.041 0.046
j) Double shift 0.076 0.051 0.043 0.043
k) Logistic smooth transition 0.064 0.049 0.051 0.048
l) Autoregressive volatility 0.038 0.050 0.060 0.052
m) Stochastic volatility 0.052 0.044 0.050 0.048

Table A-5: Finite-sample sizes with 𝑇 = 400

NOTES: Nominal 5% significance level. DGP with 𝑐 = 0.
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(a) Constant volatility
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(b) Early upward shift
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(c) Mid upward shift
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(d) Late upward shift
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(e) Early downward shift
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(f) Mid downward shift
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(g) Late downward shift
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(h) Uptrend volatility
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(i) Downtrend volatility
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(j) Double shift
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(k) Logistic smooth transition
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(l) Autoregressive volatility
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(m) Stochastic volatility

Figure A-7: Finite sample local power curves with 𝑟∗ = 0.6, 𝑇 = 400

NOTES: sup𝐷𝐹: ——; sup𝐵𝑍𝐾: ——; sup𝐵𝑍𝐼: ——;𝒰: ——
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(a) Constant volatility
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(b) Early upward shift
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(c) Mid upward shift
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(d) Late upward shift
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(e) Early downward shift
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(f) Mid downward shift
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(g) Late downward shift
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(h) Uptrend volatility
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(i) Downtrend volatility
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(j) Double shift
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(k) Logistic smooth transition
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(l) Autoregressive volatility
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(m) Stochastic volatility

Figure A-8: Finite sample local power curves with 𝑟∗ = 0.8, 𝑇 = 400

NOTES: sup𝐷𝐹: ——; sup𝐵𝑍𝐾: ——; sup𝐵𝑍𝐼: ——;𝒰: ——
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Sample size (𝑇) sup𝐷𝐹 sup𝐵𝑍𝐾 sup𝐵𝑍𝐼 𝒰 𝒰𝐾 𝒰𝐼
100 0.086 0.048 0.042 0.044 0.058 0.059
200 0.073 0.050 0.042 0.044 0.063 0.061
400 0.077 0.045 0.048 0.050 0.059 0.057

Table A-6: Finite-sample sizes when a late upward shift is in volatility and 𝑟∗ = 0.8
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(b) 𝑇 = 200
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(c) 𝑇 = 400

Figure A-9: Finite sample local power curves with 𝑟∗ = 0.8 - Late upward shift in
volatility

NOTES: sup𝐷𝐹: ——; sup𝐵𝑍𝐾: ——; sup𝐵𝑍𝐼: ——;𝒰: ——;𝒰𝐾: ——, ;𝒰𝐼: ——

Data Sample Obs Mean Median Max Min S.D No of vol breaks
S&P 500 daily 5118 0.634 0.626 1.816 -0.268 0.499 11
S&P 500 weekly 1057 0.625 0.616 1.804 -0.271 0.500 9
S&P 500 monthly 243 0.563 0.559 1.722 -0.296 0.499 4
FTSE 100 daily 3626 0.448 0.386 1.111 -0.040 0.281 16
FTSE 100 weekly 735 0.471 0.406 1.130 -0.015 0.284 4
FTSE 100 monthly 169 0.460 0.395 1.118 0.000 0.283 2

Table A-7: The descriptive statistics of S&P 500 and FTSE 100 in different time-
frequencies
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(e) Weekly log return
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(k) Weekly ICSS estimator
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Figure A-10: The plots of logarithmic real S&P 500 index from 01/1980 to 03/2000

NOTES: Time on x-axis and values on the y-axis.
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(f) Monthly log return

1986 1988 1990 1992 1994 1996 1998
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80
10

-2

Squared Log return

Kernel based Estimates

(g) Daily kernel estimator
1986 1988 1990 1992 1994 1996 1998

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00
10

-2

Squared Log return

Kernel based Estimates

(h) Weekly kernel estimator
1986 1988 1990 1992 1994 1996 1998

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00
10

-2

Squared Log return

Kernel based Estimates

(i) Monthly kernel estimator

1986 1988 1990 1992 1994 1996 1998
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80
10

-2

Squared Log return

ICSS based Estimates

(j) Daily ICSS estimator
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Figure A-11: The plots of logarithmic real FTSE 100 index from 01/1985 to 12/1999

NOTES: Time on x-axis and values on the y-axis.
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Data Sample sup𝐷𝐹 sup𝐵𝑍𝐾 sup𝐵𝑍𝐼 𝒰 𝒰𝐾 𝒰𝐼
S&P500 daily 0.386 0.000 0.018 0.000 0.002 0.049
S&P500 weekly 0.309 0.032 0.014 0.023 0.065 0.044
S&P500 monthly 0.144 0.046 0.018 0.028 0.073 0.044
FTSE100 daily 0.319 0.012 0.061 0.025 0.044 0.112
FTSE100 weekly 0.436 0.063 0.121 0.096 0.113 0.191
FTSE100 monthly 0.620 0.157 0.171 0.218 0.188 0.210

Table A-8: The p-values of sup𝐷𝐹, sup𝐵𝑍𝐾, sup𝐵𝑍𝐼,𝒰,𝒰𝐾, and𝒰𝐼
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Appendix B: Tables and Figures of Chapter 3

Table B-1: Finite-sample sizes for the co-bubble tests, 𝑇 = 200

𝑇 = 200
𝜏𝑥 𝑐𝑥 = 0.2 𝑐𝑥 = 0.4 𝑐𝑥 = 0.8

Heteroskedastisity Specs R S R S R S

0. Homoskedasticity
0.8 0.046 0.056 0.049 0.059 0.051 0.056
0.85 0.049 0.056 0.049 0.058 0.054 0.057
0.9 0.049 0.055 0.048 0.054 0.049 0.061

a. Upward shift (Coincidence)
0.8 0.055 0.056 0.049 0.052 0.052 0.055
0.85 0.060 0.057 0.059 0.054 0.056 0.057
0.9 0.063 0.065 0.062 0.061 0.067 0.056

b. Downward shift (Coincidence)
0.8 0.05 0.076 0.051 0.077 0.049 0.067
0.85 0.050 0.083 0.050 0.079 0.052 0.074
0.9 0.046 0.086 0.047 0.080 0.047 0.076

c. Upward trend volatility
0.8 0.055 0.055 0.055 0.057 0.060 0.060
0.85 0.057 0.053 0.060 0.055 0.055 0.054
0.9 0.054 0.053 0.058 0.056 0.062 0.058

d. Downward trend volatility
0.8 0.051 0.070 0.053 0.070 0.055 0.070
0.85 0.051 0.073 0.051 0.071 0.052 0.074
0.9 0.052 0.071 0.051 0.073 0.050 0.077

e. Early upward shift
0.8 0.051 0.057 0.055 0.056 0.060 0.063
0.85 0.054 0.057 0.057 0.060 0.054 0.062
0.9 0.057 0.058 0.056 0.058 0.055 0.063

f. Mid upward shift
0.8 0.052 0.056 0.057 0.060 0.061 0.063
0.85 0.053 0.055 0.055 0.060 0.058 0.060
0.9 0.055 0.058 0.054 0.057 0.055 0.061

g. Late upward shift
0.8 0.056 0.055 0.059 0.056 0.062 0.061
0.85 0.055 0.055 0.057 0.056 0.059 0.060
0.9 0.058 0.056 0.056 0.054 0.055 0.059

h. Early downward shift
0.8 0.056 0.088 0.052 0.088 0.057 0.082
0.85 0.058 0.082 0.055 0.084 0.056 0.083
0.9 0.055 0.080 0.057 0.080 0.051 0.082

i. Mid downward shift
0.8 0.046 0.082 0.050 0.089 0.055 0.096
0.85 0.050 0.085 0.048 0.084 0.054 0.093
0.9 0.047 0.085 0.049 0.088 0.052 0.089

j. Late downward shift
0.8 0.048 0.089 0.047 0.091 0.050 0.094
0.85 0.048 0.092 0.050 0.096 0.048 0.096
0.9 0.047 0.090 0.049 0.093 0.048 0.096

k. Double shift
0.8 0.060 0.096 0.059 0.094 0.056 0.092
0.85 0.059 0.094 0.059 0.094 0.058 0.094
0.9 0.056 0.093 0.057 0.097 0.058 0.097

NOTES: The data generating process is from (3.1) to (3.3) with sample size 200 (𝑟0 = 0.01 +
1.8/√𝑇). Power calculations are based on 2,000 replications. Empirical probabilities of rejection
at nominal 5% significance level.
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Table B-2: Finite-sample sizes of the co-bubble tests, 𝑇 = 400

𝑇 = 400
𝜏𝑥 𝑐𝑥 = 0.2 𝑐𝑥 = 0.4 𝑐𝑥 = 0.8

Heteroskedastisity Specs R S R S R S

0. Homoskedasticity
0.8 0.046 0.047 0.045 0.047 0.046 0.046
0.85 0.045 0.044 0.046 0.047 0.046 0.049
0.9 0.044 0.050 0.045 0.046 0.048 0.049

a. Upward shift (Coincidence)
0.8 0.049 0.052 0.048 0.051 0.049 0.050
0.85 0.047 0.048 0.051 0.049 0.048 0.047
0.9 0.058 0.056 0.058 0.051 0.058 0.054

b. Downward shift (Coincidence)
0.8 0.042 0.068 0.045 0.071 0.044 0.074
0.85 0.040 0.066 0.041 0.075 0.047 0.065
0.9 0.045 0.067 0.044 0.061 0.045 0.058

c. Upward trend volatility
0.8 0.043 0.044 0.043 0.047 0.042 0.050
0.85 0.043 0.044 0.044 0.045 0.044 0.050
0.9 0.042 0.043 0.043 0.043 0.048 0.052

d. Downward trend volatility
0.8 0.041 0.054 0.046 0.054 0.048 0.050
0.85 0.043 0.054 0.042 0.055 0.047 0.053
0.9 0.042 0.061 0.043 0.059 0.044 0.057

e. Early upward shift
0.8 0.043 0.048 0.044 0.052 0.041 0.053
0.85 0.041 0.042 0.041 0.046 0.040 0.054
0.9 0.038 0.049 0.042 0.046 0.045 0.050

f. Mid upward shift
0.8 0.045 0.047 0.047 0.049 0.047 0.053
0.85 0.044 0.041 0.044 0.049 0.042 0.053
0.9 0.043 0.044 0.043 0.047 0.045 0.054

g. Late upward shift
0.8 0.047 0.050 0.044 0.047 0.048 0.046
0.85 0.05 0.047 0.049 0.048 0.048 0.051
0.9 0.046 0.048 0.048 0.048 0.05 0.053

h. Early downward shift
0.8 0.050 0.073 0.047 0.075 0.053 0.069
0.85 0.049 0.070 0.048 0.070 0.051 0.066
0.9 0.045 0.068 0.049 0.069 0.046 0.066

i. Mid downward shift
0.8 0.045 0.069 0.047 0.073 0.046 0.070
0.85 0.047 0.066 0.045 0.070 0.045 0.072
0.9 0.049 0.067 0.045 0.071 0.046 0.073

j. Late downward shift
0.8 0.043 0.069 0.044 0.067 0.044 0.076
0.85 0.048 0.070 0.042 0.075 0.041 0.076
0.9 0.049 0.070 0.048 0.076 0.042 0.080

k. Double shift
0.8 0.047 0.080 0.050 0.081 0.049 0.081
0.85 0.051 0.077 0.048 0.077 0.046 0.085
0.9 0.051 0.072 0.050 0.077 0.047 0.079

NOTES: The data generating process is from (3.1) to (3.3) with sample size 400 (𝑟0 = 0.01 +
1.8/√𝑇). Power calculations are based on 2,000 replications. Empirical probabilities of rejection
at nominal 5% significance level.
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Table B-3: Finite-sample powers of the co-bubble tests, 𝑇 = 200

𝑇 = 200
𝛽𝑧,𝑡 𝜏𝑧 𝑐𝑧 = 0.2 𝑐𝑧 = 0.4 𝑐𝑧 = 0.8

R S R S R S

0.025
0.8 0.226 0.248 0.320 0.336 0.566 0.580
0.85 0.169 0.194 0.225 0.248 0.387 0.412
0.9 0.110 0.135 0.135 0.161 0.201 0.234

0.050
0.8 0.430 0.468 0.550 0.565 0.748 0.758
0.85 0.357 0.380 0.433 0.461 0.614 0.635
0.9 0.248 0.288 0.302 0.333 0.418 0.465

0.075
0.8 0.574 0.604 0.665 0.688 0.827 0.839
0.85 0.486 0.524 0.572 0.594 0.725 0.736
0.9 0.383 0.418 0.444 0.483 0.553 0.601

NOTES: The data generating process is from (3.1) to (3.3)
with sample size 200 (𝑟0 = 0.01 + 1.8/√𝑇). Power calculations
are based on 2,000 replications. Empirical probabilities of
rejection at nominal 5% significance level.
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(b) 𝑐𝑧 = 0.4
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(c) 𝑐𝑧 = 0.8

Figure B-1: Finite sample local power curves - Homoskedasticity variance, T = 200

NOTES: x-axis represents different values of 𝛽𝑧,𝑡 and y-axis indicates simulated rejection rates. 𝑡𝑧 = 0.8
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(a) Upward shift (C)
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(b) Downward shift (C)
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(c) Upward trend volatility
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(d) Downward trend volatil-
ity
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(e) Early upward shift
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(f) Mid upward shift
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(g) Late upward shift
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(h) Early downward shift
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(i) Mid downward shift
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(j) Late downward shift
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Figure B-2: Finite sample power curves - heteroskedastisity, T = 200

NOTES: x-axis represents different values of 𝛽𝑧,𝑡 and y-axis indicates simulated rejection rates. 𝑡𝑧 = 0.8.
𝑐𝑧 = 0.2. (C) indicates that the break in volatility is coincident with the starting point of the bubble.
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Table B-4: Finite-sample powers of the co-bubble tests, 𝑇 = 400

𝑇 = 400
𝛽𝑧,𝑡 𝜏𝑧 𝑐𝑧 = 0.2 𝑐𝑧 = 0.4 𝑐𝑧 = 0.8

R S R S R S

0.025
0.8 0.433 0.500 0.602 0.645 0.855 0.868
0.85 0.335 0.379 0.461 0.505 0.733 0.750
0.9 0.232 0.261 0.317 0.348 0.504 0.536

0.050
0.8 0.673 0.731 0.776 0.808 0.927 0.934
0.85 0.572 0.639 0.683 0.707 0.854 0.871
0.9 0.466 0.502 0.551 0.583 0.713 0.753

0.075
0.8 0.776 0.824 0.851 0.878 0.955 0.956
0.85 0.695 0.746 0.776 0.807 0.901 0.910
0.9 0.601 0.636 0.675 0.712 0.812 0.820

NOTES: The data generating process is is from (3.1) to (3.3)
with sample size 200 (𝑟0 = 0.01 + 1.8/√𝑇). Power calculations
are based on 2,000 replications. Empirical probabilities of
rejection at nominal 5% significance level.
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(b) 𝑐𝑧 = 0.4
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(c) 𝑐𝑧 = 0.8

Figure B-3: Finite sample power curves - Homoskedasticity variance, T = 400

NOTES: x-axis represents different values of 𝛽𝑧,𝑡 and y-axis indicates simulated rejection rates. 𝑡𝑧 = 0.8.
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(b) Downward shift (C)
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(c) Upward trend volatility
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(d) Downward trend volatil-
ity
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(e) Early upward shift
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(f) Mid upward shift
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(g) Late upward shift
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(h) Early downward shift
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(i) Mid downward shift
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(j) Late downward shift
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(k) Double shift

Figure B-4: Finite sample power curves - heteroskedastisity, T = 400

NOTES: x-axis represents different values of 𝛽𝑧,𝑡 and y-axis indicates simulated rejection rates. 𝑡𝑧 = 0.8.
𝑐𝑧 = 0.2. (C) indicates that the break in volatility is coincident with the starting point of the bubble.
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Table B-5: Finite-sample sizes of the co-bubble tests without using long-run variance
under serial correlation conditions

𝑇 = 200
𝜎𝑡 𝜏𝑥 𝑐𝑥 = 0.2 𝑐𝑥 = 0.4 𝑐𝑥 = 0.8

R S R S R S

AR(1)
0.8 0.432 0.641 0.433 0.641 0.402 0.634
0.85 0.428 0.621 0.428 0.632 0.411 0.632
0.9 0.433 0.625 0.430 0.631 0.425 0.634

MA(1)
0.8 0.214 0.321 0.210 0.309 0.195 0.304
0.85 0.208 0.321 0.210 0.305 0.208 0.297
0.9 0.208 0.306 0.210 0.314 0.207 0.312

NOTES: The data generating process is from (3.1) to (3.3) with
sample size 200 (𝑟0 = 0.01 + 1.8/√𝑇). Power calculations are
based on 2,000 replications. Empirical probabilities of rejection
at nominal 5% significance level.
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Table B-6: Finite-sample sizes of the co-bubble tests using long-run variance (Bartlett
Kernel, T=200)

Bartlett Kernel
𝑇 = 200

�̃� �̃�
𝜖𝑦,𝑡 𝑐𝑥 𝜏𝑥 n=2 n=4 n=6 n=2 n=4 n=6

NIID 0.2
0.80 0.053 0.053 0.046 0.048 0.034 0.031
0.85 0.056 0.054 0.047 0.044 0.033 0.029
0.90 0.055 0.054 0.049 0.049 0.038 0.030

NIID 0.4
0.80 0.052 0.050 0.047 0.050 0.041 0.033
0.85 0.051 0.053 0.047 0.049 0.037 0.032
0.90 0.054 0.053 0.048 0.046 0.035 0.031

NIID 0.8
0.80 0.052 0.050 0.049 0.053 0.042 0.035
0.85 0.055 0.055 0.051 0.053 0.044 0.032
0.90 0.051 0.054 0.049 0.052 0.038 0.033

AR(1) 0.2
0.80 0.150 0.096 0.079 0.226 0.081 0.043
0.85 0.151 0.095 0.077 0.242 0.076 0.044
0.90 0.147 0.088 0.076 0.241 0.089 0.043

AR(1) 0.4
0.80 0.156 0.106 0.088 0.230 0.084 0.048
0.85 0.152 0.104 0.082 0.237 0.081 0.043
0.90 0.156 0.099 0.079 0.244 0.084 0.045

AR(1) 0.8
0.80 0.154 0.106 0.088 0.234 0.100 0.056
0.85 0.160 0.113 0.095 0.242 0.094 0.052
0.90 0.152 0.112 0.084 0.245 0.089 0.042

MA(1) 0.2
0.80 0.076 0.065 0.056 0.079 0.035 0.024
0.85 0.070 0.060 0.056 0.084 0.041 0.027
0.90 0.067 0.060 0.055 0.092 0.041 0.030

MA(1) 0.4
0.80 0.085 0.075 0.067 0.083 0.042 0.027
0.85 0.084 0.067 0.059 0.086 0.037 0.026
0.90 0.071 0.060 0.055 0.092 0.039 0.023

MA(1) 0.8
0.80 0.082 0.072 0.069 0.088 0.055 0.037
0.85 0.087 0.071 0.068 0.085 0.044 0.032
0.90 0.083 0.068 0.061 0.084 0.038 0.023

NOTES: The data generating process is from (3.1), (3.2), and
(3.3) with sample size of 200 and 𝑟0 = 0.01 + 1.8/√𝑇. Power
calculations are based on 2,000 replications. Empirical proba-
bilities of rejection at nominal 5% significance level.
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Table B-7: Finite-sample sizes of the co-bubble tests using long-run variance (Bartlett
Kernel, T=400)

Bartlett Kernel
𝑇 = 400

�̃� �̃�
𝜖𝑦,𝑡 𝑐𝑥 𝜏𝑥 n=2 n=4 n=6 n=2 n=4 n=6

NIID 0.2
0.80 0.050 0.050 0.048 0.052 0.044 0.043
0.85 0.058 0.057 0.054 0.060 0.047 0.045
0.90 0.065 0.067 0.060 0.059 0.049 0.045

NIID 0.4
0.80 0.049 0.053 0.053 0.050 0.038 0.040
0.85 0.052 0.049 0.050 0.052 0.044 0.045
0.90 0.058 0.061 0.054 0.055 0.043 0.040

NIID 0.8
0.80 0.043 0.045 0.051 0.054 0.047 0.041
0.85 0.045 0.049 0.051 0.055 0.042 0.039
0.90 0.053 0.049 0.050 0.051 0.044 0.045

AR(1) 0.2
0.80 0.171 0.093 0.073 0.248 0.094 0.055
0.85 0.157 0.093 0.075 0.255 0.100 0.058
0.90 0.154 0.091 0.079 0.241 0.098 0.054

AR(1) 0.4
0.80 0.178 0.100 0.077 0.220 0.089 0.059
0.85 0.185 0.094 0.073 0.227 0.090 0.053
0.90 0.155 0.091 0.072 0.247 0.106 0.054

AR(1) 0.8
0.80 0.159 0.097 0.080 0.210 0.093 0.062
0.85 0.169 0.102 0.078 0.234 0.108 0.061
0.90 0.169 0.097 0.078 0.225 0.107 0.051

MA(1) 0.2
0.80 0.072 0.059 0.056 0.094 0.053 0.043
0.85 0.076 0.061 0.060 0.092 0.058 0.036
0.90 0.077 0.058 0.054 0.093 0.054 0.038

MA(1) 0.4
0.80 0.077 0.058 0.054 0.084 0.053 0.044
0.85 0.071 0.057 0.055 0.078 0.047 0.038
0.90 0.067 0.056 0.055 0.092 0.052 0.037

MA(1) 0.8
0.80 0.076 0.062 0.057 0.081 0.056 0.042
0.85 0.080 0.062 0.058 0.086 0.053 0.037
0.90 0.074 0.055 0.054 0.088 0.046 0.038

NOTES: The data generating process is from (3.1), (3.2), and
(3.3) with sample size of 400 and 𝑟0 = 0.01 + 1.8/√𝑇. Power
calculations are based on 2,000 replications. Empirical proba-
bilities of rejection at nominal 5% significance level.
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Table B-8: Finite-sample sizes of the co-bubble tests using long-run variance
(Quadratic Spectral Kernel, T=200)

Quadratic Spectral Kernel
𝑇 = 200

�̃� �̃�
𝜖𝑦,𝑡 𝑐𝑥 𝜏𝑥 n=5 n=10 n=15 n=5 n=10 n=15

NIID 0.2
0.80 0.056 0.054 0.055 0.032 0.170 0.476
0.85 0.055 0.056 0.059 0.032 0.160 0.446
0.90 0.054 0.057 0.063 0.030 0.152 0.428

NIID 0.4
0.80 0.051 0.057 0.052 0.037 0.182 0.521
0.85 0.056 0.055 0.059 0.035 0.167 0.490
0.90 0.053 0.057 0.060 0.031 0.150 0.455

NIID 0.8
0.80 0.054 0.056 0.056 0.038 0.152 0.495
0.85 0.059 0.059 0.059 0.037 0.145 0.472
0.90 0.059 0.057 0.059 0.038 0.138 0.465

AR(1) 0.2
0.80 0.068 0.048 0.040 0.034 0.071 0.308
0.85 0.070 0.044 0.044 0.040 0.070 0.279
0.90 0.071 0.049 0.046 0.043 0.070 0.268

AR(1) 0.4
0.80 0.083 0.058 0.053 0.039 0.084 0.322
0.85 0.075 0.049 0.049 0.037 0.078 0.301
0.90 0.069 0.049 0.047 0.040 0.075 0.285

AR(1) 0.8
0.80 0.078 0.059 0.053 0.052 0.078 0.325
0.85 0.086 0.056 0.057 0.051 0.069 0.305
0.90 0.074 0.051 0.050 0.041 0.075 0.296

MA(1) 0.2
0.80 0.052 0.048 0.046 0.021 0.123 0.393
0.85 0.049 0.046 0.049 0.024 0.110 0.368
0.90 0.050 0.046 0.049 0.026 0.101 0.340

MA(1) 0.4
0.80 0.058 0.057 0.059 0.025 0.122 0.412
0.85 0.051 0.050 0.053 0.024 0.117 0.379
0.90 0.049 0.047 0.053 0.024 0.111 0.362

MA(1) 0.8
0.80 0.063 0.058 0.057 0.031 0.119 0.416
0.85 0.061 0.062 0.059 0.027 0.113 0.389
0.90 0.054 0.051 0.055 0.019 0.105 0.362

NOTES: The data generating process is from (3.1), (3.2), and
(3.3) with sample size of 200 and 𝑟0 = 0.01 + 1.8/√𝑇. Power
calculations are based on 2,000 replications. Empirical proba-
bilities of rejection at nominal 5% significance level.
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Table B-9: Finite-sample sizes of the co-bubble tests using long-run variance
(Quadratic Spectral Kernel, T=400)

Quadratic Spectral Kernel
𝑇 = 400

�̃� �̃�
𝜖𝑦,𝑡 𝑐𝑥 𝜏𝑥 n=5 n=10 n=15 n=5 n=10 n=15

NIID 0.2
0.80 0.053 0.047 0.048 0.048 0.058 0.199
0.85 0.060 0.054 0.056 0.046 0.056 0.191
0.90 0.069 0.057 0.057 0.050 0.054 0.175

NIID 0.4
0.80 0.053 0.054 0.054 0.044 0.055 0.196
0.85 0.051 0.054 0.052 0.045 0.052 0.186
0.90 0.061 0.052 0.056 0.045 0.044 0.172

NIID 0.8
0.80 0.050 0.054 0.056 0.046 0.046 0.179
0.85 0.050 0.053 0.057 0.042 0.041 0.171
0.90 0.054 0.053 0.058 0.045 0.041 0.161

AR(1) 0.2
0.80 0.069 0.054 0.051 0.054 0.020 0.119
0.85 0.074 0.056 0.053 0.056 0.022 0.107
0.90 0.074 0.057 0.048 0.055 0.022 0.103

AR(1) 0.4
0.80 0.084 0.049 0.044 0.059 0.030 0.120
0.85 0.069 0.050 0.048 0.052 0.026 0.111
0.90 0.070 0.055 0.048 0.049 0.020 0.106

AR(1) 0.8
0.80 0.082 0.054 0.052 0.064 0.031 0.119
0.85 0.082 0.054 0.049 0.065 0.028 0.109
0.90 0.080 0.048 0.046 0.053 0.025 0.102

MA(1) 0.2
0.80 0.050 0.046 0.052 0.038 0.037 0.172
0.85 0.051 0.047 0.051 0.037 0.030 0.156
0.90 0.047 0.048 0.046 0.031 0.033 0.140

MA(1) 0.4
0.80 0.050 0.047 0.043 0.040 0.044 0.174
0.85 0.050 0.043 0.046 0.034 0.039 0.168
0.90 0.050 0.046 0.049 0.037 0.033 0.150

MA(1) 0.8
0.80 0.051 0.051 0.050 0.037 0.042 0.165
0.85 0.052 0.049 0.053 0.031 0.039 0.151
0.90 0.046 0.048 0.046 0.031 0.029 0.145

NOTES: The data generating process is from (3.1), (3.2), and
(3.3) with sample size of 400 and 𝑟0 = 0.01 + 1.8/√𝑇. Power
calculations are based on 2,000 replications. Empirical proba-
bilities of rejection at nominal 5% significance level.
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Table B-10: Finite-sample powers of the co-bubble tests using long-run variance

𝑇 = 200
𝜖𝑦,𝑡 𝛽𝑧,𝑡 𝜏𝑧 𝑐𝑧 = 0.2 𝑐𝑧 = 0.4 𝑐𝑧 = 0.8

�̃� ̃𝑆 �̃� �̃� �̃� �̃�

NIID 0.25
0.80 0.593 0.707 0.640 0.772 0.549 0.846
0.85 0.458 0.634 0.481 0.703 0.434 0.787
0.90 0.289 0.484 0.299 0.515 0.291 0.561

NIID 0.50
0.80 0.610 0.764 0.642 0.817 0.531 0.879
0.85 0.450 0.715 0.469 0.771 0.406 0.828
0.90 0.292 0.569 0.299 0.610 0.280 0.637

NIID 0.75
0.80 0.600 0.782 0.634 0.830 0.526 0.883
0.85 0.428 0.735 0.447 0.794 0.397 0.838
0.90 0.295 0.605 0.297 0.641 0.271 0.650

AR(1) 0.25
0.80 0.478 0.619 0.535 0.683 0.503 0.784
0.85 0.345 0.510 0.372 0.582 0.356 0.684
0.90 0.196 0.339 0.221 0.389 0.222 0.459

AR(1) 0.50
0.80 0.561 0.730 0.587 0.783 0.507 0.846
0.85 0.390 0.637 0.398 0.699 0.368 0.771
0.90 0.249 0.504 0.259 0.522 0.244 0.542

AR(1) 0.75
0.80 0.566 0.763 0.596 0.805 0.503 0.855
0.85 0.390 0.671 0.405 0.743 0.370 0.796
0.90 0.261 0.539 0.267 0.561 0.241 0.591

MA(1) 0.25
0.80 0.526 0.656 0.583 0.724 0.510 0.810
0.85 0.400 0.536 0.437 0.620 0.406 0.719
0.90 0.246 0.381 0.260 0.433 0.256 0.480

MA(1) 0.50
0.80 0.581 0.752 0.609 0.795 0.519 0.852
0.85 0.425 0.649 0.450 0.718 0.397 0.783
0.90 0.277 0.524 0.282 0.542 0.262 0.573

MA(1) 0.75
0.80 0.580 0.772 0.613 0.816 0.520 0.864
0.85 0.413 0.682 0.432 0.759 0.395 0.809
0.90 0.275 0.556 0.283 0.576 0.260 0.606

NOTES: The data generating process is from (3.1), (3.2), and (3.3)
with sample size 200 𝑟0 = 0.01 + 1.8/√𝑇. Power calculations are based
on 2,000 replications. Empirical probabilities of rejection at nominal
5% significance level. R test uses QS kernel with a bandwidth of 10. S
test uses Bartlett kernel with a bandwidth of 6.
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Figure B-5: Precious metal spot prices and their squared log returns.
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Figure B-6: Non-precious metal spot prices and their squared log returns.
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Figure B-7: Non-precious metal spot prices and their squared log returns. (Contin-
ued)
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Figure B-8: Precious metal futures prices and their squared log returns.
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Figure B-9: Non-precious metal futures prices and their squared log returns.
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Figure B-10: Non-precious metal futures prices and their squared log returns. (Con-
tinued)
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Table B-12: The descriptive statistics of metal prices

Precious metals
Obs Mean Median Max Min S.D I W

Gold (S) 311 3.646 3.040 8.021 1.463 1.783 0.000 0.035
Palladium (S) 311 2.218 1.963 6.104 0.721 1.180 0.000 0.040
Platinum (S) 311 4.416 3.927 10.109 2.039 1.813 0.000 0.082
Silver (S) 311 0.059 0.055 0.217 0.023 0.035 0.000 0.034
Gold (F) 311 3.647 3.040 8.087 1.465 1.783 0.000 0.028
Palladium (F) 311 2.223 1.935 6.056 0.725 1.175 0.000 0.024
Platinum (F) 311 4.420 3.957 10.136 2.052 1.825 0.000 0.086
Silver (F) 311 0.059 0.054 0.217 0.023 0.035 0.000 0.041

Non-ferrous metals
Obs Mean Median Max Min S.D I W

Aluminium (S) 311 9.163 8.778 14.434 6.038 1.888 0.140 0.309
Copper (S) 311 21.689 19.792 44.523 7.606 10.103 0.000 0.008
Lead (S) 311 6.432 5.437 17.606 2.244 3.202 0.000 0.021
Nickel (S) 311 64.904 53.114 241.982 23.630 36.227 0.000 0.030
Tin (S) 311 58.595 48.087 145.540 20.926 28.292 0.000 0.062
Zinc (S) 311 8.381 7.592 21.990 4.104 3.202 0.000 0.002
Aluminium (F) 311 9.196 8.804 14.463 6.068 1.884 0.143 0.317
Copper (F) 311 21.691 19.821 44.536 7.640 10.071 0.000 0.006
Lead (F) 311 6.441 5.406 17.625 2.259 3.198 0.000 0.018
Nickel (F) 311 64.904 53.135 241.253 23.697 35.906 0.000 0.023
Tin (F) 311 58.625 47.785 145.598 20.943 28.242 0.000 0.072
Zinc (F) 311 8.395 7.605 21.950 4.118 3.191 0.000 0.002

NOTES: Cells in the last two columns of the table display p-values correspond-
ing to bootstrap 𝑃𝑆𝑌 tests, with 𝐼 and𝑊 denoting the test employing an 𝐼𝐼𝐷
bootstrap and a wild bootstrap, respectively. (S) denotes for spot price and (F)
for futures price.

Table B-13: PSY date-stamping of explosive periods for metal prices

Spot Prices Futures Prices
Precious metals

Gold 07/03–06/04 09/05–09/08 01/09–04/13 07/03–03/04 09/05–09/08 12/08–04/13
Palladium 03/98–07/98 12/98–05/99 07/99–05/01 01/98–09/98 12/98–05/01 12/10–01/11
Platinum 02/04–03/04 01/06–08/06 01/07–08/08 02/04–03/04 01/06–09/06 01/07–08/08
Silver 01/06–07/07 09/07–07/08 09/10–11/11 01/06–05/06 09/07–07/08 09/10–11/11

Non-ferrous metals
Copper 02/04–03/04 11/04–03/05 06/05–12/06 06/05–11/06 - -
Lead 12/03–03/04 11/04–04/05 10/06–04/08 12/03–02/04 11/04–12/04 10/06–04/08
Nickel 07/06–05/07 - - 07/06–05/07 - -
Tin 02/04–10/04 01/07–08/08 09/10–05/11 07/01–05/02 01/07–08/08 -
Zinc 07/97–08/97 12/04–03/05 05/05–02/07 07/97–08/97 12/04–03/05 05/05–12/06

NOTES: Cells in the table display date ranges (in MM/YY format) for positively explosive
periods, which are identified by using an 𝐼𝐼𝐷 bootstrap PSY date stamping procedure.
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Table B-14: Rejection rates of co-bubble tests to metal prices

Pair of Metals Spot Futures

𝑦𝑡 𝑥𝑡 ̂𝑖 �̃� �̃� ̃𝐺𝑆 ̂𝑖 �̃� ̃𝑆 ̃𝐺𝑆
Palladium Gold -9 1.20% 0.64% 7.41% -9 1.28% 0.68% 7.21%
Platinum Gold -12* 1.05% 4.48% 4.01% -12* 1.04% 4.28% 3.81%
Silver Gold 0 2.35% 0.20% 2.20% 0 2.32% 0.20% 1.80%
Copper Gold -8 10.26% 11.60% 33.67% -8 10.64% 11.72% 33.47%
Lead Gold -7 20.21% 40.52% 7.62% -7 20.28% 41.04% 7.21%
Nickel Gold -12 3.85% 5.36% 16.03% -12 3.76% 5.40% 15.63%
Tin Gold 0 37.37% 38.76% 15.63% 0 39.84% 40.68% 15.63%
Zinc Gold -12 32.22% 26.72% 21.04% -12 32.88% 26.76% 20.44%
Gold Palladium -12 1.15% 0.32% 0.60% -12 1.24% 0.36% 0.60%

Platinum Palladium 0 0.00% 0.12% 0.20% 0 0.00% 0.16% 0.20%
Silver Palladium 0 0.55% 1.92% 1.60% 0 0.72% 2.08% 1.60%
Copper Palladium 0 0.20% 0.72% 0.60% 0 0.16% 0.84% 0.60%
Lead Palladium -4 0.25% 0.24% 0.00% -4 0.36% 0.24% 0.00%
Nickel Palladium 12* 0.15% 0.88% 10.22% 12* 0.16% 0.88% 9.42%
Tin Palladium 0 0.75% 0.44% 0.20% 0 0.80% 0.56% 0.20%
Zinc Palladium -4 2.55% 6.88% 19.24% -4 2.84% 7.08% 19.04%
Gold Platinum 12* 0.90% 0.04% 5.21% 12* 0.92% 0.08% 4.01%

Palladium Platinum -12 0.30% 0.00% 0.80% -12 0.32% 0.00% 0.80%
Silver Platinum 0 0.55% 0.00% 4.81% 0 0.60% 0.00% 4.61%
Copper Platinum 0 4.05% 0.24% 2.81% 0 4.08% 0.20% 3.01%
Lead Platinum 0 1.80% 0.08% 5.81% 0 1.56% 0.08% 6.61%
Nickel Platinum -11 22.26% 24.84% 34.67% -11 20.92% 25.44% 31.46%
Tin Platinum 2 0.85% 0.00% 1.80% 2 0.64% 0.00% 2.61%
Zinc Platinum -4 18.11% 25.76% 45.09% -4 19.80% 25.96% 50.30%
Gold Silver 0 0.75% 0.00% 2.61% 0 0.76% 0.00% 2.81%

Palladium Silver -7 1.20% 0.08% 0.20% -7 1.12% 0.08% 0.00%
Platinum Silver 0 1.15% 0.32% 2.20% 0 1.04% 0.32% 2.00%
Copper Silver 0 5.90% 3.80% 15.23% 0 6.48% 3.84% 13.83%
Lead Silver 0 1.00% 13.64% 21.04% 0 1.00% 13.44% 20.44%
Nickel Silver -12 7.55% 9.24% 29.26% -12 7.72% 9.16% 29.26%
Tin Silver 0 0.55% 0.32% 35.47% 0 0.64% 0.28% 31.06%
Zinc Silver -3 14.31% 31.48% 19.44% -3 14.80% 32.56% 19.04%
Gold Copper 8 0.50% 0.12% 4.21% 8 0.40% 0.12% 4.61%

Palladium Copper -12 0.10% 0.00% 0.80% -12 0.08% 0.00% 0.80%
Platinum Copper 0 5.10% 0.80% 1.00% 0 5.08% 0.84% 1.20%
Silver Copper 0 5.35% 1.24% 13.63% 0 5.32% 1.40% 13.83%

NOTES: Gray cells indicate values of p-value ≥ 0.025, which means the co-explosive
bubble occurs at that corresponding lag/lead.
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Table B-15: Rejection rates of co-bubble tests to metal prices (Continued)

Pair of Metals Spot Futures

𝑦𝑡 𝑥𝑡 ̂𝑖 �̃� �̃� ̃𝐺𝑆 ̂𝑖 �̃� �̃� ̃𝐺𝑆
Lead Copper 0 4.45% 6.80% 64.73% 0 4.68% 6.72% 66.13%
Nickel Copper -1 0.90% 0.08% 11.82% -1 0.96% 0.08% 12.02%
Tin Copper 1 0.90% 0.08% 7.62% 1 1.00% 0.08% 8.22%
Zinc Copper 0 40.57% 1.20% 4.21% 0 39.64% 1.44% 3.81%
Gold Lead 7 7.40% 4.76% 9.02% 7 7.36% 5.12% 8.62%

Palladium Lead -9 0.15% 0.04% 0.40% -9 0.28% 0.04% 0.40%
Platinum Lead 0 3.40% 0.32% 1.00% 0 3.52% 0.32% 1.40%
Silver Lead 0 24.36% 4.36% 29.46% 0 24.72% 4.12% 28.46%
Copper Lead 0 37.82% 3.32% 10.42% 0 38.52% 3.04% 10.22%
Nickel Lead -5 2.95% 0.08% 0.80% -5 2.80% 0.08% 0.60%
Tin Lead 2 12.21% 17.08% 18.24% 2 11.48% 17.76% 17.64%
Zinc Lead -9 44.32% 16.60% 24.45% -9 42.12% 16.84% 24.65%
Gold Nickel 12 0.00% 0.00% 0.00% 12 0.00% 0.00% 0.00%

Palladium Nickel -12* 0.65% 0.28% 5.81% -12* 0.48% 0.32% 6.01%
Platinum Nickel 11 0.05% 0.48% 1.60% 11 0.08% 0.52% 1.40%
Silver Nickel 12 0.10% 0.00% 1.60% 12 0.08% 0.00% 1.60%
Copper Nickel 1 0.00% 0.00% 0.00% 1 0.00% 0.00% 0.00%
Lead Nickel 5 0.00% 0.00% 0.00% 5 0.08% 0.00% 0.00%
Tin Nickel 12 0.00% 0.00% 0.00% 12 0.00% 0.00% 0.00%
Zinc Nickel -3 2.55% 0.12% 5.61% -3 2.52% 0.12% 5.81%
Gold Tin 0 2.95% 24.72% 24.85% 0 3.08% 24.92% 25.85%

Palladium Tin -5 0.85% 0.16% 2.00% -5 0.84% 0.24% 2.00%
Platinum Tin -2 0.75% 0.12% 1.20% -2 0.64% 0.08% 1.20%
Silver Tin 0 19.86% 3.80% 51.70% 0 18.76% 3.96% 50.90%
Copper Tin -1 6.55% 1.00% 9.42% -1 7.24% 0.96% 8.82%
Lead Tin -2 19.31% 48.76% 60.52% -2 19.32% 49.00% 63.13%
Nickel Tin -11 4.70% 3.56% 18.44% -11 4.76% 3.52% 17.64%
Zinc Tin -12 54.03% 22.44% 31.06% -12 53.48% 22.64% 30.26%
Gold Zinc 12 0.00% 0.00% 0.40% 12 0.04% 0.00% 0.40%

Palladium Zinc -12 0.25% 0.00% 0.60% -12 0.16% 0.00% 0.60%
Platinum Zinc 4 0.15% 0.12% 0.00% 4 0.16% 0.12% 0.00%
Silver Zinc 0 0.05% 1.16% 1.80% 0 0.12% 1.28% 1.60%
Copper Zinc 0 0.15% 0.76% 0.20% 0 0.20% 0.88% 0.20%
Lead Zinc 9 0.10% 0.00% 1.40% 9 0.04% 0.00% 1.40%
Nickel Zinc 3 3.15% 0.08% 0.20% 3 3.00% 0.08% 0.20%
Tin Zinc 12 0.00% 0.04% 0.60% 11 0.00% 0.04% 0.60%

NOTES: Gray cells indicate values of p-value ≥ 0.025, which means the co-explosive
bubble occurs at that corresponding lag/lead.
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Figure B-11: Co-explosive bubble pairs of spot metal prices and full sample estimated
residuals
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Figure B-12: Co-explosive bubble pairs of spot metal prices and full sample estimated
residuals (Continued)
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Figure B-13: Co-explosive bubble pairs of futures metal prices and full sample esti-
mated residuals
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Figure B-14: Co-explosive bubble pairs of futures metal prices and full sample esti-
mated residuals (Continued)
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Appendix C: Tables and Figures of Chapter 4

Table C-1: Finite sample size at 5% significance level of one-sided predictability tests:
𝑢𝑡, 𝑣𝑡 is N.i.i.d, no bubble in return

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.126 0.054 0.069 0.105 0.047 0.059 0.089 0.050 0.057

250 0.111 0.050 0.048 0.106 0.044 0.046 0.092 0.046 0.041
500 0.115 0.052 0.045 0.104 0.044 0.040 0.095 0.045 0.041
1000 0.107 0.052 0.041 0.104 0.041 0.036 0.094 0.048 0.038

-0.5 100 0.125 0.055 0.062 0.098 0.035 0.058 0.092 0.040 0.058
250 0.111 0.051 0.053 0.093 0.034 0.050 0.085 0.038 0.048
500 0.105 0.052 0.050 0.091 0.034 0.049 0.080 0.033 0.042
1000 0.108 0.054 0.049 0.085 0.028 0.045 0.082 0.034 0.044

0 100 0.062 0.051 0.051 0.062 0.045 0.045 0.062 0.047 0.046
250 0.053 0.046 0.048 0.058 0.048 0.049 0.057 0.049 0.047
500 0.056 0.050 0.051 0.056 0.050 0.050 0.059 0.054 0.054
1000 0.047 0.048 0.047 0.053 0.051 0.051 0.052 0.049 0.049

0.5 100 0.009 0.023 0.015 0.030 0.046 0.014 0.037 0.050 0.017
250 0.007 0.019 0.018 0.021 0.038 0.015 0.035 0.049 0.017
500 0.006 0.021 0.019 0.025 0.043 0.018 0.033 0.049 0.018
1000 0.007 0.020 0.019 0.022 0.039 0.016 0.030 0.047 0.016

0.95 100 0.000 0.005 0.005 0.007 0.031 0.009 0.014 0.049 0.017
250 0.001 0.005 0.011 0.009 0.035 0.014 0.016 0.045 0.016
500 0.001 0.004 0.012 0.008 0.035 0.016 0.017 0.049 0.019
1000 0.001 0.004 0.011 0.010 0.036 0.019 0.015 0.044 0.017

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.071 0.050 0.060 0.051 0.046 0.125 0.048 0.043 0.454

250 0.079 0.051 0.040 0.058 0.048 0.030 0.052 0.050 0.048
500 0.079 0.051 0.035 0.067 0.053 0.021 0.057 0.050 0.011
1000 0.081 0.049 0.031 0.069 0.051 0.019 0.060 0.052 0.006

-0.5 100 0.073 0.043 0.050 0.064 0.049 0.082 0.061 0.048 0.358
250 0.075 0.047 0.044 0.063 0.049 0.032 0.059 0.052 0.039
500 0.069 0.042 0.039 0.062 0.046 0.028 0.052 0.044 0.016
1000 0.071 0.043 0.040 0.060 0.045 0.027 0.055 0.047 0.015

0 100 0.065 0.049 0.047 0.062 0.051 0.048 0.057 0.051 0.062
250 0.058 0.046 0.045 0.057 0.052 0.050 0.058 0.050 0.050
500 0.054 0.051 0.051 0.052 0.050 0.048 0.053 0.051 0.049
1000 0.051 0.048 0.048 0.051 0.048 0.047 0.054 0.051 0.050

0.5 100 0.041 0.050 0.025 0.046 0.051 0.057 0.048 0.054 0.117
250 0.037 0.046 0.021 0.042 0.047 0.052 0.041 0.047 0.153
500 0.038 0.050 0.022 0.042 0.049 0.041 0.043 0.048 0.115
1000 0.036 0.047 0.019 0.043 0.052 0.033 0.043 0.050 0.080

0.95 100 0.023 0.048 0.040 0.032 0.054 0.157 0.037 0.061 0.208
250 0.021 0.048 0.033 0.029 0.049 0.152 0.035 0.053 0.320
500 0.026 0.050 0.030 0.031 0.052 0.109 0.033 0.049 0.291
1000 0.026 0.052 0.024 0.035 0.053 0.071 0.034 0.047 0.222

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-2: Finite sample size at 5% significance level of one-sided predictability tests:
𝑢𝑡, 𝑣𝑡 is N.i.i.d, bubble in return with 𝜏1 = 0.9, 𝜏2 = 1, 𝑐𝑏𝑢𝑏 = 0.01

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.133 0.056 0.074 0.104 0.040 0.061 0.091 0.049 0.059

250 0.121 0.054 0.059 0.111 0.040 0.048 0.098 0.045 0.050
500 0.131 0.064 0.063 0.116 0.042 0.049 0.097 0.045 0.044
1000 0.145 0.087 0.089 0.120 0.045 0.059 0.102 0.050 0.049

-0.5 100 0.127 0.055 0.064 0.101 0.037 0.061 0.086 0.041 0.059
250 0.124 0.062 0.066 0.094 0.034 0.054 0.084 0.037 0.049
500 0.121 0.065 0.066 0.089 0.035 0.051 0.081 0.036 0.046
1000 0.139 0.087 0.086 0.102 0.045 0.060 0.083 0.038 0.052

0 100 0.064 0.051 0.051 0.066 0.051 0.050 0.065 0.051 0.050
250 0.057 0.049 0.050 0.063 0.053 0.053 0.055 0.046 0.046
500 0.065 0.065 0.066 0.063 0.058 0.057 0.059 0.055 0.055
1000 0.072 0.077 0.077 0.068 0.066 0.065 0.064 0.062 0.062

0.5 100 0.013 0.029 0.020 0.031 0.045 0.016 0.034 0.047 0.017
250 0.013 0.029 0.024 0.030 0.048 0.021 0.036 0.052 0.019
500 0.013 0.032 0.025 0.027 0.046 0.020 0.036 0.050 0.021
1000 0.018 0.039 0.037 0.038 0.055 0.029 0.041 0.058 0.026

0.95 100 0.002 0.010 0.010 0.010 0.035 0.010 0.019 0.050 0.015
250 0.001 0.008 0.015 0.011 0.036 0.014 0.020 0.052 0.019
500 0.002 0.008 0.021 0.013 0.040 0.017 0.022 0.052 0.018
1000 0.004 0.014 0.029 0.021 0.048 0.022 0.029 0.059 0.027

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.074 0.050 0.057 0.054 0.045 0.119 0.052 0.043 0.460

250 0.079 0.053 0.042 0.060 0.050 0.034 0.054 0.049 0.051
500 0.082 0.051 0.037 0.065 0.051 0.020 0.057 0.050 0.013
1000 0.089 0.059 0.041 0.068 0.051 0.020 0.056 0.050 0.006

-0.5 100 0.072 0.043 0.048 0.058 0.048 0.077 0.057 0.045 0.339
250 0.072 0.044 0.043 0.068 0.054 0.037 0.056 0.046 0.037
500 0.076 0.048 0.043 0.063 0.049 0.030 0.057 0.049 0.018
1000 0.071 0.049 0.046 0.062 0.050 0.030 0.060 0.053 0.018

0 100 0.063 0.049 0.049 0.063 0.055 0.053 0.059 0.052 0.067
250 0.057 0.049 0.047 0.057 0.051 0.049 0.057 0.052 0.049
500 0.058 0.052 0.053 0.057 0.053 0.052 0.053 0.048 0.047
1000 0.060 0.059 0.060 0.056 0.054 0.053 0.053 0.050 0.049

0.5 100 0.045 0.054 0.023 0.047 0.053 0.056 0.054 0.057 0.112
250 0.041 0.053 0.025 0.047 0.053 0.055 0.044 0.048 0.142
500 0.041 0.053 0.024 0.044 0.051 0.040 0.043 0.050 0.113
1000 0.046 0.060 0.026 0.047 0.057 0.038 0.045 0.053 0.080

0.95 100 0.026 0.052 0.035 0.030 0.050 0.133 0.038 0.059 0.198
250 0.027 0.053 0.029 0.031 0.051 0.134 0.032 0.051 0.292
500 0.026 0.050 0.025 0.035 0.054 0.100 0.033 0.049 0.262
1000 0.035 0.057 0.025 0.036 0.056 0.057 0.034 0.048 0.187

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-3: Finite sample size at 5% significance level of one-sided predictability tests:
𝑢𝑡, 𝑣𝑡 is N.i.i.d, bubble in return with 𝜏1 = 0.9, 𝜏2 = 1, 𝑐𝑏𝑢𝑏 = 0.05

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.127 0.062 0.078 0.106 0.041 0.063 0.092 0.050 0.061

250 0.150 0.083 0.097 0.130 0.053 0.071 0.104 0.055 0.056
500 0.227 0.205 0.209 0.182 0.103 0.146 0.150 0.093 0.113
1000 0.354 0.410 0.404 0.293 0.313 0.345 0.251 0.271 0.307

-0.5 100 0.128 0.062 0.074 0.099 0.038 0.062 0.092 0.040 0.061
250 0.135 0.083 0.089 0.108 0.045 0.068 0.094 0.044 0.060
500 0.199 0.179 0.182 0.151 0.106 0.133 0.123 0.088 0.110
1000 0.330 0.383 0.381 0.277 0.309 0.328 0.242 0.289 0.310

0 100 0.069 0.059 0.061 0.069 0.057 0.057 0.065 0.052 0.053
250 0.080 0.080 0.082 0.070 0.067 0.068 0.067 0.065 0.066
500 0.142 0.168 0.169 0.122 0.135 0.136 0.106 0.120 0.120
1000 0.283 0.363 0.363 0.253 0.336 0.336 0.215 0.299 0.300

0.5 100 0.013 0.029 0.023 0.033 0.049 0.018 0.040 0.052 0.018
250 0.024 0.048 0.041 0.042 0.062 0.033 0.046 0.065 0.030
500 0.066 0.121 0.120 0.087 0.125 0.090 0.079 0.111 0.073
1000 0.228 0.327 0.334 0.226 0.307 0.285 0.199 0.290 0.259

0.95 100 0.003 0.013 0.014 0.013 0.044 0.015 0.019 0.052 0.018
250 0.005 0.024 0.038 0.020 0.048 0.025 0.026 0.060 0.028
500 0.030 0.075 0.110 0.062 0.107 0.086 0.058 0.106 0.069
1000 0.171 0.299 0.330 0.192 0.282 0.264 0.185 0.280 0.246

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.073 0.049 0.060 0.056 0.051 0.122 0.045 0.037 0.448

250 0.089 0.058 0.047 0.059 0.050 0.034 0.051 0.051 0.047
500 0.115 0.094 0.085 0.078 0.077 0.040 0.060 0.069 0.020
1000 0.209 0.262 0.271 0.152 0.244 0.197 0.099 0.199 0.107

-0.5 100 0.077 0.050 0.053 0.063 0.048 0.079 0.057 0.047 0.351
250 0.075 0.049 0.049 0.064 0.053 0.036 0.054 0.048 0.037
500 0.108 0.092 0.092 0.072 0.075 0.051 0.063 0.068 0.029
1000 0.198 0.270 0.276 0.140 0.236 0.213 0.097 0.199 0.146

0 100 0.059 0.050 0.048 0.064 0.052 0.050 0.063 0.056 0.064
250 0.066 0.060 0.059 0.061 0.058 0.056 0.056 0.052 0.053
500 0.086 0.098 0.099 0.071 0.087 0.085 0.054 0.065 0.065
1000 0.192 0.285 0.286 0.128 0.236 0.234 0.095 0.197 0.196

0.5 100 0.046 0.055 0.024 0.047 0.052 0.058 0.047 0.054 0.112
250 0.048 0.062 0.031 0.043 0.052 0.054 0.044 0.053 0.144
500 0.070 0.099 0.065 0.058 0.081 0.065 0.048 0.069 0.127
1000 0.180 0.277 0.242 0.130 0.239 0.212 0.084 0.184 0.203

0.95 100 0.028 0.057 0.038 0.031 0.054 0.141 0.036 0.061 0.191
250 0.029 0.058 0.036 0.033 0.055 0.133 0.029 0.049 0.298
500 0.055 0.098 0.064 0.046 0.079 0.114 0.037 0.064 0.258
1000 0.159 0.270 0.226 0.118 0.228 0.209 0.077 0.190 0.258

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-4: Finite sample size at 5% significance level of one-sided predictability tests:
𝑢𝑡, 𝑣𝑡 is N.i.i.d, bubble in return with 𝜏1 = 0.9, 𝜏2 = 1, 𝑐𝑏𝑢𝑏 = 0.1

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.140 0.074 0.096 0.117 0.048 0.072 0.095 0.046 0.065

250 0.210 0.185 0.192 0.160 0.090 0.132 0.133 0.087 0.108
500 0.316 0.392 0.389 0.251 0.293 0.328 0.212 0.257 0.291
1000 0.354 0.454 0.451 0.320 0.433 0.440 0.277 0.399 0.409

-0.5 100 0.146 0.079 0.090 0.102 0.043 0.070 0.090 0.043 0.061
250 0.194 0.175 0.182 0.146 0.104 0.137 0.121 0.086 0.110
500 0.289 0.379 0.376 0.240 0.306 0.325 0.194 0.266 0.286
1000 0.347 0.450 0.449 0.308 0.422 0.428 0.277 0.412 0.418

0 100 0.073 0.064 0.065 0.073 0.061 0.060 0.069 0.059 0.058
250 0.129 0.153 0.155 0.112 0.129 0.128 0.096 0.113 0.113
500 0.254 0.357 0.359 0.217 0.315 0.316 0.182 0.289 0.289
1000 0.341 0.458 0.458 0.307 0.428 0.428 0.272 0.420 0.421

0.5 100 0.018 0.039 0.030 0.041 0.062 0.027 0.045 0.061 0.025
250 0.060 0.111 0.105 0.075 0.118 0.078 0.071 0.107 0.069
500 0.209 0.324 0.327 0.187 0.295 0.272 0.167 0.278 0.249
1000 0.323 0.439 0.441 0.296 0.420 0.415 0.272 0.407 0.398

0.95 100 0.004 0.019 0.022 0.017 0.047 0.019 0.023 0.058 0.022
250 0.029 0.084 0.106 0.057 0.104 0.071 0.049 0.099 0.059
500 0.160 0.285 0.309 0.175 0.283 0.259 0.156 0.272 0.231
1000 0.315 0.439 0.443 0.280 0.410 0.398 0.267 0.414 0.396

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.073 0.055 0.062 0.062 0.056 0.130 0.050 0.044 0.453

250 0.106 0.090 0.083 0.064 0.074 0.048 0.050 0.060 0.055
500 0.170 0.251 0.257 0.113 0.228 0.179 0.068 0.180 0.101
1000 0.249 0.395 0.400 0.177 0.368 0.354 0.118 0.331 0.284

-0.5 100 0.081 0.051 0.059 0.065 0.050 0.084 0.057 0.048 0.339
250 0.094 0.085 0.088 0.068 0.075 0.054 0.052 0.060 0.044
500 0.159 0.246 0.251 0.107 0.223 0.197 0.064 0.175 0.127
1000 0.237 0.393 0.398 0.176 0.375 0.368 0.109 0.329 0.306

0 100 0.067 0.056 0.054 0.058 0.052 0.052 0.060 0.053 0.065
250 0.075 0.092 0.090 0.059 0.074 0.072 0.050 0.062 0.062
500 0.157 0.268 0.268 0.096 0.219 0.217 0.062 0.173 0.173
1000 0.233 0.394 0.395 0.171 0.364 0.362 0.114 0.326 0.326

0.5 100 0.044 0.059 0.027 0.049 0.054 0.058 0.049 0.055 0.112
250 0.064 0.099 0.061 0.050 0.077 0.073 0.039 0.060 0.144
500 0.136 0.258 0.226 0.095 0.216 0.200 0.060 0.182 0.211
1000 0.238 0.397 0.385 0.173 0.360 0.353 0.110 0.331 0.333

0.95 100 0.029 0.058 0.039 0.033 0.056 0.129 0.039 0.064 0.199
250 0.048 0.095 0.065 0.037 0.075 0.139 0.029 0.065 0.294
500 0.130 0.253 0.215 0.089 0.217 0.206 0.052 0.173 0.263
1000 0.228 0.396 0.378 0.164 0.361 0.342 0.109 0.320 0.331

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-5: Finite sample size at 5% significance level of one-sided predictability tests:
𝑢𝑡, 𝑣𝑡 is N.i.i.d, bubble in return with 𝜏1 = 0.7, 𝜏2 = 1, 𝑐𝑏𝑢𝑏 = 0.01

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.135 0.058 0.075 0.115 0.038 0.066 0.093 0.044 0.061

250 0.145 0.074 0.077 0.113 0.042 0.057 0.096 0.043 0.049
500 0.189 0.128 0.136 0.148 0.057 0.082 0.120 0.057 0.066
1000 0.319 0.311 0.309 0.246 0.159 0.205 0.199 0.124 0.165

-0.5 100 0.131 0.063 0.072 0.101 0.041 0.065 0.086 0.038 0.056
250 0.128 0.071 0.076 0.097 0.042 0.058 0.085 0.037 0.053
500 0.164 0.116 0.119 0.118 0.059 0.081 0.095 0.049 0.067
1000 0.287 0.275 0.275 0.220 0.174 0.203 0.186 0.145 0.174

0 100 0.068 0.059 0.059 0.065 0.049 0.048 0.064 0.048 0.047
250 0.074 0.071 0.073 0.069 0.061 0.060 0.064 0.057 0.058
500 0.099 0.108 0.109 0.084 0.081 0.081 0.077 0.075 0.076
1000 0.212 0.248 0.247 0.178 0.187 0.187 0.152 0.163 0.163

0.5 100 0.014 0.031 0.021 0.034 0.048 0.018 0.044 0.056 0.023
250 0.022 0.042 0.035 0.033 0.050 0.024 0.042 0.055 0.024
500 0.036 0.065 0.061 0.055 0.073 0.044 0.050 0.069 0.035
1000 0.125 0.184 0.184 0.150 0.182 0.152 0.122 0.154 0.113

0.95 100 0.002 0.011 0.010 0.014 0.040 0.010 0.022 0.052 0.013
250 0.004 0.017 0.023 0.020 0.046 0.018 0.023 0.049 0.015
500 0.010 0.034 0.050 0.039 0.069 0.036 0.037 0.065 0.027
1000 0.075 0.147 0.181 0.112 0.150 0.127 0.102 0.145 0.101

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.077 0.051 0.059 0.060 0.050 0.124 0.051 0.041 0.447

250 0.078 0.049 0.041 0.062 0.050 0.032 0.050 0.046 0.044
500 0.091 0.061 0.046 0.068 0.056 0.026 0.058 0.051 0.013
1000 0.152 0.121 0.115 0.090 0.091 0.051 0.069 0.070 0.015

-0.5 100 0.074 0.046 0.051 0.067 0.052 0.077 0.059 0.046 0.324
250 0.076 0.048 0.046 0.064 0.050 0.037 0.059 0.051 0.038
500 0.081 0.056 0.057 0.064 0.052 0.033 0.058 0.050 0.020
1000 0.127 0.109 0.113 0.088 0.090 0.067 0.071 0.074 0.030

0 100 0.065 0.051 0.049 0.059 0.048 0.047 0.064 0.054 0.064
250 0.058 0.050 0.050 0.056 0.052 0.050 0.054 0.050 0.049
500 0.067 0.066 0.066 0.064 0.064 0.062 0.059 0.055 0.054
1000 0.107 0.124 0.123 0.081 0.094 0.093 0.065 0.077 0.075

0.5 100 0.047 0.055 0.027 0.049 0.052 0.052 0.052 0.056 0.103
250 0.044 0.052 0.028 0.050 0.054 0.052 0.048 0.052 0.138
500 0.045 0.057 0.028 0.047 0.053 0.044 0.045 0.053 0.104
1000 0.097 0.125 0.085 0.069 0.091 0.068 0.053 0.067 0.091

0.95 100 0.028 0.050 0.028 0.033 0.049 0.115 0.044 0.062 0.183
250 0.029 0.051 0.025 0.032 0.051 0.105 0.038 0.054 0.268
500 0.037 0.061 0.029 0.037 0.054 0.074 0.035 0.051 0.221
1000 0.082 0.115 0.077 0.054 0.084 0.071 0.049 0.069 0.173

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-6: Finite sample size at 5% significance level of one-sided predictability tests:
𝑢𝑡, 𝑣𝑡 is N.i.i.d, bubble in return with 𝜏1 = 0.7, 𝜏2 = 1, 𝑐𝑏𝑢𝑏 = 0.05

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.192 0.120 0.145 0.143 0.062 0.102 0.109 0.054 0.081

250 0.340 0.370 0.369 0.271 0.255 0.294 0.207 0.204 0.243
500 0.401 0.469 0.466 0.345 0.423 0.434 0.302 0.384 0.401
1000 0.437 0.483 0.483 0.393 0.468 0.470 0.353 0.440 0.444

-0.5 100 0.176 0.114 0.129 0.121 0.061 0.091 0.099 0.053 0.076
250 0.312 0.338 0.339 0.243 0.254 0.277 0.195 0.218 0.243
500 0.383 0.449 0.449 0.340 0.411 0.417 0.298 0.397 0.406
1000 0.420 0.485 0.485 0.374 0.452 0.455 0.341 0.437 0.442

0 100 0.101 0.101 0.103 0.091 0.086 0.084 0.080 0.071 0.071
250 0.254 0.319 0.320 0.215 0.269 0.269 0.170 0.231 0.230
500 0.367 0.453 0.453 0.334 0.426 0.426 0.291 0.404 0.405
1000 0.411 0.473 0.473 0.380 0.452 0.452 0.347 0.449 0.449

0.5 100 0.037 0.071 0.061 0.058 0.080 0.043 0.051 0.067 0.034
250 0.192 0.284 0.283 0.176 0.248 0.215 0.155 0.224 0.187
500 0.344 0.438 0.440 0.315 0.409 0.402 0.274 0.396 0.381
1000 0.406 0.469 0.470 0.388 0.458 0.457 0.347 0.451 0.447

0.95 100 0.013 0.048 0.047 0.033 0.067 0.027 0.033 0.068 0.025
250 0.141 0.246 0.266 0.155 0.230 0.195 0.134 0.217 0.171
500 0.327 0.425 0.430 0.303 0.399 0.384 0.272 0.388 0.368
1000 0.390 0.460 0.461 0.373 0.458 0.454 0.339 0.439 0.431

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.084 0.060 0.065 0.061 0.052 0.123 0.051 0.043 0.432

250 0.144 0.175 0.178 0.078 0.129 0.092 0.052 0.092 0.068
500 0.241 0.369 0.373 0.140 0.309 0.282 0.081 0.251 0.187
1000 0.305 0.434 0.436 0.202 0.381 0.371 0.137 0.345 0.310

-0.5 100 0.081 0.056 0.062 0.061 0.050 0.073 0.054 0.049 0.321
250 0.144 0.191 0.196 0.078 0.134 0.113 0.053 0.090 0.069
500 0.241 0.373 0.377 0.146 0.320 0.305 0.083 0.253 0.217
1000 0.297 0.425 0.428 0.203 0.385 0.380 0.132 0.342 0.323

0 100 0.072 0.065 0.063 0.061 0.057 0.053 0.060 0.050 0.061
250 0.128 0.192 0.191 0.070 0.133 0.131 0.051 0.092 0.091
500 0.237 0.383 0.382 0.138 0.311 0.310 0.084 0.256 0.256
1000 0.296 0.427 0.426 0.201 0.389 0.388 0.129 0.339 0.338

0.5 100 0.047 0.062 0.033 0.050 0.054 0.053 0.049 0.056 0.100
250 0.111 0.189 0.152 0.064 0.131 0.119 0.038 0.088 0.142
500 0.216 0.363 0.348 0.138 0.314 0.301 0.076 0.242 0.257
1000 0.294 0.427 0.422 0.194 0.385 0.378 0.121 0.338 0.339

0.95 100 0.037 0.064 0.040 0.032 0.053 0.107 0.039 0.059 0.183
250 0.094 0.182 0.140 0.054 0.131 0.152 0.032 0.093 0.248
500 0.214 0.362 0.336 0.130 0.305 0.287 0.075 0.243 0.269
1000 0.291 0.423 0.411 0.194 0.377 0.365 0.131 0.340 0.348

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-7: Finite sample size at 5% significance level of one-sided predictability tests:
𝑢𝑡, 𝑣𝑡 is N.i.i.d, bubble in return with 𝜏1 = 0.7, 𝜏2 = 1, 𝑐𝑏𝑢𝑏 = 0.1

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.283 0.281 0.296 0.197 0.151 0.208 0.154 0.127 0.164

250 0.362 0.449 0.449 0.301 0.402 0.411 0.251 0.373 0.386
500 0.411 0.478 0.476 0.360 0.451 0.453 0.315 0.423 0.428
1000 0.421 0.478 0.478 0.396 0.472 0.474 0.357 0.456 0.459

-0.5 100 0.259 0.262 0.273 0.191 0.174 0.208 0.143 0.137 0.165
250 0.345 0.445 0.444 0.283 0.391 0.397 0.243 0.371 0.381
500 0.394 0.465 0.465 0.351 0.446 0.448 0.309 0.421 0.424
1000 0.426 0.486 0.486 0.384 0.463 0.463 0.352 0.448 0.450

0 100 0.194 0.242 0.243 0.147 0.184 0.183 0.119 0.155 0.152
250 0.338 0.444 0.444 0.282 0.399 0.398 0.232 0.376 0.375
500 0.390 0.474 0.474 0.348 0.444 0.444 0.305 0.431 0.431
1000 0.417 0.477 0.477 0.382 0.465 0.465 0.348 0.451 0.451

0.5 100 0.121 0.203 0.191 0.116 0.169 0.127 0.097 0.154 0.109
250 0.315 0.423 0.428 0.268 0.383 0.378 0.232 0.372 0.361
500 0.387 0.465 0.465 0.337 0.434 0.432 0.309 0.428 0.425
1000 0.414 0.475 0.476 0.376 0.456 0.455 0.345 0.449 0.448

0.95 100 0.081 0.174 0.172 0.091 0.154 0.105 0.079 0.147 0.092
250 0.289 0.406 0.409 0.260 0.385 0.371 0.219 0.359 0.340
500 0.381 0.463 0.466 0.341 0.439 0.435 0.309 0.428 0.422
1000 0.415 0.472 0.473 0.374 0.456 0.454 0.341 0.446 0.444

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.102 0.113 0.127 0.055 0.073 0.126 0.040 0.047 0.425

250 0.180 0.335 0.341 0.093 0.275 0.254 0.041 0.190 0.154
500 0.260 0.404 0.408 0.156 0.360 0.353 0.093 0.298 0.273
1000 0.304 0.438 0.441 0.207 0.396 0.391 0.132 0.352 0.337

-0.5 100 0.094 0.110 0.121 0.058 0.077 0.098 0.038 0.050 0.305
250 0.180 0.340 0.345 0.084 0.270 0.261 0.039 0.191 0.176
500 0.252 0.397 0.399 0.147 0.349 0.345 0.085 0.290 0.278
1000 0.311 0.446 0.448 0.201 0.391 0.388 0.132 0.368 0.361

0 100 0.086 0.123 0.119 0.052 0.079 0.073 0.042 0.057 0.060
250 0.175 0.342 0.340 0.082 0.272 0.269 0.041 0.191 0.192
500 0.251 0.403 0.403 0.149 0.350 0.348 0.086 0.285 0.286
1000 0.302 0.436 0.436 0.212 0.402 0.402 0.135 0.349 0.349

0.5 100 0.066 0.115 0.074 0.041 0.073 0.067 0.035 0.059 0.102
250 0.169 0.342 0.329 0.082 0.268 0.258 0.035 0.188 0.199
500 0.244 0.401 0.396 0.152 0.350 0.345 0.091 0.295 0.299
1000 0.293 0.428 0.425 0.202 0.398 0.396 0.130 0.347 0.350

0.95 100 0.055 0.117 0.074 0.033 0.078 0.109 0.026 0.058 0.164
250 0.171 0.342 0.320 0.080 0.262 0.244 0.038 0.188 0.217
500 0.247 0.407 0.398 0.137 0.337 0.333 0.086 0.285 0.290
1000 0.296 0.438 0.434 0.211 0.395 0.390 0.136 0.355 0.357

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-8: Finite sample size at 5% significance level of one-sided predictability tests:
𝑢𝑡, 𝑣𝑡 is i.i.d from t-distribution with the degree of freedom = 5, no bubble in return

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.121 0.051 0.063 0.107 0.047 0.064 0.089 0.050 0.059

250 0.111 0.052 0.047 0.105 0.043 0.045 0.092 0.045 0.044
500 0.110 0.054 0.046 0.100 0.040 0.043 0.094 0.047 0.043
1000 0.112 0.052 0.043 0.101 0.044 0.040 0.100 0.049 0.040

-0.5 100 0.129 0.055 0.063 0.101 0.037 0.063 0.082 0.035 0.052
250 0.114 0.049 0.051 0.090 0.032 0.050 0.086 0.036 0.047
500 0.106 0.053 0.051 0.091 0.031 0.047 0.081 0.033 0.042
1000 0.101 0.052 0.048 0.086 0.031 0.042 0.081 0.034 0.043

0 100 0.060 0.047 0.048 0.063 0.050 0.049 0.062 0.048 0.048
250 0.059 0.051 0.052 0.055 0.045 0.045 0.059 0.053 0.052
500 0.055 0.050 0.051 0.053 0.050 0.049 0.054 0.048 0.048
1000 0.051 0.048 0.049 0.053 0.048 0.048 0.051 0.049 0.049

0.5 100 0.008 0.020 0.014 0.026 0.043 0.013 0.035 0.049 0.016
250 0.007 0.020 0.018 0.023 0.043 0.015 0.030 0.043 0.016
500 0.008 0.019 0.019 0.023 0.041 0.015 0.027 0.042 0.015
1000 0.008 0.020 0.019 0.025 0.043 0.018 0.031 0.047 0.015

0.95 100 0.001 0.005 0.006 0.006 0.032 0.010 0.013 0.046 0.017
250 0.001 0.005 0.008 0.008 0.035 0.013 0.017 0.049 0.020
500 0.001 0.005 0.012 0.010 0.036 0.017 0.018 0.051 0.019
1000 0.001 0.005 0.014 0.010 0.037 0.018 0.017 0.044 0.019

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.073 0.050 0.063 0.051 0.045 0.140 0.047 0.040 0.517

250 0.077 0.049 0.040 0.062 0.048 0.037 0.053 0.045 0.059
500 0.087 0.054 0.038 0.069 0.054 0.026 0.057 0.049 0.014
1000 0.086 0.051 0.036 0.070 0.052 0.020 0.059 0.051 0.006

-0.5 100 0.072 0.044 0.053 0.062 0.046 0.090 0.056 0.045 0.390
250 0.071 0.044 0.041 0.064 0.051 0.040 0.061 0.050 0.046
500 0.073 0.045 0.042 0.060 0.045 0.027 0.060 0.050 0.021
1000 0.071 0.045 0.041 0.058 0.044 0.027 0.062 0.053 0.019

0 100 0.062 0.049 0.048 0.061 0.049 0.048 0.059 0.051 0.067
250 0.060 0.050 0.050 0.058 0.050 0.049 0.059 0.054 0.051
500 0.059 0.050 0.051 0.054 0.049 0.048 0.052 0.051 0.049
1000 0.052 0.049 0.049 0.049 0.048 0.048 0.049 0.049 0.047

0.5 100 0.043 0.050 0.023 0.046 0.053 0.055 0.052 0.057 0.107
250 0.040 0.049 0.020 0.045 0.052 0.053 0.047 0.055 0.132
500 0.036 0.048 0.019 0.038 0.047 0.040 0.043 0.049 0.104
1000 0.038 0.051 0.020 0.043 0.049 0.033 0.045 0.051 0.079

0.95 100 0.021 0.048 0.045 0.031 0.052 0.131 0.036 0.058 0.163
250 0.022 0.049 0.042 0.031 0.052 0.132 0.034 0.049 0.268
500 0.024 0.049 0.033 0.030 0.049 0.099 0.037 0.054 0.247
1000 0.024 0.050 0.024 0.031 0.050 0.067 0.034 0.048 0.187

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-9: Finite sample size at 5% significance level of one-sided predictability tests:
𝑢𝑡, 𝑣𝑡 is i.i.d from t-distribution with the degree of freedom = 5, bubble in return with
𝜏1 = 0.9, 𝜏2 = 1, 𝑐𝑏𝑢𝑏 = 0.01

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.127 0.052 0.068 0.103 0.044 0.061 0.087 0.047 0.057

250 0.118 0.055 0.057 0.109 0.043 0.051 0.098 0.048 0.048
500 0.121 0.060 0.054 0.111 0.045 0.049 0.096 0.046 0.043
1000 0.138 0.072 0.074 0.119 0.044 0.052 0.100 0.048 0.044

-0.5 100 0.133 0.060 0.072 0.100 0.036 0.061 0.084 0.033 0.051
250 0.117 0.058 0.058 0.092 0.033 0.050 0.084 0.035 0.048
500 0.119 0.064 0.065 0.093 0.037 0.053 0.081 0.041 0.048
1000 0.125 0.075 0.076 0.096 0.042 0.056 0.089 0.040 0.053

0 100 0.063 0.052 0.053 0.066 0.052 0.050 0.065 0.049 0.047
250 0.059 0.051 0.053 0.059 0.051 0.052 0.059 0.050 0.049
500 0.058 0.057 0.057 0.060 0.056 0.056 0.060 0.054 0.054
1000 0.068 0.071 0.071 0.059 0.057 0.057 0.060 0.059 0.058

0.5 100 0.010 0.026 0.017 0.031 0.046 0.015 0.035 0.047 0.017
250 0.009 0.023 0.020 0.029 0.050 0.020 0.033 0.049 0.019
500 0.011 0.027 0.023 0.028 0.044 0.019 0.033 0.050 0.019
1000 0.014 0.033 0.029 0.035 0.053 0.025 0.039 0.056 0.025

0.95 100 0.001 0.006 0.007 0.008 0.034 0.009 0.017 0.044 0.013
250 0.001 0.007 0.014 0.013 0.039 0.015 0.019 0.049 0.016
500 0.001 0.006 0.014 0.012 0.038 0.016 0.021 0.049 0.019
1000 0.002 0.009 0.022 0.019 0.044 0.021 0.025 0.053 0.023

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.070 0.050 0.059 0.055 0.047 0.141 0.043 0.037 0.519

250 0.079 0.048 0.043 0.061 0.048 0.036 0.053 0.048 0.060
500 0.085 0.053 0.039 0.060 0.049 0.025 0.054 0.048 0.016
1000 0.084 0.051 0.036 0.070 0.055 0.022 0.056 0.048 0.006

-0.5 100 0.071 0.043 0.049 0.062 0.048 0.089 0.055 0.044 0.395
250 0.072 0.044 0.043 0.063 0.045 0.037 0.053 0.045 0.042
500 0.076 0.046 0.044 0.066 0.050 0.033 0.059 0.050 0.021
1000 0.077 0.051 0.048 0.063 0.050 0.031 0.057 0.051 0.019

0 100 0.064 0.049 0.049 0.058 0.050 0.046 0.057 0.047 0.059
250 0.056 0.047 0.046 0.060 0.053 0.051 0.057 0.052 0.050
500 0.057 0.053 0.053 0.052 0.048 0.046 0.050 0.050 0.048
1000 0.061 0.058 0.059 0.057 0.053 0.052 0.053 0.052 0.050

0.5 100 0.044 0.051 0.026 0.047 0.049 0.054 0.053 0.056 0.105
250 0.043 0.052 0.026 0.045 0.055 0.056 0.048 0.051 0.128
500 0.040 0.052 0.023 0.045 0.053 0.043 0.048 0.054 0.106
1000 0.041 0.054 0.023 0.046 0.056 0.036 0.044 0.051 0.070

0.95 100 0.021 0.045 0.038 0.032 0.048 0.124 0.041 0.062 0.168
250 0.025 0.048 0.035 0.028 0.050 0.125 0.033 0.050 0.244
500 0.027 0.050 0.028 0.034 0.053 0.088 0.036 0.051 0.228
1000 0.031 0.052 0.024 0.036 0.053 0.063 0.038 0.053 0.174

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-10: Finite sample size at 5% significance level of one-sided predictability tests:
𝑢𝑡, 𝑣𝑡 is i.i.d from t-distribution with the degree of freedom = 5, bubble in return with
𝜏1 = 0.9, 𝜏2 = 1, 𝑐𝑏𝑢𝑏 = 0.05

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.128 0.059 0.075 0.105 0.042 0.061 0.091 0.049 0.057

250 0.130 0.077 0.077 0.117 0.047 0.061 0.103 0.052 0.057
500 0.212 0.184 0.189 0.158 0.082 0.119 0.137 0.079 0.099
1000 0.336 0.389 0.380 0.281 0.274 0.315 0.234 0.237 0.277

-0.5 100 0.130 0.061 0.069 0.099 0.034 0.059 0.088 0.037 0.056
250 0.137 0.077 0.083 0.096 0.039 0.061 0.087 0.039 0.055
500 0.189 0.155 0.162 0.137 0.086 0.114 0.115 0.070 0.094
1000 0.317 0.365 0.362 0.258 0.276 0.299 0.220 0.246 0.271

0 100 0.068 0.058 0.059 0.066 0.054 0.053 0.063 0.051 0.049
250 0.067 0.065 0.066 0.067 0.062 0.061 0.061 0.056 0.055
500 0.120 0.141 0.143 0.102 0.109 0.109 0.092 0.100 0.101
1000 0.269 0.342 0.343 0.227 0.293 0.293 0.210 0.277 0.278

0.5 100 0.012 0.026 0.017 0.032 0.046 0.018 0.042 0.053 0.021
250 0.015 0.034 0.030 0.037 0.058 0.027 0.037 0.054 0.023
500 0.045 0.090 0.088 0.067 0.100 0.067 0.065 0.093 0.055
1000 0.199 0.293 0.295 0.207 0.281 0.252 0.189 0.272 0.236

0.95 100 0.002 0.010 0.010 0.013 0.040 0.014 0.016 0.049 0.017
250 0.003 0.014 0.027 0.019 0.048 0.023 0.022 0.056 0.023
500 0.017 0.053 0.084 0.046 0.087 0.065 0.048 0.089 0.056
1000 0.137 0.240 0.287 0.179 0.263 0.238 0.162 0.251 0.214

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.072 0.048 0.063 0.058 0.051 0.146 0.045 0.038 0.503

250 0.084 0.055 0.046 0.066 0.055 0.040 0.053 0.051 0.056
500 0.107 0.084 0.069 0.077 0.072 0.039 0.061 0.064 0.021
1000 0.199 0.234 0.242 0.137 0.204 0.162 0.088 0.163 0.077

-0.5 100 0.071 0.044 0.053 0.066 0.048 0.091 0.055 0.046 0.386
250 0.072 0.045 0.044 0.068 0.054 0.043 0.058 0.050 0.041
500 0.095 0.077 0.075 0.070 0.067 0.048 0.059 0.060 0.028
1000 0.189 0.243 0.247 0.137 0.213 0.188 0.087 0.166 0.114

0 100 0.064 0.054 0.052 0.058 0.050 0.048 0.061 0.055 0.069
250 0.065 0.057 0.057 0.060 0.057 0.055 0.053 0.050 0.051
500 0.080 0.092 0.091 0.069 0.076 0.074 0.054 0.063 0.062
1000 0.178 0.255 0.255 0.127 0.210 0.209 0.081 0.164 0.164

0.5 100 0.041 0.050 0.026 0.048 0.053 0.055 0.053 0.057 0.101
250 0.041 0.055 0.025 0.045 0.053 0.054 0.047 0.055 0.126
500 0.067 0.093 0.053 0.050 0.068 0.055 0.044 0.061 0.107
1000 0.160 0.253 0.211 0.119 0.212 0.179 0.081 0.170 0.179

0.95 100 0.023 0.050 0.042 0.030 0.051 0.118 0.036 0.054 0.166
250 0.027 0.056 0.034 0.031 0.051 0.123 0.033 0.053 0.244
500 0.046 0.079 0.054 0.043 0.070 0.106 0.037 0.062 0.230
1000 0.151 0.245 0.201 0.105 0.203 0.191 0.072 0.165 0.230

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-11: Finite sample size at 5% significance level of one-sided predictability tests:
𝑢𝑡, 𝑣𝑡 is i.i.d from t-distribution with the degree of freedom = 5, bubble in return with
𝜏1 = 0.9, 𝜏2 = 1, 𝑐𝑏𝑢𝑏 = 0.1

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.132 0.067 0.084 0.103 0.041 0.064 0.093 0.051 0.065

250 0.186 0.165 0.174 0.153 0.079 0.117 0.117 0.071 0.089
500 0.304 0.376 0.372 0.250 0.273 0.313 0.210 0.238 0.275
1000 0.367 0.459 0.457 0.320 0.420 0.433 0.279 0.387 0.400

-0.5 100 0.137 0.069 0.082 0.104 0.041 0.070 0.092 0.043 0.065
250 0.181 0.153 0.160 0.126 0.077 0.104 0.108 0.070 0.091
500 0.280 0.350 0.347 0.233 0.279 0.301 0.190 0.248 0.272
1000 0.352 0.456 0.454 0.307 0.417 0.423 0.275 0.397 0.407

0 100 0.073 0.064 0.065 0.072 0.061 0.061 0.063 0.054 0.053
250 0.115 0.138 0.138 0.098 0.107 0.108 0.084 0.094 0.092
500 0.240 0.338 0.339 0.210 0.293 0.293 0.173 0.267 0.267
1000 0.332 0.448 0.448 0.298 0.419 0.419 0.266 0.404 0.404

0.5 100 0.015 0.032 0.021 0.032 0.051 0.020 0.039 0.055 0.022
250 0.039 0.083 0.075 0.062 0.097 0.060 0.061 0.092 0.056
500 0.178 0.291 0.295 0.174 0.278 0.246 0.152 0.255 0.221
1000 0.324 0.436 0.437 0.293 0.412 0.406 0.263 0.398 0.385

0.95 100 0.003 0.013 0.017 0.013 0.044 0.014 0.018 0.052 0.018
250 0.017 0.057 0.080 0.037 0.081 0.054 0.042 0.086 0.051
500 0.139 0.258 0.288 0.162 0.257 0.232 0.145 0.251 0.210
1000 0.294 0.425 0.430 0.282 0.408 0.396 0.259 0.405 0.384

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.070 0.047 0.061 0.054 0.048 0.141 0.047 0.039 0.503

250 0.093 0.073 0.067 0.064 0.064 0.048 0.051 0.057 0.060
500 0.167 0.225 0.231 0.112 0.204 0.163 0.067 0.156 0.087
1000 0.243 0.382 0.387 0.175 0.349 0.330 0.110 0.314 0.263

-0.5 100 0.076 0.048 0.056 0.067 0.053 0.094 0.059 0.047 0.389
250 0.088 0.073 0.072 0.066 0.065 0.051 0.055 0.058 0.048
500 0.154 0.230 0.237 0.104 0.202 0.177 0.062 0.148 0.106
1000 0.234 0.383 0.387 0.180 0.362 0.353 0.116 0.315 0.287

0 100 0.062 0.052 0.051 0.062 0.054 0.053 0.060 0.056 0.065
250 0.072 0.082 0.080 0.058 0.068 0.065 0.054 0.059 0.058
500 0.143 0.249 0.249 0.096 0.205 0.204 0.060 0.156 0.155
1000 0.233 0.395 0.395 0.175 0.363 0.362 0.104 0.309 0.309

0.5 100 0.040 0.050 0.025 0.048 0.056 0.060 0.050 0.054 0.100
250 0.056 0.083 0.049 0.048 0.067 0.069 0.044 0.062 0.135
500 0.130 0.236 0.201 0.090 0.192 0.173 0.051 0.148 0.175
1000 0.234 0.393 0.378 0.173 0.363 0.350 0.107 0.309 0.311

0.95 100 0.025 0.052 0.040 0.030 0.052 0.127 0.033 0.053 0.165
250 0.043 0.082 0.056 0.037 0.069 0.125 0.032 0.059 0.242
500 0.117 0.225 0.182 0.082 0.194 0.187 0.048 0.154 0.239
1000 0.225 0.394 0.369 0.169 0.361 0.338 0.106 0.313 0.326

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-12: Finite sample size at 5% significance level of one-sided predictability tests:
𝑢𝑡, 𝑣𝑡 is i.i.d from t-distribution with the degree of freedom = 5, bubble in return with
𝜏1 = 0.7, 𝜏2 = 1, 𝑐𝑏𝑢𝑏 = 0.01

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.131 0.061 0.071 0.108 0.042 0.064 0.095 0.048 0.063

250 0.132 0.064 0.065 0.118 0.042 0.056 0.097 0.049 0.049
500 0.180 0.109 0.116 0.136 0.047 0.070 0.103 0.047 0.056
1000 0.308 0.289 0.290 0.229 0.134 0.186 0.180 0.111 0.143

-0.5 100 0.131 0.059 0.067 0.095 0.036 0.059 0.080 0.036 0.054
250 0.124 0.066 0.069 0.099 0.038 0.057 0.090 0.041 0.055
500 0.156 0.101 0.108 0.112 0.053 0.075 0.095 0.045 0.061
1000 0.257 0.238 0.235 0.195 0.142 0.172 0.153 0.109 0.138

0 100 0.067 0.058 0.060 0.066 0.051 0.052 0.066 0.050 0.049
250 0.066 0.067 0.068 0.066 0.059 0.059 0.059 0.049 0.050
500 0.087 0.095 0.096 0.077 0.074 0.073 0.070 0.066 0.066
1000 0.182 0.210 0.211 0.158 0.166 0.166 0.131 0.138 0.139

0.5 100 0.010 0.022 0.015 0.032 0.044 0.016 0.040 0.052 0.019
250 0.013 0.032 0.027 0.032 0.048 0.020 0.042 0.056 0.024
500 0.023 0.052 0.050 0.047 0.068 0.036 0.048 0.064 0.030
1000 0.098 0.155 0.153 0.119 0.149 0.112 0.107 0.136 0.094

0.95 100 0.001 0.008 0.007 0.012 0.037 0.010 0.019 0.045 0.015
250 0.002 0.010 0.018 0.018 0.044 0.016 0.022 0.049 0.015
500 0.006 0.023 0.039 0.025 0.051 0.025 0.030 0.056 0.023
1000 0.049 0.105 0.151 0.089 0.126 0.099 0.088 0.126 0.081

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.079 0.052 0.064 0.058 0.047 0.135 0.049 0.040 0.504

250 0.082 0.050 0.042 0.060 0.048 0.036 0.054 0.048 0.057
500 0.089 0.056 0.046 0.067 0.052 0.025 0.057 0.053 0.015
1000 0.133 0.104 0.098 0.088 0.080 0.041 0.065 0.066 0.013

-0.5 100 0.074 0.047 0.054 0.065 0.047 0.090 0.059 0.047 0.384
250 0.071 0.046 0.044 0.063 0.048 0.036 0.062 0.054 0.046
500 0.071 0.047 0.046 0.064 0.054 0.036 0.058 0.053 0.022
1000 0.120 0.098 0.101 0.083 0.080 0.059 0.064 0.065 0.028

0 100 0.062 0.048 0.047 0.060 0.050 0.048 0.061 0.051 0.066
250 0.060 0.053 0.051 0.054 0.046 0.045 0.057 0.051 0.049
500 0.065 0.060 0.061 0.058 0.057 0.055 0.054 0.052 0.051
1000 0.103 0.111 0.110 0.074 0.083 0.081 0.063 0.067 0.065

0.5 100 0.040 0.048 0.024 0.045 0.051 0.055 0.055 0.058 0.099
250 0.041 0.054 0.024 0.045 0.051 0.051 0.048 0.052 0.120
500 0.045 0.057 0.029 0.045 0.053 0.044 0.046 0.054 0.096
1000 0.084 0.108 0.068 0.059 0.076 0.057 0.053 0.066 0.083

0.95 100 0.026 0.052 0.033 0.034 0.049 0.109 0.039 0.057 0.165
250 0.028 0.048 0.028 0.034 0.051 0.098 0.037 0.055 0.234
500 0.034 0.056 0.028 0.039 0.055 0.080 0.037 0.052 0.209
1000 0.069 0.102 0.059 0.049 0.075 0.073 0.047 0.065 0.162

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. .
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Table C-13: Finite sample size at 5% significance level of one-sided predictability tests:
𝑢𝑡, 𝑣𝑡 is i.i.d from t-distribution with the degree of freedom = 5, bubble in return with
𝜏1 = 0.7, 𝜏2 = 1, 𝑐𝑏𝑢𝑏 = 0.05

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.177 0.106 0.128 0.130 0.049 0.088 0.105 0.057 0.072

250 0.330 0.352 0.353 0.253 0.215 0.267 0.193 0.168 0.216
500 0.407 0.467 0.464 0.348 0.414 0.424 0.305 0.383 0.402
1000 0.439 0.484 0.484 0.389 0.455 0.461 0.364 0.441 0.449

-0.5 100 0.162 0.100 0.115 0.111 0.051 0.079 0.091 0.047 0.071
250 0.298 0.316 0.317 0.235 0.228 0.258 0.185 0.189 0.217
500 0.382 0.453 0.452 0.340 0.413 0.421 0.297 0.390 0.400
1000 0.415 0.473 0.473 0.387 0.455 0.458 0.342 0.434 0.438

0 100 0.094 0.090 0.091 0.081 0.074 0.073 0.072 0.060 0.059
250 0.238 0.295 0.296 0.185 0.226 0.227 0.158 0.210 0.209
500 0.367 0.441 0.442 0.323 0.411 0.411 0.282 0.390 0.391
1000 0.405 0.473 0.473 0.382 0.460 0.460 0.343 0.442 0.442

0.5 100 0.029 0.059 0.044 0.048 0.066 0.032 0.046 0.063 0.029
250 0.159 0.246 0.244 0.164 0.225 0.190 0.134 0.201 0.158
500 0.336 0.426 0.428 0.308 0.399 0.388 0.271 0.388 0.372
1000 0.396 0.462 0.464 0.376 0.456 0.453 0.348 0.445 0.441

0.95 100 0.007 0.029 0.030 0.023 0.059 0.025 0.027 0.062 0.022
250 0.114 0.216 0.243 0.137 0.210 0.174 0.119 0.197 0.148
500 0.309 0.405 0.414 0.299 0.393 0.378 0.263 0.381 0.356
1000 0.397 0.461 0.463 0.367 0.445 0.439 0.334 0.431 0.421

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.075 0.053 0.065 0.057 0.049 0.137 0.050 0.043 0.511

250 0.139 0.153 0.155 0.081 0.122 0.090 0.050 0.079 0.072
500 0.233 0.337 0.342 0.145 0.304 0.270 0.086 0.242 0.168
1000 0.304 0.427 0.427 0.210 0.385 0.371 0.126 0.334 0.295

-0.5 100 0.076 0.053 0.060 0.061 0.051 0.088 0.056 0.047 0.373
250 0.131 0.162 0.168 0.079 0.121 0.102 0.051 0.081 0.061
500 0.240 0.361 0.364 0.146 0.301 0.283 0.084 0.242 0.201
1000 0.302 0.433 0.436 0.204 0.385 0.378 0.134 0.336 0.312

0 100 0.065 0.057 0.056 0.065 0.056 0.052 0.055 0.048 0.060
250 0.116 0.169 0.168 0.073 0.124 0.121 0.052 0.088 0.085
500 0.226 0.355 0.355 0.135 0.299 0.299 0.080 0.235 0.236
1000 0.300 0.437 0.437 0.205 0.383 0.383 0.125 0.329 0.328

0.5 100 0.047 0.059 0.030 0.043 0.052 0.051 0.053 0.061 0.100
250 0.105 0.172 0.130 0.063 0.120 0.105 0.044 0.086 0.138
500 0.219 0.357 0.338 0.127 0.286 0.273 0.077 0.226 0.237
1000 0.293 0.420 0.411 0.194 0.372 0.363 0.128 0.329 0.331

0.95 100 0.027 0.053 0.038 0.031 0.054 0.118 0.036 0.055 0.158
250 0.086 0.157 0.121 0.046 0.109 0.128 0.034 0.083 0.221
500 0.216 0.354 0.322 0.126 0.289 0.267 0.076 0.234 0.269
1000 0.290 0.422 0.408 0.193 0.376 0.361 0.124 0.333 0.335

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-14: Finite sample size at 5% significance level of one-sided predictability tests:
𝑢𝑡, 𝑣𝑡 is i.i.d from t-distribution with the degree of freedom = 5, bubble in return with
𝜏1 = 0.7, 𝜏2 = 1, 𝑐𝑏𝑢𝑏 = 0.1

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.276 0.261 0.279 0.196 0.136 0.199 0.146 0.114 0.157

250 0.361 0.445 0.444 0.299 0.391 0.402 0.246 0.364 0.380
500 0.399 0.471 0.470 0.365 0.444 0.448 0.316 0.426 0.433
1000 0.429 0.488 0.488 0.387 0.462 0.464 0.351 0.451 0.454

-0.5 100 0.245 0.235 0.245 0.176 0.148 0.186 0.138 0.119 0.149
250 0.345 0.449 0.446 0.299 0.403 0.411 0.234 0.356 0.367
500 0.399 0.476 0.475 0.352 0.444 0.447 0.313 0.431 0.435
1000 0.426 0.487 0.486 0.386 0.465 0.466 0.346 0.449 0.451

0 100 0.169 0.212 0.213 0.146 0.172 0.172 0.109 0.133 0.129
250 0.331 0.438 0.438 0.287 0.402 0.403 0.233 0.371 0.369
500 0.387 0.464 0.464 0.353 0.441 0.441 0.312 0.421 0.421
1000 0.423 0.479 0.479 0.387 0.470 0.469 0.350 0.451 0.451

0.5 100 0.098 0.166 0.152 0.108 0.156 0.112 0.085 0.134 0.086
250 0.314 0.426 0.429 0.270 0.391 0.380 0.226 0.374 0.359
500 0.387 0.469 0.470 0.346 0.445 0.442 0.304 0.431 0.426
1000 0.417 0.473 0.474 0.380 0.462 0.460 0.346 0.446 0.443

0.95 100 0.056 0.140 0.145 0.078 0.139 0.091 0.065 0.127 0.076
250 0.286 0.403 0.408 0.263 0.382 0.365 0.217 0.360 0.335
500 0.376 0.457 0.460 0.342 0.434 0.430 0.296 0.422 0.413
1000 0.402 0.459 0.461 0.385 0.466 0.464 0.355 0.451 0.448

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.097 0.097 0.111 0.053 0.069 0.145 0.038 0.043 0.502

250 0.180 0.330 0.336 0.090 0.267 0.248 0.046 0.184 0.154
500 0.256 0.401 0.405 0.157 0.350 0.341 0.088 0.286 0.255
1000 0.298 0.435 0.437 0.207 0.396 0.392 0.129 0.345 0.331

-0.5 100 0.087 0.089 0.101 0.061 0.072 0.105 0.045 0.050 0.371
250 0.169 0.319 0.325 0.085 0.262 0.254 0.042 0.183 0.165
500 0.250 0.396 0.399 0.151 0.348 0.343 0.085 0.285 0.271
1000 0.303 0.438 0.440 0.202 0.393 0.390 0.133 0.346 0.338

0 100 0.081 0.107 0.102 0.053 0.070 0.065 0.042 0.052 0.058
250 0.168 0.337 0.336 0.082 0.264 0.261 0.040 0.177 0.177
500 0.251 0.398 0.398 0.147 0.348 0.347 0.083 0.291 0.290
1000 0.302 0.438 0.439 0.194 0.396 0.396 0.129 0.349 0.349

0.5 100 0.064 0.108 0.064 0.043 0.069 0.060 0.035 0.055 0.091
250 0.165 0.332 0.313 0.084 0.264 0.249 0.038 0.179 0.181
500 0.248 0.398 0.392 0.145 0.351 0.345 0.081 0.289 0.292
1000 0.304 0.438 0.435 0.200 0.396 0.392 0.128 0.348 0.348

0.95 100 0.050 0.103 0.064 0.027 0.065 0.106 0.025 0.053 0.152
250 0.152 0.322 0.289 0.077 0.256 0.237 0.035 0.180 0.194
500 0.240 0.391 0.380 0.150 0.349 0.337 0.089 0.287 0.291
1000 0.296 0.431 0.425 0.197 0.384 0.376 0.129 0.349 0.350

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-15: Finite sample size at 5% significance level of one-sided predictability
tests: 𝑢𝑡, 𝑣𝑡 is N.i.i.d, collapsing bubble in return with 𝜏1 = 0.6, 𝜏2 = 0.9, 𝑐𝑏𝑢𝑏 = 0.01

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.120 0.048 0.059 0.103 0.035 0.055 0.089 0.039 0.055

250 0.100 0.038 0.039 0.094 0.029 0.042 0.091 0.040 0.044
500 0.097 0.043 0.038 0.093 0.031 0.042 0.078 0.033 0.036
1000 0.089 0.038 0.034 0.088 0.033 0.047 0.077 0.036 0.041

-0.5 100 0.107 0.043 0.053 0.091 0.034 0.055 0.079 0.035 0.050
250 0.089 0.039 0.043 0.080 0.031 0.045 0.074 0.033 0.045
500 0.087 0.037 0.041 0.073 0.033 0.045 0.068 0.035 0.045
1000 0.069 0.035 0.036 0.065 0.034 0.044 0.063 0.033 0.044

0 100 0.051 0.035 0.035 0.056 0.043 0.043 0.063 0.048 0.047
250 0.046 0.034 0.036 0.051 0.042 0.043 0.058 0.047 0.047
500 0.043 0.033 0.034 0.050 0.045 0.045 0.054 0.045 0.045
1000 0.036 0.026 0.027 0.046 0.040 0.040 0.051 0.047 0.047

0.5 100 0.010 0.016 0.010 0.030 0.038 0.016 0.041 0.048 0.019
250 0.009 0.014 0.012 0.027 0.036 0.015 0.038 0.045 0.020
500 0.009 0.013 0.011 0.028 0.035 0.018 0.038 0.046 0.022
1000 0.009 0.010 0.010 0.028 0.031 0.022 0.038 0.041 0.026

0.95 100 0.002 0.006 0.002 0.012 0.032 0.007 0.022 0.046 0.010
250 0.002 0.005 0.003 0.012 0.029 0.007 0.024 0.043 0.010
500 0.002 0.005 0.002 0.011 0.027 0.008 0.020 0.036 0.009
1000 0.002 0.003 0.002 0.014 0.025 0.008 0.026 0.038 0.012

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.075 0.045 0.054 0.056 0.047 0.105 0.055 0.047 0.422

250 0.071 0.045 0.036 0.062 0.047 0.032 0.052 0.048 0.041
500 0.073 0.043 0.034 0.060 0.046 0.021 0.054 0.048 0.014
1000 0.069 0.046 0.044 0.065 0.053 0.032 0.059 0.052 0.015

-0.5 100 0.072 0.042 0.048 0.064 0.046 0.069 0.058 0.049 0.306
250 0.071 0.043 0.042 0.059 0.046 0.032 0.057 0.048 0.035
500 0.066 0.046 0.044 0.062 0.051 0.035 0.057 0.049 0.024
1000 0.062 0.043 0.044 0.057 0.050 0.040 0.058 0.053 0.030

0 100 0.057 0.044 0.043 0.063 0.052 0.052 0.057 0.048 0.060
250 0.056 0.052 0.051 0.056 0.050 0.049 0.060 0.055 0.053
500 0.055 0.049 0.048 0.055 0.050 0.049 0.052 0.050 0.050
1000 0.053 0.047 0.047 0.051 0.049 0.047 0.054 0.052 0.051

0.5 100 0.044 0.046 0.027 0.054 0.056 0.053 0.052 0.057 0.092
250 0.041 0.047 0.025 0.047 0.051 0.048 0.045 0.049 0.115
500 0.042 0.046 0.027 0.045 0.047 0.039 0.046 0.048 0.087
1000 0.043 0.045 0.027 0.049 0.050 0.035 0.046 0.049 0.061

0.95 100 0.030 0.047 0.024 0.037 0.052 0.099 0.047 0.060 0.157
250 0.026 0.044 0.017 0.037 0.049 0.088 0.038 0.052 0.237
500 0.027 0.042 0.015 0.032 0.041 0.050 0.040 0.049 0.160
1000 0.032 0.041 0.014 0.042 0.049 0.031 0.044 0.048 0.088

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-16: Finite sample size at 5% significance level of one-sided predictability
tests: 𝑢𝑡, 𝑣𝑡 is N.i.i.d, collapsing bubble in return with 𝜏1 = 0.6, 𝜏2 = 0.9, 𝑐𝑏𝑢𝑏 = 0.05

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.102 0.037 0.044 0.096 0.031 0.052 0.087 0.036 0.050

250 0.064 0.021 0.024 0.063 0.023 0.033 0.061 0.027 0.036
500 0.227 0.259 0.263 0.204 0.213 0.227 0.170 0.181 0.197
1000 0.401 0.456 0.456 0.352 0.411 0.418 0.318 0.381 0.388

-0.5 100 0.091 0.038 0.046 0.082 0.030 0.046 0.076 0.036 0.052
250 0.050 0.020 0.020 0.052 0.025 0.033 0.053 0.030 0.037
500 0.220 0.256 0.259 0.195 0.215 0.223 0.164 0.188 0.197
1000 0.380 0.438 0.438 0.359 0.418 0.420 0.325 0.394 0.398

0 100 0.049 0.034 0.034 0.062 0.042 0.042 0.059 0.042 0.042
250 0.030 0.016 0.016 0.040 0.027 0.027 0.047 0.035 0.034
500 0.196 0.240 0.241 0.180 0.215 0.215 0.159 0.193 0.194
1000 0.371 0.441 0.441 0.342 0.408 0.408 0.317 0.395 0.395

0.5 100 0.013 0.015 0.010 0.031 0.033 0.015 0.046 0.046 0.024
250 0.010 0.007 0.006 0.027 0.023 0.017 0.037 0.033 0.023
500 0.168 0.224 0.228 0.171 0.206 0.198 0.158 0.197 0.187
1000 0.370 0.437 0.439 0.334 0.403 0.402 0.307 0.378 0.375

0.95 100 0.004 0.007 0.002 0.015 0.028 0.007 0.027 0.041 0.010
250 0.004 0.003 0.002 0.018 0.017 0.008 0.030 0.031 0.015
500 0.153 0.208 0.213 0.162 0.195 0.181 0.151 0.186 0.169
1000 0.352 0.433 0.437 0.325 0.404 0.399 0.296 0.373 0.367

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.072 0.045 0.051 0.056 0.044 0.095 0.055 0.046 0.389

250 0.064 0.037 0.037 0.064 0.050 0.037 0.055 0.047 0.038
500 0.139 0.157 0.166 0.089 0.119 0.106 0.062 0.089 0.065
1000 0.273 0.357 0.362 0.183 0.298 0.289 0.116 0.244 0.216

-0.5 100 0.071 0.041 0.047 0.067 0.050 0.072 0.056 0.046 0.259
250 0.055 0.035 0.038 0.060 0.048 0.040 0.058 0.049 0.038
500 0.128 0.153 0.160 0.083 0.114 0.107 0.064 0.091 0.077
1000 0.274 0.366 0.370 0.177 0.299 0.294 0.111 0.237 0.222

0 100 0.064 0.049 0.048 0.060 0.052 0.049 0.059 0.052 0.064
250 0.048 0.039 0.038 0.054 0.045 0.043 0.052 0.046 0.045
500 0.128 0.163 0.162 0.086 0.115 0.114 0.060 0.087 0.085
1000 0.261 0.355 0.354 0.174 0.292 0.291 0.108 0.236 0.237

0.5 100 0.050 0.048 0.027 0.055 0.050 0.050 0.055 0.055 0.086
250 0.046 0.041 0.030 0.050 0.045 0.043 0.051 0.049 0.072
500 0.128 0.163 0.155 0.082 0.118 0.111 0.056 0.081 0.090
1000 0.265 0.361 0.356 0.176 0.290 0.286 0.110 0.229 0.232

0.95 100 0.030 0.042 0.018 0.042 0.052 0.076 0.041 0.052 0.151
250 0.042 0.040 0.023 0.047 0.043 0.047 0.048 0.047 0.111
500 0.125 0.164 0.146 0.084 0.121 0.110 0.054 0.080 0.094
1000 0.253 0.350 0.340 0.181 0.303 0.294 0.105 0.229 0.232

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-17: Finite sample size at 5% significance level of one-sided predictability
tests: 𝑢𝑡, 𝑣𝑡 is N.i.i.d, collapsing bubble in return with 𝜏1 = 0.6, 𝜏2 = 0.9, 𝑐𝑏𝑢𝑏 = 0.1

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.076 0.024 0.029 0.076 0.026 0.040 0.077 0.031 0.042

250 0.181 0.221 0.221 0.150 0.173 0.184 0.129 0.152 0.163
500 0.357 0.432 0.431 0.321 0.401 0.406 0.280 0.373 0.380
1000 0.403 0.473 0.473 0.367 0.442 0.443 0.337 0.431 0.433

-0.5 100 0.066 0.023 0.027 0.066 0.025 0.037 0.065 0.028 0.037
250 0.160 0.202 0.203 0.156 0.183 0.188 0.130 0.155 0.162
500 0.346 0.426 0.426 0.326 0.407 0.409 0.278 0.375 0.379
1000 0.392 0.457 0.457 0.368 0.449 0.450 0.345 0.439 0.441

0 100 0.035 0.018 0.018 0.048 0.028 0.028 0.052 0.033 0.033
250 0.149 0.202 0.203 0.132 0.169 0.168 0.122 0.158 0.157
500 0.334 0.424 0.425 0.317 0.399 0.399 0.277 0.377 0.376
1000 0.393 0.463 0.463 0.361 0.446 0.446 0.335 0.433 0.433

0.5 100 0.013 0.009 0.007 0.032 0.026 0.016 0.040 0.033 0.018
250 0.129 0.183 0.186 0.132 0.171 0.164 0.119 0.158 0.149
500 0.329 0.411 0.412 0.302 0.389 0.388 0.274 0.373 0.370
1000 0.398 0.470 0.470 0.362 0.447 0.445 0.333 0.431 0.429

0.95 100 0.004 0.003 0.001 0.016 0.019 0.006 0.030 0.031 0.011
250 0.116 0.168 0.171 0.126 0.164 0.153 0.113 0.154 0.140
500 0.330 0.415 0.416 0.297 0.382 0.379 0.269 0.370 0.364
1000 0.391 0.465 0.465 0.362 0.443 0.441 0.331 0.432 0.428

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.071 0.040 0.046 0.064 0.046 0.076 0.060 0.046 0.297

250 0.108 0.133 0.139 0.068 0.098 0.091 0.043 0.071 0.060
500 0.235 0.345 0.349 0.136 0.275 0.268 0.078 0.208 0.189
1000 0.291 0.410 0.413 0.199 0.368 0.362 0.124 0.320 0.303

-0.5 100 0.067 0.039 0.044 0.063 0.048 0.057 0.057 0.046 0.186
250 0.103 0.132 0.136 0.066 0.096 0.091 0.045 0.074 0.066
500 0.227 0.343 0.345 0.134 0.274 0.270 0.074 0.207 0.199
1000 0.296 0.416 0.417 0.201 0.369 0.366 0.126 0.322 0.315

0 100 0.059 0.039 0.037 0.063 0.048 0.047 0.062 0.050 0.063
250 0.100 0.134 0.132 0.065 0.098 0.096 0.043 0.068 0.067
500 0.222 0.337 0.337 0.132 0.271 0.270 0.075 0.205 0.204
1000 0.289 0.417 0.417 0.196 0.370 0.369 0.123 0.321 0.321

0.5 100 0.047 0.037 0.025 0.059 0.050 0.048 0.069 0.061 0.069
250 0.097 0.132 0.125 0.063 0.096 0.091 0.043 0.069 0.074
500 0.214 0.336 0.332 0.134 0.269 0.267 0.071 0.205 0.210
1000 0.286 0.416 0.413 0.192 0.369 0.366 0.115 0.306 0.309

0.95 100 0.038 0.036 0.022 0.051 0.048 0.057 0.057 0.058 0.110
250 0.093 0.131 0.116 0.062 0.093 0.091 0.039 0.067 0.080
500 0.222 0.337 0.329 0.125 0.268 0.262 0.072 0.200 0.208
1000 0.283 0.408 0.404 0.189 0.358 0.353 0.122 0.321 0.322

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-18: Finite sample size at 5% significance level of one-sided predictability
tests: 𝑢𝑡, 𝑣𝑡 is N.i.i.d, collapsing bubble in return with 𝜏1 = 0.6, 𝜏2 = 0.9, 𝑐𝑏𝑢𝑏 = 0.2

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.058 0.031 0.034 0.064 0.039 0.047 0.065 0.044 0.051

250 0.316 0.427 0.427 0.268 0.382 0.384 0.233 0.347 0.352
500 0.376 0.456 0.457 0.336 0.430 0.432 0.303 0.418 0.421
1000 0.400 0.464 0.465 0.362 0.450 0.451 0.349 0.452 0.453

-0.5 100 0.050 0.029 0.031 0.062 0.041 0.047 0.065 0.044 0.050
250 0.293 0.412 0.412 0.263 0.372 0.373 0.223 0.345 0.347
500 0.367 0.454 0.454 0.331 0.428 0.429 0.302 0.414 0.415
1000 0.402 0.472 0.472 0.377 0.459 0.459 0.347 0.452 0.454

0 100 0.038 0.025 0.025 0.054 0.041 0.040 0.062 0.050 0.050
250 0.295 0.412 0.412 0.261 0.371 0.370 0.220 0.344 0.343
500 0.366 0.455 0.455 0.328 0.429 0.429 0.292 0.411 0.411
1000 0.397 0.474 0.474 0.369 0.454 0.454 0.344 0.446 0.446

0.5 100 0.029 0.021 0.022 0.050 0.042 0.038 0.058 0.049 0.043
250 0.290 0.410 0.411 0.253 0.361 0.360 0.221 0.344 0.341
500 0.369 0.462 0.462 0.337 0.426 0.425 0.298 0.415 0.414
1000 0.389 0.467 0.467 0.370 0.461 0.460 0.347 0.449 0.449

0.95 100 0.023 0.018 0.017 0.044 0.037 0.029 0.049 0.043 0.033
250 0.291 0.413 0.414 0.255 0.367 0.364 0.221 0.345 0.339
500 0.351 0.443 0.443 0.331 0.430 0.428 0.302 0.416 0.413
1000 0.400 0.474 0.475 0.371 0.460 0.458 0.341 0.447 0.446

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.063 0.046 0.050 0.062 0.054 0.060 0.056 0.052 0.135

250 0.172 0.311 0.314 0.085 0.228 0.225 0.034 0.149 0.143
500 0.243 0.387 0.390 0.150 0.335 0.332 0.079 0.267 0.258
1000 0.299 0.435 0.436 0.198 0.389 0.387 0.128 0.347 0.341

-0.5 100 0.061 0.046 0.048 0.061 0.051 0.053 0.055 0.049 0.094
250 0.169 0.309 0.311 0.084 0.232 0.230 0.033 0.149 0.145
500 0.246 0.390 0.391 0.148 0.336 0.335 0.074 0.267 0.264
1000 0.287 0.423 0.424 0.204 0.392 0.391 0.134 0.345 0.341

0 100 0.065 0.055 0.055 0.061 0.055 0.052 0.051 0.048 0.059
250 0.170 0.307 0.306 0.083 0.229 0.228 0.032 0.153 0.153
500 0.235 0.384 0.383 0.138 0.325 0.324 0.080 0.273 0.274
1000 0.284 0.422 0.422 0.197 0.392 0.392 0.129 0.344 0.343

0.5 100 0.057 0.049 0.042 0.058 0.051 0.048 0.056 0.054 0.052
250 0.169 0.316 0.310 0.077 0.225 0.221 0.033 0.146 0.147
500 0.240 0.386 0.385 0.142 0.330 0.329 0.084 0.266 0.271
1000 0.295 0.438 0.436 0.201 0.391 0.390 0.124 0.341 0.342

0.95 100 0.057 0.049 0.040 0.059 0.053 0.051 0.056 0.058 0.060
250 0.164 0.301 0.294 0.079 0.228 0.223 0.033 0.147 0.152
500 0.245 0.392 0.388 0.144 0.324 0.322 0.078 0.271 0.276
1000 0.297 0.428 0.426 0.198 0.387 0.384 0.126 0.344 0.346

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-19: Finite sample size at 5% significance level of one-sided predictability
tests: 𝑢𝑡, 𝑣𝑡 is N.i.i.d, collapsing bubble in return with 𝜏1 = 0.4, 𝜏2 = 0.7, 𝑐𝑏𝑢𝑏 = 0.01

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.112 0.042 0.054 0.102 0.038 0.058 0.087 0.041 0.053

250 0.100 0.044 0.039 0.095 0.035 0.042 0.094 0.041 0.045
500 0.097 0.038 0.037 0.090 0.031 0.039 0.083 0.037 0.041
1000 0.086 0.034 0.034 0.082 0.034 0.043 0.081 0.040 0.047

-0.5 100 0.100 0.041 0.048 0.085 0.032 0.050 0.075 0.033 0.050
250 0.091 0.039 0.044 0.077 0.032 0.047 0.075 0.033 0.045
500 0.079 0.033 0.036 0.073 0.032 0.044 0.071 0.033 0.043
1000 0.070 0.030 0.033 0.069 0.036 0.044 0.063 0.034 0.045

0 100 0.055 0.038 0.039 0.058 0.040 0.040 0.063 0.045 0.045
250 0.045 0.033 0.034 0.050 0.040 0.040 0.055 0.045 0.045
500 0.040 0.031 0.032 0.047 0.039 0.040 0.054 0.045 0.045
1000 0.035 0.027 0.027 0.046 0.042 0.041 0.050 0.044 0.045

0.5 100 0.010 0.016 0.010 0.028 0.034 0.013 0.037 0.046 0.018
250 0.008 0.014 0.011 0.029 0.040 0.019 0.035 0.045 0.021
500 0.010 0.014 0.012 0.024 0.032 0.016 0.035 0.042 0.022
1000 0.009 0.010 0.009 0.025 0.029 0.018 0.037 0.038 0.024

0.95 100 0.001 0.004 0.001 0.010 0.029 0.005 0.021 0.043 0.010
250 0.001 0.002 0.002 0.013 0.032 0.007 0.020 0.040 0.012
500 0.001 0.004 0.002 0.014 0.030 0.007 0.022 0.040 0.010
1000 0.001 0.002 0.001 0.013 0.023 0.007 0.025 0.037 0.011

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.081 0.049 0.055 0.058 0.049 0.105 0.052 0.043 0.424

250 0.076 0.046 0.039 0.066 0.050 0.034 0.048 0.043 0.039
500 0.078 0.044 0.034 0.065 0.050 0.023 0.054 0.047 0.015
1000 0.071 0.045 0.040 0.064 0.051 0.033 0.056 0.052 0.019

-0.5 100 0.073 0.043 0.050 0.061 0.046 0.067 0.059 0.045 0.302
250 0.068 0.043 0.041 0.062 0.048 0.035 0.052 0.046 0.036
500 0.066 0.042 0.043 0.058 0.047 0.034 0.055 0.046 0.022
1000 0.059 0.041 0.043 0.063 0.051 0.040 0.058 0.052 0.027

0 100 0.061 0.048 0.047 0.061 0.051 0.048 0.063 0.057 0.066
250 0.058 0.047 0.048 0.057 0.049 0.048 0.052 0.046 0.046
500 0.053 0.048 0.047 0.055 0.050 0.048 0.056 0.052 0.050
1000 0.054 0.049 0.050 0.052 0.049 0.048 0.052 0.048 0.048

0.5 100 0.047 0.049 0.026 0.048 0.048 0.047 0.053 0.055 0.093
250 0.042 0.047 0.024 0.052 0.051 0.051 0.049 0.054 0.117
500 0.040 0.043 0.024 0.047 0.050 0.042 0.049 0.052 0.087
1000 0.044 0.045 0.029 0.044 0.046 0.034 0.047 0.049 0.056

0.95 100 0.029 0.046 0.025 0.039 0.053 0.094 0.042 0.059 0.169
250 0.028 0.044 0.020 0.036 0.050 0.085 0.036 0.047 0.229
500 0.030 0.045 0.017 0.035 0.046 0.051 0.039 0.049 0.169
1000 0.036 0.044 0.016 0.037 0.043 0.028 0.041 0.047 0.086

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-20: Finite sample size at 5% significance level of one-sided predictability
tests: 𝑢𝑡, 𝑣𝑡 is N.i.i.d, collapsing bubble in return with 𝜏1 = 0.4, 𝜏2 = 0.7, 𝑐𝑏𝑢𝑏 = 0.05

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.108 0.039 0.046 0.095 0.032 0.050 0.083 0.036 0.052

250 0.065 0.021 0.023 0.069 0.028 0.038 0.060 0.028 0.037
500 0.195 0.188 0.188 0.188 0.194 0.209 0.178 0.187 0.203
1000 0.347 0.392 0.394 0.335 0.389 0.395 0.324 0.391 0.399

-0.5 100 0.090 0.036 0.042 0.086 0.036 0.055 0.082 0.036 0.050
250 0.051 0.021 0.022 0.055 0.027 0.036 0.060 0.032 0.039
500 0.180 0.178 0.179 0.179 0.194 0.202 0.166 0.184 0.192
1000 0.340 0.391 0.392 0.333 0.396 0.400 0.326 0.398 0.404

0 100 0.049 0.031 0.031 0.061 0.043 0.042 0.060 0.045 0.044
250 0.025 0.013 0.014 0.042 0.030 0.030 0.046 0.033 0.034
500 0.159 0.172 0.172 0.170 0.204 0.204 0.164 0.195 0.196
1000 0.328 0.390 0.391 0.323 0.390 0.390 0.310 0.385 0.385

0.5 100 0.010 0.012 0.008 0.028 0.030 0.014 0.041 0.042 0.019
250 0.009 0.006 0.007 0.026 0.022 0.016 0.035 0.030 0.021
500 0.135 0.149 0.153 0.160 0.192 0.184 0.150 0.186 0.176
1000 0.312 0.378 0.378 0.313 0.385 0.383 0.298 0.384 0.381

0.95 100 0.002 0.003 0.001 0.015 0.028 0.005 0.025 0.040 0.010
250 0.004 0.002 0.002 0.017 0.018 0.008 0.028 0.029 0.012
500 0.117 0.135 0.139 0.147 0.178 0.165 0.140 0.172 0.155
1000 0.299 0.366 0.371 0.323 0.394 0.388 0.307 0.385 0.378

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.077 0.045 0.051 0.063 0.049 0.091 0.051 0.041 0.392

250 0.068 0.042 0.043 0.064 0.051 0.038 0.059 0.050 0.037
500 0.136 0.153 0.163 0.087 0.118 0.105 0.062 0.095 0.069
1000 0.268 0.346 0.350 0.179 0.300 0.292 0.112 0.245 0.216

-0.5 100 0.076 0.046 0.052 0.069 0.051 0.068 0.062 0.051 0.270
250 0.056 0.035 0.039 0.057 0.047 0.039 0.055 0.046 0.036
500 0.130 0.153 0.159 0.081 0.111 0.107 0.060 0.091 0.079
1000 0.272 0.353 0.357 0.185 0.310 0.305 0.108 0.239 0.225

0 100 0.061 0.046 0.045 0.064 0.053 0.052 0.062 0.052 0.064
250 0.053 0.039 0.039 0.054 0.048 0.045 0.058 0.053 0.053
500 0.131 0.164 0.163 0.085 0.118 0.117 0.056 0.084 0.082
1000 0.274 0.368 0.368 0.175 0.301 0.299 0.098 0.232 0.231

0.5 100 0.046 0.047 0.026 0.057 0.052 0.046 0.058 0.055 0.082
250 0.043 0.038 0.029 0.053 0.047 0.044 0.053 0.051 0.070
500 0.119 0.152 0.143 0.083 0.119 0.115 0.056 0.086 0.094
1000 0.263 0.359 0.353 0.168 0.294 0.288 0.099 0.229 0.233

0.95 100 0.033 0.044 0.020 0.044 0.052 0.089 0.046 0.057 0.154
250 0.038 0.038 0.020 0.048 0.045 0.047 0.046 0.046 0.110
500 0.123 0.158 0.139 0.082 0.117 0.108 0.054 0.089 0.100
1000 0.264 0.358 0.346 0.174 0.291 0.280 0.099 0.229 0.234

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-21: Finite sample size at 5% significance level of one-sided predictability
tests: 𝑢𝑡, 𝑣𝑡 is N.i.i.d, collapsing bubble in return with 𝜏1 = 0.4, 𝜏2 = 0.7, 𝑐𝑏𝑢𝑏 = 0.1

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.071 0.024 0.026 0.072 0.023 0.034 0.071 0.031 0.041

250 0.141 0.144 0.144 0.147 0.164 0.176 0.135 0.151 0.164
500 0.306 0.372 0.372 0.293 0.372 0.376 0.285 0.374 0.379
1000 0.357 0.428 0.430 0.364 0.442 0.445 0.342 0.428 0.432

-0.5 100 0.063 0.021 0.026 0.068 0.026 0.037 0.067 0.027 0.039
250 0.128 0.139 0.141 0.137 0.161 0.168 0.122 0.147 0.155
500 0.296 0.375 0.376 0.297 0.381 0.384 0.272 0.367 0.369
1000 0.356 0.430 0.431 0.360 0.447 0.448 0.331 0.423 0.425

0 100 0.034 0.017 0.018 0.046 0.026 0.027 0.058 0.038 0.038
250 0.114 0.129 0.130 0.130 0.162 0.161 0.123 0.153 0.153
500 0.296 0.374 0.375 0.297 0.381 0.381 0.272 0.369 0.368
1000 0.351 0.432 0.432 0.350 0.436 0.436 0.338 0.435 0.435

0.5 100 0.012 0.007 0.005 0.028 0.022 0.013 0.042 0.035 0.019
250 0.100 0.119 0.122 0.124 0.161 0.154 0.118 0.155 0.147
500 0.284 0.369 0.370 0.295 0.388 0.385 0.269 0.367 0.363
1000 0.352 0.433 0.434 0.351 0.445 0.444 0.329 0.424 0.422

0.95 100 0.002 0.001 0.001 0.016 0.018 0.005 0.032 0.033 0.012
250 0.085 0.103 0.106 0.114 0.151 0.140 0.114 0.155 0.138
500 0.272 0.359 0.360 0.276 0.375 0.372 0.263 0.362 0.353
1000 0.351 0.433 0.432 0.344 0.435 0.433 0.327 0.423 0.420

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.068 0.037 0.042 0.065 0.049 0.078 0.056 0.047 0.298

250 0.103 0.126 0.133 0.067 0.098 0.090 0.042 0.072 0.061
500 0.237 0.345 0.352 0.133 0.280 0.273 0.065 0.199 0.182
1000 0.290 0.409 0.412 0.193 0.360 0.356 0.113 0.317 0.304

-0.5 100 0.064 0.036 0.042 0.065 0.047 0.059 0.066 0.050 0.189
250 0.108 0.136 0.140 0.066 0.097 0.093 0.038 0.067 0.061
500 0.226 0.337 0.340 0.134 0.277 0.273 0.061 0.199 0.190
1000 0.283 0.405 0.407 0.197 0.370 0.369 0.121 0.325 0.318

0 100 0.060 0.042 0.042 0.060 0.046 0.044 0.066 0.054 0.066
250 0.101 0.134 0.132 0.064 0.099 0.096 0.045 0.072 0.071
500 0.226 0.344 0.345 0.130 0.266 0.265 0.063 0.200 0.201
1000 0.288 0.408 0.408 0.196 0.364 0.363 0.114 0.319 0.319

0.5 100 0.048 0.039 0.026 0.060 0.050 0.046 0.066 0.061 0.067
250 0.096 0.133 0.124 0.063 0.094 0.090 0.040 0.069 0.074
500 0.225 0.341 0.337 0.127 0.265 0.263 0.058 0.197 0.202
1000 0.293 0.417 0.415 0.189 0.363 0.360 0.113 0.313 0.316

0.95 100 0.041 0.040 0.020 0.052 0.050 0.055 0.057 0.058 0.098
250 0.098 0.134 0.121 0.060 0.097 0.092 0.042 0.075 0.086
500 0.220 0.339 0.329 0.127 0.270 0.264 0.059 0.191 0.199
1000 0.286 0.406 0.400 0.194 0.364 0.358 0.108 0.305 0.308

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-22: Finite sample size at 5% significance level of one-sided predictability
tests: 𝑢𝑡, 𝑣𝑡 is N.i.i.d, collapsing bubble in return with 𝜏1 = 0.4, 𝜏2 = 0.7, 𝑐𝑏𝑢𝑏 = 0.2

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.057 0.028 0.033 0.064 0.041 0.049 0.068 0.046 0.055

250 0.247 0.345 0.346 0.255 0.367 0.369 0.221 0.339 0.343
500 0.323 0.416 0.416 0.313 0.420 0.422 0.302 0.417 0.420
1000 0.359 0.447 0.447 0.362 0.457 0.458 0.342 0.445 0.446

-0.5 100 0.049 0.029 0.031 0.059 0.040 0.045 0.066 0.047 0.051
250 0.242 0.344 0.345 0.245 0.360 0.361 0.221 0.340 0.342
500 0.320 0.417 0.417 0.316 0.423 0.424 0.292 0.410 0.411
1000 0.370 0.451 0.451 0.354 0.450 0.451 0.343 0.448 0.449

0 100 0.036 0.021 0.021 0.058 0.043 0.042 0.062 0.048 0.047
250 0.233 0.342 0.343 0.238 0.353 0.353 0.221 0.341 0.340
500 0.312 0.412 0.412 0.321 0.422 0.423 0.294 0.412 0.412
1000 0.365 0.453 0.454 0.365 0.453 0.453 0.342 0.450 0.449

0.5 100 0.025 0.016 0.016 0.047 0.038 0.034 0.056 0.046 0.041
250 0.235 0.343 0.343 0.232 0.346 0.345 0.211 0.340 0.337
500 0.310 0.410 0.410 0.312 0.417 0.416 0.297 0.413 0.411
1000 0.360 0.446 0.446 0.355 0.443 0.442 0.331 0.434 0.432

0.95 100 0.019 0.014 0.012 0.043 0.037 0.030 0.052 0.046 0.037
250 0.223 0.333 0.336 0.235 0.350 0.347 0.212 0.338 0.332
500 0.309 0.408 0.409 0.310 0.415 0.413 0.293 0.422 0.419
1000 0.350 0.436 0.437 0.349 0.444 0.443 0.337 0.445 0.443

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.067 0.049 0.053 0.060 0.053 0.059 0.053 0.050 0.131

250 0.172 0.308 0.312 0.074 0.223 0.220 0.025 0.150 0.143
500 0.246 0.390 0.392 0.149 0.344 0.341 0.064 0.267 0.258
1000 0.298 0.426 0.428 0.210 0.393 0.391 0.120 0.337 0.330

-0.5 100 0.064 0.049 0.052 0.060 0.054 0.053 0.054 0.051 0.093
250 0.170 0.305 0.306 0.078 0.230 0.228 0.026 0.151 0.147
500 0.247 0.384 0.385 0.143 0.331 0.329 0.062 0.267 0.262
1000 0.295 0.425 0.426 0.198 0.384 0.383 0.116 0.342 0.340

0 100 0.065 0.053 0.050 0.063 0.056 0.054 0.055 0.053 0.060
250 0.168 0.303 0.301 0.074 0.228 0.226 0.024 0.149 0.151
500 0.249 0.392 0.391 0.145 0.333 0.332 0.066 0.266 0.265
1000 0.294 0.431 0.431 0.193 0.390 0.389 0.116 0.349 0.349

0.5 100 0.057 0.048 0.041 0.055 0.050 0.045 0.055 0.053 0.054
250 0.166 0.304 0.301 0.080 0.237 0.235 0.021 0.151 0.153
500 0.243 0.380 0.378 0.141 0.332 0.331 0.066 0.264 0.266
1000 0.300 0.431 0.430 0.201 0.385 0.383 0.112 0.344 0.345

0.95 100 0.058 0.050 0.041 0.054 0.051 0.048 0.052 0.052 0.057
250 0.164 0.306 0.299 0.078 0.232 0.227 0.020 0.147 0.152
500 0.244 0.391 0.386 0.143 0.330 0.327 0.067 0.264 0.269
1000 0.293 0.428 0.427 0.202 0.387 0.384 0.122 0.350 0.351

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-23: Finite sample size at 5% significance level of one-sided predictability
tests: 𝑢𝑡, 𝑣𝑡 is N.i.i.d, collapsing bubble in return with 𝜏1 = 0.1, 𝜏2 = 0.4, 𝑐𝑏𝑢𝑏 = 0.01

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.114 0.048 0.049 0.100 0.035 0.054 0.090 0.040 0.052

250 0.098 0.046 0.040 0.094 0.031 0.042 0.089 0.041 0.045
500 0.097 0.040 0.039 0.090 0.031 0.039 0.089 0.038 0.042
1000 0.087 0.034 0.032 0.088 0.032 0.045 0.081 0.037 0.046

-0.5 100 0.105 0.044 0.049 0.084 0.032 0.051 0.081 0.036 0.052
250 0.095 0.039 0.043 0.084 0.035 0.048 0.076 0.036 0.047
500 0.085 0.039 0.040 0.076 0.030 0.043 0.068 0.034 0.045
1000 0.074 0.034 0.036 0.065 0.033 0.043 0.065 0.036 0.048

0 100 0.052 0.037 0.037 0.058 0.042 0.042 0.065 0.048 0.046
250 0.046 0.036 0.037 0.053 0.043 0.043 0.052 0.042 0.042
500 0.042 0.034 0.035 0.049 0.044 0.045 0.051 0.044 0.043
1000 0.038 0.031 0.031 0.047 0.042 0.042 0.051 0.046 0.047

0.5 100 0.009 0.013 0.011 0.028 0.034 0.013 0.037 0.044 0.018
250 0.009 0.015 0.012 0.026 0.034 0.015 0.036 0.044 0.019
500 0.007 0.011 0.010 0.027 0.035 0.016 0.032 0.039 0.017
1000 0.010 0.011 0.012 0.027 0.031 0.021 0.037 0.043 0.025

0.95 100 0.000 0.002 0.001 0.011 0.029 0.005 0.019 0.043 0.009
250 0.001 0.003 0.002 0.011 0.029 0.006 0.021 0.038 0.010
500 0.000 0.002 0.001 0.012 0.025 0.007 0.021 0.038 0.009
1000 0.002 0.003 0.003 0.015 0.028 0.007 0.024 0.037 0.011

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.080 0.048 0.056 0.057 0.046 0.111 0.054 0.044 0.430

250 0.076 0.046 0.037 0.068 0.053 0.035 0.056 0.051 0.044
500 0.074 0.044 0.036 0.062 0.047 0.025 0.055 0.048 0.016
1000 0.071 0.047 0.042 0.063 0.051 0.030 0.056 0.049 0.015

-0.5 100 0.076 0.044 0.050 0.067 0.054 0.074 0.059 0.044 0.301
250 0.068 0.042 0.041 0.059 0.045 0.034 0.057 0.048 0.037
500 0.065 0.042 0.042 0.058 0.045 0.031 0.059 0.053 0.025
1000 0.063 0.043 0.043 0.058 0.049 0.037 0.054 0.046 0.024

0 100 0.058 0.045 0.043 0.058 0.050 0.049 0.055 0.047 0.059
250 0.061 0.052 0.051 0.060 0.052 0.050 0.056 0.052 0.050
500 0.055 0.047 0.047 0.052 0.048 0.047 0.052 0.050 0.049
1000 0.050 0.044 0.044 0.051 0.049 0.049 0.052 0.049 0.048

0.5 100 0.047 0.050 0.025 0.046 0.048 0.047 0.053 0.058 0.094
250 0.040 0.047 0.023 0.049 0.051 0.050 0.048 0.051 0.109
500 0.042 0.047 0.024 0.045 0.049 0.041 0.048 0.051 0.086
1000 0.039 0.041 0.025 0.044 0.046 0.037 0.047 0.048 0.060

0.95 100 0.030 0.048 0.022 0.037 0.049 0.095 0.042 0.054 0.168
250 0.028 0.044 0.020 0.035 0.050 0.088 0.039 0.053 0.236
500 0.029 0.043 0.017 0.040 0.050 0.050 0.041 0.051 0.173
1000 0.031 0.041 0.015 0.035 0.043 0.027 0.046 0.051 0.091

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-24: Finite sample size at 5% significance level of one-sided predictability
tests: 𝑢𝑡, 𝑣𝑡 is N.i.i.d, collapsing bubble in return with 𝜏1 = 0.1, 𝜏2 = 0.4, 𝑐𝑏𝑢𝑏 = 0.05

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.059 0.031 0.035 0.068 0.043 0.051 0.072 0.048 0.055

250 0.285 0.390 0.389 0.264 0.372 0.376 0.221 0.340 0.344
500 0.361 0.456 0.455 0.334 0.424 0.426 0.302 0.415 0.418
1000 0.401 0.469 0.468 0.378 0.457 0.458 0.340 0.441 0.443

-0.5 100 0.055 0.029 0.034 0.062 0.046 0.051 0.072 0.050 0.056
250 0.278 0.393 0.393 0.262 0.370 0.372 0.219 0.344 0.346
500 0.359 0.447 0.446 0.343 0.437 0.439 0.295 0.412 0.413
1000 0.384 0.458 0.458 0.378 0.459 0.459 0.345 0.446 0.447

0 100 0.039 0.027 0.028 0.056 0.043 0.042 0.059 0.045 0.046
250 0.273 0.386 0.386 0.252 0.360 0.360 0.223 0.337 0.336
500 0.354 0.448 0.449 0.339 0.436 0.436 0.303 0.420 0.419
1000 0.390 0.461 0.461 0.367 0.453 0.453 0.338 0.443 0.443

0.5 100 0.032 0.024 0.024 0.049 0.043 0.038 0.057 0.047 0.042
250 0.276 0.393 0.395 0.260 0.372 0.369 0.218 0.344 0.340
500 0.354 0.441 0.442 0.332 0.430 0.430 0.294 0.412 0.411
1000 0.393 0.473 0.473 0.378 0.458 0.457 0.341 0.447 0.446

0.95 100 0.026 0.020 0.018 0.043 0.039 0.032 0.053 0.047 0.037
250 0.259 0.381 0.384 0.247 0.354 0.351 0.217 0.341 0.336
500 0.360 0.450 0.450 0.331 0.430 0.429 0.298 0.413 0.411
1000 0.402 0.466 0.467 0.375 0.464 0.463 0.333 0.440 0.439

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.066 0.049 0.055 0.058 0.050 0.055 0.060 0.055 0.139

250 0.170 0.307 0.310 0.081 0.231 0.228 0.030 0.154 0.147
500 0.249 0.395 0.396 0.146 0.330 0.328 0.074 0.270 0.261
1000 0.297 0.421 0.423 0.207 0.398 0.396 0.125 0.351 0.343

-0.5 100 0.063 0.046 0.050 0.068 0.059 0.061 0.055 0.048 0.094
250 0.164 0.304 0.305 0.077 0.219 0.217 0.026 0.148 0.143
500 0.247 0.391 0.392 0.148 0.340 0.338 0.071 0.258 0.254
1000 0.293 0.434 0.435 0.202 0.389 0.388 0.124 0.338 0.334

0 100 0.061 0.049 0.047 0.060 0.052 0.049 0.052 0.049 0.064
250 0.169 0.297 0.295 0.080 0.226 0.224 0.030 0.150 0.149
500 0.238 0.385 0.385 0.150 0.335 0.334 0.073 0.263 0.264
1000 0.291 0.425 0.426 0.200 0.386 0.385 0.130 0.355 0.354

0.5 100 0.064 0.054 0.048 0.063 0.057 0.054 0.054 0.052 0.053
250 0.164 0.307 0.302 0.079 0.220 0.216 0.028 0.147 0.150
500 0.243 0.391 0.389 0.143 0.331 0.330 0.073 0.269 0.274
1000 0.289 0.421 0.420 0.202 0.384 0.384 0.126 0.350 0.351

0.95 100 0.056 0.050 0.039 0.060 0.056 0.050 0.055 0.052 0.056
250 0.159 0.299 0.291 0.080 0.225 0.220 0.026 0.147 0.151
500 0.241 0.389 0.385 0.144 0.330 0.328 0.073 0.271 0.274
1000 0.289 0.429 0.426 0.195 0.380 0.378 0.125 0.343 0.345

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-25: Finite sample size at 5% significance level of one-sided predictability
tests: 𝑢𝑡, 𝑣𝑡 is N.i.i.d, collapsing bubble in return with 𝜏1 = 0.1, 𝜏2 = 0.4, 𝑐𝑏𝑢𝑏 = 0.1

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.076 0.024 0.030 0.078 0.026 0.040 0.072 0.029 0.041

250 0.159 0.174 0.178 0.160 0.178 0.191 0.133 0.152 0.165
500 0.344 0.419 0.419 0.315 0.389 0.395 0.282 0.368 0.374
1000 0.392 0.462 0.462 0.376 0.449 0.451 0.343 0.433 0.436

-0.5 100 0.062 0.020 0.025 0.066 0.025 0.038 0.069 0.029 0.039
250 0.152 0.181 0.180 0.146 0.171 0.177 0.129 0.161 0.168
500 0.331 0.407 0.408 0.318 0.399 0.402 0.273 0.366 0.369
1000 0.385 0.458 0.458 0.369 0.446 0.448 0.338 0.435 0.437

0 100 0.035 0.021 0.020 0.050 0.026 0.027 0.056 0.034 0.035
250 0.135 0.171 0.173 0.137 0.175 0.174 0.123 0.161 0.162
500 0.322 0.409 0.409 0.304 0.390 0.390 0.280 0.376 0.377
1000 0.382 0.457 0.457 0.369 0.451 0.451 0.337 0.440 0.440

0.5 100 0.011 0.007 0.005 0.027 0.020 0.010 0.042 0.032 0.019
250 0.128 0.169 0.170 0.136 0.173 0.166 0.118 0.154 0.145
500 0.329 0.415 0.417 0.299 0.389 0.387 0.261 0.358 0.355
1000 0.387 0.462 0.464 0.367 0.450 0.450 0.335 0.437 0.435

0.95 100 0.004 0.002 0.002 0.017 0.016 0.004 0.033 0.033 0.011
250 0.114 0.158 0.158 0.121 0.165 0.151 0.110 0.153 0.137
500 0.315 0.405 0.408 0.300 0.390 0.385 0.266 0.371 0.365
1000 0.389 0.463 0.464 0.365 0.442 0.441 0.335 0.434 0.431

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.068 0.037 0.043 0.063 0.047 0.078 0.065 0.049 0.294

250 0.105 0.128 0.136 0.062 0.094 0.086 0.044 0.071 0.062
500 0.227 0.333 0.337 0.131 0.271 0.263 0.065 0.195 0.176
1000 0.294 0.415 0.418 0.204 0.374 0.369 0.125 0.322 0.306

-0.5 100 0.064 0.035 0.040 0.067 0.048 0.059 0.063 0.051 0.184
250 0.103 0.128 0.133 0.069 0.100 0.095 0.044 0.072 0.067
500 0.223 0.338 0.340 0.133 0.272 0.269 0.072 0.207 0.195
1000 0.290 0.412 0.414 0.208 0.379 0.376 0.118 0.315 0.309

0 100 0.058 0.039 0.038 0.063 0.049 0.047 0.064 0.052 0.066
250 0.100 0.136 0.135 0.067 0.096 0.094 0.044 0.070 0.070
500 0.222 0.338 0.337 0.130 0.274 0.273 0.069 0.211 0.211
1000 0.293 0.415 0.415 0.198 0.372 0.371 0.120 0.319 0.319

0.5 100 0.045 0.038 0.026 0.057 0.049 0.045 0.062 0.054 0.068
250 0.097 0.134 0.127 0.066 0.100 0.097 0.043 0.072 0.079
500 0.221 0.339 0.335 0.129 0.272 0.269 0.065 0.201 0.205
1000 0.282 0.413 0.410 0.192 0.360 0.359 0.115 0.311 0.313

0.95 100 0.043 0.040 0.021 0.047 0.045 0.056 0.057 0.059 0.108
250 0.097 0.134 0.118 0.064 0.099 0.091 0.040 0.069 0.084
500 0.217 0.333 0.326 0.124 0.258 0.254 0.069 0.202 0.209
1000 0.291 0.410 0.406 0.196 0.363 0.359 0.119 0.312 0.313

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-26: Finite sample size at 5% significance level of one-sided predictability
tests: 𝑢𝑡, 𝑣𝑡 is N.i.i.d, collapsing bubble in return with 𝜏1 = 0.1, 𝜏2 = 0.4, 𝑐𝑏𝑢𝑏 = 0.2

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.059 0.031 0.035 0.068 0.043 0.051 0.072 0.048 0.055

250 0.285 0.390 0.389 0.264 0.372 0.376 0.221 0.340 0.344
500 0.361 0.456 0.455 0.334 0.424 0.426 0.302 0.415 0.418
1000 0.401 0.469 0.468 0.378 0.457 0.458 0.340 0.441 0.443

-0.5 100 0.055 0.029 0.034 0.062 0.046 0.051 0.072 0.050 0.056
250 0.278 0.393 0.393 0.262 0.370 0.372 0.219 0.344 0.346
500 0.359 0.447 0.446 0.343 0.437 0.439 0.295 0.412 0.413
1000 0.384 0.458 0.458 0.378 0.459 0.459 0.345 0.446 0.447

0 100 0.039 0.027 0.028 0.056 0.043 0.042 0.059 0.045 0.046
250 0.273 0.386 0.386 0.252 0.360 0.360 0.223 0.337 0.336
500 0.354 0.448 0.449 0.339 0.436 0.436 0.303 0.420 0.419
1000 0.390 0.461 0.461 0.367 0.453 0.453 0.338 0.443 0.443

0.5 100 0.032 0.024 0.024 0.049 0.043 0.038 0.057 0.047 0.042
250 0.276 0.393 0.395 0.260 0.372 0.369 0.218 0.344 0.340
500 0.354 0.441 0.442 0.332 0.430 0.430 0.294 0.412 0.411
1000 0.393 0.473 0.473 0.378 0.458 0.457 0.341 0.447 0.446

0.95 100 0.026 0.020 0.018 0.043 0.039 0.032 0.053 0.047 0.037
250 0.259 0.381 0.384 0.247 0.354 0.351 0.217 0.341 0.336
500 0.360 0.450 0.450 0.331 0.430 0.429 0.298 0.413 0.411
1000 0.402 0.466 0.467 0.375 0.464 0.463 0.333 0.440 0.439

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.066 0.049 0.055 0.058 0.050 0.055 0.060 0.055 0.139

250 0.170 0.307 0.310 0.081 0.231 0.228 0.030 0.154 0.147
500 0.249 0.395 0.396 0.146 0.330 0.328 0.074 0.270 0.261
1000 0.297 0.421 0.423 0.207 0.398 0.396 0.125 0.351 0.343

-0.5 100 0.063 0.046 0.050 0.068 0.059 0.061 0.055 0.048 0.094
250 0.164 0.304 0.305 0.077 0.219 0.217 0.026 0.148 0.143
500 0.247 0.391 0.392 0.148 0.340 0.338 0.071 0.258 0.254
1000 0.293 0.434 0.435 0.202 0.389 0.388 0.124 0.338 0.334

0 100 0.061 0.049 0.047 0.060 0.052 0.049 0.052 0.049 0.064
250 0.169 0.297 0.295 0.080 0.226 0.224 0.030 0.150 0.149
500 0.238 0.385 0.385 0.150 0.335 0.334 0.073 0.263 0.264
1000 0.291 0.425 0.426 0.200 0.386 0.385 0.130 0.355 0.354

0.5 100 0.064 0.054 0.048 0.063 0.057 0.054 0.054 0.052 0.053
250 0.164 0.307 0.302 0.079 0.220 0.216 0.028 0.147 0.150
500 0.243 0.391 0.389 0.143 0.331 0.330 0.073 0.269 0.274
1000 0.289 0.421 0.420 0.202 0.384 0.384 0.126 0.350 0.351

0.95 100 0.056 0.050 0.039 0.060 0.056 0.050 0.055 0.052 0.056
250 0.159 0.299 0.291 0.080 0.225 0.220 0.026 0.147 0.151
500 0.241 0.389 0.385 0.144 0.330 0.328 0.073 0.271 0.274
1000 0.289 0.429 0.426 0.195 0.380 0.378 0.125 0.343 0.345

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-27: Finite sample size at 5% significance level of one-sided predictability tests:
𝑢𝑡, 𝑣𝑡 is i.i.d from t-distribution with the degree of freedom = 5, collapsing bubble in
return with 𝜏1 = 0.6, 𝜏2 = 0.9, 𝑐𝑏𝑢𝑏 = 0.01

c = 0 c = -5 c = -10
c = 0 c = -5 c = -10

𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.115 0.044 0.055 0.108 0.037 0.058 0.094 0.043 0.059

250 0.104 0.045 0.043 0.099 0.036 0.045 0.092 0.044 0.046
500 0.099 0.041 0.037 0.093 0.031 0.040 0.084 0.037 0.039
1000 0.100 0.042 0.041 0.089 0.034 0.044 0.084 0.039 0.043

-0.5 100 0.108 0.045 0.053 0.090 0.033 0.052 0.081 0.033 0.053
250 0.096 0.042 0.046 0.085 0.031 0.047 0.073 0.033 0.046
500 0.092 0.043 0.042 0.083 0.031 0.045 0.073 0.033 0.044
1000 0.077 0.034 0.036 0.072 0.032 0.047 0.069 0.039 0.049

0 100 0.056 0.041 0.041 0.061 0.046 0.046 0.064 0.049 0.048
250 0.049 0.038 0.038 0.057 0.048 0.048 0.059 0.048 0.047
500 0.045 0.036 0.036 0.049 0.043 0.043 0.051 0.046 0.047
1000 0.045 0.037 0.037 0.048 0.044 0.044 0.048 0.044 0.044

0.5 100 0.010 0.019 0.012 0.030 0.037 0.015 0.037 0.044 0.018
250 0.007 0.016 0.013 0.026 0.038 0.015 0.034 0.041 0.018
500 0.009 0.016 0.013 0.025 0.034 0.015 0.033 0.044 0.020
1000 0.009 0.011 0.010 0.029 0.033 0.020 0.037 0.042 0.023

0.95 100 0.002 0.005 0.003 0.011 0.029 0.007 0.018 0.042 0.011
250 0.001 0.006 0.002 0.011 0.031 0.009 0.017 0.040 0.013
500 0.001 0.003 0.002 0.013 0.030 0.009 0.020 0.040 0.011
1000 0.001 0.003 0.002 0.014 0.027 0.008 0.024 0.037 0.010

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.067 0.043 0.050 0.058 0.048 0.128 0.052 0.044 0.494

250 0.076 0.044 0.038 0.063 0.050 0.036 0.051 0.048 0.052
500 0.072 0.044 0.035 0.062 0.048 0.026 0.057 0.050 0.017
1000 0.074 0.046 0.041 0.065 0.052 0.030 0.059 0.052 0.016

-0.5 100 0.072 0.042 0.052 0.065 0.051 0.086 0.059 0.048 0.367
250 0.067 0.041 0.043 0.063 0.049 0.038 0.058 0.049 0.041
500 0.067 0.043 0.043 0.061 0.048 0.033 0.059 0.050 0.025
1000 0.063 0.043 0.045 0.062 0.051 0.039 0.053 0.048 0.026

0 100 0.066 0.052 0.050 0.060 0.051 0.049 0.056 0.050 0.065
250 0.060 0.048 0.047 0.057 0.050 0.048 0.056 0.050 0.051
500 0.056 0.047 0.047 0.055 0.049 0.048 0.053 0.050 0.049
1000 0.050 0.046 0.047 0.050 0.047 0.046 0.053 0.050 0.049

0.5 100 0.043 0.048 0.025 0.047 0.047 0.052 0.052 0.053 0.088
250 0.041 0.046 0.024 0.049 0.053 0.054 0.048 0.053 0.113
500 0.035 0.042 0.022 0.049 0.052 0.042 0.048 0.051 0.082
1000 0.038 0.042 0.025 0.045 0.047 0.034 0.047 0.050 0.058

0.95 100 0.027 0.049 0.029 0.036 0.051 0.099 0.040 0.055 0.153
250 0.027 0.046 0.024 0.033 0.048 0.095 0.037 0.051 0.213
500 0.029 0.043 0.016 0.030 0.043 0.055 0.040 0.050 0.168
1000 0.031 0.041 0.014 0.039 0.046 0.035 0.041 0.045 0.090

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-28: Finite sample size at 5% significance level of one-sided predictability tests:
𝑢𝑡, 𝑣𝑡 is i.i.d from t-distribution with the degree of freedom = 5, collapsing bubble in
return with 𝜏1 = 0.6, 𝜏2 = 0.9, 𝑐𝑏𝑢𝑏 = 0.05

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.108 0.040 0.054 0.099 0.035 0.055 0.086 0.038 0.050

250 0.077 0.028 0.028 0.074 0.027 0.038 0.067 0.031 0.036
500 0.243 0.266 0.271 0.199 0.202 0.221 0.169 0.173 0.191
1000 0.392 0.440 0.442 0.353 0.401 0.408 0.330 0.392 0.402

-0.5 100 0.101 0.039 0.050 0.083 0.032 0.050 0.077 0.032 0.049
250 0.059 0.025 0.026 0.057 0.027 0.035 0.057 0.028 0.037
500 0.228 0.260 0.262 0.194 0.210 0.219 0.165 0.182 0.193
1000 0.375 0.439 0.440 0.346 0.404 0.406 0.313 0.385 0.392

0 100 0.052 0.035 0.036 0.060 0.043 0.044 0.059 0.042 0.042
250 0.029 0.018 0.020 0.043 0.032 0.033 0.049 0.038 0.038
500 0.193 0.240 0.241 0.179 0.211 0.211 0.159 0.196 0.195
1000 0.368 0.435 0.435 0.345 0.407 0.407 0.318 0.396 0.396

0.5 100 0.012 0.015 0.011 0.033 0.039 0.018 0.042 0.045 0.021
250 0.010 0.008 0.008 0.028 0.026 0.017 0.036 0.034 0.021
500 0.168 0.218 0.221 0.171 0.204 0.195 0.145 0.182 0.169
1000 0.360 0.434 0.437 0.345 0.415 0.412 0.308 0.388 0.384

0.95 100 0.002 0.005 0.001 0.013 0.029 0.007 0.023 0.041 0.012
250 0.003 0.003 0.001 0.016 0.019 0.007 0.028 0.030 0.012
500 0.149 0.200 0.208 0.159 0.194 0.176 0.144 0.184 0.161
1000 0.340 0.418 0.422 0.329 0.401 0.395 0.303 0.383 0.374

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.069 0.041 0.055 0.059 0.047 0.118 0.050 0.040 0.465

250 0.067 0.043 0.042 0.058 0.046 0.039 0.053 0.045 0.042
500 0.140 0.152 0.161 0.086 0.117 0.104 0.060 0.080 0.059
1000 0.264 0.350 0.355 0.175 0.289 0.279 0.109 0.232 0.198

-0.5 100 0.068 0.039 0.047 0.065 0.050 0.077 0.055 0.044 0.324
250 0.064 0.042 0.044 0.056 0.044 0.037 0.051 0.045 0.039
500 0.136 0.154 0.162 0.087 0.114 0.107 0.062 0.085 0.073
1000 0.259 0.349 0.354 0.177 0.292 0.287 0.111 0.236 0.220

0 100 0.064 0.047 0.045 0.058 0.047 0.046 0.060 0.051 0.066
250 0.056 0.043 0.043 0.055 0.047 0.046 0.052 0.045 0.045
500 0.123 0.155 0.155 0.086 0.114 0.112 0.056 0.081 0.080
1000 0.260 0.360 0.360 0.175 0.297 0.295 0.105 0.229 0.229

0.5 100 0.047 0.049 0.028 0.045 0.044 0.048 0.053 0.056 0.084
250 0.045 0.041 0.027 0.052 0.048 0.045 0.052 0.052 0.074
500 0.127 0.166 0.153 0.084 0.115 0.109 0.056 0.082 0.088
1000 0.257 0.347 0.340 0.172 0.290 0.283 0.107 0.230 0.232

0.95 100 0.029 0.044 0.024 0.038 0.047 0.081 0.044 0.058 0.143
250 0.035 0.037 0.020 0.045 0.045 0.049 0.047 0.048 0.111
500 0.119 0.156 0.136 0.077 0.111 0.099 0.057 0.082 0.098
1000 0.253 0.348 0.332 0.170 0.289 0.276 0.107 0.230 0.234

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-29: Finite sample size at 5% significance level of one-sided predictability tests:
𝑢𝑡, 𝑣𝑡 is i.i.d from t-distribution with the degree of freedom = 5, collapsing bubble in
return with 𝜏1 = 0.6, 𝜏2 = 0.9, 𝑐𝑏𝑢𝑏 = 0.1

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.086 0.029 0.034 0.074 0.024 0.039 0.075 0.031 0.042

250 0.187 0.222 0.225 0.155 0.167 0.181 0.135 0.152 0.169
500 0.353 0.437 0.438 0.325 0.401 0.408 0.280 0.366 0.377
1000 0.404 0.474 0.474 0.369 0.447 0.450 0.342 0.438 0.442

-0.5 100 0.067 0.023 0.027 0.069 0.028 0.041 0.069 0.028 0.042
250 0.167 0.209 0.212 0.144 0.172 0.181 0.124 0.152 0.160
500 0.351 0.434 0.434 0.310 0.390 0.393 0.278 0.368 0.372
1000 0.397 0.466 0.466 0.369 0.449 0.451 0.352 0.444 0.447

0 100 0.038 0.023 0.023 0.047 0.030 0.030 0.056 0.035 0.036
250 0.145 0.197 0.198 0.136 0.172 0.173 0.118 0.156 0.155
500 0.336 0.425 0.425 0.312 0.398 0.398 0.271 0.371 0.371
1000 0.395 0.464 0.464 0.375 0.447 0.447 0.339 0.436 0.436

0.5 100 0.010 0.008 0.007 0.030 0.026 0.015 0.039 0.034 0.018
250 0.118 0.172 0.175 0.135 0.172 0.162 0.122 0.156 0.146
500 0.337 0.429 0.430 0.304 0.391 0.388 0.270 0.364 0.359
1000 0.383 0.460 0.460 0.364 0.442 0.440 0.336 0.435 0.434

0.95 100 0.003 0.004 0.001 0.017 0.022 0.006 0.029 0.035 0.012
250 0.109 0.163 0.164 0.122 0.162 0.145 0.113 0.152 0.132
500 0.321 0.411 0.413 0.299 0.380 0.376 0.273 0.368 0.361
1000 0.377 0.455 0.456 0.364 0.447 0.446 0.322 0.424 0.420

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.070 0.039 0.047 0.061 0.046 0.089 0.051 0.041 0.373

250 0.110 0.131 0.140 0.066 0.096 0.089 0.043 0.066 0.057
500 0.231 0.339 0.344 0.135 0.275 0.268 0.074 0.197 0.177
1000 0.292 0.418 0.421 0.197 0.367 0.361 0.120 0.308 0.289

-0.5 100 0.067 0.040 0.047 0.058 0.042 0.059 0.058 0.047 0.239
250 0.107 0.131 0.136 0.064 0.092 0.088 0.044 0.066 0.060
500 0.227 0.342 0.346 0.134 0.278 0.273 0.071 0.199 0.188
1000 0.292 0.410 0.413 0.202 0.379 0.376 0.128 0.322 0.312

0 100 0.060 0.041 0.041 0.062 0.051 0.050 0.059 0.048 0.064
250 0.095 0.129 0.130 0.060 0.092 0.089 0.043 0.069 0.067
500 0.229 0.342 0.340 0.131 0.273 0.272 0.077 0.202 0.202
1000 0.290 0.415 0.415 0.201 0.375 0.375 0.126 0.319 0.319

0.5 100 0.050 0.043 0.026 0.052 0.046 0.044 0.053 0.048 0.067
250 0.099 0.137 0.126 0.060 0.090 0.086 0.043 0.068 0.072
500 0.229 0.347 0.341 0.139 0.280 0.275 0.074 0.207 0.211
1000 0.274 0.404 0.400 0.197 0.373 0.370 0.130 0.319 0.320

0.95 100 0.035 0.038 0.022 0.049 0.049 0.066 0.053 0.056 0.103
250 0.092 0.132 0.112 0.062 0.092 0.085 0.044 0.068 0.079
500 0.215 0.337 0.325 0.130 0.272 0.260 0.068 0.206 0.210
1000 0.273 0.396 0.390 0.196 0.366 0.360 0.123 0.307 0.309

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-30: Finite sample size at 5% significance level of one-sided predictability tests:
𝑢𝑡, 𝑣𝑡 is i.i.d from t-distribution with the degree of freedom = 5, collapsing bubble in
return with 𝜏1 = 0.6, 𝜏2 = 0.9, 𝑐𝑏𝑢𝑏 = 0.2

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.068 0.035 0.040 0.068 0.042 0.052 0.074 0.047 0.057

250 0.310 0.409 0.409 0.266 0.367 0.372 0.233 0.350 0.355
500 0.370 0.455 0.455 0.329 0.426 0.428 0.306 0.415 0.419
1000 0.407 0.477 0.477 0.373 0.453 0.454 0.346 0.444 0.447

-0.5 100 0.053 0.029 0.031 0.066 0.046 0.052 0.063 0.044 0.051
250 0.302 0.415 0.415 0.268 0.372 0.374 0.221 0.345 0.348
500 0.365 0.454 0.454 0.343 0.440 0.442 0.298 0.414 0.415
1000 0.400 0.477 0.477 0.369 0.451 0.451 0.344 0.453 0.454

0 100 0.039 0.027 0.028 0.054 0.043 0.042 0.055 0.044 0.044
250 0.289 0.408 0.408 0.261 0.371 0.370 0.212 0.343 0.341
500 0.365 0.452 0.453 0.329 0.424 0.424 0.300 0.419 0.418
1000 0.401 0.473 0.473 0.371 0.459 0.459 0.334 0.432 0.432

0.5 100 0.027 0.019 0.019 0.048 0.040 0.035 0.057 0.047 0.039
250 0.280 0.407 0.408 0.258 0.366 0.363 0.226 0.346 0.342
500 0.371 0.461 0.461 0.329 0.431 0.430 0.298 0.413 0.412
1000 0.392 0.460 0.459 0.369 0.451 0.450 0.335 0.440 0.439

0.95 100 0.018 0.015 0.014 0.041 0.036 0.028 0.049 0.045 0.033
250 0.281 0.398 0.399 0.258 0.363 0.358 0.218 0.346 0.338
500 0.360 0.450 0.450 0.330 0.428 0.427 0.296 0.412 0.409
1000 0.383 0.457 0.458 0.384 0.464 0.464 0.342 0.453 0.451

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.064 0.045 0.049 0.062 0.053 0.063 0.050 0.047 0.173

250 0.174 0.316 0.320 0.088 0.225 0.221 0.040 0.153 0.147
500 0.251 0.391 0.393 0.145 0.330 0.327 0.077 0.261 0.251
1000 0.290 0.424 0.426 0.198 0.386 0.384 0.129 0.353 0.344

-0.5 100 0.062 0.046 0.051 0.053 0.047 0.052 0.049 0.045 0.109
250 0.169 0.307 0.310 0.083 0.226 0.222 0.037 0.148 0.146
500 0.236 0.379 0.381 0.146 0.327 0.325 0.080 0.268 0.263
1000 0.295 0.435 0.437 0.200 0.392 0.390 0.124 0.341 0.338

0 100 0.060 0.048 0.048 0.058 0.052 0.050 0.051 0.047 0.059
250 0.171 0.322 0.320 0.080 0.225 0.223 0.031 0.140 0.140
500 0.244 0.387 0.388 0.139 0.334 0.332 0.078 0.270 0.270
1000 0.294 0.435 0.434 0.192 0.381 0.380 0.130 0.340 0.339

0.5 100 0.057 0.051 0.043 0.055 0.049 0.045 0.050 0.048 0.049
250 0.166 0.309 0.305 0.081 0.229 0.224 0.033 0.147 0.148
500 0.246 0.388 0.386 0.147 0.338 0.336 0.072 0.258 0.260
1000 0.295 0.424 0.422 0.201 0.386 0.385 0.127 0.347 0.347

0.95 100 0.058 0.052 0.037 0.050 0.047 0.044 0.048 0.047 0.059
250 0.166 0.311 0.302 0.080 0.227 0.219 0.035 0.145 0.148
500 0.240 0.388 0.384 0.146 0.329 0.324 0.082 0.270 0.275
1000 0.286 0.420 0.417 0.199 0.380 0.377 0.124 0.341 0.342

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-31: Finite sample size at 5% significance level of one-sided predictability tests:
𝑢𝑡, 𝑣𝑡 is i.i.d from t-distribution with the degree of freedom = 5, collapsing bubble in
return with 𝜏1 = 0.4, 𝜏2 = 0.7, 𝑐𝑏𝑢𝑏 = 0.01

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.118 0.046 0.055 0.104 0.036 0.059 0.090 0.044 0.059

250 0.104 0.044 0.041 0.099 0.038 0.043 0.086 0.041 0.041
500 0.102 0.039 0.040 0.099 0.035 0.044 0.087 0.035 0.037
1000 0.097 0.041 0.040 0.094 0.035 0.043 0.083 0.041 0.045

-0.5 100 0.110 0.047 0.054 0.088 0.036 0.053 0.081 0.034 0.054
250 0.095 0.042 0.043 0.084 0.033 0.049 0.078 0.033 0.047
500 0.090 0.040 0.042 0.071 0.029 0.041 0.075 0.035 0.046
1000 0.078 0.036 0.040 0.072 0.036 0.047 0.072 0.039 0.049

0 100 0.054 0.038 0.039 0.061 0.046 0.046 0.062 0.046 0.046
250 0.046 0.038 0.037 0.056 0.048 0.048 0.060 0.047 0.048
500 0.043 0.037 0.038 0.050 0.042 0.042 0.051 0.045 0.045
1000 0.042 0.034 0.035 0.045 0.043 0.043 0.049 0.044 0.046

0.5 100 0.009 0.014 0.009 0.028 0.037 0.013 0.040 0.047 0.019
250 0.009 0.017 0.014 0.027 0.039 0.017 0.035 0.045 0.019
500 0.010 0.016 0.013 0.025 0.034 0.015 0.034 0.042 0.020
1000 0.009 0.012 0.010 0.029 0.034 0.021 0.038 0.045 0.025

0.95 100 0.001 0.004 0.001 0.010 0.030 0.006 0.021 0.047 0.012
250 0.001 0.003 0.002 0.011 0.030 0.006 0.017 0.038 0.010
500 0.001 0.002 0.002 0.012 0.030 0.007 0.019 0.039 0.009
1000 0.001 0.004 0.001 0.014 0.027 0.006 0.019 0.035 0.009

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.068 0.042 0.053 0.056 0.046 0.128 0.049 0.042 0.498

250 0.076 0.048 0.039 0.064 0.047 0.037 0.047 0.043 0.050
500 0.078 0.050 0.036 0.062 0.046 0.024 0.060 0.052 0.018
1000 0.072 0.046 0.039 0.065 0.050 0.030 0.057 0.049 0.015

-0.5 100 0.069 0.041 0.052 0.065 0.048 0.085 0.059 0.048 0.368
250 0.066 0.042 0.039 0.063 0.049 0.039 0.058 0.049 0.043
500 0.068 0.042 0.041 0.060 0.048 0.035 0.055 0.047 0.023
1000 0.062 0.044 0.045 0.061 0.050 0.039 0.057 0.050 0.027

0 100 0.062 0.046 0.045 0.061 0.050 0.047 0.057 0.048 0.063
250 0.057 0.047 0.048 0.058 0.051 0.049 0.059 0.054 0.054
500 0.056 0.050 0.051 0.051 0.047 0.045 0.057 0.053 0.051
1000 0.052 0.046 0.046 0.055 0.053 0.052 0.052 0.050 0.049

0.5 100 0.044 0.051 0.025 0.048 0.050 0.051 0.054 0.058 0.090
250 0.042 0.049 0.024 0.044 0.049 0.048 0.046 0.051 0.111
500 0.041 0.047 0.024 0.045 0.049 0.042 0.049 0.052 0.088
1000 0.042 0.046 0.026 0.046 0.049 0.034 0.047 0.049 0.057

0.95 100 0.029 0.048 0.030 0.033 0.046 0.103 0.040 0.056 0.151
250 0.028 0.048 0.021 0.033 0.047 0.095 0.037 0.052 0.212
500 0.027 0.046 0.018 0.036 0.048 0.058 0.038 0.048 0.169
1000 0.030 0.043 0.015 0.039 0.047 0.034 0.045 0.052 0.094

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-32: Finite sample size at 5% significance level of one-sided predictability tests:
𝑢𝑡, 𝑣𝑡 is i.i.d from t-distribution with the degree of freedom = 5, collapsing bubble in
return with 𝜏1 = 0.4, 𝜏2 = 0.7, 𝑐𝑏𝑢𝑏 = 0.05

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.107 0.038 0.049 0.095 0.033 0.053 0.083 0.038 0.051

250 0.071 0.024 0.024 0.066 0.026 0.034 0.074 0.034 0.044
500 0.204 0.186 0.188 0.196 0.194 0.214 0.173 0.174 0.192
1000 0.346 0.384 0.385 0.342 0.393 0.402 0.322 0.378 0.388

-0.5 100 0.104 0.041 0.050 0.079 0.028 0.047 0.084 0.035 0.053
250 0.061 0.026 0.027 0.059 0.026 0.035 0.058 0.031 0.039
500 0.185 0.183 0.185 0.178 0.188 0.199 0.168 0.184 0.197
1000 0.337 0.390 0.391 0.338 0.396 0.400 0.312 0.377 0.384

0 100 0.051 0.036 0.037 0.059 0.041 0.040 0.059 0.042 0.043
250 0.029 0.016 0.017 0.041 0.031 0.030 0.048 0.036 0.037
500 0.158 0.164 0.164 0.165 0.197 0.197 0.162 0.191 0.191
1000 0.331 0.388 0.389 0.330 0.400 0.400 0.297 0.376 0.376

0.5 100 0.010 0.013 0.009 0.030 0.036 0.015 0.040 0.045 0.018
250 0.010 0.007 0.007 0.027 0.025 0.017 0.035 0.032 0.021
500 0.132 0.141 0.146 0.155 0.189 0.181 0.152 0.184 0.172
1000 0.312 0.373 0.375 0.320 0.391 0.386 0.307 0.382 0.374

0.95 100 0.001 0.003 0.001 0.009 0.026 0.004 0.023 0.041 0.010
250 0.002 0.002 0.001 0.014 0.017 0.007 0.026 0.030 0.011
500 0.105 0.127 0.130 0.141 0.174 0.156 0.138 0.176 0.155
1000 0.298 0.363 0.368 0.317 0.387 0.381 0.289 0.369 0.357

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.070 0.044 0.053 0.059 0.046 0.119 0.052 0.042 0.462

250 0.071 0.042 0.043 0.058 0.048 0.039 0.056 0.050 0.047
500 0.141 0.156 0.164 0.089 0.114 0.099 0.054 0.083 0.062
1000 0.281 0.358 0.363 0.185 0.299 0.288 0.111 0.236 0.203

-0.5 100 0.073 0.042 0.050 0.059 0.044 0.073 0.057 0.046 0.323
250 0.061 0.039 0.040 0.054 0.043 0.037 0.056 0.049 0.042
500 0.142 0.162 0.170 0.092 0.120 0.112 0.053 0.078 0.065
1000 0.272 0.356 0.360 0.176 0.292 0.287 0.105 0.232 0.214

0 100 0.062 0.048 0.047 0.058 0.049 0.047 0.061 0.056 0.068
250 0.051 0.041 0.042 0.058 0.050 0.047 0.051 0.046 0.044
500 0.132 0.165 0.164 0.078 0.109 0.106 0.057 0.086 0.086
1000 0.262 0.356 0.356 0.177 0.298 0.297 0.103 0.226 0.226

0.5 100 0.048 0.049 0.027 0.048 0.048 0.048 0.055 0.056 0.081
250 0.045 0.042 0.028 0.047 0.043 0.040 0.052 0.051 0.072
500 0.124 0.159 0.147 0.083 0.114 0.108 0.054 0.083 0.090
1000 0.263 0.356 0.347 0.173 0.296 0.289 0.104 0.234 0.236

0.95 100 0.029 0.044 0.024 0.039 0.048 0.082 0.044 0.054 0.143
250 0.035 0.038 0.021 0.046 0.048 0.051 0.045 0.045 0.114
500 0.116 0.154 0.130 0.073 0.106 0.095 0.052 0.078 0.093
1000 0.255 0.349 0.333 0.174 0.291 0.274 0.099 0.228 0.230

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-33: Finite sample size at 5% significance level of one-sided predictability tests:
𝑢𝑡, 𝑣𝑡 is i.i.d from t-distribution with the degree of freedom = 5, collapsing bubble in
return with 𝜏1 = 0.4, 𝜏2 = 0.7, 𝑐𝑏𝑢𝑏 = 0.1

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.087 0.027 0.034 0.078 0.026 0.041 0.077 0.031 0.044

250 0.152 0.150 0.151 0.150 0.163 0.178 0.135 0.146 0.165
500 0.312 0.383 0.384 0.303 0.381 0.387 0.289 0.376 0.384
1000 0.365 0.437 0.438 0.358 0.437 0.441 0.345 0.434 0.439

-0.5 100 0.071 0.026 0.030 0.071 0.026 0.038 0.066 0.027 0.038
250 0.130 0.136 0.138 0.143 0.167 0.177 0.124 0.149 0.158
500 0.296 0.371 0.372 0.299 0.379 0.383 0.278 0.365 0.370
1000 0.355 0.425 0.425 0.355 0.438 0.440 0.329 0.425 0.428

0 100 0.034 0.017 0.018 0.049 0.029 0.030 0.054 0.036 0.035
250 0.115 0.129 0.129 0.126 0.161 0.161 0.122 0.155 0.155
500 0.296 0.378 0.379 0.294 0.380 0.380 0.274 0.369 0.370
1000 0.360 0.434 0.434 0.348 0.433 0.433 0.336 0.431 0.431

0.5 100 0.009 0.007 0.006 0.030 0.025 0.015 0.037 0.034 0.020
250 0.087 0.109 0.111 0.121 0.155 0.145 0.113 0.151 0.139
500 0.275 0.359 0.361 0.283 0.378 0.375 0.268 0.369 0.363
1000 0.346 0.425 0.427 0.346 0.434 0.432 0.331 0.431 0.428

0.95 100 0.002 0.003 0.001 0.017 0.021 0.004 0.027 0.032 0.010
250 0.079 0.101 0.103 0.109 0.145 0.131 0.108 0.147 0.126
500 0.269 0.356 0.360 0.279 0.366 0.360 0.274 0.371 0.363
1000 0.330 0.418 0.420 0.343 0.427 0.422 0.327 0.423 0.419

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.069 0.039 0.048 0.054 0.040 0.090 0.057 0.046 0.372

250 0.102 0.119 0.128 0.067 0.095 0.088 0.042 0.068 0.059
500 0.229 0.335 0.339 0.137 0.278 0.271 0.066 0.197 0.177
1000 0.297 0.415 0.417 0.201 0.370 0.364 0.120 0.319 0.301

-0.5 100 0.066 0.040 0.045 0.061 0.045 0.064 0.057 0.046 0.240
250 0.103 0.131 0.136 0.059 0.091 0.088 0.042 0.066 0.060
500 0.235 0.350 0.352 0.133 0.270 0.266 0.066 0.206 0.195
1000 0.293 0.408 0.409 0.201 0.371 0.369 0.115 0.311 0.302

0 100 0.057 0.039 0.040 0.059 0.047 0.045 0.059 0.052 0.064
250 0.096 0.130 0.129 0.058 0.091 0.089 0.039 0.067 0.067
500 0.227 0.343 0.342 0.136 0.273 0.272 0.062 0.201 0.200
1000 0.284 0.406 0.405 0.197 0.364 0.363 0.122 0.317 0.316

0.5 100 0.044 0.038 0.026 0.052 0.048 0.046 0.053 0.049 0.066
250 0.090 0.127 0.118 0.063 0.096 0.093 0.038 0.066 0.070
500 0.218 0.333 0.327 0.117 0.260 0.254 0.060 0.195 0.196
1000 0.303 0.426 0.423 0.197 0.365 0.360 0.116 0.313 0.314

0.95 100 0.035 0.038 0.021 0.044 0.046 0.058 0.048 0.050 0.105
250 0.087 0.123 0.105 0.058 0.089 0.084 0.036 0.061 0.075
500 0.219 0.330 0.319 0.125 0.270 0.262 0.058 0.204 0.208
1000 0.286 0.406 0.400 0.193 0.363 0.355 0.115 0.315 0.316

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-34: Finite sample size at 5% significance level of one-sided predictability tests:
𝑢𝑡, 𝑣𝑡 is i.i.d from t-distribution with the degree of freedom = 5, collapsing bubble in
return with 𝜏1 = 0.4, 𝜏2 = 0.7, 𝑐𝑏𝑢𝑏 = 0.2

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.058 0.030 0.033 0.072 0.045 0.053 0.068 0.044 0.054

250 0.256 0.350 0.351 0.250 0.361 0.366 0.229 0.348 0.354
500 0.326 0.419 0.420 0.318 0.416 0.419 0.292 0.411 0.413
1000 0.356 0.441 0.441 0.359 0.450 0.452 0.342 0.442 0.443

-0.5 100 0.048 0.027 0.028 0.062 0.042 0.047 0.062 0.043 0.047
250 0.244 0.348 0.349 0.246 0.356 0.358 0.222 0.339 0.340
500 0.320 0.416 0.416 0.316 0.419 0.420 0.299 0.416 0.417
1000 0.360 0.447 0.448 0.351 0.445 0.446 0.345 0.447 0.448

0 100 0.038 0.026 0.026 0.051 0.041 0.041 0.059 0.045 0.044
250 0.235 0.341 0.341 0.237 0.347 0.347 0.221 0.339 0.338
500 0.315 0.413 0.413 0.320 0.425 0.425 0.299 0.414 0.414
1000 0.359 0.449 0.449 0.362 0.450 0.450 0.343 0.449 0.449

0.5 100 0.026 0.019 0.018 0.046 0.040 0.033 0.056 0.048 0.040
250 0.229 0.337 0.339 0.226 0.347 0.345 0.224 0.349 0.344
500 0.309 0.405 0.406 0.320 0.424 0.422 0.291 0.412 0.410
1000 0.354 0.444 0.444 0.352 0.452 0.451 0.340 0.448 0.446

0.95 100 0.018 0.013 0.012 0.042 0.037 0.030 0.046 0.043 0.033
250 0.223 0.329 0.333 0.231 0.349 0.346 0.214 0.334 0.329
500 0.311 0.412 0.414 0.313 0.417 0.414 0.283 0.405 0.402
1000 0.344 0.432 0.434 0.350 0.441 0.440 0.330 0.437 0.434

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.072 0.052 0.057 0.055 0.050 0.060 0.049 0.044 0.164

250 0.170 0.302 0.306 0.081 0.228 0.225 0.027 0.150 0.142
500 0.242 0.378 0.382 0.141 0.329 0.325 0.062 0.266 0.256
1000 0.304 0.431 0.434 0.207 0.391 0.388 0.114 0.348 0.339

-0.5 100 0.063 0.048 0.051 0.054 0.048 0.052 0.050 0.047 0.108
250 0.172 0.306 0.310 0.077 0.228 0.226 0.028 0.150 0.148
500 0.250 0.390 0.392 0.142 0.331 0.330 0.063 0.267 0.262
1000 0.293 0.414 0.415 0.200 0.390 0.388 0.118 0.351 0.348

0 100 0.061 0.051 0.049 0.056 0.048 0.047 0.049 0.049 0.059
250 0.169 0.303 0.301 0.075 0.217 0.213 0.025 0.156 0.156
500 0.249 0.391 0.391 0.148 0.336 0.336 0.062 0.268 0.268
1000 0.296 0.431 0.430 0.210 0.393 0.393 0.121 0.345 0.345

0.5 100 0.056 0.048 0.042 0.055 0.051 0.044 0.048 0.048 0.050
250 0.158 0.296 0.291 0.075 0.222 0.218 0.024 0.144 0.145
500 0.238 0.384 0.380 0.143 0.332 0.331 0.062 0.259 0.261
1000 0.292 0.426 0.425 0.196 0.381 0.380 0.118 0.356 0.357

0.95 100 0.054 0.048 0.036 0.048 0.045 0.043 0.049 0.050 0.059
250 0.164 0.306 0.298 0.075 0.221 0.216 0.026 0.145 0.144
500 0.244 0.382 0.378 0.144 0.335 0.330 0.060 0.262 0.268
1000 0.287 0.413 0.411 0.199 0.396 0.392 0.113 0.339 0.340

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-35: Finite sample size at 5% significance level of one-sided predictability tests:
𝑢𝑡, 𝑣𝑡 is i.i.d from t-distribution with the degree of freedom = 5, collapsing bubble in
return with 𝜏1 = 0.1, 𝜏2 = 0.4, 𝑐𝑏𝑢𝑏 = 0.01

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.112 0.050 0.054 0.107 0.036 0.062 0.091 0.042 0.055

250 0.108 0.046 0.044 0.103 0.033 0.044 0.091 0.043 0.043
500 0.098 0.042 0.036 0.102 0.037 0.044 0.090 0.041 0.044
1000 0.100 0.041 0.037 0.096 0.035 0.045 0.083 0.040 0.044

-0.5 100 0.114 0.047 0.053 0.088 0.033 0.053 0.082 0.036 0.053
250 0.097 0.044 0.048 0.086 0.030 0.049 0.076 0.038 0.050
500 0.092 0.040 0.044 0.079 0.032 0.045 0.075 0.034 0.046
1000 0.076 0.038 0.036 0.076 0.036 0.049 0.068 0.036 0.046

0 100 0.049 0.036 0.037 0.062 0.045 0.046 0.062 0.049 0.046
250 0.049 0.043 0.044 0.055 0.046 0.046 0.053 0.043 0.043
500 0.044 0.037 0.037 0.054 0.049 0.049 0.051 0.046 0.047
1000 0.041 0.035 0.035 0.051 0.048 0.048 0.051 0.046 0.046

0.5 100 0.009 0.016 0.011 0.027 0.038 0.012 0.038 0.047 0.018
250 0.007 0.016 0.015 0.023 0.035 0.014 0.035 0.044 0.020
500 0.008 0.013 0.013 0.026 0.037 0.016 0.033 0.042 0.019
1000 0.009 0.012 0.013 0.028 0.033 0.018 0.033 0.041 0.022

0.95 100 0.001 0.003 0.001 0.009 0.028 0.005 0.017 0.039 0.012
250 0.001 0.003 0.002 0.009 0.029 0.005 0.019 0.044 0.011
500 0.000 0.002 0.002 0.010 0.026 0.007 0.022 0.044 0.012
1000 0.001 0.004 0.003 0.012 0.027 0.007 0.019 0.039 0.009

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.076 0.049 0.059 0.059 0.046 0.133 0.050 0.042 0.498

250 0.075 0.045 0.038 0.061 0.047 0.034 0.051 0.045 0.053
500 0.074 0.045 0.037 0.069 0.053 0.028 0.060 0.051 0.018
1000 0.083 0.051 0.046 0.065 0.051 0.030 0.059 0.051 0.017

-0.5 100 0.075 0.046 0.053 0.062 0.047 0.083 0.060 0.051 0.355
250 0.072 0.046 0.045 0.064 0.049 0.038 0.056 0.047 0.038
500 0.065 0.041 0.041 0.064 0.051 0.036 0.053 0.045 0.022
1000 0.065 0.046 0.046 0.059 0.051 0.039 0.057 0.051 0.028

0 100 0.063 0.049 0.046 0.062 0.053 0.052 0.061 0.053 0.064
250 0.061 0.049 0.049 0.055 0.048 0.046 0.058 0.051 0.049
500 0.056 0.050 0.049 0.055 0.051 0.049 0.051 0.048 0.047
1000 0.051 0.047 0.048 0.048 0.045 0.045 0.052 0.051 0.049

0.5 100 0.042 0.043 0.023 0.048 0.048 0.052 0.052 0.056 0.092
250 0.038 0.044 0.022 0.046 0.051 0.047 0.047 0.049 0.110
500 0.041 0.049 0.024 0.043 0.048 0.039 0.049 0.053 0.085
1000 0.037 0.044 0.024 0.042 0.043 0.033 0.044 0.046 0.058

0.95 100 0.026 0.045 0.031 0.035 0.051 0.098 0.043 0.056 0.153
250 0.027 0.045 0.026 0.036 0.053 0.088 0.039 0.051 0.198
500 0.028 0.044 0.018 0.035 0.049 0.061 0.036 0.047 0.167
1000 0.030 0.041 0.016 0.038 0.045 0.032 0.040 0.048 0.094

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-36: Finite sample size at 5% significance level of one-sided predictability tests:
𝑢𝑡, 𝑣𝑡 is i.i.d from t-distribution with the degree of freedom = 5, collapsing bubble in
return with 𝜏1 = 0.1, 𝜏2 = 0.4, 𝑐𝑏𝑢𝑏 = 0.05

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.109 0.044 0.049 0.102 0.035 0.058 0.086 0.038 0.054

250 0.076 0.030 0.031 0.070 0.026 0.035 0.069 0.031 0.042
500 0.222 0.220 0.220 0.215 0.212 0.232 0.183 0.187 0.204
1000 0.385 0.435 0.435 0.358 0.408 0.415 0.321 0.381 0.392

-0.5 100 0.106 0.046 0.050 0.089 0.034 0.054 0.080 0.035 0.051
250 0.060 0.022 0.025 0.061 0.029 0.038 0.061 0.029 0.040
500 0.205 0.218 0.219 0.193 0.208 0.217 0.164 0.180 0.192
1000 0.372 0.430 0.431 0.348 0.406 0.409 0.318 0.388 0.392

0 100 0.053 0.037 0.038 0.057 0.043 0.042 0.064 0.044 0.044
250 0.034 0.020 0.021 0.042 0.033 0.033 0.051 0.037 0.039
500 0.188 0.222 0.223 0.186 0.217 0.218 0.157 0.194 0.194
1000 0.363 0.422 0.422 0.339 0.399 0.399 0.308 0.390 0.390

0.5 100 0.008 0.013 0.010 0.032 0.037 0.014 0.038 0.043 0.017
250 0.009 0.007 0.007 0.025 0.023 0.014 0.034 0.033 0.021
500 0.158 0.203 0.206 0.169 0.205 0.197 0.148 0.187 0.173
1000 0.352 0.421 0.425 0.336 0.406 0.404 0.302 0.383 0.377

0.95 100 0.000 0.002 0.001 0.011 0.028 0.007 0.020 0.039 0.010
250 0.004 0.003 0.003 0.016 0.021 0.008 0.022 0.026 0.010
500 0.141 0.188 0.190 0.155 0.194 0.177 0.139 0.179 0.154
1000 0.336 0.412 0.417 0.327 0.395 0.389 0.300 0.380 0.369

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.071 0.043 0.058 0.062 0.049 0.121 0.053 0.044 0.466

250 0.066 0.041 0.041 0.060 0.048 0.041 0.055 0.047 0.045
500 0.141 0.154 0.163 0.093 0.121 0.109 0.061 0.085 0.062
1000 0.275 0.359 0.364 0.184 0.299 0.287 0.107 0.231 0.200

-0.5 100 0.078 0.047 0.055 0.064 0.048 0.076 0.058 0.048 0.317
250 0.063 0.038 0.043 0.053 0.041 0.037 0.052 0.046 0.039
500 0.137 0.158 0.165 0.086 0.115 0.109 0.058 0.083 0.070
1000 0.269 0.354 0.361 0.182 0.303 0.296 0.108 0.234 0.216

0 100 0.062 0.050 0.049 0.059 0.051 0.048 0.061 0.051 0.064
250 0.051 0.042 0.041 0.053 0.044 0.042 0.053 0.046 0.047
500 0.129 0.158 0.158 0.083 0.114 0.112 0.060 0.084 0.082
1000 0.258 0.353 0.352 0.174 0.296 0.295 0.099 0.223 0.221

0.5 100 0.049 0.050 0.028 0.053 0.050 0.047 0.051 0.051 0.088
250 0.042 0.037 0.026 0.045 0.042 0.038 0.050 0.047 0.072
500 0.123 0.161 0.148 0.082 0.112 0.106 0.057 0.084 0.090
1000 0.252 0.347 0.339 0.170 0.288 0.281 0.105 0.232 0.234

0.95 100 0.032 0.048 0.025 0.042 0.054 0.091 0.044 0.056 0.139
250 0.036 0.039 0.021 0.044 0.044 0.048 0.048 0.049 0.116
500 0.120 0.156 0.132 0.076 0.107 0.096 0.053 0.081 0.092
1000 0.255 0.355 0.338 0.163 0.284 0.271 0.098 0.223 0.224

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-37: Finite sample size at 5% significance level of one-sided predictability tests:
𝑢𝑡, 𝑣𝑡 is i.i.d from t-distribution with the degree of freedom = 5, collapsing bubble in
return with 𝜏1 = 0.1, 𝜏2 = 0.4, 𝑐𝑏𝑢𝑏 = 0.1

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.084 0.029 0.032 0.085 0.030 0.046 0.083 0.032 0.046

250 0.175 0.183 0.186 0.154 0.167 0.183 0.137 0.151 0.167
500 0.344 0.416 0.415 0.317 0.396 0.402 0.289 0.373 0.381
1000 0.390 0.460 0.459 0.372 0.450 0.453 0.339 0.434 0.437

-0.5 100 0.073 0.027 0.032 0.063 0.026 0.036 0.066 0.029 0.041
250 0.157 0.180 0.183 0.143 0.167 0.175 0.130 0.152 0.161
500 0.338 0.415 0.415 0.310 0.390 0.392 0.285 0.384 0.388
1000 0.386 0.451 0.451 0.370 0.454 0.456 0.345 0.433 0.436

0 100 0.040 0.024 0.025 0.048 0.030 0.030 0.053 0.035 0.034
250 0.133 0.168 0.170 0.138 0.170 0.170 0.126 0.160 0.161
500 0.332 0.417 0.418 0.324 0.406 0.406 0.273 0.373 0.373
1000 0.388 0.462 0.462 0.365 0.442 0.442 0.341 0.439 0.439

0.5 100 0.008 0.006 0.005 0.029 0.026 0.011 0.042 0.034 0.019
250 0.120 0.167 0.168 0.132 0.171 0.163 0.113 0.152 0.142
500 0.315 0.399 0.402 0.303 0.390 0.388 0.275 0.372 0.367
1000 0.383 0.466 0.468 0.362 0.446 0.446 0.325 0.429 0.427

0.95 100 0.002 0.001 0.000 0.014 0.017 0.005 0.028 0.033 0.012
250 0.105 0.154 0.155 0.125 0.164 0.145 0.115 0.157 0.137
500 0.306 0.398 0.402 0.307 0.387 0.385 0.265 0.362 0.354
1000 0.387 0.461 0.464 0.354 0.429 0.428 0.327 0.427 0.423

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.064 0.040 0.045 0.057 0.042 0.087 0.055 0.042 0.384

250 0.105 0.126 0.135 0.068 0.100 0.091 0.042 0.068 0.059
500 0.225 0.326 0.333 0.140 0.275 0.266 0.073 0.208 0.186
1000 0.292 0.408 0.412 0.199 0.377 0.372 0.116 0.312 0.296

-0.5 100 0.065 0.035 0.043 0.059 0.044 0.064 0.058 0.047 0.244
250 0.108 0.136 0.141 0.068 0.098 0.094 0.043 0.066 0.060
500 0.226 0.335 0.339 0.131 0.274 0.270 0.068 0.201 0.190
1000 0.287 0.405 0.407 0.205 0.378 0.375 0.123 0.314 0.305

0 100 0.060 0.041 0.042 0.060 0.044 0.042 0.056 0.048 0.057
250 0.101 0.134 0.132 0.063 0.096 0.093 0.043 0.069 0.067
500 0.224 0.341 0.340 0.137 0.279 0.277 0.066 0.200 0.201
1000 0.288 0.408 0.408 0.200 0.374 0.373 0.122 0.314 0.314

0.5 100 0.047 0.040 0.026 0.056 0.050 0.047 0.056 0.052 0.066
250 0.096 0.131 0.121 0.063 0.092 0.087 0.041 0.068 0.071
500 0.230 0.347 0.340 0.129 0.261 0.258 0.070 0.199 0.206
1000 0.290 0.418 0.414 0.195 0.364 0.361 0.117 0.321 0.320

0.95 100 0.037 0.040 0.021 0.047 0.047 0.062 0.049 0.051 0.108
250 0.094 0.133 0.115 0.057 0.088 0.082 0.038 0.063 0.076
500 0.214 0.331 0.319 0.126 0.264 0.255 0.067 0.200 0.203
1000 0.269 0.400 0.393 0.193 0.364 0.358 0.119 0.315 0.318

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-38: Finite sample size at 5% significance level of one-sided predictability tests:
𝑢𝑡, 𝑣𝑡 is i.i.d from t-distribution with the degree of freedom = 5, collapsing bubble in
return with 𝜏1 = 0.1, 𝜏2 = 0.4, 𝑐𝑏𝑢𝑏 = 0.2

c = 0 c = -5 c = -10
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.067 0.036 0.039 0.072 0.045 0.055 0.069 0.043 0.054

250 0.286 0.390 0.388 0.263 0.368 0.374 0.224 0.334 0.340
500 0.373 0.457 0.457 0.328 0.421 0.425 0.296 0.410 0.413
1000 0.397 0.467 0.467 0.375 0.452 0.452 0.340 0.443 0.445

-0.5 100 0.056 0.032 0.034 0.063 0.045 0.050 0.068 0.049 0.054
250 0.279 0.387 0.386 0.267 0.369 0.371 0.220 0.338 0.341
500 0.358 0.449 0.449 0.337 0.434 0.436 0.301 0.415 0.417
1000 0.404 0.474 0.473 0.377 0.457 0.458 0.340 0.442 0.444

0 100 0.043 0.030 0.031 0.054 0.042 0.042 0.066 0.053 0.052
250 0.279 0.390 0.391 0.258 0.369 0.369 0.224 0.348 0.348
500 0.355 0.452 0.452 0.340 0.441 0.442 0.290 0.408 0.408
1000 0.394 0.469 0.469 0.376 0.453 0.453 0.347 0.450 0.450

0.5 100 0.032 0.024 0.023 0.052 0.045 0.041 0.052 0.044 0.038
250 0.273 0.384 0.387 0.255 0.369 0.365 0.215 0.339 0.335
500 0.352 0.449 0.450 0.328 0.422 0.422 0.293 0.416 0.414
1000 0.389 0.464 0.464 0.366 0.451 0.451 0.330 0.435 0.434

0.95 100 0.020 0.018 0.016 0.038 0.036 0.029 0.051 0.045 0.033
250 0.265 0.377 0.379 0.246 0.365 0.360 0.208 0.330 0.322
500 0.356 0.441 0.442 0.333 0.433 0.430 0.297 0.415 0.413
1000 0.394 0.467 0.468 0.363 0.445 0.445 0.339 0.445 0.443

c = -20 c = -50 c = -100
𝛿 T 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q 𝑡𝑧𝑥 Bonf. t Bonf. Q
-0.95 100 0.066 0.050 0.057 0.059 0.052 0.061 0.054 0.047 0.166

250 0.173 0.308 0.312 0.080 0.228 0.225 0.028 0.146 0.141
500 0.242 0.387 0.391 0.145 0.340 0.337 0.071 0.260 0.251
1000 0.291 0.422 0.425 0.201 0.390 0.388 0.123 0.340 0.332

-0.5 100 0.062 0.047 0.050 0.059 0.051 0.053 0.051 0.045 0.107
250 0.165 0.293 0.295 0.083 0.233 0.230 0.028 0.147 0.145
500 0.245 0.391 0.393 0.146 0.329 0.328 0.075 0.266 0.262
1000 0.287 0.423 0.424 0.203 0.391 0.390 0.130 0.350 0.347

0 100 0.064 0.052 0.052 0.052 0.047 0.048 0.055 0.050 0.063
250 0.172 0.314 0.312 0.082 0.231 0.229 0.027 0.143 0.142
500 0.244 0.386 0.386 0.142 0.322 0.321 0.075 0.269 0.268
1000 0.287 0.428 0.428 0.197 0.395 0.394 0.121 0.342 0.342

0.5 100 0.063 0.052 0.044 0.052 0.046 0.044 0.053 0.051 0.052
250 0.169 0.309 0.304 0.081 0.227 0.222 0.029 0.148 0.147
500 0.235 0.379 0.376 0.150 0.335 0.331 0.073 0.264 0.266
1000 0.291 0.428 0.426 0.200 0.388 0.386 0.129 0.349 0.351

0.95 100 0.051 0.048 0.038 0.052 0.048 0.043 0.049 0.049 0.060
250 0.160 0.306 0.295 0.074 0.221 0.214 0.031 0.149 0.149
500 0.243 0.386 0.382 0.136 0.330 0.326 0.074 0.267 0.271
1000 0.284 0.429 0.426 0.192 0.378 0.375 0.123 0.347 0.349

Notes: 𝑡𝑧𝑥, 𝐵𝑜𝑛𝑓.𝑡, and 𝐵𝑜𝑛𝑓.𝑄 correspond to the test statistics of IVX test, Bonferroni-t test and
Bonferroni-Q test. The data generating process is from (4.1) to (4.7).
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Table C-39: Unit root tests for regressors

Predictor �̂� ADF DF-GLS PP
Dividend payout ratio (d/e) 0.9915 -4.409*** -3.946*** -4.495***

Long-term yield (lty) 0.9962 -1.223 -1.149 -1.183
Dividend yield (d/y) 0.9943 -1.796 -1.029 -1.745

Dividend-price ratio (d/p) 0.9943 -1.721 -1.030 -1.752
T-bill rate (tbl) 0.9928 -2.310 -2.236** -2.117

Earnings-price ratio (e/p) 0.9876 -3.789*** -2.438** -3.712***
Book-to-market value ratio (b/m) 0.9867 -2.969** -2.936*** -2.62*

Default yield spread (dfy) 0.9741 -4.063*** -3.971*** -3.88***
Net equity expansion (ntis) 0.9817 -4.957*** -3.421*** -4.106***

Term spread (tms) 0.9614 -5.298*** -3.013*** -4.846***
Inflation rate (inf) 0.4845 -9.592*** -1.007 -21.532***

Stock variance (svar) 0.5767 -7.207*** -4.572*** -18.491***
Long-term rate of return (ltr) 0.0488 -24.615*** -8.642*** -32.064***

Default return spread (dfr) 0.5357 -2.514** -2.307** -20.81***
Notes: This table presents the results of four unit root tests’ results for 14 predic-
tive variables: dividend payout ratio (d/e), long-term yield (lty), dividend yield
(d/y), dividend-price ratio (d/p), T-bill rate (tbl), earnings-price ratio (e/p),
book-to-market value (b/m), default yield spread (dfy), net equity expansion
(ntis), term spread (tms), inflation rate (inf), stock variance (svar), long-term
rate of returns (ltr) and default return spread (dfr). The sample period is span
from 01/1927 to 12/2021. As in Yang et al. (2022), �̂� indicates the least square
estimate of 𝜋 in the AR(1) process: 𝑥𝑡 = 𝑠 + 𝜋𝑥𝑡−1 + 𝑒𝑡. ADF stands for the
test statistic of the Augmented Dickey–Fuller test by Said and Dickey (1984).
DF-GLS stands for the statistic from an ADF-type test by Elliott et al. (1996). PP
represents the test statistic from the Phillips–Perron test by Phillips and Perron
(1988). *, ** and *** respectively indicate rejection of the null hypothesis of a
unit root (for ADF, DF-GLS, and PP tests) at 10%, 5% and 1% level.
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