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ABSTRACT
The aim was to determine the validity of an open-source algorithm for measuring jump height and 
frequency in ballet using a wearable accelerometer. Nine professional ballet dancers completed a routine 
ballet class whilst wearing an accelerometer positioned at the waist. Two investigators independently 
conducted time-motion analysis to identify time-points at which jumps occurred. Accelerometer data were 
cross-referenced with time-motion data to determine classification accuracy. To determine the validity of 
the measurement of jump height, five participants completed nine jetés, nine sautés and three double tour 
en l’air from a force plate. The jump height predicted by the accelerometer algorithm was compared to the 
force plate jump height to determine agreement. Across 1440 jumps observed in time-motion analysis, 
1371 true positives, 34 false positives and 69 false negatives were identified by the algorithm, resulting in 
a sensitivity of 0.98, a precision of 0.95 and a miss rate of 0.05. For all jump types, mean absolute error was 
2.6 cm and the repeated measures correlation coefficient was 0.97. Bias was 1.2 cm and 95% limits of 
agreement were −4.9 to 7.2 cm. The algorithm may be used to manage jump load, implement periodization 
strategies, or plan return-to-jump pathways for rehabilitating athletes.
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Introduction

In professional ballet, jumping and landing movements are the 
most common mechanism of time-loss injury (27% and 38% of 
time-loss injuries in women and men, respectively) 
(A. M. Mattiussi et al., 2021). During a professional ballet per
formance, dancers jump at a rate of 4.99 ± 4.93 jumps·min−1 

(Wyon et al., 2011), exceeding rates observed in sports such as 
volleyball (Bahr & Bahr, 2014) and basketball (Scanlan et al.,  
2011). In these sports, jump load has been associated with 
changes in injury risk and performance (Bahr & Bahr, 2014; 
Benson et al., 2021; Sanders et al., 2018). As a result, jump 
load has been suggested to be “the next great injury analytic” 
in sports medicine research (Moran et al., 2019). Although jump 
load is increasingly recognised as an important variable for 
ballet dancers, it is not yet routinely collected. The monitoring 
and management of jump load may therefore be a method by 
which the risk of maladaptive responses to ballet training may 
be attenuated (Moran et al., 2019; Shaw, Mattiussi, Brown, 
Springham, et al., 2021).

The monitoring of jump load has been facilitated by the devel
opment of algorithms that can identify jumping actions from 
wearable accelerometer signals. In athletic settings, several com
mercial wearable devices have been validated for the identifica
tion of jumping actions and the measurement of their height 
(Benson et al., 2020; Jaitner et al., 2017; MacDonald et al., 2017; 

Skazalski et al., 2018). However, financial barriers make investment 
in high-end wearable technology unrealistic for many ballet 
healthcare departments, and rarely are the details of these algo
rithms shared publicly. Furthermore, the majority of studies vali
dating jump algorithms have been conducted in volleyball players 
(Charlton et al., 2017; Skazalski et al., 2018) or in non-sport-specific 
individuals (Monnet et al., 2014); the extent to which these results 
can be extrapolated to ballet is unknown given the large reper
toire of jump types observed (A. Mattiussi et al., 2021).

Only one study has investigated the use of wearable 
sensor algorithms for activity recognition in ballet, using 
convolutional neural networks, and between 1–6 wearable 
inertial measurement units (IMUs), to identify jumps and leg 
lifts (Hendry et al., 2020). Though activity recognition was 
high with multiple sensors, and when the movements were 
analysed in isolation (98.0–98.5%), accuracy decreased when 
transition movements were introduced, and only a single 
sensor was used (78.0–81.6%). Furthermore, implementation 
of this method is impractical, given that considerable data 
science expertise is required, and the data and algorithms are 
not published open-source. In sporting research, several stu
dies have validated proprietary algorithms (Benson et al.,  
2020; Charlton et al., 2017; Sadi & Klukas, 2011), whilst 
some have validated more complex machine learning 
approaches (Kautz et al., 2017). Though feasibility studies 
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have been conducted on rule-based algorithms, such studies 
suffer from small jump counts (Bruening et al., 2018; Jaitner 
et al., 2017), overlapping of training and testing data 
(Bruening et al., 2018) and inadequate detail/no open- 
source code (Bruening et al., 2018; Jaitner et al., 2017).

The aim of the current study was to investigate the validity 
of an algorithm for measuring the height and frequency of 
jumps in professional ballet. To maximise the ease of imple
mentation, we used a simple rule-based algorithm requiring 
only one sensor, and share the algorithm in several formats.

Materials and methods

Design

A cross-sectional study design was employed to investigate the 
validity of measuring jump frequency and height using an 
accelerometer and a rule-based algorithm. The investigation 
was comprised of two sub-studies. Firstly, the accelerometer 
measurement of jump frequency was validated against time- 
motion analysis during ballet class. Participants were nine pro
fessional ballet dancers (four men: age 25.6 ± 3.1 y; height 
177.0 ± 6.0 cm; mass 70.4 ± 6.3 kg; five women: age 30.4 ± 5.4 
y, height 164.4 ± 4.2 cm; mass 52.0 ± 3.2 kg). Secondly, the 
accelerometer measurement of jump height was validated 
against a force plate measurement. Participants were five 
male professional ballet dancers (age 24.7 ± 1.2 y; height 
180.8 ± 2.5 cm; mass 73.0 ± 5.1 kg). Following a full explanation 
of the study protocol, participants gave written informed con
sent. Ethical approval was granted by the local board of ethics 
in accordance with the Declaration of Helsinki.

Materials and measures

A nine-axis IMU (LSM9DS1, STMicroelectronics, Geneva, 
Switzerland), housing a tri-axial 100 Hz accelerometer was 
used, mounted to a processor board (ASM2021-R, TinyCircuits, 
Akron, Ohio), SD card writer (ASD2201-R, TinyCircuits, Akron, 
Ohio), and lithium-ion battery (ASR00007, TinyCircuits, Akron, 
Ohio). The device was 8 mm × 20 mm × 42 mm and weighed 
8.7 g. Participants wore a tightly fitting elasticated strap hous
ing the device in a pouch situated anteriorly in line with the 
apex of the iliac crest, such that the accelerometer axes were 
roughly aligned with the anatomical axes of the participant 
(Figure 1). This position was chosen to reflect the acceleration 
of the participant’s centre of mass, whilst minimizing obstruc
tion of the participant’s movement during ballet. A posteriorly 
worn device was not viable in ballet given the requirement for 
floor-based movements, during which the device may be 
pressed between the dancer and the floor. Data were recorded 
to a secure digital card and uploaded following completion of 
each protocol.

For the reference measurement of jump height, force plates 
(ForceDecks FDLite, Vald Performance, Newstead, Queensland, 
Australia; or Kistler type 9268A, Kistler AG, Winterthur, 
Switzerland) sampling at 1000 Hz were used. For the time- 
motion analysis, ballet classes were filmed using a Sonycam 
DCR-SX33E (Sony Group Corporation, Tokyo, Japan).

Protocol

Jump frequency
Participants each completed one of three unaltered ballet 
classes, delivered as part of a normal working day at The 
Royal Opera House. Each participant wore an accelerometer 
for the full duration of class. The video camera was placed in 
an elevated position in a front corner of the studio. Two inves
tigators (JS, BM) reviewed the footage to identify timestamps at 
which dancers performed a jump. In line with previous research 
of this nature (MacDonald et al., 2017; Twitchett, Angioi, et al.,  
2009; Wyon et al., 2011), jumping events were determined 
subjectively by the reviewers. To ensure accuracy, any discre
pancies in time-motion analysis were settled by a third investi
gator (AM). Where the view of the movement was obscured 
(e.g., by another dancer), the movement was excluded from the 
analysis. Timestamps identified through time-motion analysis 
were then cross-referenced with timestamps identified by the 
accelerometer algorithm.

Jump height
Participants completed three sets of jumps on a force plat
form. Set one consisted of nine sautés (a two-to-two foot 
vertical jump), set two consisted of nine unilateral jetés (an 
anterior leap from one leg to the other), and set three con
sisted of three double tour en l’air (a two-to-two foot vertical 
jump with 720° of rotation). A total of 105 jumps were there
fore observed (45 sautés, 45 jetés, 15 double tour en l’air). 
Fewer double tour en l’air were recorded due to the greater 
physical and technical complexity of the movement. To 

Figure 1. The position of the belt housing the accelerometer.
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ensure a range of jump heights were measured, sautés and 
jetés were manipulated through the participants’ effort levels 
(3 × 30%, 3 × 60% and 3 × 90% of maximum effort). 
Participants began each trial with a three second stationary 
period during which body weight was recorded. For the 
sautés and double tour en l’air, participants jumped from, 
and landed in the same location. For the jetés, participants 
initiated the jump from a stationary position on the force 
plate, and jumped unilaterally and anteriorly to land at a self- 
determined distance. Reference jump height was calculated 
from raw force-time data using the take-off velocity method 
detailed in Moir (Moir, 2008), whereby jump height is calcu
lated as: take-off velocity (Wyon et al., 2011)/2 g.

Data analysis

Following the completion of each protocol, data were 
uploaded from the accelerometer. Tri-axial acceleration data 
were filtered using a fourth-order zero-lag low-pass 
Butterworth filter with a cut-off frequency of 12 Hz 
(Wundersitz et al., 2013) and processed using a rule-based 
algorithm. The algorithm was hand-crafted and created prior 
to this study based on data collected as part of routine mon
itoring at a professional ballet company between April 2019 
and December 2020.

Algorithm overview
The algorithm used was a rule-based classifier, developed using 
a trial-and-error process during routine data collection prior to 
this study. The exact steps completed by the algorithm are 
detailed explicitly in the R code presented in Appendix 1. 
A broad overview of the process is outlined below and visua
lised in Figure 2:

(1) The accelerometry time series is filtered and cleaned, 
with the primary purpose of identifying data points 
during which the participant may be airborne. This 
stage operates on the principal that an accelerometer 
in freefall will read zero g; these rules therefore seek to 
remove unwanted signal noise whilst the participant is 
airborne (e.g., airborne movement, skin movement, etc.)

(2) Identify key features of a vertical jump trace (accelera
tion peaks, points of take-off, and points of landing) and 
their temporal interrelationships.

(3) Identify jumps when conditions are met (a point of take- 
off is present, and is preceded – within 0.40 s – by an 
acceleration peak >1.65 g; a point of landing is present, 
and is followed – within 0.38 s – by a resultant accelera
tion peak >1.65 g, and a vertical acceleration peak >1.35  
g; and the points of take-off and landing are separated 
by between 0.22 and 0.80 s).

(4) When all conditions are met, estimate jump height 
based on the measured flight time.

An R Shiny web application housing an interactive user inter
face to the algorithm is provided in Appendix 2; a Microsoft 
Excel spreadsheet containing the algorithm can be found in 
Appendix 3.

Statistical analysis

Mean absolute error (MAE), repeated-measures Bland-Altman 
plots with 95% limits of agreement (LoA), Pearson’s correlations 
and repeated measures correlations (rrm) were used to measure 
the agreement and correlation between accelerometer-derived 
jump height and the criterion measure of jump height. For the 
validation of jump frequency during ballet class, the count of true 
positives (TP), false positives (FP) and false negatives (FN), and 
subsequently the sensitivity: 

TP
TPþ FN 

precision: 

TP
TPþ FP 

miss rate: 

FN
FNþ TP 

and critical success index: 

TP
TPþ FNþ FP 

were calculated. Accuracy and specificity were not calculated 
based on the absence of a true negative measure. All analysis 
took place in R v.4.0.4 (R Foundation for Statistical Computing, 
Vienna, Austria).

Results

For the comparison of predicted jump height and reference 
jump height, the Pearson’s correlation was 0.96, and the rrm was 
0.97 (Figure 3A). The MAE was 2.58 cm, with 95% LoA of −6.7 to 
5.7 cm, and a mean bias of −0.47 cm. Figure 3B shows the 
Bland-Altman plots presenting the mean bias, 95% LoA, and 
their 95% confidence intervals for each jump type.

For the validation of jump frequency, a total of 1440 jumps 
were observed across the nine classes. Eleven observations 
were removed from the study as both reviewers, or one 
reviewer and the third reviewer, agreed that a jump could not 
be reliably determined due to an obstructed view. Agreement 
between the two primary reviewers was 93.6%. Sensitivity, 
precision, and miss rate values were 0.95, 0.95 and 0.05, respec
tively. Full results and summary statistics of the IMU and video 
analysis for each participant are presented in Table 1.

Discussion

This study demonstrated the validity of a hand-crafted rule- 
based algorithm for measuring jump height and frequency 
in professional ballet. Unlike previous studies validating the 
use of wearable technology to measure jump-load, the pre
sent algorithm is open-source, does not require data science 
expertise, and is shared alongside R code, an R Shiny appli
cation, and an Excel spreadsheet, which can be used to 
facilitate implementation. This study therefore provides 
healthcare practitioners working in ballet companies and 
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schools with a practical open-source tool for monitoring the 
jump load experienced by dancers.

The present validation of jump count revealed sensitivity, 
precision, and miss rate values of 0.95, 0.95 and 0.05, respec
tively. These values are comparable to similar studies investi
gating the validity of commercial wearable devices in sports 
such as volleyball (MacDonald et al., 2017; Skazalski et al., 2018) 
and snowboarding (Sadi & Klukas, 2011), and provide a basis for 
the use of this algorithm in practice. Similarly, a high level of 
agreement was observed between the estimated jump height 
and the reference measure (rrm = 0.97, bias = +1.2 cm, 95% LoA: 
−4.9 to 7.2 cm, MAE: 2.6 cm). These values are more accurate 
than those that have been reported in validation studies of 
commercial accelerometers (MacDonald et al. (MacDonald 
et al., 2017): r = 0.91, bias = 2.5 cm, 95% LoA −6.1 to 9.8 cm; 

Skazalski et al. (Skazalski et al., 2018): bias = 9.1 cm, intra-class 
correlation = 0.93). The mean absolute error of the jump height 
estimation was greater during double tour en l’air than during 
sautés or jetés. This may reflect the increased complexity of the 
movement (and subsequently a greater inaccuracy in the iden
tification of take-off and landing) or the greater jump heights 
that are required (such that the same percentage error results 
in a larger absolute error). Readers should note that the present 
algorithm appears to slightly overestimate large jumps; though 
this small bias is unlikely to be clinically relevant for load 
management, practitioners should note that the algorithm is 
not appropriate for the measurement of maximal jump height 
in isolation.

The present algorithm is practical and straightforward to 
implement into rehearsals. Firstly, only a single sensor is 

Figure 2. Schematic illustrating the simplified steps involved in the algorithm to identify jumps and calculate jump height.
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required to calculate jump load, which is likely to be better 
received by dancers than multi-sensor approaches. 
Additionally, a waist-worn device is easily hidden, and does 
not obstruct the dancer’s movement. A tri-axial accelerometer – 
rather than a nine-axis IMU – is used; this is advantageous both 
in terms of cost and signal processing requirements. However, 
the use of more signals may facilitate a greater measurement 
accuracy, and is a potential avenue for future research. The 
algorithm used is simpler than machine learning approaches 
that have been used previously (Hendry et al., 2020). This is 
beneficial for several reasons. Firstly, the user is not required to 
have data science expertise; users with only basic data handling 
experience can implement the algorithm using the spreadsheet 
contained in Appendix 3. Similarly, this method is therefore 
more interpretable, and does not come in a black box, as 
would many machine learning models.

Jump load has previously been demonstrated to be 
a useful metric for understanding injury risk in basketball 
(Benson et al., 2021) and volleyball (García de Alcaraz et al.,  

2020). However, whilst the present algorithm provides 
a valid means of measuring jump height and frequency 
during ballet, it is important that healthcare practitioners 
understand that jump load is not a direct measure of phy
siological tissue damage (Edwards, 2018; Kalkhoven et al.,  
2021). Jump load may provide a means through which load 
can be managed (e.g., ensuring gradual progression follow
ing injury, identifying rapid increases in load) (Shaw, 
Mattiussi, Brown, Williams, et al., 2021), but users should 
be cautious not to over-rely on jump load as an injury 
metric, and instead consider it only one part of a larger 
puzzle. The ability to measure jump load provides benefits 
beyond injury risk management. Understanding the jump
ing demands experienced during rehearsals and perfor
mances may be beneficial for strength and conditioning 
coaches designing supplementary training programmes 
(Shaw, Mattiussi, Brown, Springham, et al., 2021; Twitchett, 
Koutedakis, et al., 2009). Similarly, for physiotherapists and 
strength and conditioning coaches involved in the 

Figure 3. a) Correlation and b) Bland-Altman plots illustrating the relationship and agreement between accelerometer-derived and force platform-derived measure
ments of jump height. Grey areas represent 95% CIs for the mean bias, and upper and lower confidence intervals. MAE = Mean absolute error.

Table 1. Results of the validation of jump frequency.

Participant Sex Rank Video Count Wearable Count TP FP FN Sensitivity Precision Miss Rate CSI

1 M A 191 196 187 7 4 0.98 .96 0.02 0.94
2 M FA 200 201 188 11 12 0.94 .94 0.06 0.89
3 M FS 211 207 204 3 7 0.97 .99 0.03 0.95
4 M P 242 243 232 7 10 0.96 .97 0.04 0.93
5 F A 103 102 101 1 2 0.98 .99 0.02 0.97
6 F FA 154 148 144 3 10 0.94 .98 0.06 0.92
7 F S 131 124 124 0 7 0.95 1.00 0.05 0.95
8 F P 118 110 108 1 10 0.92 .99 0.08 0.91
9 F P 90 85 83 1 7 0.92 .99 0.08 0.91
Total - - 1440 1416 1371 34 69 0.95 .98 0.05 0.93
Mean - - 169 166 161 4 8 0.95 .98 0.05 0.93
SD - - 53 56 52 4 3 0.02 .02 0.02 0.03

Note: TP – True positives; FP – False positives; FN – False negatives; CSI – Critical success index; SD – Standard deviation; F – Female; M – Male; A – Artist; FA – First 
Artist; S – Soloist; FS – First Soloist; P – Principal.
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rehabilitation of a dancer, understanding the demands of 
a given ballet may aid in the planning and management of 
a return-to-jumping pathway (Taberner et al., 2020). Finally, 
the measurement of jump load may facilitate discussions 
with artistic staff around load and season periodisation 
through objective data (Wyon, 2010).

Whilst this algorithm was designed and tested on bal
letic jumps, we suggest that given the methodological 
steps taken by the algorithm, the results would be compar
able for non-balletic jumps. There may therefore be con
siderable use for this algorithm in other sporting 
populations; for example, in jumping sports such as basket
ball or volleyball or for managing plyometric load during 
more general training (Allerheiligen & Rogers, 1995).

Strengths and limitations

The key strength of this work is its accessibility: unlike 
previous research, the present algorithm is open-source 
and does not require data science expertise. Another 
strength is that unlike some studies of this nature 
(MacDonald et al., 2017), we have validated the measure
ment of jump frequency in an unaltered ballet class in situ 
(as opposed to creating an arbitrary set of movements) 
adding to the ecological validity of the present algorithm. 
In contrast, the validation of jump height during jetés from 
a force plate required the dancer to jump from a stationary 
position, ex situ. It is possible that this artificially increased 
the accuracy, as the identification of the exact point of take- 
off may have been improved in the absence of preceding 
movement, as might be the case during rehearsal or per
formance. Another limitation of the current study is that the 
algorithm used does not differentiate between one-legged 
and two-legged take-offs and landings. Whilst this is possi
ble using wearable technology, the aim of the present study 
was to provide a method requiring limited equipment (i.e., 
a single accelerometer) and only a basic level of data hand
ling. The comparison of the present algorithm to previously 
validated algorithms would have been beneficial for contex
tualising and assessing the quality of the current results. 
Finally, we have mounted the device such that it does not 
inhibit balletic movement, though this position is on soft 
tissue. The use of this algorithm on populations with greater 
abdominal adipose tissue should, therefore, be approached 
with caution.

Conclusion

The present study investigated the validity of a rule-based 
algorithm for the measurement of jump height and count in 
professional ballet and demonstrated comparable accuracy 
to commercial systems. Unlike commercial products common 
in sport and exercise science, this algorithm has been 
designed to increase accessibility: open-source software is 
provided; the algorithm does not require data science exper
tise to use; and only a single sensor is required. The ease of 
use and low-cost of applying this method provides a solution 
to the management of jump load in ballet companies and 
schools.
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