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Schelling’s famous model of segregation assumes agents of different types, who would like 
to be located in neighborhoods having at least a certain fraction of agents of the same 
type. We consider natural generalizations that allow for the possibility of agents being 
tolerant towards other agents, even if they are not of the same type. In particular, we 
consider an ordering of the types, and make the realistic assumption that the agents are 
in principle more tolerant towards agents of types that are closer to their own according 
to the ordering. Based on this, we study the strategic games induced when the agents aim 
to maximize their utility for a variety of tolerance levels. We provide a collection of results 
about the existence of equilibria, and their quality in terms of social welfare.
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1. Introduction

Residential segregation is a broad phenomenon affecting most metropolitan areas, and is known to be caused due to 
racial or socio-economic differences. The severity of its implications to society [6] is the main reason for the vast research 
attention it has received, with many different models being proposed over the years that aim to conceptualize it (e.g., see 
[27]). The most prominent of those models is that of Schelling [25,26], which studies how motives at an individual level 
can lead to macroscopic behavior and, ultimately, to segregation. In particular, the individuals are modeled as agents of two 
different types (usually referred to using colors, such as red and blue), and the environment is abstracted by a topology 
(such as a grid graph), representing a city. The agents occupy nodes of the topology and prefer neighborhoods in which the 
presence of their own type exceeds a specified tolerance threshold. If an agent is unhappy with her current location, then 
she either jumps to a randomly selected empty node of the topology, or swaps positions with another random unhappy 
agent. Schelling’s crucial observation was that such dynamics might lead to largely segregated placements, even when the 
agents are relatively tolerant of mixed neighborhoods.

A recent series of papers (discussed in Section 1.2) have generalized Schelling’s model to include more than two types, 
and have taken a game-theoretic approach, according to which the agents behave strategically rather than randomly, aiming 
to maximize their individual utility. There are many ways to define the utility of an agent i of type T . For instance, Elkind 
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et al. [18] defined it as the ratio of the number of agents of type T in i’s neighborhood over the total number of agents 
therein. Echzell et al. [17] proposed a similar definition, which however does not take into account all the agents of different 
type in the denominator, but only those of the majority type. The first definition essentially assumes that the agents view 
all the agents of different type as enemies. On the other hand, the second definition assumes that the agents view only 
the majority type as hostile. An alternative way of thinking about these particular utility functions is as if the agents have 
binary tolerance towards other agents in the sense that agents are either friends or enemies; in the case of Elkind et al. all 
the neighbors of an agent are taken into account when computing her utility, whereas in the case of Echzell et al. some of 
her neighbors are ignored.

These functions are natural generalizations of the quantity that determines the happiness of agents in Schelling’s original 
model for two types. However, they fail to capture realistic scenarios in which the agents do not have a single-dimensional 
view of the other agents, but rather have different preferences over the different types of agents. For example, suppose that 
the agents correspond to voters while the types correspond to political parties. In this case, the preferences of voters over 
other voters are defined based on the distances of the political views expressed by the parties they are affiliated with. 
Another example is when the types correspond to research areas, in which case people working on a specific research 
agenda will be more willing to collaborate with other people working on related problems.

1.1. Our contribution

To capture scenarios like the examples above, we propose a clean model that naturally extends the model of Elkind 
et al. [18] by incorporating different levels of tolerance among agent types, and study the induced strategic games in terms of 
the existence and quality of their equilibria; in Section 5, we discuss potential generalizations of our model.

To be more specific, our model consists of a set of agents who are partitioned into λ ≥ 2 types of equal size,1 a graph 
topology, and an ordering of the different agent types which determines the relative tolerance among agents of different 
types. Naturally, we assume that there is higher tolerance between agents whose types are closer according to the ordering. 
The exact degree of tolerance between the different types is specified by a tolerance vector, which consists of weights 
representing the tolerance between the different types depending on their distance in the given ordering. For example, 
agents of the same type are in distance 0 and are fully tolerant towards each other, which is captured by a weight of 1. 
The utility of an agent can then be computed as a weighted average of the tolerance that she has towards her neighbors, 
and every agent aims to occupy a node of the topology to maximize her utility; agents are allowed to unilaterally jump to 
empty nodes to increase their utility.

We study the dynamics of such tolerance Schelling games. We first focus on questions related to equilibrium existence. 
For general games, we show that equilibria are not guaranteed to exist if agents are not fully tolerant towards agents in 
type-distance 1 (Theorem 2). We complement this impossibility by showing many positive results for important subclasses 
of games, in which the topology is a structured graph (such a 4-grid or a tree) and the tolerance vector satisfies certain 
properties (Theorems 3, 5, 6 and 7). We then turn our attention to the quality of equilibria measured by the social welfare 
objective, defined as the total utility of the agents, and prove (asymptotically tight) bounds on the price of anarchy [22]
(Theorems 8 and 9) and price of stability [3] (Theorem 14), which depend on the number of types, the number of agents 
and/or the tolerance parameters.

1.2. Related work

Residential segregation, and Schelling’s original randomized model in particular, has been the basis of a continuous 
stream of multidisciplinary research in Sociology [15], Economics [24,29], Physics [28], and Computer Science [5,7,10,11,20].

Most related to our work is a quite recent series of papers in the TCS and AI communities, which deviated from the 
premise of random behavior, and instead studied the strategic games induced when the agents act as utility-maximizers. 
Chauhan et al. [14] studied questions related to dynamics convergence in games with two types of agents who can either 
jump to empty nodes of a topology (as in our case) or swap locations with other agents to minimize a cost function; their 
model was generalized to multiple types of agents by Echzell et al. [17]. In this paper we extend the utility model of Elkind 
et al. [18], who refined the cost model of Chauhan et al. [14]. They introduced a simpler utility function (fraction of same-
type agents in one’s neighborhood) which the agents aim to maximize, and studied the existence, complexity and quality of 
equilibria in jump games with multiple types of agents and general topologies. Among other results, we recover the upper 
bound of λn

n−λ
on the price of anarchy of balanced jump Schelling games shown by Elkind et al. [18] and prove that it 

is actually tight, by improving the lower bound. We also improve their lower bound of 34/33 on the price of stability to 
approximately 2; see the discussion in Section 4 for more details.

The existence of equilibria in the model of Elkind et al. [18] was further studied by Kreisel et al. [23]. Elkind et al. [18]
also proposed many interesting variants, such as enemy aversion (agents might prefer being alone to being in a group full 

1 We focus on such balanced games as this class of games is arguably the most fundamental one and provides us with a structure that we can exploit to 
show positive results in terms of the existence and the quality equilibria. In general, equilibria are not guaranteed to exist even for balanced games (see 
Theorem 2), and so it makes sense to pinpoint special cases for which existence can be shown, as we do in Section 3. In addition, it not hard to observe 
that the price of anarchy can be unbounded when the sizes of the types are arbitrary [18].
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of agents of different type than their own) and social Schelling games (where the agents types are determined by a social 
network), which have been partially studied by Kanellopoulos et al. [21] and Chan et al. [13], respectively. Agarwal et al. [1]
studied existence, complexity and qualitative questions for swap games; the results of Elkind et al. [18] for jump games 
and Agarwal et al. [1] for swap games were combined into a journal version [2]. Bilò et al. [9] also focused on swap 
games, and in particular, on a constrained setting, where the agents can only view a small part of the topology near their 
current location and can only swap with agents in this part of the topology. Recently, Bilò et al. [8] considered swap games 
when the agents aim to optimize general single-peaked utility functions of the fraction of same-type agents, showing that 
some tolerance is needed for the existence of equilibria. The jump version of such single-peaked games has been studied by 
Friedrich et al. [19]. Finally, Bullinger et al. [12] and Deligkas et al. [16] studied the (parameterized) complexity of computing 
assignments with good welfare guarantees, focusing on the social welfare, Nash welfare, and Pareto optimality, and many 
other welfare objectives.

2. Preliminaries

A λ-type tolerance Schelling game consists of:

• A set N of n ≥ 4 agents, partitioned into λ ≥ 2 disjoint sets T1, . . . , Tλ representing types, such that 
⋃

�∈[λ] T� = N .
• A simple connected undirected graph G = (V , E) called topology, such that |V | > n.
• A tolerance vector tλ = [t0, . . . , tλ−1] consisting of λ parameters, such that td represents the tolerance that agents of type 

T� have towards agents of type Tk in Manhattan distance |� − k| = d ∈ {0, . . . , λ − 1} according to a given ordering �
of the types (say, T1 � . . . � Tλ). We assume that agents are more tolerant towards agents of types that are closer to 
their own according to �, and we thus have that 1 = t0 ≥ . . . ≥ tλ−1 ≥ 0. We also assume that tλ−1 < 1; otherwise, all 
agents are completely tolerant towards all others and the game is trivial. Let τ = ∑λ−1

d=0 td be the sum of all tolerance 
parameters.

Clearly, the class of λ-type tolerance Schelling games includes as a special case the classic jump Schelling games studied in 
the related literature (e.g., see [18]), for which t0 = 1 and td = 0 for every d ∈ {1, . . . , λ − 1}. Because of this particular 
tolerance vector, we will use the term λ-type zero-tolerance games to refer to the classic Schelling games.

In this paper we consider balanced games, in which the agents are partitioned in types of equal size, such that |T�| =
n/λ ≥ 2 for every � ∈ [λ]; thus, n is a multiple of λ. We use the abbreviation λ-TS to refer to such a balanced λ-type 
tolerance Schelling game I = (N, G, tλ). For convenience, we will also use the abbreviation λ-ZTS to refer to a balanced 
λ-type zero-tolerance game I = (N, G).

Let v = (vi)i∈N be an assignment specifying the node vi of G that each agent i ∈ N occupies, such that vi �= v j for i �= j. 
The neighborhood of a node v consists of the nodes at distance 1 from v in G . For every node v , we denote by n�(v|v)

the number of agents of type T� that occupy nodes in the neighborhood of v according to the assignment v, and also let 
n(v|v) = ∑

�∈[λ] n�(v|v). Given an assignment v, the utility of agent i of type T� is computed as

ui(v) = 1

n(vi |v)

∑
k∈[λ]

t|�−k| · nk(vi|v),

if n(vi |v) �= 0, and 0 otherwise (in which case we say that the agent is isolated). The agents are strategic and aim to 
maximize their utility by jumping to empty nodes of the topology if they can increase their utility by doing so. We say that 
an assignment v is an equilibrium if no agent i of any type T� has incentive to jump to any empty node v of the topology, 
that is, ui(v) ≥ ui(v, v−i), where (v, v−i) is the assignment resulting from this jump. Let EQ(I) be the set of equilibrium 
assignments of a given λ-TS game I .

The social welfare of an assignment v is defined as the total utility of the agents, that is,

SW(v) =
∑
i∈N

ui(v).

Let OPT(I) = maxv SW(v) be the maximum social welfare among all possible assignments in the λ-TS game I . For a given 
subclass C of λ-TS games, the price of anarchy is defined as the worst-case ratio, over all possible games I ∈ C such that 
EQ(I) �= ∅, between OPT(I) and the minimum social welfare among all equilibria:

PoA(C) = sup
I∈C:EQ(I) �=∅

OPT(I)

minv∈EQ(I) SW(v)
.

Similarly, the price of stability takes into account the ratio between OPT(I) and the maximum social welfare among all 
equilibria:

PoS(C) = sup
OPT(I)

maxv∈EQ(I) SW(v)
.

I∈C:EQ(I) �=∅

3
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Fig. 1. The partial assignments v (left) and v′ (right) used in the proof of Theorem 1. Here, agents of type T1 are colored red, agents of type T2 are colored 
blue, and agents of type T3 are colored green. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

3. Equilibrium existence

In this section, we show several positive and negative results about the existence of equilibrium assignments for inter-
esting subclasses of tolerance Schelling games. We start with the relation of equilibrium assignments in λ-ZTS games and 
general λ-TS games.

Theorem 1. Consider a λ-ZTS game I = (N, G) and a λ-TS game I ′ = (N, G, tλ). For λ = 2, EQ(I ′) ⊆ EQ(I) and EQ(I) \ EQ(I ′)
consists of assignments with isolated agents. For λ ≥ 3, EQ(I) and EQ(I ′) are incomparable.

Proof. We start with λ = 2; for convenience, we will refer to the two types as red and blue. Let v be an equilibrium of I ′ . 
Clearly, for I and I ′ to be different, it must be the case that t1 > 0. Consequently, there are no isolated agents in v as they 
would have incentive to deviate to nodes that are adjacent to any other agent and increase their utility from 0 to (at least) 
t1. We will show that v is an equilibrium of I as well. Without loss of generality, consider a red agent i who occupies a 
node vi that is adjacent to nr(vi) red and nb(vi) blue agents. Since agent i is not isolated, it holds that nr(vi) + nb(vi) ≥ 1. 
If nb(vi) = 0, then agent i has maximum utility 1 in both I and I ′ . Hence, we can assume that nb(vi) ≥ 1. Since v is an 
equilibrium of I ′ , agent i has no incentive to unilaterally jump to any empty node z of the topology. That is,

nr(vi) + t1 · nb(vi)

nr(vi) + nb(vi)
≥ nr(z) + t1 · nb(z)

nr(z) + nb(z)
⇔ (1 − t1)

(
nr(vi)

nb(vi)
− nr(v)

nb(v)

)
≥ 0,

where nr(z) and nb(z) are the number of red and blue agents that are adjacent to z after agent i jumps to z; observe that 
nb(z) ≥ 1, as otherwise agent i would obtain maximum utility of 1 by jumping to z, contradicting that v is an equilibrium 
of I ′ . Since t1 < 1, we equivalently have that

nr(vi)

nb(vi)
≥ nr(z)

nb(z)
⇔ nr(vi)

nr(vi) + nb(vi)
≥ nr(z)

nr(z) + nb(z)
.

Therefore, agent i has no incentive to jump to the empty node z in I , and v is an equilibrium of I as well. Using similar 
arguments, we can show that any equilibrium of I such that there is no isolated agent is also an equilibrium of I ′ .

For λ ≥ 3, to show that EQ(I) is incomparable to EQ(I ′), consider the tolerance vector t3 = (1, 1/2, 0) and the following 
two partial assignments v and v′ (see also Fig. 1):

• In v, a red agent i of type T1 occupies a node vi which is adjacent to two nodes, one occupied by an agent of type T1
and one occupied by an agent of type T3. There is also an empty node z which is adjacent to two nodes, one occupied 
by an agent of type T1 and one occupied by an agent of type T2. In I , agent i has no incentive to jump from vi to z as 
both nodes give her utility 1/2. On the other hand, in I ′ , agent i has utility (1 + 0)/2 = 1/2 and has incentive to jump 
to v to increase her utility to (1 + 1/2)/2 = 3/4. Hence, v can be an equilibrium of I , but not of I ′ .

• In v′ , an agent i of type T1 occupies a node vi which is adjacent to three nodes, one occupied by an agent of type T1, 
one occupied by an agent of type T2 and one occupied by an agent of type T3. There is also an empty node z which is 
adjacent to two nodes, one occupied by an agent of type T1 and one occupied by an agent of type T3. In I , agent i has 
incentive to jump from vi to z in order to increase her utility from 1/3 to 1/2. However, in I ′ , agent i has no incentive 
to jump as she has utility (1 + 1/2 + 0)/3 = 1/2 by occupying node vi , which is exactly the utility (1 + 0)/2 she would 
also obtain by jumping to z. Consequently, v′ can be an equilibrium of I ′ , but not of I .

This completes the proof. �
Since there exist simple 2-ZTS games that do not admit any equilibria [18], the first part of Theorem 1 implies that 

equilibria are not guaranteed to exist for general 2-TS games as well. In fact, by carefully inspecting the proof of Elkind 
4
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Fig. 2. The topology used in the proof of Theorem 2 for λ = 2. In the depicted assignment with red and blue agents, the empty node is v = α (first case); 
the red agent with one red and two blue neighbors has an incentive to deviate to α in order to increase her utility from 1+2t1

3 < 1 to 1.

et al. [18] that λ-ZTS games played on trees do not always admit equilibria for every λ ≥ 2, we can show the following 
stronger impossibility result.

Theorem 2. For every λ ≥ 2 and every tolerance vector tλ such that t1 < 1, there exists a λ-TS game I = (N, G, tλ) in which G is a 
tree and does not admit any equilibrium.

Proof. We will show how the proof of Elkind et al. [18] that λ-ZTS games do not always admit equilibria can be directly 
extended to capture the class of λ-TS games with appropriate tolerance vectors. Consider a λ-TS game I = (N, G, tλ) where 
N is a set of n = λ(2λ + 1) agents partitioned into λ ≥ 2 types such that there are (2λ + 1) agents per type, and tλ is a 
tolerance vector with t1 < 1. The topology G is a tree consisting of n + 1 nodes, distributed to four levels. There is a root 
node α with one child node β , which in turn has a set � of 2λ − 1 children. Every node γ ∈ � has a set 	γ of λ children 
nodes, which are leaves of the tree; let 	 = ⋃

γ ∈� 	γ . See Fig. 2 for the topology in the case where λ = 2 and for an 
example assignment.

Adapting the arguments of Elkind et al. [18], we will now show that this game does not admit any equilibrium. Assume 
otherwise, that there exists an equilibrium assignment v. We distinguish between cases by enumerating the single node v
that is left empty:

• v = α. Suppose that the agent i who occupies node β is of type T . Since |�| = 2λ − 1, |T \ {i}| = 2λ, and |	γ | = λ for 
each γ ∈ �, there must be an agent j �= i of type T with a neighbor of type T ′ �= T . Hence, agent j has utility strictly 
less than 1, and has incentive to deviate to α to obtain maximum utility 1.

• v = β . Suppose that the agent i who occupies node α is of type T� . Since she is isolated, her utility is 0. Since v
is assumed to be an equilibrium, agent i would still have utility 0 by deviating to β; note that this is impossible if 
all tolerance parameters are positive. As a result, all the nodes in � must be occupied by agents of types Tk such that 
t|�−k| = 0. But then, this means that all agents of type T� , who must occupy nodes of 	, also have utility 0 and incentive 
to deviate to β , connect to agent i, and obtain positive utility.

• v ∈ �. Since v is empty, all the agents occupying nodes of 	v have utility 0. Since all λ nodes of 	v are occupied, it 
must be that there exist two agents in 	v

⋃
β of the same type. At least one of these agents occupies a node in 	v

and can increase her utility from 0 to positive by moving to v and connecting with the other agent of the same type.
• v ∈ 	. Suppose that the agent i who occupies the parent of v is of type T� . For such an assignment to be an equilibrium, 

it must be the case that all other agents of type T� have utility 1, as otherwise they would have incentive to deviate to 
v . Since t1 < 1, this would mean that all other agents of type T� have only neighbors of type T�; it is easy to see that 
this is impossible.

This completes the proof. �
Since Theorem 2 implies that it is impossible to hope for general positive existence results, in the remainder of this 

section we focus on games with structured topologies and tolerance vectors. In particular, we consider the class of α-binary 
λ-TS games with α ∈ {1, . . . , λ} in which the tolerance vector tλ is such that

td =
{

1, if d < α

0, otherwise.

Clearly, the class of 1-binary λ-TS games coincides with that of λ-ZTS.
5
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Fig. 3. The figure used in the proof of Theorem 3. The left subfigure corresponds to Case I in the proof, while the right subfigure corresponds to Case II.

We next show that when the topology is a grid2 or a tree, there exist values of α ∈ {1, . . . , λ} for which α-binary λ-TS 
games played on such a topology always admit at least one equilibrium. Our first result for grids is the following.

Theorem 3. Every 2-ZTS game I = (N, G) in which G is a grid admits at least one equilibrium.

Proof. Consider an arbitrary 2-ZTS game I = (N, G) in which the topology G is an m × M grid (m rows and M columns), 
such that m ≤ M . Also, let x ≥ 2 be the number of agents per type, such that n = 2x. Clearly, since n ≥ 4 it holds M ≥ 3. To 
simplify our discussion, we will refer to the two types as red and blue.

We construct an equilibrium by assigning the agents to the nodes of the grid column-wise from top to bottom and left 
to right as follows: We first assign all the red agents. We then leave a number e = m · M − n ≥ 1 of nodes empty, and finish 
by assigning all the blue agents. Let v be the assignment computed.

Clearly, if e ≥ m, v is guaranteed to be an equilibrium since all agents have maximum utility 1. Otherwise, when e < m
and since M ≥ 3, it cannot be that there are x ≤ m agents per type. So, in the following we focus on the case where e < m
and x > m.

Let v be an empty node, and consider any red agent i that occupies node vi according to v; see Fig. 3. We will argue 
that i has no incentive to jump to v; the argument for blue agents is symmetric. Observe that agent i has utility at least 
1/2, since she is connected to at least one red agent and at most one blue agent by construction. We will focus on the case 
where agent i has exactly one blue neighbor, as otherwise she clearly has no incentive to jump to v . By the construction of 
v and the fact that e < m, we have that (i) the left neighbor of v is occupied by a red agent, (ii) the right neighbor of v is 
occupied by a blue agent, (iii) the top neighbor of v , call it α, is either empty or occupied by a red agent (if v is in the top 
row, we refer to α as empty), and (iv) the bottom neighbor of v , call it β , is either empty or occupied by a blue agent (if v
is in the bottom row, we refer to β as empty). We distinguish between the following cases:

• Case I: α, β are both empty, or α is empty and β is occupied by a blue agent, or α is occupied by a red agent and β
is occupied by a blue agent; the second case is represented in the left subfigure of Fig. 3. Agent i has no incentive to 
deviate to v since by doing so she would only be able to get utility at most 1/2.

• Case II: α is occupied by a red agent and β is empty; see the right subfigure of Fig. 3. If agent i occupies α she has no 
incentive to deviate to v , as she would be able to get utility exactly 1/2, while right now she has utility at least 1/2. 
If agent i is adjacent to an empty node but does not occupy α, then i has utility 1 and is not interested in deviating. 
As a result, we have that agent i is not adjacent to any empty node, and by deviating to v agent i would obtain utility 
2/3. The only case in which agent i would have incentive to deviate to v is if her utility is exactly 1/2, which would 
mean that she has exactly one red neighbor and one blue neighbor. This is possible only if vi is the last node of the 
first column of the grid and M = 3. However, this contradicts the fact that m ≤ M , since there is a column with two 
empty nodes (v and β), one node (α) occupied by a red agent, and one node (the right neighbor of vi ) occupied by a 
blue agent.

This completes the proof. �
The proof of Theorem 3 is constructive and such that in the computed equilibrium no agent is isolated. Consequently, in 

combination with Theorem 1, it further implies the following:

Corollary 4. Every 2-TS game I = (N, G, t2) in which G is a grid admits at least one equilibrium.

Unfortunately, showing a result similar to Theorem 3 for every λ ≥ 3 is a very challenging task. Instead, we show the 
following result for 2-binary games.

Theorem 5. Every 2-binary λ-TS game I = (N, G, tλ) in which G is a grid admits at least one equilibrium.

2 We focus on 4-grids where internal nodes have 4 neighbors.
6
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Algorithm 1: Tile(s, r, k).

/* s, k: starting row and number of nodes to be left empty in that row */
/* r ≤ x: number of rows defining an r × M grid */
for i = 1 to k do

mark node (s, i) as empty

for j = 1 to M do
for i = s to s + r − 1 do

if node (i, j) is unmarked then
place the next agent (if one exists) according to the ordering � at node (i, j)

Proof. Consider a 2-binary λ-TS game with n agents played on an m × M grid (m rows and M columns) such that m ≤ M . 
Let x = n/λ ≥ 2 be the number of agents per type and e = mM − n be the number of empty nodes.

We compute an equilibrium assignment v using Algorithm 2, which in turn relies on the Tile procedure described in 
Algorithm 1. In particular, Algorithm 1 takes as input three arguments: the starting row s, the number of nodes k to be 
left empty at row s, and the number of rows r ≤ x defining an r × M subgrid with s as its topmost row. It considers the 
yet unassigned agents in increasing type, according to the ordering �, and assigns them in the r × M subgrid, so that the 
k leftmost nodes of row s are left empty, while all other nodes host an agent (assuming the number of unassigned agents 
is large enough). Algorithm 1 visits these rows in a column-major order, skipping the empty nodes. The key property of 
Algorithm 1 is that, for each agent of type � processed, all its neighboring agents inside the r × M subgrid have types in 
{� − 1, �, � + 1}; this holds as we assume that r ≤ x.

Algorithm 2 repeatedly calls Algorithm 1 to compute an assignment for non-overlapping subgrids, where the number of 
rows in each subgrid varies but the number of columns is always M . We remark that Algorithm 2 terminates immediately 
(at any step) when all agents have been assigned. The key objective is to guarantee that almost all agents have utility 1, 
while those with smaller utility have no improving deviation. To do so, we exploit that each agent of type �, assigned during 
the execution of Algorithm 1, has all its neighboring agents inside the r × M subgrid with types in {� − 1, �, � + 1} and we 
handle carefully its neighboring agents outside that subgrid.

While the number of rows not already handled by Algorithm 1 is at least x and the number of empty nodes is at least 
M , Algorithm 2 calls Algorithm 1 to handle a subgrid and leaves the next row empty (see Lines 4-5); by the discussion 
above, this guarantees that all agents placed until that point have utility 1. Whenever e ≥ M and the number of remaining 
rows is less than x, running Algorithm 1 again guarantees that all agents have utility 1 (see Lines 6-7) as, once more, each 
agent of type � has only neighbors with types in {� − 1, �, � + 1}. So far, we have argued that if Algorithm 2 terminates in 
Lines 3 or 7, v is an equilibrium.

The challenging case, therefore, arises when the number of remaining empty nodes becomes smaller than M , as it is no 
longer feasible to guarantee that all agents have utility 1 by separating subgrids with empty rows. The specific way in which 
we handle this last part depends on how the number of remaining rows relates to x, the number of agents per type; this 
is the focus of lines 8-25, where we allocate the remaining agents so that those with utility less than 1 have no convenient 
deviation.

Note that the algorithm cannot terminate at Line 11 as e < M and, therefore, the number of empty nodes is not large 
enough to cover the remaining subgrid. So, the first non-trivial case is when the algorithm terminates in Line 14; see also 
the rightmost example in Fig. 4. Again, all agents placed in Line 3 have utility 1. Each agent i of type � placed during Line 
11 has utility at least 2/3; indeed, i has at least one neighbor of type �, at least one neighbor of a type in {� − 1, � + 1}, and 
at most one neighbor of type at distance at least 2. If α = 1, all agents placed in Line 14 have utility 1. Otherwise, agents 
placed in Line 14 at the last x − 1 rows have utility 1, while any agent on the row with the empty nodes has utility at least 
1/2 when e = M − 1, and at least 2/3 otherwise.

If the algorithm terminates in Line 19 (see also the leftmost part of Fig. 4), agents placed in Lines 3, 11, or 19 have utility 
at least 2/3, while agents placed in Line 18 have utility at least 1/2. If the algorithm terminates in Line 22, agents placed 
in Line 3 have utility 1, agents placed in Lines 11 and 22 have utility at least 2/3, while agents placed in Line 21 have 
utility at least 2/3 except (perhaps) the first and the last agent on the row that have utility at least 1/3. If the algorithm 
terminates in Line 25, again all agents placed in Line 3 have utility 1, while agents placed in Lines 11 and 24 have utility at 
least 2/3. Finally, the agents placed in Line 25 have utility at least 1/2 if e = M − 1 and at least 2/3 otherwise.

We now argue that no agent has an incentive to jump. Note that an empty node may have another empty node as a top 
or bottom neighbor if the algorithm terminates in Line 3, or in Line 7, or in Line 14 in case α = 1. In all these cases, by the 
discussion above, all agents have utility 1 and the assignment is an equilibrium. Also, note that an empty node has always 
a bottom neighbor, while the only case the empty node has no top neighbor is if the algorithm terminates in Line 19. In 
that case, any agent with utility less than 1 can obtain utility at most 1/2 by jumping; again, v is an equilibrium.

So, in the following we assume that any empty node has a top and bottom neighboring agent. Observe that, in that case, 
an agent gets utility at most 2/3 by jumping to an empty node, since either the top or the bottom neighbor will have a 
large type distance and there is no left neighbor. As in almost all cases, agents in v have utility at least 2/3, it remains to 
argue about the nodes that have utility less than that. The agent in Line 14 with utility 1/2 (when α > 1) obtains utility 
at most 1/2 by jumping, the agents in Line 21 with utility at least 1/3 obtain utility at most 1/3 by jumping, and, finally, 
7
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Algorithm 2: Equilibrium construction for a 2-binary λ-TS game on an m × M grid.

/* Algorithm 2 terminates immediately if all agents have been assigned */
/* x, e: number of agents per type and number of empty nodes */

1 Initialize k = 0
2 while x ≤ m − k and e ≥ M do /* Each agent placed in this loop has utility 1 */
3 Tile(k + 1, x, 0)
4 leave the next row empty
5 update k := k + x + 1, e := e − M

6 if x > m − k then /* Each agent placed in this step has utility 1 */
7 Tile(k + 1, m − k, 0)

8 else /* We now have e < M and x ≤ m − k */
9 Define non-negative integers α ∈N>0 and β ≤ x − 1 such that m − k = αx + β

10 for i = 1, . . . , α − 1 do /* Algorithm 2 cannot terminate in this loop */
11 Tile(k + 1, x, 0)
12 update k := k + x

/* Below we handle the last x + β rows */
13 if β = 0 then
14 Tile(k + 1, x, e)

15 else if β = 1 then
16 if Line 3 was executed then
17 Shift all agents down by one row
18 Tile(1, 1, e)
19 Tile(k + 2, x, 0)

20 else
21 Tile(k + 1, 1, e)
22 Tile(k + 2, x, 0)

23 else
24 Tile(k + 1, x, 0)
25 Tile(k + x + 1, β, e)

Fig. 4. On the left, an example of how Algorithm 2 operates when it terminates in Line 19. On the right, an example when the algorithm terminates in Line 
14. Agents of the same number and color are of the same type, while � is {1, 2, . . . , 9, 0, a, b, c}.

the agent in Line 25 with utility 1/2 obtains utility at most 1/2 by jumping. We conclude that v is an equilibrium and the 
theorem follows. �

Note that Algorithm 2 may fail to return an equilibrium for lexicographically larger tolerance vectors. Indeed, consider 
again the rightmost example in Fig. 4 depicting a 4 × 4 grid and 7 types of two agents each. Algorithm 2 puts agents of 
types 1 to 4 in each of the first two rows, skips 2 nodes, puts agents of types 6 and 7 in the third row, and places agents 
of types 5, 5, 6 and 7 in the last row. Under tolerance vector t7 = {1, 1, 0, 0, 0, 0, 0} the assignment is an equilibrium (by 
Theorem 5), while under tolerance vector t′7 = {1, 1, t2 > 1

2 , 0, 0, 0, 0}, the agent of type 4 in the second row has utility 2/3, 
but can obtain utility 1+2t2

3 > 2/3 by jumping to the rightmost empty node.
So, a different algorithm is needed for computing equilibria in α-binary games with α ≥ 3. While we have not been 

able to show this result for every α, we do show it for α ≥ √
λ. In particular, the equilibrium constructed in the proof of 
8
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Algorithm 3: Equilibrium construction for a 
⌊

λ
2

⌋
-binary λ-TS game on a tree (or games with lexicographically larger 

tolerance vectors).

/* tree1, . . . , treek denote the subtrees of the tree topology in non-increasing order by size, when the 
topology is rooted at a centroid node. */

1 Run Bottom-Up(tree1, T1, T2, . . . , T⌈
λ
2

⌉). If at least one agent of type T1 remains unassigned, repeat with the next subtree. Let a ≤ ⌈
λ
2

⌉
be the 

smallest type index among unassigned agents, and let treek1 be the last subtree considered in this step.
2 Run Bottom-Up(treek1+1, Tλ, Tλ−1, . . . , T⌈

λ+1
2

⌉), where Ti are the unassigned agents of types Ti , i = λ, . . . , ⌈ λ+1
2

⌉
. If at least one agent of type Tλ

remains unassigned, repeat with the next subtree. Let b ≥ ⌈
λ+1

2

⌉
be the largest type index among unassigned agents, and let treek2 be the last 

subtree considered in this step.
3 Run Bottom-Up(treek2+1, Ta, Ta+1, . . . , Tb ), where Ti are the unassigned agents of types Ti , i = a, . . . , b. Repeat with the next subtree and the 

unassigned agents of these types, until all agents have been assigned.
4 If the last subtree among the ones considered in the previous steps contains at least two isolated agents, then rearrange them within this subtree 

so that each of them has at least one neighbor. If the last subtree contains a single isolated agent, then move this agent to the root of the tree.

the next theorem guarantees a utility of 1 to all agents, and thus it is also an equilibrium for games with lexicographically 
larger tolerance vectors, not necessarily binary ones.

Theorem 6. For λ ≥ 3, every 
√

λ-binary λ-TS game I = (N, G, tλ) in which G is a grid admits at least one equilibrium.

Proof. Consider a 
√

λ-binary λ-TS game I = (N, G, tλ) in which the topology G is an m × M grid (m rows and M columns) 
such that m ≤ M . Observe that if an agent i is assigned to a node vi such that all her neighbors are of types in distance 
strictly less than 

√
λ according to the ordering �, then agent i has maximum utility 1, and no incentive to deviate from 

vi . This is the property we will exploit to construct an equilibrium assignment. We distinguish between the following two 
cases:

• m ≤ √
n. We construct an equilibrium assignment v by considering the agents in increasing type according to the 

ordering �, and assign them one after the other along the columns, from top to bottom and from left to right. Since 
there are at most 

√
n rows and 

√
n = n

λ
· λ√

n
, each column of the grid can fit at most all the agents of λ√

n
different types. 

This means that, by the construction of v, every agent i of type � has neighbors of types Tk such that |� −k| ≤ λ√
n

<
√

λ, 
where the last inequality follows by the fact that n ≥ 2λ. Hence, agent i has utility 1 and no incentive to deviate.

• m >
√

n. Consider the sub-grid containing only the nodes in the first 
√

n rows. Since M ≥ m >
√

n, all n agents can 
be assigned to these nodes, and we thus can repeat the process of the previous case by limiting our attention to the 
sub-grid. This again guarantees that every agent has utility 1 and the resulting assignment is an equilibrium.

This completes the proof. �
Next we turn our attention to games in which the topology is a tree. We show the following result for α-binary games 

when λ ≥ 3.

Theorem 7. Every 2-binary 3-TS game I = (N, G, t3) and every α-binary λ-TS game I = (N, G, tλ) where α ≥ ⌊
λ
2

⌋
for λ ≥ 4, in 

which G is a tree, admit at least one equilibrium.

Proof. To construct an equilibrium, we exploit the following known property of trees: Every tree with x ≥ 3 nodes contains 
a centroid node, whose removal splits the tree into at least two subtrees with at most x/2 nodes each. We root the tree 
from such a centroid node, and leave the root empty. This leads to a partition of the topology in k ≥ 2 subtrees, which we 
order in non-increasing size and denote by tree1, . . . , treek .

To assign the agents we use Algorithm 3, which in turn uses the Bottom-Up allocation procedure (described in Algo-
rithm 4). The procedure Bottom-Up(tree, T1, T2, . . . , Ts) assigns the unassigned agents of types T1, T2, . . . , Ts to the nodes 
of the subtree tree from bottom to top (higher to lower depth), so that the parent node of each agent of T1 is occupied by 
either an agent of the same type or an agent of type T2, and the assignment in the corresponding subtree is connected. In-
formally, Algorithm 3 roots the topology at a centroid node and considers subtrees in non-increasing size. As long as agents 
of type T1 are remaining, Algorithm 3 applies the Bottom-Up procedure to the next subtree with agents in increasing type 
index. Then, as long as agents of type Tλ are remaining, Algorithm 3 applies the Bottom-Up procedure to the next subtree 
with agents in decreasing type index. The remaining (smaller) subtrees are filled with the remaining agents, again using the
Bottom-Up procedure. See Fig. 5 for the assignment computed by Algorithm 3 for the case of λ = 4 types of three agents 
each.

We first claim that at the end of Step 3 of Algorithm 3, every agent either gets utility 1 or gets utility 0 if she is isolated. 
Indeed, it holds that agents of type T1 can only be adjacent to agents of type T1 and T2. Similarly, the agents of type Tλ

can only be adjacent to agents of type Tλ and Tλ−1. In addition, by design, the maximum type distance among all the 
9
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Fig. 5. The assignment computed by Algorithm 3 in the proof of Theorem 7 for the case of λ = 4 types of three agents each. Agents of type T1 are colored 
red, agents of type T2 are colored blue, agents of type T3 are colored green, and agents of type T4 are colored yellow. The arrow represents the change 
performed in Step 4 of the algorithm.

Algorithm 4: Bottom-Up(tree, T1, T2, . . . , Ts).

/* For i = 1, . . . , s, Ti is the set of unassigned agents of a given type */
/* The algorithm terminates immediately when all agents have been assigned or all nodes of tree have been 

occupied. */
1 Start at the lowest level of tree and place agents of type T1 so that an agent of type T1 is placed at level h only if all nodes at levels at least h + 1

have been filled. Furthermore, and assuming the previous condition holds, after filling a node at level h we give priority to its sibling nodes. 
Continue until all agents of type T1 have been assigned.

2 Consider the agents of type T2. Begin by placing an agent of type T2 to any empty node having a child occupied by an agent of type T1 and repeat 
until the parent nodes of all agents of type T1 are occupied. This is feasible as long as there are at least as many agents of type T2 as there are 
agents of type T1. Continue by placing agents of type T2 arbitrarily in tree by maintaining a connected assignment for all agents in tree.

3 Arbitrarily assign the remaining agents in order of input so that the assignment in tree remains connected after assigning each agent.

other agents assigned in Steps 1 and 2 is 
⌈

λ
2

⌉ − 2. By this discussion, all agents have utility 1 when λ = 3 and the game is 
2-binary. Below, we assume that λ ≥ 4.

To see the claim is true for agents assigned in Step 3, observe that if Step 2 is applied on a subtree of at least n/3 nodes, 
then since we visit subtrees in non-increasing order of their size, Step 1 is also applied on a subtree of at least n/3 nodes. 
Hence, at most n/3 agents remain to be allocated. Otherwise, if no subtree on which Step 2 is applied has at least n/3
nodes, then, again due to the order we visit subtrees, any subtree to which we perform Step 3 has less than n/3 nodes. In 
any case, at most n/3 agents will be allocated at Step 3 at any given subtree. These agents belong to at most �λ/3
 + 1
different types and, due to Steps 2 and 3 in Algorithm 4, we are guaranteed that no agent allocated in Step 3 will have a 
neighbor of type-distance �λ/3
. Since �λ/3
 − 1 ≤ �λ/2� − 1, such agents either get utility 1, or 0 if they are isolated, as 
required.

It remains to argue that after a possible execution of Step 4, no agent has a profitable deviation. We distinguish between 
the following two cases when Step 4 is performed:

• Case I: There are at least two isolated agents in the last subtree among those considered in the first three steps. First 
observe that, since the subtrees are considered in non-increasing order by size and the last subtree contains at least 
two agents, there is no subtree with a single isolated agent. Now, by the definition of the bottom-up-like allocation 
algorithm, all these agents must be of the last type Tb , since if agents of two or more types are assigned in the same 
subtree, the resulting assignment therein is by construction connected. Therefore, by rearranging the agents of type Tb
in the last subtree so that all of them have at least one neighbor, each of them gets utility 1 and the assignment is an 
equilibrium.

• Case II: There is a single isolated agent i in the last subtree of the last type Tb considered, who is moved to the root of 
the tree. Since Step 4 is performed, all the subtrees that have been considered in the first three steps are full, with the 
exception of the last subtree which has been left empty after moving agent i. Thus, the empty nodes of the topology are 
only adjacent to other empty nodes or the root. As a result, an agent of some type � ∈ [λ] would be able to get utility 
t|�−b| by jumping to an empty node that is adjacent to the root, and utility 0 by jumping to any other empty node. 
However, every agent j �= i already has utility at least t|�−b| . In particular, agent j has utility 1 if she is not adjacent to 
the root, utility at least 1+t|�−b|

2 ≥ t|�−b| if she is adjacent to the root but not isolated before moving i to the root, and 
utility exactly t|�−b| if she is adjacent to the root and was isolated before moving i to the root.
10
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This completes the proof. �
For λ = 3, Theorem 7 is tight in the sense that equilibria are not guaranteed to exist when t1 < 1 (Theorem 2). For λ ≥ 4, 

it is not hard to observe that the assignment computed is also an equilibrium in games with lexicographically larger vectors 
(not necessarily binary ones) than the one stated.

4. Quality of equilibria

In this section, we consider the quality of equilibria measured in terms of social welfare, and bound the price of anarchy 
and price of stability. Recall that these notions compare the social welfare achieved in the worst and best equilibrium to the 
maximum possible social welfare achieved in any assignment. We start with a general upper bound on the price of anarchy, 
whose proof follows by bounding the social welfare at equilibrium by the total utility the agents would be able to obtain 
by jumping to an arbitrary empty node. Recall that τ = ∑λ−1

d=0 td .

Theorem 8. The price of anarchy of λ-TS games with tolerance vector tλ is at most λn
τn−λ

.

Proof. Consider a λ-TS game I = (N, G, tλ) with EQ(I) �= ∅. Let v be an equilibrium, and denote by v an empty node. The 
utility that an agent of type T� , � ∈ [λ] would obtain by unilaterally jumping to v is

• 1
n(v)

∑
k∈[λ] t|�−k| · nk(v) if she is not adjacent to v;

• 1
n(v)−1

(∑
k∈[λ] t|�−k| · nk(v) − 1

)
otherwise.

Also observe that for every type T� , � ∈ [λ] there are exactly n
λ

− n�(v) agents that are not adjacent to v , and n�(v) agents 
that are adjacent to v . Since v is an equilibrium, every agent of type T� is guaranteed to have at least as much utility as if 
she were to deviate to v , and therefore the social welfare is

SW(v) ≥ 1

n(v)

∑
�∈[λ]

(n

λ
− n�(v)

) ∑
k∈[λ]

t|�−k| · nk(v) + 1

n(v) − 1

∑
�∈[λ]

n�(v) ·
⎛
⎝ ∑

k∈[λ]
t|�−k| · nk(v) − 1

⎞
⎠

≥ 1

n(v)

∑
�∈[λ]

⎛
⎝n

λ

∑
k∈[λ]

t|�−k| · nk(v) − n�(v)

⎞
⎠

= 1

n(v)

∑
�∈[λ]

n�(v) ·
⎛
⎝n

λ

∑
k∈[λ]

t|�−k| − 1

⎞
⎠

= 1

λ · n(v)

∑
�∈[λ]

n�(v)

⎛
⎝n

∑
k∈[λ]

t|k−�| − λ

⎞
⎠ .

The second inequality is due to increasing the denominator of the second fraction. The first equality follows by aggregating 
the factors of n�(v) for every � ∈ [λ]. Finally, the second equality follows by factorizing λ. Now observe that because the 
tolerance vector tλ is non-increasing, we have that 

∑
k∈[λ] t|�−k| ≥ ∑λ−1

d=0 td = τ . Combining this together with the fact that 
n(v) = ∑

�∈[λ] n�(v), we obtain

SW(v) ≥ τn − λ

λ
.

The bound on the price of anarchy follows by the fact that the optimal welfare is at most n (the maximum utility of any 
agent is 1). �

For each � ∈ {1, . . . , λ}, let τ� = ∑
k∈[λ] t|�−k| be the total tolerance of agents of type � towards any subset containing 

one agent of every type. We can show the following general lower bound on the price of anarchy, as a function of these 
parameters.

Theorem 9. The price of anarchy of λ-TS games with tolerance vector tλ is at least

λn∑
�∈[λ] τ� n − λ2−∑

�∈[λ] τ�
≥ λn

2(λ−1)τ
λ

n − λ2

λ−1 + 2τ
.

λ λ−1

11
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Fig. 6. An instance used for the proof of Theorem 9 for the case of 3 types and 21 agents, so that each type has 7 agents. The big squares K1, K2, K3

correspond to cliques of size 7 (the number of agents per type), while the ovals represent cliques of size 3 (the number of types). In an optimal assignment, 
each large clique contains agents of the same type and each agent gets utility 1. In a bad equilibrium, each small clique contains a single agent of each 
type and all gray nodes are left empty. For each type � ∈ [3], all but one agents of type � get utility τ�/3, while the last agent gets utility (τ� − 1)/2.

Proof. Consider a λ-TS game I = (N, G, tλ), where n = |N| = λ(2λμ + 1) for some integer μ ≥ 1. The topology G contains 
2n + 1 nodes as follows. There exists a central node c and λ large cliques Ki , with i ∈ [λ], where each Ki contains 2λμ + 1
nodes. There also exist 2λμ small cliques Ki, j , with i ∈ [λ] and j ∈ {1, . . . , 2μ}, each of size λ, as well as another small 
clique K of size λ. Apart from the edges within the cliques, we add the following edges so that any node of a small clique 
is connected to a single node outside its clique. First, we connect the central node c to a single node of cliques Ki and Ki,1, 
for i ∈ [λ]. Then, for each Ki,1, with i ∈ [λ], we connect each node that is not a neighbor of c to a single distinct node in 
Ki,2. Similarly, for each Ki, j , with i ∈ {2, . . . , λ} and j ∈ {1, . . . , 2μ − 1}, we connect any node without a neighbor in Ki, j−1
to a single distinct node in Ki, j+1. Finally, for each Ki,2μ , with i ∈ {1, . . . , 2μ}, we connect the only node with no neighbors 
in Ki,2μ−1 to a single distinct node in K ; this completes the description of G .

In the optimal assignment, for � ∈ [λ], all agents of type � are at the large clique K� and OPT(I) = n. There exists an 
equilibrium assignment v where all agents are placed in the small cliques as follows: each small clique contains a single 
agent of each type, the agents neighboring the (empty) central node are all of distinct types, and, finally, for each pair of 
neighboring agents across different small cliques, both agents are of the same type. It is always possible to obtain such an 
assignment; see Fig. 6 for an example with λ = 3 and μ = 1.

Observe that, for � ∈ [λ], each agent i of type � that is not a neighbor of the central node has utility ui(v) = τ�

λ
and will 

obtain the same utility if she jumps to the central node. Similarly, each agent i of type � who is a neighbor of c has utility 
τ�−1
λ−1 and will get the same utility by jumping to the central node. Clearly, any agent will get utility 0 by jumping to another 

empty node. Hence, v is an equilibrium with

SW(v) =
∑
�∈[λ]

(
2λμ

τ�

λ
+ τ� − 1

λ − 1

)

=
∑
�∈[λ]

((n

λ
− 1

) τ�

λ
+ τ� − 1

λ − 1

)

=
∑

�∈[λ] τ�

λ2
n +

∑
�∈[λ] τ� − λ2

λ(λ − 1)
.

Since OPT(I) = n, we obtain the following lower bound on the price of anarchy:

λn∑
�∈[λ] τ�

λ
n − λ2−∑

�∈[λ] τ�

λ−1

.

Furthermore, since τ� < 2τ for every � ∈ {2, . . . , λ − 1} and τ = τ1 = τλ , it holds that 
∑

�∈[λ] τ� ≤ 2(λ − 1)τ . Hence, we have 
a lower bound of

λn∑
�∈[λ] τ�

λ
n − λ2−∑

�∈[λ] τ�

λ−1

≥ λn
2(λ−1)τ

λ
n − λ2

λ−1 + 2τ
. �

From Theorems 8 and 9 we obtain an asymptotically tight bound for general λ-TS games.
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Corollary 10. The price of anarchy in λ-TS games is 
(λ/τ ).

Theorems 8 and 9 allow us to provide concrete bounds for subclasses of λ-TS games. In particular, for λ-ZTS games (the 
class of balanced jump Schelling games first studied by Elkind et al. [18]), we have that τ� = 1 for every � ∈ [λ], and thus ∑

�∈[λ] τ� = λ. Therefore, Theorem 8 gives us an upper bound of λn
n−λ

(which was also previously implicitly shown by Elkind 
et al. [18]) and Theorem 9 gives us a corresponding matching lower bound; the latter improves upon the weaker lower 
bound of n

n
λ
−1+x

with x > 0 shown in [18,2].3

Corollary 11. The price of anarchy of λ-ZTS games is λn
n−λ

.

We now define the following two natural classes of λ-TS games in which the tolerance parameters are specific functions 
of the distance between the types. In the first one, the difference of the tolerance level is proportional to the type distance, 
while in the other, the difference of the tolerance is decreasing in the type distance in an inversely proportional way.

• Proportional λ-TS games: td = 1 − d
λ−1 for each d ∈ {0, . . . , λ − 1}, while τ = ∑

�∈[λ] �−1
λ−1 = λ

2 .

• Inversely proportional λ-TS games: td = 1
d+1 for every d ∈ {0, . . . , λ − 1}. We have τ = ∑

�∈[λ] 1
�

= Hλ , where Hλ is the 
λ-th harmonic number.

By Theorems 8, 9 and the above definitions, we obtain the following corollaries.

Corollary 12. For every λ ≥ 2, the price of anarchy of proportional λ-TS games is at most 2n
n−2 and at least λn

(λ−1)n− λ
λ−1

.

Corollary 13. For every λ ≥ 2, the price of anarchy of inversely proportional λ-TS games is at most λn
Hλn−λ

and at least
λn

2(λ−1)
λ

Hλn− λ2
λ−1 +2Hλ

.

We conclude our technical contribution with a lower bound on the price of stability for the case of two types of agents. 
For 2-ZTS games (balanced jump Schelling games), the following lower bound improves upon the bound of 34/33 of Elkind 
et al. [18], and is also tight when the number of agents tends to infinity because of the upper bound implied by Theorem 8; 
recall that τ = 1 for λ-ZTS games.

Theorem 14. The price of stability of 2-TS games is at least 2/τ − ε , for any ε > 0.

Proof. We consider a particular 2-TS game (N, G, t2 = (1, 0)) and we will show that it admits a unique (up to symmetry) 
equilibrium v. Furthermore, we will show that v has no isolated agents. By Theorem 1, the 2-TS game (N, G, t2

′ = (1, t1 < 1))

also admits v as its unique equilibrium. It will then suffice to argue about the social welfare in v. Clearly, if t1 = 1 then 
τ = 2 and the theorem holds trivially.

Let b be an arbitrarily large even positive integer that is not a multiple of 3 and set z = 2b + 1 and c = bz = 2b2 + b. In 
our proof we exploit that gcd(cz/2 + c, b + 1) = gcd(2b3 + 4b2 + 3b/2, b + 1) = 1.4

Let n = |N| = 2c(z + 1) and consider the following topology G with n + 1 nodes; see also Fig. 7. The set of nodes 
comprises six sets I , J , K , X , Y , and S . Set I contains cz/2 nodes, set J contains c nodes, while K is a clique of cz/2 nodes. 
Set X is a collection of z subsets X1, X2 . . . , Xz , where each subset has b nodes, while set Y is a collection of z subsets Y1, 
Y2, . . . , Y z where each subset contains c nodes. Finally, set S contains a single node s.

Apart from the edges in the clique K , the following edges also exist. To begin with, each node in I is connected to a 
unique distinct node in K . Each node in K is also connected to all nodes in X , while each node in Xi is also connected to 
all nodes in Yi , for i ∈ {1, . . . , z}. Finally, node s is connected to all nodes in Y ∪ J .

Consider the following assignment v. All nodes in I ∪ K ∪ X host red agents, all nodes in S ∪ J host blue agents, while all 
remaining cz − 1 blue agents are in Y . We claim that v is an equilibrium. To see why, observe that all agents in I ∪ K ∪ S ∪ J
have utility 1 and, hence, no incentive to jump to the empty node. Each (blue) agent in Y has utility 1

b+1 and would obtain 
the same utility by jumping. Finally, each (red) agent in X has utility at least z

z+2 and would obtain utility at most b
b+1 by 

jumping; since z > 2b, v is indeed an equilibrium.

3 In the conference version of their paper, Elkind et al. [18] showed a lower bound of n
n
λ
−1+λ

. In the journal version [2], they used a construction with 
just two agents per type, which can be extended in several ways to n/λ agents per type, all of which lead to a lower bound of n

n
λ
−1+x

for some x > 0. 
Here, we were able to obtain an instance with x = 0, thus obtaining a tight bound.

4 Recall that b is even and note that 2(2b3 + 4b2 + 3b/2) − (4b2 + 4b − 1)(b + 1) = 1. The claim follows since the greatest common divisor of two integers 
equals their smallest positive linear combination.
13
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Fig. 7. The topology G used in the proof of Theorem 14. Small circles correspond to nodes, the oval is the clique K while rectangles correspond to sets of 
nodes. Dashed edges connecting two shapes imply that each node of one shape is connected to all nodes of the other shape.

Next, we show that v is the unique equilibrium assignment. This will be accomplished through a series of claims regard-
ing the structure of any equilibrium assignment and the location of the unique empty node. In the following, let rK and 
bK denote the number of red and blue agents in K , rx j and bx j the number of red and blue agents in X j for j ∈ {1, . . . , z}, 
and, similarly, ry j and by j the number of red and blue agents in Y j where j ∈ {1, . . . , z}. Finally, let rX and bX be the total 
number of red and blue agents in X .

Claim 15. In any equilibrium, there are at least two red and at least two blue agents with utility less than 1.

Proof. Observe that if K ∪ X contains at least two red and two blue agents, then the claim trivially holds. So, without loss 
of generality, let K ∪ X contain at most one red agent. Then, Y must contain at least two red agents as the cz/2 + c + 1
nodes in I ∪ S ∪ J cannot host all cz + c − 1 remaining red agents. The claim follows by considering these red agents in Y
and their blue neighbors in X . �
Claim 16. In any equilibrium, the empty node cannot be in I ∪ J .

Proof. Assume otherwise. Then, any agent having the same type as the unique neighbor of the empty node would obtain 
utility 1 by jumping. Claim 15 guarantees that at least one such agent, other than the unique neighbor, exists. �
Claim 17. In any equilibrium, each agent in J has utility 1.

Proof. Assume otherwise and let i ∈ J be an agent with utility 0; without loss of generality let us assume that i is red. 
Since i has no incentive to jump, it must be that all agents neighboring the empty node, except possibly for i, are blue. If 
i is not a neighbor of the empty node, by Claim 15, there exists at least one blue agent that has incentive to jump to the 
empty node and obtain utility 1. So, we assume that s is the empty node. In that case, all agents in J have utility 0 and it 
is not hard to see that such an assignment cannot be an equilibrium, since J contains either at least two red agents or at 
least two blue agents. �

This implies the following.

Claim 18. In any equilibrium, s cannot be empty and all agents in S ∪ J are of the same type.

Claim 19. In any equilibrium, each agent in I has utility 1.

Proof. Assume otherwise and let i ∈ I be an agent with utility 0; without loss of generality let us assume that i is red. As 
in the proof of Claim 17, since i has no incentive to jump, it must be that all agents neighboring the empty node, except 
possibly for i, are blue. If i is not a neighbor of the empty node, by Claim 15, there exists at least one blue agent that has 
incentive to jump to the empty node and obtain utility 1. Otherwise, if the empty node is in K , then all agents in K ∪ X
are blue. Furthermore, any other agent in I except for i is blue, as otherwise the agent would jump to the empty node and 
improve her utility from 0 to strictly positive. We conclude that I ∪ K ∪ X contains c(z + 1) − 2 blue agents, while the last 
14
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two blue agents must be in Y , by Claim 18. The claim follows since each of these two blue agents has utility b
b+1 and would 

obtain utility cz/2−1+c
cz/2+c by jumping; note that cz/2 − 1 + c > b. �

By Claim 18, we assume, without loss of generality, that all agents in S ∪ J are blue. This, together with Claim 19, leads 
to:

2rK + rX + rY = c(z + 1), (1)

and

2bK + bX + bY = cz − 1. (2)

The following claim relies on more complex arguments about almost the entire topology.

Claim 20. In any equilibrium, the empty node cannot be in X.

Proof. Assume otherwise that the empty node is in X1, without loss of generality. We begin by considering why agents in 
Y \ Y1 have no incentive to jump. Let i be an agent in Y j , where j ∈ {2, . . . , z} and observe that rK +bK = cz/2, rx j +bx j = b, 
and ry1 + by1 = c.

If agent i is red, her utility is 
rx j

b+1 , as s hosts a blue agent, while by jumping agent i would get utility rK +ry1
cz/2+c . Hence, 

since i has no incentive to jump, we obtain 
rx j

b+1 ≥ rK +ry1
cz/2+c which gives 

bx j +1

b+1 ≤ bK +by1
cz/2+c . Similarly, if agent i is blue, we obtain 

bx j +1

b+1 ≥ bK +by1
cz/2+c and, therefore, 

rx j
b+1 ≤ rK +ry1

cz/2+c .

We conclude that if Y j contains both red and blue agents, it must hold that 
rx j

b+1 = rK +ry1
cz/2+c , and 

bx j +1

b+1 = bK +by1
cz/2+c , which, 

as gcd(cz/2 + c, b + 1) = 1, is only possible when bx j = b, bK = cz/2 and by1 = c. This, however, cannot hold as we already 
have that all c + 1 agents in S ∪ J are blue and the remaining cz − 1 blue agents cannot fill x j , y1, K and, due to Claim 17, 
I .

So, any Y j contains either only red or only blue agents. In the following, let us assume that Y \ Y1 contains ψ sets 
consisting only of blue agents and z − 1 − ψ sets consisting only of red agents. Hence, Equation (1) becomes

2rK + rX + ry1 = c(2 + ψ), (3)

while Equation (2) becomes

2bK + bX + by1 = c(z − ψ) − 1. (4)

We now argue that K must contain agents of both types. Clearly, since S ∪ J hosts c + 1 blue agents, K (and, by 
Lemma 17 also I) cannot contain only blue agents. If K and I contain only red agents, then there is at least one red agent, 
let it be agent i, in Y . The utility of agent i is at most b

b+1 , as s hosts a blue agent, while by jumping agent i obtains utility 
at least cz/2

cz/2+c > b
b+1 , since z > 2b; hence, K cannot contain only red agents.

Consider a red agent i in K ; her utility is rK +rX
cz/2+c−1 , while by jumping i would obtain utility rK +ry1 −1

cz/2+c−1 . Therefore, we 
obtain that rX ≥ ry1 −1. Similarly, since no blue agent in K wishes to jump, we obtain that bX ≥ by1 −1. Since rX +bX = c−1
and ry1 +by1 = c, we also have that rX ≤ ry1 and bX ≤ by1 , and, in particular, either rX = ry1 and bX = by1 −1 or rX = ry1 −1
and bX = by1 .

We argue that it must be the case rX = ry1 and bX = by1 − 1. Indeed, since in S ∪ J ∪ {Y \ Y1} we have already allocated 
an odd number, i.e., cψ + c + 1, of blue agents, and I ∪ K must contain an even number of blue agents, an odd number 
remains to be allocated to X ∪ Y1. Equation (3) becomes

rK + ry1 = c(2 + ψ)

2
, (5)

while Equation (4) becomes

bK + by1 = c(z − ψ)

2
. (6)

Since bX = by1 − 1, we have that by1 > 0, while we argue that ry1 > 0, as otherwise, since rX = ry1 , any red agent in Y
has utility 0 and would prefer to jump; such a red agent exists in Y as, since S ∪ J hosts c + 1 blue agents, it cannot be 
that all c(z + 1) − 1 agents in X ∪ Y are also blue.

Since both ry1 > 0 and by1 > 0, we consider why agents in Y1 do not wish to jump. Since no red agent in Y1 benefits by 
jumping, we obtain
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rx1

b
≥ rK + ry1 − 1

cz/2 + c − 1
(7)

and, since also no blue agent in Y1 wishes to jump,

bx1 + 1

b
≥ bK + by1 − 1

cz/2 + c − 1
. (8)

By combining Equations (5)-(8) and, by substituting c and z, we obtain

rx1 ≥ 2(ψ + 2)b3 + (ψ + 2)b2 − 2b

4b3 + 8b2 + 3b − 2

= 1 + ψ/2 − (6 + 3ψ)b2 + (5 + 3ψ/2)b − ψ − 2

4b3 + 8b2 + 3b − 2
, (9)

and

bx1 + 1 ≥ 4b4 + (4 − 2ψ)b3 + (1 − ψ)b2 − 2b

4b3 + 8b2 + 3b − 2

= b − 1 − ψ/2 + (6 + 3ψ)b2 + (3 + 3ψ/2)b − ψ − 2

4b3 + 8b2 + 3b − 2
. (10)

Recall that, since the empty node is in X1, it must be rx1 + bx1 = b − 1. Furthermore, observe that the right-hand-side 
terms in the two inequalities above are not integers, for any value of ψ ∈ {0, . . . , 2b}. The claim follows by observing that, 
since rx1 and bx1 are integers and b is not a multiple of 3, it holds that

�ψ/2 − (6 + 3ψ)b2 + (5 + 3ψ/2)b − ψ − 2

4b3 + 8b2 + 3b − 2

 + �−ψ/2 + (6 + 3ψ)b2 + (3 + 3ψ/2)b − ψ − 2

4b3 + 8b2 + 3b − 2

 = 1

for any ψ ∈ {0, . . . , 2b}.5 Hence, by Equations (9) and (10), we obtain rx1 + bx1 ≥ b; a contradiction. �
By the claims above, we conclude that the empty node is in Y ; without loss of generality, let the empty node be in Y1. 

We now show that any equilibrium assignment v′ is identical (up to symmetry) to v. Recall that rK +bK = cz/2, rX +bX = c, 
and rx1 + bx1 = b.

We first show that all agents in K are red, by exploiting that agents in K have no incentive to jump to the empty 
node. Let i ∈ K be a red agent (if one exists in K ); her utility is ui(v′) = rK +rX

cz/2+c . Since i has no incentive to jump, we 

obtain rK +rX
cz/2+c ≥ rx1

b+1 , and, therefore, bK +bX
cz/2+c ≤ bx1 +1

b+1 . Similarly, for any blue agent j ∈ K (again, assuming one exists) we 

obtain that bK +bX
cz/2+c ≥ bx1 +1

b+1 , and, therefore, rK +rX
cz/2+c ≤ rx1

b+1 . By these four inequalities above, we conclude that rK +rX
cz/2+c = rx1

b+1

and bK +bX
cz/2+c = bx1 +1

b+1 . Since gcd(cz/2 + c, b + 1) = 1, this implies that all agents in K are of the same type. Since each type 
has c(z + 1) agents and all c + 1 agents in S ∪ J are blue, and as by Claim 17 all agents in I are of the same type as those 
in K , we obtain that all cz/2 agents in K must be red.

We now show that all agents in X are also red. Assume otherwise and consider a blue agent j ∈ X . Her utility is at 
most 2

z+2 , while by jumping j would obtain utility at least 1
b+1 as s is blue. Since z > 2b, j has an incentive to jump and, 

therefore, no equilibrium has blue agents in X . We have established that all agents in I ∪ K ∪ X are red and, since there are 
c(z + 1) agents of each type, all remaining agents are blue.

So far, we have completed the argument that v is the unique Nash equilibrium, up to symmetry. Under the tolerance 
vector t2

′ = (1, t1 < 1), its social welfare is

SW(v) = cz + b(z − 1)
cz/2 + t1c

cz/2 + c
+ b

cz/2 + t1(c − 1)

cz/2 + c − 1
+ (cz − 1)

1 + t1b

b + 1
+ c + 1

< cz
b(1 + t1) + 2

b + 1
+ 2c + 1.

Consider the following assignment v∗ . All nodes in I ∪ K ∪ J host red agents, all nodes in Y ∪ S host blue agents, while 
the remaining c − 1 blue agents are in nodes in X . Its social welfare is

SW(v∗) = cz/2(1 + cz/2 + t1(c − 1)

cz/2 + c − 1
) + (c − 1)

c + t1cz/2

cz/2 + c
+ cz + cz

cz + c

5 Note that this does not hold when b is a multiple of 3 and ψ is either 2b/3 − 1 or 4b/3.
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> cz
z + 1 + t1

z + 2
+ cz

= cz
2z + 3 + t1

z + 2
,

where, in the first equality, the first term is the aggregate utility of agents in I ∪ K , the second term is the aggregate utility 
of agents in X , the third term is due to agents in Y , and the last term is due to agent s. Clearly, for the optimal assignment 
it holds that OPT ≥ SW(v∗).

Since we have selected b to be arbitrarily large and z = 2b + 1, it holds that

OPT

SW(v)
≥ cz 2z+3+t1

z+2

cz b(1+t1)+2
b+1 + 2c + 1

≥ 2

1 + t1
− ε,

for ε > 0, and the theorem follows. �
5. Open problems

The most important question that our work leaves open is the characterization of games for which equilibria always 
exist. As this is a quite general and challenging direction, one could start with games that exhibit some structure in terms 
of the topology or the tolerance vector. For instance, do equilibria exist when the topology is a grid (4-grid or 8-grid) or a 
regular graph, for every tolerance vector?

The tolerance model we defined in this paper depends on a given ordering of the types and the tolerance parameters are 
symmetric. While this model captures certain interesting settings, there are multiple ways in which it can be generalized. 
For example, the tolerance parameters do not need to be symmetric and a different tolerance vector could be defined per 
type. Taking this further, the tolerance between types does not need to depend on an ordering of the types. Instead, one 
could define a weighted, directed tolerance graph that is defined over the different types such that the edge weights indicate 
the tolerance of a type towards another type; our ordered model can be thought of as the special case with an undirected 
tolerance line graph. In fact, one could further generalize this idea by considering scenarios in which there are no types of 
agents at all, but rather the agents are connected to each other via a complete weighted social network, with the different 
weights indicating tolerance levels. This is essentially a generalization of the class of social Schelling games proposed by 
Elkind et al. [18], and is inspired by fractional hedonic games [4]. All these questions would also be very interesting in the 
case where the agents can pairwise swap positions rather than jump to empty nodes.
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[28] Dejan Vinković, Alan Kirman, A physical analogue of the Schelling model, Proc. Natl. Acad. Sci. 103 (51) (2006) 19261–19265.
[29] Junfu Zhang, Residential segregation in an all-integrationist world, J. Econ. Behav. Organ. 54 (4) (2004) 533–550.
18

http://refhub.elsevier.com/S0304-3975(23)00378-X/bib0322DBA9180D25C1A3D1E60AE85E3389s1
http://refhub.elsevier.com/S0304-3975(23)00378-X/bib0322DBA9180D25C1A3D1E60AE85E3389s1
http://refhub.elsevier.com/S0304-3975(23)00378-X/bib2120023FCEF6057C69C7605196D41E2As1
http://refhub.elsevier.com/S0304-3975(23)00378-X/bib2120023FCEF6057C69C7605196D41E2As1
http://refhub.elsevier.com/S0304-3975(23)00378-X/bib7335A34623B05675A6D1A58662A289C8s1
http://refhub.elsevier.com/S0304-3975(23)00378-X/bib605B594B5E43AB181BC9C218AA8D2ABEs1
http://refhub.elsevier.com/S0304-3975(23)00378-X/bib605B594B5E43AB181BC9C218AA8D2ABEs1
http://refhub.elsevier.com/S0304-3975(23)00378-X/bibFE816AE47CA41B9DF30F7D50D9853E7Bs1
http://refhub.elsevier.com/S0304-3975(23)00378-X/bibFE816AE47CA41B9DF30F7D50D9853E7Bs1
http://refhub.elsevier.com/S0304-3975(23)00378-X/bibFE666C383267391F742ECA94DAC5818Bs1
http://refhub.elsevier.com/S0304-3975(23)00378-X/bib2A7E866D5523C0B31F99CFB26B76E95Cs1
http://refhub.elsevier.com/S0304-3975(23)00378-X/bib2A7E866D5523C0B31F99CFB26B76E95Cs1
http://refhub.elsevier.com/S0304-3975(23)00378-X/bibF87222042A5132B1885513E4E29B34B7s1
http://refhub.elsevier.com/S0304-3975(23)00378-X/bibF87222042A5132B1885513E4E29B34B7s1
http://refhub.elsevier.com/S0304-3975(23)00378-X/bib9DFF92F518348E93F4A14FDDCEC629D6s1
http://refhub.elsevier.com/S0304-3975(23)00378-X/bib9DFF92F518348E93F4A14FDDCEC629D6s1
http://refhub.elsevier.com/S0304-3975(23)00378-X/bibA76C67B7074745E31B19668B4F2D0580s1
http://refhub.elsevier.com/S0304-3975(23)00378-X/bibD108AD5E085D2BD6D8080C9FFA9280B4s1
http://refhub.elsevier.com/S0304-3975(23)00378-X/bibD108AD5E085D2BD6D8080C9FFA9280B4s1
http://refhub.elsevier.com/S0304-3975(23)00378-X/bibF362E250A407EFD81B507A4CEC1083E6s1
http://refhub.elsevier.com/S0304-3975(23)00378-X/bib746D2B5777304B256688F7D103BE2FDFs1
http://refhub.elsevier.com/S0304-3975(23)00378-X/bib746D2B5777304B256688F7D103BE2FDFs1
http://refhub.elsevier.com/S0304-3975(23)00378-X/bibA53F55A2F11D78BDEA7289CDDF5EC3BEs1
http://refhub.elsevier.com/S0304-3975(23)00378-X/bibA53F55A2F11D78BDEA7289CDDF5EC3BEs1
http://refhub.elsevier.com/S0304-3975(23)00378-X/bibD8E4EC964E2292195FD23936FDE17610s1
http://refhub.elsevier.com/S0304-3975(23)00378-X/bib5249882B561827A48A21D0912B135A2Bs1
http://refhub.elsevier.com/S0304-3975(23)00378-X/bibDC58C8E67C569138B964113614EF4FDCs1
http://refhub.elsevier.com/S0304-3975(23)00378-X/bib9B9A3B6E4998BBBDDEB4970A73FD65CEs1
http://refhub.elsevier.com/S0304-3975(23)00378-X/bibE43EC0401B443EB1921FEF68A1094B12s1
http://refhub.elsevier.com/S0304-3975(23)00378-X/bib53632043B2DD9A4A496EA9546981BF27s1

	Not all strangers are the same: The impact of tolerance in Schelling games
	1 Introduction
	1.1 Our contribution
	1.2 Related work

	2 Preliminaries
	3 Equilibrium existence
	4 Quality of equilibria
	5 Open problems
	Declaration of competing interest
	Data availability
	References


