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Abstract

Background: A common but easily overlooked affective overlap problem has
not been received enough attention in electroencephalogram (EEG)-based
emotion recognition research. In real life, affective overlap refers to the cur-
rent emotional state of human being is sometimes influenced easily by his/her
historical mood. In stimulus-evoked EEG collection experiment, due to the
short rest interval in consecutive trials, the inner mechanisms of neural re-
sponses make subjects cannot switch their emotion state easily and quickly,
which might lead to the affective overlap. For example, we might be still in
sad state to some extent even if we are watching a comedy because we just
saw a tragedy before. In pattern recognition, affective overlap usually means
that there exists the feature-label inconsistency in EEG data.
New method: To alleviate the impact of inconsistent EEG data, we introduce
a variable to adaptively explore the sample inconsistency in emotion recog-
nition model development. Then, we propose a semi-supervised emotion
recognition model for joint sample inconsistency and feature importance ex-
ploration (SIFIAE). Accordingly, an efficient optimization method to SIFIAE
model is proposed.
Results: Extensive experiments on the SEED-V dataset demonstrate the ef-
fectiveness of SIFIAE. Specifically, SIFIAE achieves 69.10%, 67.01%, 71.5%,
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73.26%, 72.07% and 71.35% average accuracies in six cross-session emotion
recognition tasks.
Conclusions: The results illustrated that the sample weights have a rising
trend in the beginning of most trials, which coincides with the affective over-
lap hypothesis. The feature importance factor indicated the critical bands
and channels are more obvious compared with some models without consid-
ering EEG feature-label inconsistency.

Keywords:
Emotion recognition, affective overlap, feature-label inconsistency,
automatic weighting, EEG, pure semi-supervised learning.

1. Introduction

Emotion Recognition is the key to achieving human-computer intelligent
interaction. In the past decades, many studies have used different data for
emotion recognition, such as facial expression [1], text [2], speech [3] and
physiological signals [4]. Compared with other data sources, physiological
signals has received increasing attention since its unique properties of high
time resolution and non-camouflage [5, 6].

Electroencephalogram (EEG), as the most widely used physiological sig-
nals in brain-computer interface, reflects the activity of cerebral cortex to a
certain extent [7, 8, 9]. Many affective neural mechanisms studies show that
brain region activation is closely related to emotion and cognition [10, 11].
Based on this affective knowledge, lots of EEG-based methods are proposed
for high effective emotion recognition [12, 13, 14, 15, 16]. For example, Liu
et al. proposed an attention mechanism to give the spatial information to
input signals to enrich the information of EEG data [17]. In [18], Wang
et al. applied the self-supervised method with convolutional neural network
to improve the efficiency of resource usage in the task of EEG-based emotion
recognition. Wang et al. proposed a multi-modal domain adaptive varia-
tional autoencoder to reduce the amount of calibration samples. Olamat
et al. designed a multi-variate empirical mode decomposition to decom-
pose EEG signals and used deep learning methods to recognize emotions.
Zheng et al. used deep belief network find the channels on temporal lobe
and prefrontal lobe are critical to emotion recognition [19]. Song et al. used
dynamical graph neural network for EEG feature learning and emotion recog-
nition, in which the graph aims to learn intrinsic relationship among different
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channels [20]. Li et al. combined the bidirectional long short term memory
network and R2G-STNN to learn discriminative spatial-temporal EEG fea-
tures [21]. Multimodal feature fusion is also an effective way to improve the
performance of emotion recognition [22]. Zheng et al. designed a multimodal
emotion recognition framework termed EmotionMeter to jointly utilize the
information of EEG and eye movements [23]. Zhang et al. used kernel matri-
ces to learning the comprehensive information from multimodal physiological
signals such as EEG, galvanic skin response and electromyography, and then
a deep network was utilized to learn the task-specific representation for each
signals [24]. In [25], Wu et al. introduced a new experimental paradigm that
incorporates odors at various stages of video-evoked emotions to explore the
effectiveness of olfactory-enhanced videos in inducing subjects’ emotions.

However, there is a common but easily overlooked problem during the
emotion recognition processing, i.e., the emotion state of human being is
sometimes influence easily by his/her historical mood. In other words, the
emotions are persistent and cannot quickly switch. In order to understand
and quantify this problem more easily, we remove the scenario from real life
to the existing experimental paradigm of EEG-based affective BCI (aBCI)
[26]. Stimulus-evoked EEG is a classical experimental paradigm of aBCI,
whose main process is to induce the emotion of subjects by displaying film
clips or images as the emotional stimulus [19]. In this paper, we will consider
this affective overlap problem in stimulus-evoked emotion EEG paradigm.

Because emotions are persistent and cannot quickly switch, it will easily
lead to affective overlap phenomenon when the rest interval of two adjacent
trials is not enough and especially two consecutive trials correspond to op-
posite emotional states, i.e., the current trial may contain emotions induced
by previous trials. As shown in Fig. 1, we consider the situation that the
subject watched the film clip with sad theme and then watched the film clip
with happy theme after a short break (usually several seconds). Because the
subject was asked to immersed in the film clip with sad theme, he could not
clear his sad mood in a few seconds. We can naturally imagine that in the
subsequent trial, sad mood act as the background emotion of happy mood.
Thus, the label of theK-th trial is annotated as happy but the obtained EEG
features are the mixture of both sad and happy states. From the perspec-
tive of pattern recognition, this affective overlap phenomenon means that
there exists feature-label inconsistency in collected EEG data [27]. There-
fore, how to explore the inconsistency of stimulus-evoked EEG data and then
suppress its side effect are significant to improve the performance of emotion
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recognition.
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Figure 1: A schematic diagram of affective overlap phenomenon.

The other property we should consider is that EEG signals are multi-
rhythm and multi-channel inherently. The current studies showed that dif-
ferent rhythms and channels have different contributions in emotion recog-
nition, which indicates that some EEG features are redundant or have low
contributions [19]. To our best knowledge, there is no existing aBCI literature
simultaneously considering the sample inconsistency and feature importance.

In this paper, we proposed a model termed SIFIAE to jointly and adap-
tively explore the feature importance and sample inconsistency. Specifically,
we introduced a sample inconsistency factor and a feature importance factor
to measure the degree of feature-label inconsistency of each sample and the
contribution of each feature, respectively. The sample inconsistency is calcu-
lated based on the model approximation error and the feature importance is
calculated by the normalized ℓ2,1-norm of each row of the projection matrix.
Then the sample inconsistency and feature importance can help model to
self-weighting samples and features to identify the low-inconsistency samples
and high-contribution features in emotion recognition. Besides, we imple-
ment our SIFIAE model within the pure semi-supervised learning framework
that is more suitable for practical emotion recognition applications [28].

The rest of paper is organized as follows. In section 2, the model for-
mulation and optimization of SIFIAE are introduced. Afterwards, a pure
semi-supervised cross-session emotion recognition experiment is reported in
section 3. In section 4, some discussion about our model can be obtained.
Finally, we conclude our paper in section 5.

Notations. In this paper, we use mi and mi to denote the i-th column
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and i-th row of matrixM ∈ Rm×n. The ℓ2,1-norm ofM is defined as ∥M∥2,1 =∑m
i=1

√∑n
j=1m

2
ij =

∑m
i=1 ∥mi∥2.

2. Model Formulation

Considering the feature importance and sample inconsistency simultane-
ously, we show the main structure of our proposed SIFIAE model in Fig. 2.

⋮

Approximation error Sample inconsistency

Sample weighting

EEG data

Feature importance

θ
!

θ!

⋮

θ
m

⋮

Projection matrix

 
"

 "

 m

Feature weighting

⋮
⋮ ⋮

s
!

s!

sn

!
!

!!

!
n

Figure 2: The overall structure of our proposed SIFIAE model. Feature weighting (left
rectangle) and sample weighting (right rectangle) are two main blocks in SIFIAE. In the
feature weighting block, the normalized ℓ2,1-norm of the i-th row of projection matrix is
calculated to measure the importance of the i-th feature θi. In the sample weighting block,
the inconsistency feactor si of the i-th sample is calculated by the model approximation
error ei of the i-th sample. Finally, feature importance factor θ and sample inconsistency
factor s are used to weighting EEG data.

In the pure semi-supervised learning framework, we are given an EEG
training data [Xl,Xu] ∈ Rd×n consisting of l labeled and u unlabeled d-
dimensional samples and an EEG testing data Xt ∈ Rd×t consisting of t
unlabeled samples. [Yl,Yu] ∈ Rn×c is a label matrix where Yl ∈ Rl×c is the
label indicator matrix of labeled samples Xl and Yu ∈ Ru×c is an unknown
label matrix corresponding to unlabeled samples Xu. Similarly, Yt ∈ Rt×c is
an unknown label matrix of testing data Xt. Here, Yl, Yu and Yt are formed
by one-hot encoding to represent the membership degree of each sample to c
emotion states. To evaluate the feature-label inconsistency of EEG samples,
we introduce a weighting vector s = (s1; s2; · · · ; sn) ∈ Rn where s satisfies
the normalization constraint (i.e., sT1 = 1) and non-negative constraint (i.e.,
si|ni=1 > 0). If si is larger, it means that the i-th sample is less inconsistent;
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otherwise, it means that the i-th sample is more likely to be an affective
overlap sample. Based on the semi-supervised linear regression framework,
we formulate the objective function of SIFIAE as

min
s,W,b,Yu

n∑
i=1

sri∥xT
i W + bT − yi∥22 + λ∥s

r
2∥22 + γ∥W∥22,1,

s.t. sT1 = 1, si > 0,Yu1c = 1c, yij ≥ 0,

(1)

where r > 1 is a weighting factor to control the sensitivity of affective overlap
samples, b ∈ Rm represents the bias vector, yi ∈ Rc is the i-th label vector,
W ∈ Rm×c is a projection matrix to bridge the EEG feature space and
its label space and 1c is an all-one column vector with length c. From the
first term in objective function (1), we understand the connection between si
and the model approximation error of sample xi. Specifically, the smaller the
approximation error of the i-th sample ei = ∥xT

i W+bT −yi∥22, the larger the
weight of the i-th sample. Otherwise, when ei is larger, we think the feature-
label inconsistency of the i-th sample is more significant and SIFIAE will
accordingly assign a lower weight to reduce its side impact in model training
process. The second term in objective function (1) is a regularization term
of s to prevent the appearance of trivial solution in s (i.e., only one element
is one and all the others are zeros in s). The third term is an ℓ2,1-norm
regularizer defined on W, which aims to enforce the row sparsity of W and
then feature ranking can be naturally achieved. Based on the ℓ2,1-norm based
feature selection theory [29], the quantitative importance of the i-th feature
θi|mi=1 can be obtained by

θi =
∥wi∥2∑m
i=1 ∥wi∥2

. (2)

Based on the above analysis, when SIFIAE is fitted by given EEG data,
not only the sample inconsistency factor s is obtained, but also the feature
importance factor θ ≜ (θ1; θ2; · · · ; θm) ∈ Rm is obtained.

Since there have four variables in objective function (1), whose optimiza-
tion process can be divided into the below four blocks.

• Update s. By fixing W, b, and Yu, we transform problem (1) as

min
sT 1=1,si>0

n∑
i=1

sri∥xT
i W + bT − yi∥22 + λ

n∑
i=1

sri . (3)
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We denote di = ∥xT
i W+bT −yi∥22 + λ = ei + λ. Then the Lagrangian

function of objective function (3) can be written as

L(s) =
n∑

i=1

sridi − α(sT1− 1), (4)

where α is an Lagrangian multiplier. Taking the derivative of L(s)

with respect to si and setting it to zero, we have si =
(

α
rdi

) 1
r−1

. Com-

bined with the constraint sT1 = 1, the closed-form solution of s can be
obtained by

si =
1

d
1

r−1

i

∑n
j=1(

1
dj
)

1
r−1

. (5)

• Update b. When we fix s, W and Yu, the objecitve function associated
with b is

O(b) =
n∑

i=1

sri∥xT
i W + bT − yi∥22

= Tr((XTW + 1bT −Y)TΛ(XTW + 1bT −Y)),

(6)

where Λ ∈ Rn×n is a diagonal matrix with its i-th diagonal element
Λii = sri . Taking the derivative of objective function (6) with respect
to variable b and setting it to zero, we have

b = (WTX−YT )Λ1. (7)

• Update W. When we update W, we first rewrite problem (1) as

min
W

n∑
i=1

sri∥xT
i W + bT − yi∥22 + γ∥W∥22,1. (8)

Based on the usual way to deal with ℓ2,1-norm regularization [29], we
introduce a diagonal matrix Q ∈ Rm×m with

qii =

∑m
j=1

√
∥wj∥22 + ϵ√

∥wi∥22 + ϵ
, (9)
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where ϵ is a small constant to avoid the non-differentiable problem.
Then we rewrite ∥W∥22,1 = Tr(WTQW). The closed-form solution of
W can be obtained by setting the derivative of objective function (8)
w.r.t. W to zero; that is

W = (XHXT + λQ)−1XHY, (10)

where H = Λ−Λ11TΛ.

• Update Yu. Since s, W and b are fixed, the pseudo-label indicator
vector yi of the i|nl+1-th unlabeled EEG sample can be obtained by
solving the following objective function

min
yi1c=1,yi≥0

∥xT
i W + bT − yi∥22, (11)

which defines an Euclidean projection on a simplex constraint. The
standard optimization can be found in [30].

After the SIFIAE model was learned, we obtain the optimally fitted vari-
ables W∗, b∗ and s∗, based on which we can calculate the emotion label
indicator vector yj of the j|tj=1-th test EEG sample in X ∈ Rm×t by

yj = xT
j W

∗ + (b∗)T . (12)

Naturally, the emotion state corresponding to the maximal value in yj
t is the

predicted emotion label of the j-th test EEG sample.
To easier capture the workflow of our proposed SIFIAE model, we sum-

marize its learning and testing process in Algorithm 1.

3. Experiments and analysis

In this section, we try to answer the following three questions through ex-
periments. 1) Whether the joint exploration of feature importance and sam-
ple inconsistency can improve the accuracy of cross-session emotion recogni-
tion? 2) Whether the sample inconsistency factor s can alleviate the impact
of affective overlap samples? 3) How SIFIAE explores the affective activa-
tion pattern by considering the EEG feature-label inconsistency? Below we
first introduce the data set and experimental setup, and then analyze the ex-
perimental results point by point in response to the above mentioned three
questions.
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Algorithm 1 The proposed SIFIAE model

Input: Training EEG feature matrix X = [Xl,Xu], known emotion label
matrix Yl, testing EEG feature matrix X̂, regularization parameters λ
and γ, weighting factor r;

Output: Pseudo-label matrix Yu and Yt, sample inconsistency factor s,
projection matrix W;

1: Initialize Yu = 1c1T
c

c
and s = 1n;

2: while not converged do
3: Update W by equation (10);
4: Update the diagonal matrix Q by equation (9);
5: Update b by equation (7);
6: Update s by solving problem (5);
7: Update Yu by solving problem (11);
8: end while
9: Calculate yj|tj=1 for each x̂j ∈ X̂ by equation (12).

3.1. Data set

In this paper, we use the SEED-V [31] emotional EEG data set to evaluate
the performance of our proposed SIFIAE model. SEED-V includes 16 sub-
jects, which participated in the EEG data collection experiment three times.
EEG data of each subject can be divided into three sessions, and each session
contains 15 trials. As shown in Fig. 3, in each trial, subjects first receive a
15-second hint of start including the background of the stimulus materials
and the emotion the film clips to be displayed. Then, they watch a film clip
which lasts about 2-4 minutes for emotion-inducing. Finally, subjects have
15 or 30 seconds for self-evaluation and rest, depending on the types of film
clips. If the theme of stimulus film clips are happiness, neutrality or sadness,
the rest interval between two adjacent trials is 15 seconds and the rest time
for disgust and fear is 30 seconds. The detailed description for the SEED-V
data set can be found in [31]. Similar to the data organization in [32], we
arrange the EEG data of each subject in each session as a two-dimensional
matrix composed of samples and differential entropy features.

3.2. Performance analysis

In this subsection, we conducted a series of comparative experiments
to answer the first question. For specific, we selected some popular semi-
supervised classification models based on linear square regression, including
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Trial K-1 Trial K Trial K+1

hint of start film clip self-assessment

15 sec 2-4 min 15 or 30 sec

Figure 3: The general stimulus-evoked paradigm in SEED-V [31].

the semi-supervised least square regression (sLSR), the rescaled linear square
regression (RLSR) [29], the robust semi-supervised least square regression
(RSSLSR) [33] and the semi-supervised joint sample and feature importance
evaluation (sJSFE) [34].

Data settings. Then we evaluate the performance of different models
in a pure semi-supervised learning manner. Specifically, the unlabeled test
EEG samples are unseen during the semi-supervised model learning process.
In the following experiments, we informally used the notation ‘{labeled train-
ing data, unlabeled training data}→test data’ to explain how the training
and test data were set. Taking the ‘{s1, s2}→s3’ as an example, for each
subject, we used the EEG samples and the associated emotion labels from
the first session and EEG samples without labels from the second session
as training data. The EEG samples from the third session are set as test
data, meaning that we aim at predicting their emotion states as accurately
as possible. It is noteworthy that the EEG data from session 3 cannot be
used in the model learning process. From the perspective of emotion recogni-
tion in practical scenarios, both the labeled training data and the unlabeled
training data are obtained in advance, which coincides with the motivation of
semi-supervised learning that unlabeled data is used to facilitate the ability
of learning model to capture the underlying data properties. However, the
test data cannot be collected in advance, and therefore cannot be involved
in model training, which is used for evaluating the out-of-sample extension
ability of learning models. Compared with the semi-supervised learning in
transductive paradigm employed by our previous works [32, 34], pure semi-
supervised learning is more closer to real applications in emotion recognition.

Parameter settings. To be fair, the regularization parameters in each
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model were searched from {10−3, 10−2, · · · , 103}. In sJSFE, the self-paced
parameter was initialize to 0.001 and the step parameter was tuned from
{1.1, 1.2, · · · , 3}. In SIFIAE, the weighting factor r was tuned with a grid
search from {1.1, 1.2, · · · , 2}.

Performance result. Based on the above settings, the accuracies of
cross-session emotion recognition on SEED-V are respectively reported in
Tables 1, 2, and 3, where the best accuracy in each case is highlighted in
bold. It is observed that our proposed SIFIAE model ranks the first in
‘{s2, s3}→s1’, ‘{s3, s2}→s1’, ‘{s1, s3}→s2’, ‘{s3, s1}→s2’, ‘{s1, s2}→s3’
and ‘{s2, s1}→s3’ for 10 times, 9 times, 11 times, 10 times, 12 times, and 7
times, respectively. To be specific, the average accuracies of SIFIAE respec-
tively exceed the second-best model by 3.76%, 2.72%, 2.85%, 4.85%, 4.25%,
and 1.83%. The above results depict that the exploration of both sample
inconsistency and feature importance effectively improve the performance of
cross-session emotion recognition.

Table 1: Cross-session emotion recognition results (%) of different models on SEED-V.
Take the EEG data from session 1 as test samples.

ID
{s2, s3}→s1 {s3, s2}→s1

sLSR RLSR RSSLSR sJSFE SIFIAE sLSR RLSR RSSLSR sJSFE SIFIAE

sub1 73.72 68.43 48.90 68.87 87.67 68.87 68.87 58.44 72.25 72.69

sub2 45.81 59.62 47.14 60.21 65.79 64.76 60.65 62.85 68.43 65.93

sub3 56.24 56.24 56.39 52.57 60.79 48.75 48.75 45.96 58.15 63.14
sub4 68.87 74.74 66.52 76.06 80.91 68.28 69.31 59.91 80.91 79.44

sub5 53.89 55.36 59.03 67.40 69.31 39.35 52.57 52.86 65.93 75.62

sub6 60.50 63.14 56.68 57.86 63.14 33.77 35.83 46.70 52.13 58.88
sub7 55.95 64.02 46.70 67.69 66.81 37.15 45.52 39.21 46.99 75.04

sub8 61.23 60.65 58.15 73.27 74.74 52.72 55.36 50.07 69.60 68.14

sub9 53.01 35.54 59.62 72.69 69.31 70.48 56.39 61.67 70.48 73.72
sub10 49.05 47.72 52.57 51.25 58.74 41.56 43.47 43.17 60.65 50.51

sub11 51.40 54.63 51.54 67.40 60.35 66.67 65.64 64.61 79.59 71.37

sub12 53.89 58.30 56.09 77.68 76.36 51.84 58.00 45.96 64.17 70.78
sub13 56.83 65.79 52.13 65.35 73.27 44.49 54.92 46.84 61.67 67.11

sub14 48.02 41.26 47.87 57.86 65.93 43.02 45.67 43.91 49.93 48.16
sub15 51.25 46.70 54.19 63.14 62.85 48.02 58.59 52.72 66.96 71.95

sub16 50.81 47.14 60.35 66.08 69.60 38.03 49.78 45.96 60.79 59.62

AVG. 55.65 56.20 54.62 65.34 69.10 51.11 54.33 51.30 64.29 67.01

3.3. Affective overlap analysis

Before answering the second question, we try to explain it in more de-
tail. First, our goal is to demonstrate how SIFIAE alleviates the affective
overlap phenomenon in emotion recognition through introducing the sam-
ple inconsistency factor s. Our underlying hypothesis is that the affective
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Table 2: Cross-session emotion recognition results (%) of different models on SEED-V.
Take the EEG data from session 2 as test samples.

ID
{s1, s3}→s2 {s3, s1}→s2

sLSR RLSR RSSLSR sJSFE SIFIAE sLSR RLSR RSSLSR sJSFE SIFIAE

sub1 42.33 65.99 48.43 74.12 79.67 65.62 67.65 63.03 82.62 80.59
sub2 57.49 65.80 57.49 65.80 68.39 85.77 76.89 79.48 87.80 83.73

sub3 49.17 61.37 49.54 65.25 63.77 55.82 64.70 51.02 79.67 77.08

sub4 79.11 83.36 70.98 86.32 91.13 70.24 61.74 66.36 59.33 88.72
sub5 56.75 69.32 51.02 83.92 73.57 37.89 46.58 62.48 63.96 72.64

sub6 58.04 61.00 58.04 62.85 76.16 30.68 26.43 37.71 55.45 71.53

sub7 73.20 75.79 59.15 70.61 71.35 55.45 57.67 43.81 79.11 71.90
sub8 58.23 63.40 49.35 70.06 69.69 77.45 77.45 48.98 90.20 80.41

sub9 63.77 58.04 47.32 68.21 68.21 50.65 60.81 56.01 54.90 65.80

sub10 34.38 38.45 44.55 51.20 56.19 39.93 41.40 43.25 52.13 56.19
sub11 32.90 47.13 42.14 56.75 73.38 43.81 49.72 46.40 55.82 66.73

sub12 65.80 74.49 54.71 77.63 83.92 70.06 71.16 75.60 77.63 81.70

sub13 77.63 73.57 62.66 77.63 78.74 75.97 67.84 54.16 70.06 80.22

sub14 48.43 52.87 46.40 62.48 64.14 60.44 55.45 41.96 50.09 60.81

sub15 68.76 68.76 65.62 71.16 65.62 51.39 55.08 52.13 73.38 67.10
sub16 44.73 50.65 60.07 54.34 60.07 43.81 61.55 43.81 62.48 66.91

AVG. 56.92 63.12 54.22 68.65 71.50 57.19 58.88 54.14 68.41 73.26

Table 3: Cross-session emotion recognition results(%) of different models on SEED-V.
Take the EEG data from session 3 as test samples.

ID
{s1, s2}→s3 {s2, s1}→s3

sLSR RLSR RSSLSR sJSFE SIFIAE sLSR RLSR RSSLSR sJSFE SIFIAE

sub1 62.40 64.56 68.39 70.88 73.54 92.85 92.85 65.22 92.85 92.85
sub2 51.41 67.89 55.41 74.88 73.54 63.06 69.38 71.55 86.19 82.70

sub3 57.90 64.73 61.06 63.06 70.88 50.58 50.75 43.59 71.55 71.38
sub4 83.69 81.36 70.88 77.37 86.69 77.87 73.88 67.55 71.71 80.20

sub5 58.57 68.72 50.92 80.87 76.04 44.76 60.90 46.92 60.90 61.40

sub6 42.93 36.94 45.76 56.57 56.57 38.27 41.26 49.75 55.91 65.72
sub7 42.76 45.59 49.75 71.21 69.72 65.56 66.72 48.92 71.05 85.86

sub8 40.43 55.24 53.24 58.40 66.56 37.44 53.41 49.75 78.37 66.39
sub9 73.88 78.87 53.24 84.53 79.87 75.21 73.71 69.38 69.22 73.71
sub10 36.11 34.44 47.09 54.74 56.07 34.11 40.43 48.25 54.58 59.23

sub11 64.06 61.40 66.56 69.38 78.37 73.38 73.04 68.22 76.71 74.71

sub12 48.42 51.75 49.75 73.54 85.52 57.24 62.23 50.25 67.05 67.72
sub13 55.74 56.07 58.07 72.38 76.04 78.87 77.20 45.76 75.87 73.38
sub14 43.93 54.91 51.75 62.23 67.72 40.77 37.94 44.43 49.08 64.06
sub15 46.26 30.28 51.75 54.91 71.05 54.24 54.24 52.25 71.38 64.06

sub16 61.73 63.73 49.75 60.23 64.89 28.45 39.43 50.25 59.90 58.24

AVG. 54.39 57.28 55.21 67.82 72.07 57.04 60.46 54.50 69.52 71.35
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overlap phenomenon will gradually disappear as the subjects immerse them-
selves in the new stimulus material (e.g., film clips); therefore, the sample
inconsistency in a trial will decrease and s will gradually increase. Besides,
we should constrain our receptive field within a limited time period because
we believe that the affective overlap phenomenon may not always exist in a
whole trial. According to our understanding, we think that the samples in
the beginning of a trial are more likely to have mixed emotions induced by
both the previous and the current trials.

To intuitively observe the sample inconsistency, we show the learned sam-
ple inconsistency factor s in Fig. 4, where the six subfigures respectively cor-
respond to the six different data setting cases in Tables 1, 2, and 3. In each
case, we calculate the mean value of sample inconsistency factor ss across
the 16 subjects. Taking the emotion recognition task ‘{s2, s3}→s1’ in Fig.
4(a) as an example, there are 30 trials in the two sessions (i.e., session 2 and
session 3) and we use the blue and yellow colors to differentiate the adja-
cent trials. Based on the consensus that a more significant affective overlap
sample will lead to a more obvious feature-label inconsistency value (i.e., a
smaller si), we explicitly mark the increasing trend of sis with a red rectan-
gular box, which mostly correspond to the EEG samples at the beginning
of a trial. In this case, we find that the learned sample inconsistency fac-
tors (i.e., ss) in 9 out of the 30 trials (Nos. 1, 2, 7, 8, 14, 25, 26, 28, 30)
have significant increasing trends in the beginning of these trials. Besides,
another 18 of the 30 trials have slight increasing trends in their learned sam-
ples inconsistency factors. For the other cross-session emotion recognition
tasks, such increasing trends of learned ss are also observed in the beginning
of most trials, indicating that the affective overlap phenomenon does exist
in adjacent trials and our proposed SIFIAE model finds an effective way to
suppress its adverse effect in emotion recognition by adaptively quantifying
the contributions of samples in model learning.

3.4. Affective activation pattern analysis

In this section, we investigate the spatial-frequency activation patterns
derived by SIFIAE and two other models, RLSR and sJSFE, which did not
take the feature-label inconsistency of EEG data into consideration. Such
analysis aims to answer the third question raised in the beginning of Section
3. There are two prerequisites to obtain the affective activation patterns, i.e.
the quantitative importance of each feature and the correspondence between
the feature dimensions and frequency bands (channels). As expressed by
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Figure 4: Visualization of the average sample inconsistency in different tasks. In each task,
we calculated the mean value of the sample inconsistency factor s across the 16 subjects.
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equation (2), the first prerequisite is satisfied and the feature importance
factor θ is achieved once the SIFIAE model learning process is completed. As
explained by [35], the second prerequisite has also been satisfied. Considering
that there are five frequency bands and 62 EEG channels in the SEED-V
data set, we define the quantitative importance of each frequency band and
channel by the following rules

ω(i) = θ(i−1)∗62+1 + θ(i−1)∗62+2 + · · ·+ θ(i−1)∗62+62, i = 1, 2, 3, 4, 5 (13)

and

ψ(j) = θj + θj+62 + θj+124 + θj+186 + θj+248, j = 1, 2, · · · , 62 (14)

where ω(i) and ψ(j) represent the importance of the i-th frequency band and
the j-th channel, respectively. As shown in Figs. 5 and 6, we visualized the
average importance across all these 96 cross-session emotion recognition cases
(i.e., there are 16 subjects and each subject has six cross-session emotion
recognition tasks) of feature dimensions, frequency bands and channels. As
provided by the results in both figures, we have the following two findings.

• The three models identified similar results on critical frequency bands
and channels in cross-session emotion recognition. Specifically, the
Gamma band is considered as the most important one among the five
frequency bands, as shown in Fig. 5. The channels in prefrontal,
parietal and lateral temporal lobes are more activated than those in
other brain areas, as demonstrated in Fig. 6. These identified critical
frequency bands and channels in cross-session emotion recognition are
also consistent with some existing researches [19] and illustrate that
there might be specific frequency-spatial patterns of neural processes
in response to visual emotional stimulus.

• In SIFIAE, the critical frequency bands and channels are more obvious
than other two models. Specifically, the weight value of Gamma band
achieves 0.33928 in SIFIAE while in RLSR and sJSFE, the weights of
Gamma band only achieve 0.23374 and 0.32355 respectively. Similarly,
this phenomenon also happens in the critical channels we mentioned
above. It indicates that these critical frequency bands and channels
can be used more effectively on a higher quality EEG data obtained by
SIFIAE to improve the performance of emotion recognition.
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Figure 5: The average importance of feature dimensions (left column) and frequency bands
(right column) learned by three models.
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(a) RLSR (b) sJSFE (c) SIFIAE

Figure 6: The average importance of channels learned by three models.

4. Discussion

In this section, we discuss the similarities and differences between SIFIAE
and two related models, i.e., sJSFE [34] and RSSLSR [33], from the per-
spectives of motivation, model formulation, optimization and experimental
results. Especially, we analyze the underlying connection between the sample
weighting technique and the ℓ2,p-norm based loss function in achieving the
model robustness.

• Motivation. Obviously, both SIFIAE and sJSFE are task-driven meth-
ods, which aim at improving the performance of EEG-based emotion
recognition by referring appropriate machine learning models to solve
certain limitations within this field. In more detail, SIFIAE is more spe-
cific to the affecitve overlap problem usually happened in adjacent trials
of stimulus-evoked EEG data acquisition experiment, while sJSFE is
more general for purifying EEG data from both horizontal and ver-
tical axes when vectorized EEG samples are organized as columns of
the data matrix. RSSLSR is a model-driven method, which was mo-
tivated by enhancing the robustness of LSR in processing noisy data.
Therefore, such motivation is more straightforward and the model itself
might be more general for multiple applications.

• Model formulation and optimization. From the model formulation,
SIFIAE and sJSFE share similar objective functions. However, dif-
ferent ways are used in them to achieve the quantitative sample in-
consistency (SIFIAE) and importance (sJSFE) measurements. To be
specific, SIFIAE adaptively learns the factor s while in sJSFE, it is
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obtained by looking up the self-paced function with the sample ap-
proximation error as index. In other words, the former is a completely
automatic process while the latter is a semi-automatic one. Therefore,
the optimization procedures to variable s in both models are totally
different, which is expected to have continuous values. In RSSLSR, a
sample is either identified as a normal data or an outlier and accord-
ingly a binary vector is introduced to characterize the possible types of
each sample, which plays similar roles with the factor s in SIFIAE and
sJSFE. Informally, we can understand that both SIFIAE and sJSFE
used a soft weighting technique while RSSLSR used a hard selection
strategy in determining the impact of samples in model learning. There
is also some minor differences between SIFIAE and sJSFE such as the
experimental paradigms (i.e., pure semi-supervised learning in SIFIAE
while transductive mode in sJSFE) and the constraints defined on fac-
tor s (i.e., non-negative and normaization constraints in SIFIAE and
only the non-negative constraint in sJSFE).

• Experimental Results. Below we explain the underlying reasons ac-
counting for performance differences between RSSLSR, sJSFE and SIFIAE,
followed by a one-way ANOVA (analysis of variance) to check the sta-
tistical difference among their experimental results. As analyzed above,
in RSSLSR, a sample is identified as either a normal point or an outlier,
which is more suitable for those data sets with obvious outliers. How-
ever, our EEG data has been preprocessed by filtering and removing
artifacts, which may deviate a lot from this type of data set. There-
fore, it is challenging to achieve optimal results using the RSSLSR
approach on our EEG data. This deduction is supported by the results
presented in Tables 1 to 3, which indicate that the mean accuracy of
RSSLSR is significantly lower than that of sJSFE and SIFIAE. In ad-
dition, we found SIFIAE outperforms sJSFE in most cases. We believe
that the primary reason for the performance difference between sJSFE
and SIFIAE lies in the self-paced learning function used in sJSFE to
determine the importance of samples. This function includes an ag-
ing parameter that needs to be initialized manually, which reduces the
flexibility of the model compared to SIFIAE. To verify the significant
difference between our SIFIAE model and other comparison models,
we conducted a one-way ANOVA on the experimental results in Table
1 to Table 3. Each model has a total of 96 recognition accuracies, 16
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for each recognition situation. The null hypothesis of ANOVA assumes
that the means of the recognition accuracies for different models are
equal. Table 4 shows the p-values obtained by ANOVA for each model.
A p-value less than 0.05 indicates a substantial difference between the
two models, while a p-value less than 0.01 indicates an extremely sig-
nificant difference. Our results show that the SIFIAE model has signif-
icantly better performance compared with sLSR, RLSR, and RSSLSR
models. In addition, our SIFIAE model also shows some improvement
over sJSFE.

Table 4: The one-way ANOVA results between SIFIAE and other four comparison models
(∗∗p-value<0.01, ∗p-value<0.05).

ANOVA sLSR RLSR RSSLSR sJSFE

SIFIAE 1.5926e-16∗∗ 6.0871e-13∗∗ 2.0714e-28∗∗ 0.0165∗

• The connection between sample weighting and ℓ2,p-norm based model
robustness. In RSSLSR, the ℓ2,p-norm (0 < p ≤ 2) is used to measure
the model approximation loss and accordingly improve its robustness.
Below we show how the updating rule of the sample inconsistency factor
in SIFIAE connects with the ℓ2,p-norm. Generally, the ℓ2,p-norm based
least square regression can be written as

min
W,b

∥XTW + 1bT −Y∥p2 + ∥W∥2F , (15)

where ∥X∥p2 = (
∑m

i=1(
∑n

j=1 |xij|2)
p
2 )

1
p , 0 < p ≤ 2, X ∈ Rm×n. Based

on the derivation in [33], equation (15) can be rewritten as

min
W,b

n∑
i=1

fi∥xT
i W + bT − yi∥22 + ∥W∥2F , (16)

where fi = p
2
(∥xT

i W + bT − yi∥22)
p
2
−1. Similarly, we denote the ap-

proximation error in equation (16) as ei = ∥xT
i W+ bT − yi∥22 and the

weighting factor r = 2
q
≥ 1. By ignoring the coefficient r in fi and

denoting gi = f
r

(1−r)2

i , we have the normalized gi as
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1
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1
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. (17)
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It is worthy noting that when r = 1, this equivalent transformation is
invalid since (r − 1) cannot serve as a denominator in this situation.
Obviously, equation (17) shares similar expressions with the updating
rule of s in equation (5), except for the regularization parameter λ we
introduced in s to avoid trivial solution.

5. Conclusion

In this paper, we proposed a new model termed SIFIAE to deal with
the affective overlap problem in stimulus-evoked EEG emotion recognition.
In SIFIAE, the feature-label inconsistency in EEG data caused by affective
overlap problem was quantitatively measured by an introduced weighting fac-
tor which was adaptively learned in model training. In addition, the feature
importance was jointly optimized with sample inconsistency to improve the
effectiveness. Overall, the SIFIAE model was learned within the pure semi-
supervised learning framework, which has the out-of-sample extension ability
and is more practical for EEG-based emotion recognition in real scenarios.
Experimental results demonstrated SIFIAE significantly improved the emo-
tion recognition performance. The visualization of sample inconsistency fac-
tor suggested that affective overlap samples were reasonably suppressed. The
average feature importance provides us with insights that Gamma frequency
band and the prefrontal, parietal and lateral temporal lobes are more acti-
vated in emotion recognition.
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