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Abstract— Sentiment analysis (SA) aims to understand the
attitudes and views of opinion holders with computers. Previous
studies have achieved significant breakthroughs and extensive
applications in the past decade, such as public opinion analysis
and intelligent voice service. With the rapid development of deep
learning, SA based on various modalities has become a research
hotspot. However, only individual modality has been analyzed
separately, lacking a systematic carding of comprehensive SA
methods. Meanwhile, few surveys covering the topic of multi-
modal SA (MSA) have been explored yet. In this article, we first
take the modality as the thread to design a novel framework of SA
tasks to provide researchers with a comprehensive understanding
of relevant advances in SA. Then, we introduce the general work-
flows and recent advances of single-modal in detail, discuss the
similarities and differences of single-modal SA in data processing
and modeling to guide MSA, and summarize the commonly used
datasets to provide guidance on data and methods for researchers
according to different task types. Next, a new taxonomy is
proposed to fill the research gaps in MSA, which is divided into
multimodal representation learning and multimodal data fusion.
The similarities and differences between these two methods and
the latest advances are described in detail, such as dynamic
interaction between multimodalities, and the multimodal fusion
technologies are further expanded. Moreover, we explore the
advanced studies on multimodal alignment, chatbots, and Chat
Generative Pre-trained Transformer (ChatGPT) in SA. Finally,
we discuss the open research challenges of MSA and provide four
potential aspects to improve future works, such as cross-modal
contrastive learning and multimodal pretraining models.

Index Terms— Multimodal data fusion, multimodal representa-
tion learning, multimodal, sentiment analysis (SA), single-modal.

I. INTRODUCTION

S ENTIMENT analysis (SA) is an important yet challenging
task in artificial intelligence (AI), and it aims to under-
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stand the attitudes and views of these opinion holders with
computers [1]. For most time in this review, we use these
three terms interchangeably. Emotion, sentiment, and affection
are often involved in SA. Emotion, sentiment, and affection
are often involved in SA. Emotion refers to a short-lived
and intense affective response that is context-specific and
involves subjective experience and goals. Sentiment refers to
a persistent and stable sentiment response that is profound in
experience and involves affective polarity and objects. Affec-
tion refers to a feeling of predilection, warmth, or closeness
toward someone or something. Especially, in the field of SA,
emotion is often described as discrete and more fine-grained
emotional categories, such as joy, sadness, surprise, anger,
disgust, and fear. In contrast, sentiment is represented as a
more coarse-grained representation, often described as senti-
ment polarity, i.e., positive, negative, and neutral [2]. As an
interdisciplinary research field, SA has been widely applied in
daily life, such as public opinion supervision, esthetic analysis,
and telephone service.

SA can be divided into single-modal SA (SSA) and multi-
modal SA (MSA). SSA refers to the analysis of data with a
single modality, such as text, visual, and speech. In recent
years, researchers have made meaningful explorations in
SSA [3], [4], [5], but there are still a series of issues that still
need to be resolved. The existing research has not comprehen-
sively summed the text SA up and lacks systematic carding
for the latest technology. The similarities and differences
between images and facial expressions are ignored in visual
SA (VSA). In speech SA, processes such as preprocessing and
feature extraction could have been explained clearly, and some
practical frameworks were ignored. Therefore, it is necessary
to design a novel framework to comprehensively introduce and
summarize the tasks and methods of SSA.

With the development of multimedia technology and social
networks, people express their views and emotions in more
diverse ways in the multimedia scene. Meanwhile, human
cognition does not only come from single-modal data. In real
scenes, multimodal data often appear in the same scene.
Furthermore, it is difficult to accurately judge the sentiment
state only by text or voice in some cases, such as irony.
Irony often combines neutral or positive textual content and
audio expression that does not match the content to complete
a negative sentiment expression. The above cases are chal-
lenging to be solved fundamentally only by a single modality,
and single-modal models are easily affected by noise. There-
fore, MSA has attracted considerable attention in recent
years.
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MSA tasks combine two or more types of modal data,
such as text, image, and audio, to realize SA [6]. Previous
studies have attempted to utilize multimodal learning methods,
but there is a heterogeneity issue; namely, the information
of different modalities exists in different subspaces. Adding
more modal information to the unified model can improve
the performance, but it also increases the complexity and
difficulty of modeling. How to map the subinformation of
different spaces to a unified semantic space and realize the
complementation of different modal data has become aporias
in MSA. Meanwhile, MSA is a new research field, and the
existing studies lack a systematic introduction to tasks and
methods. Therefore, there is an urgent need for systematic
induction and summary of MSA.

There are some survey papers covering the topic of SA.
In the field of text, Medhat et al. [1] summarized the text
SA algorithms and various SA applications, and classified
them according to their contributions to various SA tech-
nologies. However, this article was an early survey, and the
latest technologies were not involved such as deep learning
in fine-grained SA. Abdullah and Ahmet [7] surveyed the
development of deep learning architecture in text SA. They
introduced the latest technology in coarse- and fine-grained
SAs in detail and covered the state-of-the-art transformer-
based language models. However, they overlooked some
compound tasks in aspect-based SA, such as aspect-opinion
pair extraction (AOPE). In the field of visuals, Ortis et al. [4]
introduced the latest methods in image-based SA in detail.
However, they ignore the task of facial expression recognition
(FER). In the field of speech, El Ayadi et al. [5] compre-
hensively introduced classification schemes and databases for
speech emotion recognition (SER), but the latest technologies,
such as contrastive learning (CL), were not involved. In the
field of MSA, Soleymani et al. [6] reviewed recent develop-
ments in MSA in different domains. However, they lacked a
clear classification system and an introduction to the latest
technologies. To the best of our knowledge, this article is
the only survey to cover all modal SA that contains the most
comprehensive tasks and the latest technologies, such as CL.

In this article, the main goal is to provide researchers with
relevant advances in SA and the inner connections among
them. We first take the modality as the thread to design a
novel framework of SA and introduce the latest classifiers
and relevant evaluation measures. Then, the workflows, trends,
and datasets of SSA are reviewed, such as text, visual, and
speech to guide MSA. Second, a new taxonomy is proposed to
divide MSA into bimodal and trimodal MSAs based on multi-
modal representation learning and data fusion. The similarities
and differences, advantages and disadvantages, and up-to-
date methods are discussed in detail. Meanwhile, we explore
the advanced large language models (LLMs) in SA. Finally,
we discuss the open research challenges and provide potential
aspects to improve SA’s future work.

The main contributions of this work are summarized as
follows.

1) We design a comprehensive framework covering the
important tasks of SA and introduce the related
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paradigms and evaluation measures to give researchers
a comprehensive understanding of relevant advances.

2) We introduce the general workflows and recent advances
of single modal in detail and discuss the similarities and
differences of SSA in data processing and modeling to
guide MSA.

3) We provide a new taxonomy to fill the gaps of MSA
and introduce the latest methods of multimodal repre-
sentation learning and data fusion.

4) We summarize the commonly used datasets in different
modal SA and provided researchers with guidance on
data and methods according to different task types.

5) We discuss open research challenges of MSA and pro-
vide directions for the future development of SA from
four potential terms.

The rest of this article is organized as follows. As shown in
Fig. Al in the Supplementary Material, in Section II, the over-
all framework of SA is described, including the architecture,
related classifiers, and evaluation measures. In Sections III-V,
the workflow, trends, and datasets of SSA are introduced
and discussed, respectively. In Section VI, we introduce the
new taxonomy to dividle MSA into bimodal and trimodal
MSAs based on representation learning and data fusion, and
expand multimodal fusion technologies and alignment meth-
ods. In Section VII, we discuss the recent advancements of
chatbot-based technology in SA. In Section VIII, the open
research challenges are briefly reviewed, and a discussion of
the future trends is presented. Finally, the conclusions are
drawn in Section IX.

II. OVERALL FRAMEWORK OF SENTIMENT ANALYSIS

Sentiments come from various sources in reality, such as
Taobao comments, Weibo pictures, facial expressions, and
audio recordings. Therefore, accurately grasping the sentiment
can significantly improve the interactive experience. This
section introduces a novel SA architecture to give researchers a
more comprehensive understanding. Then, we describe related
classifiers to better understand the studies surveyed in the later
sections. Finally, the evaluation measures of SA are explained.

A. Architecture of Sentiment Analysis

SA tasks are classified into two categories: SSA and
MSA, as shown in Fig. A2 in the Supplementary Material.
SSA contains three types: text, visual, and speech. Text SA
aims to analyze the subjective text with sentiment color to
judge the sentiment polarity, which can be classified into
document-level, sentence-level, and aspect-based categories.
VSA establishes the relationship between image features and
sentiment features, and infers the sentiment expressed by the
image according to the sentiment polarity to achieve classifica-
tion. VSA tasks are classified into image SA and FER. Speech
SA realizes sentiment classification by modeling the linguistic
and paralinguistic features of speech. Compared with the text
and visual fields, SA research in the speech field belongs to an
emerging field, mainly focusing on SER. MSA is divided into
two types: bimodal and trimodal SAs. Bimodal SA combines
two modalities, such as text and image, and trimodal SA



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LU et al.: SA: COMPREHENSIVE REVIEWS, RECENT ADVANCES, AND OPEN CHALLENGES 3

contains three modalities, such as text, video, and audio.
Based on bimodal and trimodal types, MSA is divided into
multimodal representation learning and data fusion according
to a new taxonomy.

B. Related Classifiers

Multiple classifiers have been utilized for SA, such as a
support vector machine (SVM), a convolutional neural net-
work (CNN), a recurrent neural network (RNN), a recursive
neural network (RecNN), and a memory network (MN) [7],
but determining which works best is challenging. This section
summarizes and introduces the up-to-date classifiers utilized
in SA. For each architecture, a description of their operating
principle is provided to understand better the studies surveyed
in the later sections of this article.

1) Pretraining Model: The pretraining model (PTM) can
effectively obtain knowledge from many unlabeled data and
encode knowledge in parameters [8]. Early PTMs mainly focus
on transfer learning, which aims to acquire important knowl-
edge from multiple source tasks and apply the knowledge to
target tasks. Recent PTMs have achieved fruitful results due to
the integration of self-supervised learning and transformer [9].

2) Contrastive Learning Model: CL is discriminative
self-supervised learning in self-supervised learning [10]. It is
required to learn a representation learning model by automat-
ically constructing similar and dissimilar instances. Similar
instances are closer in the projection space, while dissimilar
instances are farther away in the projection space via this
model. The typical paradigms of CL are the agent task and
the objective function. The agent task defines the positive
and negative samples of comparative learning and then uses
the objective function to calculate the loss to guide the
learning direction of the model. The general loss function of
comparative learning is defined as follows:

exp(score(f(xi), f(xj')))
Zj’V:o exp(score(f(xi), f(xj)))

where score() is a function to measure the similarity between
positive and negative samples.

Li,j = — log

(1)

C. Evaluation Measures

An SA task is usually modeled as a classification problem.
In addition, some works also utilize regression models for
SA. The commonly used evaluation measures of SA include
precision (P), recall (R), accuracy (Acc), Fl-score (including
macro-F1 and micro-F1), mean absolute error (MAE), and
correlation coefficient (Corr).

1) Precision and Recall: Precision is the proportion of
correct predictions in all predictions with positive labels.
Recall is the proportion of correct predictions among all
positive instances.

2) Accuracy: Accuracy is the most basic evaluation mea-
sure of classification. It is the ratio of all true positive samples
and true negative samples to all samples.

3) Fl-Score: Fl-score value comprehensively considers the
factors of precision and recall, which is the harmonic function
of them.

4) Mean Absolute Error: MAE refers to the average value
of the distance between the predicted value f(x) of the model
and the true value y of the sample.

5) Correlation Coefficient: Corr is used to measure
the relationship (linear correlation) between the variables
x and y.

III. TEXT SENTIMENT ANALYSIS

Text SA, also known as opinion mining, refers to the
mining, analysis, and reasoning of opinions and attitudes on
subjective texts with sentiment colors [3]. The rapid devel-
opment of internet technology has brought people into the
information and digital era, which brings convenience and a
large amount of text data containing rich sentiment informa-
tion. SA of text data can help the government monitor the
development of public opinion and promote the harmonious
development of society. Therefore, text-based SA has been
widely studied and applied in academia and industry.

A. Text-Based Workflow

As shown in Fig. 1, before the text is input to the classifier,
it is necessary to preprocess the raw text and convert it to word
embedding. Preprocessing is a key part of text SA due to the
training results of the model depend on the quality of pre-
processed data. There are the following transformations: word
segmentation, part-of-speech tagging, and data enhancement,
which process random text data into a structured data format
that can be analyzed.

Word embedding is a general term for language model and
representation learning technology in natural language pro-
cessing (NLP). It embeds each word from a high-dimensional
space into a low-dimensional vector space, represented in a
low-dimensional area by a vector on the real number field.
One-hot coding is the most basic word vector that is essentially
the representation of classification variables as binary vectors,
but it has the problems of semantic gap and dimension disaster.
To solve this problem, distributed word vectors based on the
neural network are widely used in SA. After preprocessing and
word embedding transformation, the word embedding vector
is input to different classifiers. Then, the forward propagation
process transfers the word embedding vector through network
parameters to calculate the loss. It is then used in backpropaga-
tion to update network parameters and normalize them through
the softmax function for classification.

B. Trends in Text Sentiment Analysis

Most studies focus on coarse- and fine-grained SAs,
including document-level, sentence-level, and aspect-based,
as shown in Fig. A2 in the Supplementary Material. In this
section, we will detail the related tasks and development trends
in three kinds of text SA.

1) Document-Level Sentiment Analysis: Document-level
SA determines whether the document conveys overall positive,
negative, or neutral opinions. In this case, it is a ternary
classification task. It can also be expressed as a regression task,
for example, inferring the overall score from one to five stars.
The challenge of document-level SA is to capture sentence
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Fig. 1.

Workflow of text SA.

semantic and contextual relations. Previous studies applied
various methods to model document-level SA to address this
challenge. The trends of document-level SA are the following
parts.

a) Knowledge-based: The essence of knowledge-based
models is the sentiment dictionary and grammar rules. This
method uses a weighting algorithm to give sentiment vocab-
ulary weight to build a sentiment dictionary and then uses
specific calculation formula to calculate the sentiment score
of sentences for classification. Hu and Liu [11] used NLP
methods to identify adjectives. Then, a semantic word network
WordNet [12] was built to determine the semantic direction
of each adjective, and an effective algorithm was proposed
to determine the opinion direction of each sentence. Due to
the need for a general and complete sentiment dictionary in
Chinese microblog SA, Zhang et al. [13] proposed a Chinese
microblog SA method based on a comprehensive sentiment
dictionary.

b) SVM-based: The SVM-based methods are usually
incorporated with heavy feature engineering. SVMs separate
data vectors belonging to different categories by constructing
a hyperplane as a decision boundary. Pang et al. [14] applied
SVM to text SA for the first time and analyzed the problem
of whether the recognition sentence conforms to the theme
characteristics in detail. Mullen and Collier [15] constructed
feature space by using semantic direction values from different
sources, and sentiment prediction was carried out by SVM.
Hugq et al. [16] proposed a method that used K-nearest neigh-
bor (KNN) and SVM to analyze textual sentiment.

c¢) RNN-based: knowledge- and SVM-based methods
have limitations such as relying on manual annotation and
intensive labor, meanwhile having poor adaptability and
generalization ability. RNNs transform data into distributed
representation through word embedding technology and auto-
matically learn the potential features and rules of large-scale
data samples through hidden layers, so as to get rid of complex
feature engineering. Xu et al. [17] introduced a caching mech-
anism to diversify the internal memory into several different
groups with different memory cycles. In order to solve the
problem that document-level SA does not consider the influ-
ence of users expressing sentiment and the evaluated products,
Dou [18] proposed a deep MN for document-level sentiment
classification. Because the previous method tends to assign
an equally smaller weight to each word, the keywords are
covered by nonsentiment words. Zhang et al. [19] proposed
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a cyclic attention LSTM to iteratively locate the attention
region covering key sentiment words, gradually reducing the
attention range and the number of tags to use the weight of
key sentiment words for final sentiment classification.

2) Sentence-Level Sentiment Analysis: Unlike document-
level SA to judge the overall sentiment of all sentences,
sentence-level aims to determine the sentiment polarities in
a single sentence. It also can be expressed as a ternary
classification task. The challenge of sentence-level SA is to
model the semantic relations of all words in a sentence and
capture the syntactic dependencies. Relevant studies are given
as follows.

a) CNN-based: The local receptive field and
weight-sharing operation of CNN can extract the local
features of text well. Kalchbrenner et al. [20] provided a
dynamic CNN (DCNN) to model the semantic of sentences.
DCNN used dynamic k-max pooling to capture short- and
long-term relationships and generate a feature graph on
sentences. To extract information from sentences in a more
standardized way, Dos Santos and Gatti [21] provided a
character-to-sentence  CNN (CharSCNN). They used two
convolution layers to extract relevant features from words
and sentences of any size. However, different types of
sentences express sentiment differently, while the traditional
models only focus on certain sentence types. To address
these problems, Chen et al. [22] provided a novel framework
based on CNN for sentence-level SA. They used a divide-
and-conquer approach to deal with different types, which
included nontarget, one-target, and multitarget sentences.

b) CNN-LSTM-based: The CNN-LSTM is a class of
architectures combining CNN and LSTM. CNN can extract
local information but may fail to capture long-distance depen-
dencies. LSTM can solve this limitation by modeling sentence
sequences. Wang et al. [23] provided a joint CNN and RNN
architecture for sentiment classification. Wang et al. [24] pro-
posed a regional CNN-LSTM model to predict sentiment.
Based on [24], Wang et al. [25] provided a region division
strategy to improve the performance of SA.

3) Aspect-Based Sentiment Analysis: Coarse-grained SA
aims to identify the overall sentiment toward the whole doc-
ument or sentence, ignoring the problem that there may be
multiple aspects. There may be multiple entities in a document
or a sentence for document- and sentence-level SAs. In this
case, each entity expresses different sentiment polarity. There-
fore, only analyzing the overall sentiment toward the whole
document or sentence will lead to inaccurate classification.
ABSA has received increasing attention due to its ability to
identify each specific entity in the sentence and analyze the
sentiment of entities.

There are four sentiment elements of ASBA, as shown
in Fig. 2: aspect term, aspect category, opinion term, and
sentiment polarity. Depending on whether the output is a single
element or a coupling element, ABSA tasks are classified into
two categories: single ABSA and compound ABSA. The input
and output of each task are shown in Table I, where S is the
sentence, and T, C, O, and P represent the aspect term, aspect
category, opinion term, and sentiment polarity, respectively.
Single ABSA includes the following subtasks: aspect term
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but the [waiter] is rude. ]

[

Aspect Term: sushi Aspect Term: waiter
Aspect Category:  food Aspect Category:  service
Opinion Term: Opinion Term: rude
Sentiment Polarity: positive Sentiment Polarity: negative

Fig. 2. Example of aspect-based SA.

[The [sushi] is

extraction (ATE), aspect category detection (ACD), opinion
term extraction (OTE), and aspect sentiment classification
(ASC).

a) Aspect term extraction: ATE is to extract the explicit
targets in a given sentence [26]. For instance, ATE aims to
extract two aspect terms “sushi” and “waiter” in the sentence
“The sushi is delicious but the waiter is rude.” The challenges
of ATE are that domain-specific knowledge and a large amount
of labeled data are required. Yin et al. [27] learned the dis-
tributed representation of words and dependent paths from the
text corpus, and they used word embedding, linear contextual
embedding, and dependent path embedding to enhance condi-
tional random field (CRF) to extract aspect terms. Despite the
great results of the above methods, they depend on the labeled
data. Giannakopoulos et al. [28] introduced an unsupervised
and domain-independent method for annotating raw opinion
text and provided a classifier based on B-LSTM and CRF
for both unsupervised and supervised ATEs. Venugopalan
and Gupta [29] proposed a semantic filter based on BERT
that combined semantic information to enhance co-occurrence
statistics.

b) Aspect category detection: ACD aims to infer the
categories of aspects mentioned in the sentence [30], for
example, in the sentence “The sushi is delicious but the waiter
is rude.” Based on the given entities “sushi” and “waiter,”
the aspect categories “food” and “service” are concluded.
Schouten et al. [31] presented an unsupervised and supervised
method that could find the category of aspects according to the
co-occurrence frequencies. To address the problem of failing
to recognize aspect categories that only contained a few labels,
Hu et al. [32] proposed a multilabel few-shot learning (FSL)
method based on the prototypical network. They alleviated the
noise by aspectwise attention and query-set attention. Similar
to [32], Liu et al. [33] applied a multilabel FSL method to
meet the challenges of aspect sharing, aspect interference,
and aspect diversity, and proposed a novel label-enhanced
prototypical network (LPN) for ACD.

c) Opinion term extraction: OTE is used to identify
and extract opinion terms toward the related aspect [34].
Due to the fact that opinion terms and aspect terms always
appear together, OTE is also referred to as target-oriented
opinion word extraction (TOWE). Fan et al. [34] proposed
a novel sequence labeling subtask for ABSA that aimed at
extracting the corresponding opinion words for a given opinion
target. Veyseh et al. [35] introduced a novel regularization
technique and leveraged the syntax-based opinion possibility
scores and the syntactic connections between the words.
Mensah et al. [36] adapted a GCN model to enhance word

TABLE I
INPUT AND OUTPUT OF EACH TASK

Tasks Input  Output
Aspect Term Extraction (ATE) S T

Aspect Category Detection (ACD) S C

Aspect Sentiment Classification (ASC) S, T P

Opinion Term Extraction (OTE) S, T O
Aspect-Opinion Pair Extraction (AOPE) S (T, 0)
Aspect Sentiment Quad Prediction (ASQP) S (T,C,0,P)
Aspect Sentiment Triplet Extraction (ASTE) S (T, 0, P)
E2E Aspect-based Sentiment Analysis (E2E ABSA) S (T, P)

representations to examine the actual contribution of each
component in TOWE.

d) Aspect sentiment classification: ASC, as known as
aspect-based sentiment classification, is to predict the sen-
timent polarities of each aspect in a given sentence. ASC
can be divided into aspect-category and aspect-term sentiment
classification. The aspect category sentiment classification
implicitly describes the general entity category, and the aspect
term sentiment classification characterizes specific entities that
occur explicitly in a sentence. With the deepening of deep
learning research, ASC methods have gradually transitioned
to deep learning method systems. Deep learning methods
transform data into distributed representation through word
embedding technology and automatically learn the potential
features and rules of large-scale data samples through hidden
layers, so as to get rid of complex feature engineering. The
ASC methods are divided into CNN-based, LSTM-based, MN,
GCN-based, and PTM-based, and the analysis and comparison
of different classifiers are shown in Table II.

CNN-Based: Huang and Carley [37] proposed a parame-
terized filter CNN and a parameterized gate CNN for ASC.
As the CNN-based methods are difficult to use important
aspects of location information in a unified framework,
Wang et al. [38] proposed a unified position-aware CNN (UP-
CNN) that generated position embedding according to the
relative distance between each word and a given aspect.

RNN-Based: Despite that CNN-based methods could cap-
ture local semantic information, pooling operations resulted in
the loss of overall semantic dependence. Tang et al. [39] first
proposed two LSTM models that automatically capture target
information. To address the problem that LSTM-based meth-
ods introduced noise in the process of feature selection and
extraction, Liang et al. [40] proposed an aspect-guided gated
recurrent unit (GRU) encoder to guide sentence coding and
force the model to use the generated sentence representation,
which reconstructed the given aspect. The attention mecha-
nism breaks the limitation of LSTM that the input depends on
the output of the previous time. Therefore, Wang et al. [41]
first introduced the attention mechanism into aspect-based sen-
timent classification. Most existing methods ignored the role of
position information; Gu et al. [42] proposed a position-aware
bidirectional attention network (PBAN) based on GRU that
converted the position information into position embedding.

RecNN-Based: RecNN is an effective extension of RNN,
which is a kind of neural network with a tree struc-
ture and recurses through the nodes of the tree structure.
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TABLE 1T
ANALYSIS AND COMPARISON OF DIFFERENT ASPECT-BASED SENTIMENT CLASSIFICATION METHODS
Structures Advantages Disadvantages Models
CNN-based Captures local semantic information, and weight sharing. Fails to capture long-distance semantic depen-  [37], [38]
dency.
RNN-based Suitable for processing sequence data, taking into account Limited ability of memory, vanishing gradient [39], [40], [41], [42]

historical information.

and exploding gradient.

RecNN-based

Good ability to handle tree and graph structures.

Weak memory storage capacity. [43], [44], [45]

MN-based Introduces external storage to remember relevant information ~ Low memory capacity and poor fault tolerance [46], [47], [48]
GCN-based Strong performance in capturing syntactic dependencies. Poor expansibility and high complexity. [49], [50], [51]
PTM-based Beneficial to downstream tasks via the pre-learned knowl-  Needs massive data support, and huge consump-  [52], [53], [54], [55]

edge, better generalization performance and fast convergence.

tion of computer resources.

Dong et al. [43] proposed an adaptive RecNN for aspect-level
SA on Twitter. Nguyen and Shirai [44] proposed a phrase
RecNN to make the representation of the target aspect richer
by using syntactic information from both the dependence and
constituent trees of the sentence. To address the limitation that
previous methods rely on hand-coded rules, Wang et al. [45]
proposed a novel joint model that integrates RecNNs and CRFs
into a unified framework for explicit aspect and opinion terms
coextraction.

MN-Based: MN uses memory components to store infor-
mation for long-term memory functions. Tang et al. [46]
introduced a deep MN for aspect-level sentiment classifi-
cation. Majumder et al. [47] presented a novel method of
incorporating the neighboring aspect-related information into
the sentiment classification of the target aspect using MNs.
As previous models still face the issues of the weakness of
pretrained word embeddings and weak interaction between the
specific aspect and the context in attention mechanism, Liu
and Shen [48] proposed a novel end-to-end memory neural
network (ReMenNN) that contained an embedding adjustment
learning module and a multielement attention mechanism.

GCN-Based: CNN, RNN, and an attention mechanism show
excellent performance in capturing semantic information, but
ignoring an important problem, i.e., syntactic dependence,
and may mistakenly use context-free information as clues
for identifying sentiment. The graph convolutional network
(GCN) performs a convolution on the top of the LSTM in
the form of an L-layer to create context-aware nodes, and
the hidden representation of each node is updated through a
graph convolution operation with a normalization factor [49].
Zhang et al. [50] applied GCN to aspect-based SA for the
first time and proposed a novel aspect-based sentiment clas-
sification framework. Li et al. [51] proposed a dual graph
convolution network (DualGCN). They utilized the probability
matrix from the dependence parser to build the syntax-based
GCN (SynGCN) and then used the self-attention mechanism
to build the semantic-based GCN (SemGCN) for ASC.

PTM-Based: Hoang et al. [52] proposed a combination
module that utilized the BERT to generate context word repre-
sentation to classify aspects and sentiment. The existing PTM
only takes the pretrained BERT as a black box, which lacks
context awareness. Wu and Ong [53] proposed context-guided
BERT (CGBERT) and quasi-attention CGBERT (QACG-

BERT) for ASC. In order to capture reasonable attention
weight, Wang et al. [54] provided the intralevel and interlevel
attention mechanisms based on BERT to generate the hidden
representation of a sentence and constructed a focus attention
mechanism to enhance sentiment identification. No BERT
model currently considers topic information. Zhou et al. [55]
developed two variants of TopicBERT. TopicBERT-ATP cap-
tured topic information through auxiliary training tasks, and
TopicBERT-TA achieves sentiment classification by dynami-
cally changing topics.

Compound ABSA is to extract multiple elements and couple
them in different tasks and can be divided into the follow-
ing tasks: AOPE, aspect sentiment triplet extraction (ASTE),
aspect sentiment quad prediction (ASQP), and end-to-end
ABSA (E2E ABSA).

e) Aspect-opinion pair extraction: AOPE is defined as
extracting aspects and opinion expressions along with their
relations [56]. For example, in Fig. 2, AOPE is to extract the
pairs (sushi, delicious), (waiter, rude). There are two ways: one
is first to extract aspect terms and opinion terms and then pair
them; the other is first to perform ATE and then identify the
corresponding opinion terms for each predicted aspect term.
The challenge of AOPE is that ATE and OTE are interre-
lated and mutually reinforcing. Chen et al. [S7] proposed a
synchronous double-channel recurrent network (SDRN) for
AOPE. Based on the second way, Gao et al. [58] designed a
question-driven span labeling (QDSL) model to extract aspect-
opinion pairs.

f) Aspect sentiment triplet extraction: ASTE aims to
discuss relations of the sentiment elements that, what aspect
term is, how is the sentiment polarity and why is this sentiment
expressed [59]? It is similar to AOPE, which outputs the
tripe (aspect term, opinion term, sentiment polarity). For
example, in the sentence in Fig. 2, ASTE aims to extract
sentiment tripe (sushi, delicious, POS), (waiter, rude, NEG).
Compared with a single ABSA, ASTE contains more abundant
sentiment information to indicate sentiment elements and their
relations. The challenges of ASTE are similar to AOPE that
also contains corresponding relations between three elements.
Peng et al. [60] first introduced an ASTE task and proposed
a two-stage framework to address this task. To address the
aforementioned challenges, Chen et al. [61] proposed a bidi-
rectional MRC framework to formalize the ASTE task as
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a machine reading comprehension (MRC) task. The excel-
lent performance of the PTMs has been verified, but it is
inefficiency due to large-scale parameters. Zhang et al. [62]
construct a structural adapter, triplet parser, and triplet decoder
to uncover continuous tokens and generate aspect sentiment
triplets.

g) Aspect sentiment quad prediction: ASQP is used to
extract quadruples of aspect term, aspect category, opinion
term, and sentiment polarity [63]. For example, in Fig. 2,
ASQP is to extract the all elements (sushi, food, delicious,
POS), (waiter, services, rude, N EG). Zhang et al. [63] intro-
duced the ASQP task and proposed a novel paraphrase
modeling paradigm to cast the ASQP task to a paraphrase gen-
eration process. Bao et al. [64] proposed a pretrained model
to integrate both syntax and semantic features to jointly detect
all sentiment elements in a tree. Gao et al. [65] proposed
a unified generative multitask framework to solve multiple
ABSA tasks by controlling the type of task prompts consisting
of multiple element prompts.

h) End-to-end aspect-based sentiment analysis: End-to-
end aspect-based SA is designed to extract aspect term and its
corresponding sentiment polarity simultaneously [66]. In the
sentence in Fig. 2, E2E-ABSA aims to extract pairs (sushi,
POS), (waiter, NEG), and it can be divided into two subtasks:
ATE and ASC. Li et al. [67] first presented a unified end-to-
end model to solve the complete tasks of ABSA. To address
the imbalance of labels of E2E-ABSA, Luo et al. [68] pro-
posed a GRadient hArmonized and CascadEd labeling model
(GRACE) to capture the interaction between aspect terms with
a stacked multiattention module for SA.

C. Datasets and Performance Summary of Text Sentiment
Analysis

In text SA, datasets perform essential roles in achieving
an excellent performance of models. This section details
common datasets for document-level, sentence-level, and
aspect-based SA, and shows the performance summary of text
SA. An overview of these datasets is shown in Tables Al and
A5 in the Supplementary Material.

IV. VISUAL SENTIMENT ANALYSIS

The development of social media has brought new chal-
lenges to SA [4]. On the basis of expressing opinions through
words, more and more people tend to use images and videos
to describe their experiences and express sentiment. The
information contained in visual content is not only related to
the semantic content, such as the obtained objects or actions,
but also related to the sentiment conveyed by the depicted
scenes. Therefore, VSA is very important to understand the
sentiment effects (i.e., induced emotions) beyond semantics.
Because the primary visual features and sentiment semantic
features of images exist in unequal subspaces, the task of VSA
is very challenging.

A. Visual-Based Workflow

As shown in Fig. 3, the processing of VSA can be divided
into the following steps: preprocessing, feature extraction,

Fig. 3.

Workflow of VSA.

classifier design, and sentiment classification. Due to the
original image data’s differences in size, color, and space,
it needs to be preprocessed by graying processing [69],
geometric transformation [70], and image enhancement [71].
First, the processing speed of the model is improved by
graying processing. Standard gray processing methods include
component, maximum, average, and weighted average meth-
ods. Then, the geometric transformation processes the image
through translation, transposition, and scaling to correct the
error. Finally, image enhancement is aimed at applying a given
image and purposefully emphasizes the global or regional
features of the image, mainly including spatial and spectral
methods.

Feature extraction is the critical step of VSA, focusing
on extracting the visual features related to image sentiment.
There are four visual features in general: color, textural, shape,
and spatial relation. The color feature is a global feature that
describes the surface properties of the scene corresponding
to the image or image region. The textural feature is also a
global feature, but it only describes the features of the object’s
surface. There are two kinds of representation methods for
shape features: one is the profile feature and the other is the
region feature. The profile features mainly aim at the outer
boundary of an object, while the regional features relate to the
whole shape region. Finally, spatial relationship features refer
to the mutual spatial position or relative direction relationship
between multiple objects segmented from the image. After
feature extraction, image features are input into classifiers to
generate a hidden representation for sentiment classification.

B. Trends in Visual Sentiment Analysis

VSA tasks mainly focus on images and facial expressions.
The purpose of them is to recognize and analyze the sentiment
expressed but have some differences. Image SA is a visual
analysis of nonverbal sentiment expression in social media,
which is aimed at analyzing the sentiment of publishers or
observers. FER extracts facial expressions or body postures
from individuals or groups to judge emotions. Therefore, VSA
is classified as image SA and FER according to attributes and
objects, as shown in Fig. A2 in the Supplementary Material,
and analysis and comparison of different methods are shown
in Table III. FER is divided into a static image method and a
dynamic image method according to different data types.

1) Image Sentiment Analysis: Image SA extracts and com-
bines the global or regional features of the image and classifies
the sentiment by establishing a relationship with the sentiment
semantics. The artificial method relies on manually extracting
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the primary features of the image, such as color, textural, and
profile features, for sentiment classification [72], [73], [74].

a) CNN-based: The semantic gap between image fea-
tures and sentiment features is solved with feature-based
methods to some extent, but these methods rely on low-level
features. With the development of deep learning technol-
ogy, CNN models can automatically extract medium- and
high-level features from datasets that are widely used in image
SA. You et al. [75] used large-scale weak-label training data
for learning, and then, they fine-tuned the CNN by using the
progressive training strategy and the domain transfer strategy
to classify sentiment. Wang et al. [76] proposed a novel VSA
approach with deeply coupled adjective and noun neural
networks to address three challenges: large intraclass variance,
fine-grained image categories, and scalability. Yang et al. [77]
proposed a weakly supervised coupled network that integrated
visual sentiment classification and detection into a unified
CNN framework. CNN is often used in conjunction with atten-
tion mechanisms; You et al. [78] first considered the impact of
regional image areas on VSA and used attention mechanisms
to match local image areas with descriptive visual attributes.
As image SA can be specified as the gradual perception of
image regions from semantics to sentiment, Zhang et al. [79]
thought that the mining of sentiment-related regions was of
great significance for sentiment recognition and proposed a
multilevel sentiment region correlation analysis model.

2) Facial Expression Recognition: FER is to capture facial
expression and feature to achieve sentiment classification.
As facial expression change is a complex process, involving
muscle movement, psychological, and environmental factors,
existing studies usually only consider the changes of facial
shape and texture caused by facial muscle movement.

FER includes four parts: face image extraction, face
detection, feature extraction, and feature classification. The
technology of face image extraction and face detection has
been very mature, so the research methods focus on feature
extraction and classification. There are two states of face
image: static face image and dynamic face image. The static
face image has locality and timeliness, and presents the
expression state of a single image when the expression occurs.
The dynamic face image has integrity and activity, and presents
the movement process of expression between multiple images.
Therefore, FER can be divided into the static face image
method and the dynamic face image method according to
different data types.

a) Static face image: Considering the influence of face
changes on global information, Shu-Ren et al. [80] proposed
a FastICA algorithm, which combined the hidden Markov
model (HMM) for expression recognition. Zhang et al. [81]
extracted SIFT features for facial expression classification,
which corresponds to a group of landmarks from each facial
image.

CNN-Based: With the development of deep learning, FER
attempts to capture high-level abstraction features through neu-
ral network architectures of multiple nonlinear transformations
and representations. Pons and Masip [85] proposed a method
of weighting CNN classifiers, which used CNN to learn the
nonlinear relationship between classifiers to better distinguish
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basic sentiment. Inspired by visual attention described in
cognitive neuroscience, Farzaneh and Qi [86] designed a depth
measurement learning method based on modular attention for
FER.

GAN-Based: However, CNNs rely on a large number of
labeled data; especially, image annotation is time-consuming
and laborious. The generative adversarial network (GAN) [96]
is a kind of unsupervised learning model, which produced
good outputs through mutual game learning of the genera-
tive model and the discriminative model. Lai and Lai [89]
proposed a multiview FER method for multitask learning
with GANSs to predict the expression class label of the input
face. Zhang et al. [90] proposed an end-to-end deep learning
model, which combined different gestures and expressions
to perform FER with unchanged posture. Cai et al. [91] pro-
posed a novel Identity-Free conditional GAN (IF-GAN) for
FER.

CL-Based: Most of the above methods are based on super-
vised training, but the annotation data are always limited.
PTMs have proved that self-supervised pretraining can learn
prior knowledge distribution from a large number of unlabeled
data, and excellent results can be obtained through fine-tuning
downstream tasks. In recent years, the research focus of
FER has shifted from supervised pretraining to self-supervised
pretraining, and comparative learning is an important sup-
port [97], [98]. CL is discriminative self-supervised learning
in self-supervised learning. It is required to learn a represen-
tation learning model by automatically constructing similar
and dissimilar instances. Similar instances are closer in the
projection space, while dissimilar instances are farther away
in the projection space via this model. Shu et al. [92] proposed
an effective self-supervised CL framework for FER. In view
of two concerns that arousal-valence-based FER approaches
have not yet dealt with: the key for feature learning of facial
emotions and the facial emotion-aware features extraction,
Kim and Song [93] incorporated visual perception ability into
representation learning for the first time to focus on semantic
regions that are important for emotion representation.

b) Dynamic face image: Despite good results of the
method based on static facial images, it fails to consider
time information and subtle appearance changes that are
not available in real-world scenes. The dynamic face image
method reflects the process of facial expression change over a
period of time. It takes a series of frames in the time window
as input and uses textural and time information to encode
subtle expressions. Traditional methods can be divided into
optical flow methods, model methods, and geometric methods.
The optical flow method is used for moving object detection,
which uses the change of pixels in the time domain and the
correlation between adjacent frames to find the corresponding
relationships [82], [83], [84].

CNN-Based: Deep learning networks are designed to encode
temporal dependencies in consecutive frames and have been
shown to benefit from learning spatial features in conjunction
with temporal features. Jung et al. [87] used a limited number
of image data to identify facial expressions to overcome the
problem of small amounts of data. In view of the deep-level
image extraction capability of CNN and the time-series data
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TABLE III

ANALYSIS AND COMPARISON OF DIFFERENT VSA METHODS
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Structures

Advantages

Disadvantages

Models

Future-based

Good performance of small sample data and has
good relevance.

Time-consuming and labor-intensive, limited
learning ability.

(721, [73]. [74]. [80], [81], [82],
[83], [84]

CNN-based Local receptive field and weight sharing. Redundant and inefficient, unable to under- [75], [76], [77], [78], [79], [85],
stand advanced features. [86], [87], [88]
GAN-based Training by unsupervised learning, and adopts  Not suitable for processing discrete data and [89], [90], [91]
mutual game learning to product good outputs.  difficult to train.
CL-based Learns prior knowledge from a large number of ~ Bias of training data and hard negative exam- [92], [93]
unlabeled data via self-supervised learning. ple concerns.
Transformer-based ~ Global characteristics and good modal repre-  Weak ability to capture local information, and [94], [95]

sentation capability.

excessive demand for computing power.

processing capability of LSTM, Donahue et al. [88] proposed
a long-term recurrent convolutional network (LRCN) with dual
depth in space and time.

Transformer-Based: In recent years, the success of trans-
formers inspired researchers to use transformer encoders in
FER. Zhao and Liu [94] proposed a dynamic FER transformer
(Former-DFER) for the in-the-wild scenario. They designed a
convolutional spatial transformer (CS-Former) and a temporal
transformer (T-Former) to learn more discriminative facial
features and deal with the issues such as occlusion, nonfrontal
pose, and head motion. Li et al. [95] thought that the above
method [94] ignored distinguishing the key frames and the
noisy frames; they proposed a noise-robust dynamic FER
network (NR-DFERNet) to reduce the interference of these
noisy frames.

C. Datasets and Performance Summary of Visual Sentiment
Analysis

Training data are important for VSA. In this section,
we describe the publicly available datasets that contain a large
number of affective images in VSA and show the performance
summary of VSA, as shown in Tables A2 and A7 in the
Supplementary Material.

V. SPEECH SENTIMENT ANALYSIS

As the main medium in daily communication, speech
contains abundant paralinguistic features in the transmission
process, such as sentiment, purpose, and state [99]. However,
language understanding is a very complex process, and human
speech emotion change is an abstract dynamic process, which
is difficult to describe its emotional interaction with static
information. How to model the linguistic and paralinguistic
features of speech to understand the meaning of speech is a
challenging task.

Speech SA is known as SER. It is a computer simulation
of the above sentiment perception and understanding process
of humans [100]. The computer is used to analyze emo-
tions, extract emotion features, and use parameters to conduct
corresponding modeling and recognition, Then, the mapping
relations between features and emotions are established to
classify emotions.

Fig. 4. Workflow of speech SA.

A. Speech-Based Workflow

The workflow of speech SA focuses on the following parts:
speech processing, speech feature extraction, and sentiment
classification. Overall processing of speech SA is shown in
Fig. 4.

1) Speech Processing: Speech processing aims to automat-
ically suppress interference signals and consists of the fol-
lowing steps: preemphasis [101], speech segmentation [102],
windowing [103], voice activity detection [104], and noise
reduction [105].

2) Speech Feature Extraction: The speech emotion fea-
tures can be divided into linguistic features and acoustic
features. Language features are the speech information that
voice expresses; acoustic features include the speaker’s tone,
intonation, and emotion color. Extracting acoustic features
with high correlation is helpful to determine the speaker’s
emotional state. Generally, acoustic features are extracted
on a frame basis, but these features are generally used as
the input of the model to perform emotion recognition in a
global statistical way. At present, the commonly used acoustic
features include prosodic features, spectrum features, and tone
quality features.

3) Speech Classifiers: Classifiers for speech SA include
two categories: traditional machine learning methods and deep
learning methods. Numerous classifiers have been utilized for
the SA, but determining which works best is difficult. There-
fore, the ongoing researches are widely pragmatic. We present
the analysis and a comparison of different classifiers in
Table IV.
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B. Trends in Speech Sentiment Analysis

Speech SA has been initially explored in the past 20 years,
and features based on manual extraction have been widely used
in it. However, human speech emotion change is an abstract
dynamic process, which is difficult to describe its emotional
interaction with static information. The rise of machine learn-
ing brings new opportunities for the development of SER.
Traditional machine learning methods are used in speech SA
because of their fast speed and high interpretability. These
methods recognize the respective classes and samples by
approximating the mapping function for classification and can
be divided into KNN, HMM, the Gaussian mixture model
(GMM), and SVM.

1) KNN-Based: KNN is a supervised learning algorithm,
whose essence is to calculate the distance between different
eigenvalues to classify samples [122]. The method of Feraru
and Zbancioc [106] proposed an improved version of the
KNN algorithm, which was associated with each parameter
for SER according to the performance of feature vector weight
in the classification processing. Rieger et al. [107] utilized
the integration of pattern recognition paradigm with spectral
feature extraction (including CEP, MFCC, LSF, ACW, and
PFL) and KNN classifiers to perform SER.

2) HMM-Based: HMM is a statistical model used to
describe a Markov process with hidden unknown param-
eters [123]. Nwe et al. [108] proposed a text-independent
speech emotion classification method based on HMM, which
used LFPC to represent speech signal and HMM as a classi-
fier. Schuller et al. [109] introduced the time complexity into
HMM and considered the low-level instantaneous features
rather than the multiple states of global statistics.

3) GMM-Based: GMM divides objects into several Gaus-
sian probability density functions to accurately quantify
objects [124]. Ayadi et al. [110] proposed a Gaussian mixture
vector autoregressive model, which modeled the dependence
between extracted speech feature vectors and the multimodal-
ity in their distribution. Mishra and Sekhar [111] discussed
the applicability of the variational methods based on the
parameters of GMM to SER.

4) SVM-Based: Seehapoch and Wongthanavasu [112] pro-
vided an SVM method to recognize and classify the speech
emotion from Berlin, Japan, and Thai emotion datasets.
In order to solve the problem of emotional confusion in multi-
SER, Sun et al. [113] proposed an SER method based on
the decision tree SVM model with Fisher feature selection.
Jain et al. [114] proposed SVM methods based on a one-
against-all (OAA) strategy and a gender-dependent strategy
for sentiment emotion recognition.

Neural networks, with their characteristics of nonlinear
mapping, generalization, and fault-tolerant, make this kind
of method have both good real-time performance and high
recognition accuracy. The deep learning method-based speech
emotion analysis can be divided into CNN-based, RNN-based,
and PTM-based.

5) RNN-Based: Lee and Tashev [115] proposed a learning
method with Bi-LSTM, which could extract a high-level
representation of the emotional state in the temporal dynam-
ics. Because the attention machine can focus on important
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information in the sequence, Mirsamadi et al. [116] combined
Bi-LSTM with a novel pooling strategy for SER.

6) CNN-Based: Liu et al. [117] proposed a feature fusion
method based on CNN, which combined spectral features and
hyperprosody features to classify speech emotions. Neumann
and Vu [118] integrated the representation learned by an
unsupervised automatic encoder into a CNN emotion classifier
and used unsupervised representation learning to improve the
performance of SER. To address the issue of lacking real-time
speech processing, Kwon et al. [119] proposed an E2E real-
time model based on a 1-D dilated CNN (DCNN).

7) PTM-Based: Li et al. [120] proposed a contrastive
predictive coding (CPC) for SER. This method contains two
stages. First, a feature extractor model with CPC on a large
unlabeled dataset was pretrained. Then, an emotion recog-
nizer with features learned in the first stage was trained for
SER. To address the issues that the above models lacked in
both accuracy and learning robust representations agnostic to
changes in voice, Alaparthi et al. [121] proposed supervised
CL with transformers for SER and verified the comparison
settings through different enhancement strategies.

C. Datasets and Performance Summary of Speech Sentiment
Analysis

The speech sentiment database is the database of SER,
and its quality directly determines the performance of the
model. In addition, considering the difference between the
classification framework and tasks, the design purpose and
strategy of the emotion database are very important. We collect
these datasets and show the performance summary of speech
SA, as shown in Tables A3 and A8 in the Supplementary
Material.

VI. MULTIMODAL SENTIMENT ANALYSIS

With the internet and multimedia technology development,
text, image, and voice data are growing exponentially. Multi-
modal data have gradually become the main form of data. Due
to the limited information obtained by SSA, achieving effec-
tive analysis in some specific scenarios is difficult. Therefore,
the existing research began to try to model MSA.

MSA aims to combine two or more modalities of data,
such as text, image, and audio, to realize the understanding
and analysis of people or topics through the information
complementarity between different modal data [6]. Existing
research on MSA focuses on constructing multimodal feature
vectors. Although both multimodal representation learning and
multimodal data fusion can obtain intermediate feature vectors,
there are differences between them: multimodal representation
learning aims to learn the semantic representation of modal
data to be applied to downstream tasks. It is divided into
joint representation and collaborative representation. On the
other hand, multimodal data fusion aims to integrate multi-
modal data with a certain framework and methods to jointly
contribute to solving the target task. It is divided into three
methods: early, late, and hybrid. This section proposes a
new classification method of MSA, which divides MSA into
methods based on multimodal representation learning and
multimodal data fusion.
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TABLE IV

ANALYSIS AND COMPARISON OF DIFFERENT ALGORITHMS IN SPEECH SA

Structures  Advantages Disadvantages Models
KNN High fitting ability and easy to realize. Large amount of calculation and poor interpretability. [106], [107]
HMM Suitable for the identification of time series and the = High model complexity, poor fitting function and [108], [109]
system has good scalability. robustness.
GMM Strong fitting ability and robustness. The initial solution and order of the model are too [110], [111]
high, and the dependence on training data is strong.
SVM High fitting ability, strong robustness and global Large scale training samples are difficult to imple- [112], [113], [114]
optimization. ment and require a large amount of memory.
RNN Good sequence modeling ability and memory ability.  Gradient disappearance and gradient explosion. [115], [116]
CNN Weight sharing, and strong generalization ability. Ignoring the correlation between the local and the [117], [118], [119]
whole, it is easy to fall into the local minimum.
PTM Learns prior knowledge from a large number of data. ~ Requires a lot of computing resources and has high [120], [121]

complexity.

Fig. 5. Workflow of MSA.

A. Multimodal Workflow

As shown in Fig. 5, MSA methods mainly include three
steps: multimodal data preprocessing, multimodal representa-
tion construction, and multimodal sentiment classification.

1) Multimodal Data Preprocessing: Word segmentation
and POS tagging are performed for text data, and then,
words are mapped to continuous low-dimensional vector
space through word2vec or GloVe. For image data,
denoising is performed by smoothing technology. For
audio data, framing, windowing, and Fourier transform
are performed.

2) Multimodal Representation Construction: The prepro-
cessed multimodal data were mapped to a unified
semantic space, including multimodal representation
learning and multimodal data fusion.

3) Multimodal Sentiment Classification: The constructed
multimodal representations are input into the classifier to
obtain hidden vectors and then normalize them accord-
ing to different tasks to predict the polarity of sentiment
or classify emotions.

B. Multimodal Representation Learning and Data Fusion
Methods

1) Multimodal Representation Learning-Based: Multi-
modal representation learning maps different modal data to
a unified semantic space so that the representation contains
information across different modalities.

The difficulty lies in the heterogeneity of multimodal data
and how to use the complementarity and consistency of

Fig. 6.
sentation learning. (b) Coordinated representation learning.

Architecture of multimodal representation learning. (a) Joint repre-

different modal information to represent the data. Therefore,
it is divided into joint representation learning and coordinated
representation learning, as shown in Fig. 6.

Joint representation learning maps the information of mul-
tiple modes, such as text X7, image X;, and audio X, into a
unified multimodal vector space Xy = f(X7, X1, ..., X4).
The unified multimodal vector aims to capture the comple-
mentarity.

Coordinated representation is responsible for mapping each
mode to its own representation space, but the mapped vectors
meet certain correlation constraints. For example, unlike joint
representation learning, coordinated representation learning
represents text Xr, image X;, and audio X, separately and
then coordinates the relationship between different modes
through constraints f(x7) ~ g(xj).

Since coordinated representation learning preserves the
information of original modes, and its optimization objective
is the cooperative relationship between different modes, it is
suitable for applications with only one mode as input, such as
multimodal retrieval and translation. On the other hand, joint
representation learning can only obtain a unified representation
in the end. Its ultimate optimization goal is model prediction
performance, which is suitable for applying multimodal input,
such as MSA. Therefore, the research of MSA based on mul-
timodal representation learning focuses on joint representation
learning.

2) Multimodal Data Fusion-Based: With the emergence of
deep learning models, the boundary between multimodal rep-
resentation learning and multimodal data fusion has become
blurred [125]. Multimodal data fusion predicts the results by
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Fig. 7. Schematic diagrams of different data fusion strategies. (a) Early
fusion. (b) Late fusion. (c) Hybrid fusion.

integrating information from multimodalities. Like multimodal
representation learning, multimodal data fusion can also obtain
intermediate feature vectors containing multimodal informa-
tion. Still, there are differences between them: multimodal
representation learning focuses on whether the multimodal
representation has good properties, such as smoothness, spar-
sity, and natural clustering, and can be well applied to
downstream tasks; multimodal fusion focuses on how to inte-
grate multimodal data with a certain architecture or approach
and jointly contribute to solving the target task [126]. Multi-
modal fusion methods are divided into early, late, and hybrid.
Their typical structures are shown in Fig. 7, and the analysis
and a comparison of different classifiers are shown in Table V.

a) Early fusion: Early fusion, also known as feature-
level fusion, completes the fusion of features before inputting
the classifier by extracting features from different modal
information. Early fusion can better capture the interaction
between modalities, and only one model needs to be trained to
complete the feature fusion of different modalities. Therefore,
it is widely used in the early research of MSA.

b) Late fusion: Late fusion is also called decision-level
fusion. Different modal features are modeled separately, and
then, the output from the model is integrated to produce the
final prediction. The processing of late fusion is irrelevant to
features and requires multinetwork models for training that
can adapt well to the problem of modal missing.

c) Hybrid fusion: The hybrid fusion method combines
early fusion and late fusion. Early fusion fails to make good
use of the complementarity of different modalities, and late
fusion has the problem of missing modalities and redundancy.
Therefore, the hybrid model can capture the complementarity
of modal parts and reduce the modal redundancy by combining
early and late fusion. Due to the diversity and flexibility of
neural networks, there are a large number of methods that
adopt hybrid fusion strategies.

C. Bimodal Sentiment Analysis

Bimodal SA aims to combine data from two modalities,
such as text and image to predict sentiment. In this section,
we divide bimodal SA based on multimodal representation
learning and data fusion methods.

1) Multimodal Representation Learning-Based Methods:
Aguilar et al. [127] researched MSA from the perspec-
tive of speech and vocabulary, and proposed a method
combining acoustics and vocabulary. When sentiment informa-
tion is transmitted across different domains, domain-specific
expressions should be deleted to reduce domain transfer of
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expression style. Zhang et al. [128] proposed a disentangled
sentiment representation adversarial network (DiSRAN). They
first employed the cross-modal attention layer to obtain the
aligned multimodal joint representation with rich multimodal
semantic interaction, then used the sentiment embedding mod-
ule to separate the sentiment information, and alleviated the
style differences via adversarial training.

2) Multimodal Data Fusion-Based Methods: In early fusion
methods, Wimmer et al. [129] proposed a method to extract
low-level audio and video features at a frame rate that com-
bined video- and audio-based low-level descriptors (LLDs)
to obtain a representative and robust sentiment classification
feature set through functional analysis. The asynchrony of
sentiment patterns and the fuzziness of different modalities
make MSA more complicated. Datcu and Rothkrantz [130]
proposed an MSA method using facial and speech features.
This method used HHM combined with LBP as the visual
feature and MFCC as the speech feature for sentiment classi-
fication.

In late fusion methods, You et al. [131] combined vision
and text to conduct MSA. They fine-tuned CNN to obtain
visual features and used an unsupervised language model to
learn the distributed representation of documents and para-
graphs for MSA. For the problem of redundant information,
Jiang et al. [132] proposed a fine-grained attention mechanism
to interactively learn the cross-modal fusion representation of
visual and text information. Due to the lack of systemati-
cally studied about the matching degree between cross-modal
features at the emotional semantic level, Chen et al. [133]
proposed a multimodal adaptive method for joint SA based
on image—text relevance.

In hybrid fusion methods, Zhu et al. [134] learned the cor-
responding relationship between regions and words from the
text—image pairs, introduced a cross-modal alignment module
based on the cross-modal attention mechanism, and utilized an
adaptive cross-modal gating module to fuse the multimodal
features. To tackle three issues: 1) ignoring the object-level
semantics in images; 2) primarily focusing on aspect—text
and aspect—image interactions; and 3) failing to consider
the semantic gap between text and image representations,
Yu et al. [135] designed a general hierarchical interactive
multimodal transformer (HIMT) model for aspect-based MSA.

D. Trimodal Sentiment Analysis

Trimodal SA aims to merge data from three modalities,
text, video, and audio, to accurately predict sentiment. In this
section, we categorize trimodal SA into multimodal represen-
tation learning and data fusion methods.

1) Multimodal Representation Learning-Based Methods:
Pham et al. [136] proposed an MSA approach that used the
seq2seq model, which performed unsupervised learning on
the joint multimodal representation. The joint representation
method requires all modes as input for representation learning,
which is sensitive to noise or missing modes. Therefore,
Pham et al. [137] explored a new method of joint representa-
tion and proposed a multimodal cyclic transformation network
(MCTN), which learned robust joint multimodal representation
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by the transformation between modes. Because MSA is based
on unified multimodal annotation, existing methods are limited
in capturing different sentiments across modalities. Yu et
al. [138] proposed a label generation module based on self-
supervised learning.

2) Multimodal Data Fusion-Based Methods: In early
fusion methods, Castellano et al. [139] proposed a multimodal
method that integrated the information from facial expressions,
physical activity, gestures, and other information at the feature
level for sentiment classification. Pérez-Rosas et al. [140]
utilized word bags, OpenEAR, and CERT to fuse the features
of text, acoustic, and visual modalities for MSA. Although the
supplement of visual and speech modal information improves
the classification accuracy, the related research [141] found
that the text modality significantly impacts the classifica-
tion results. Poria et al. [142] proposed a multikernel learning
(SPF-GMKL) method to extract features from the text, which
realized the detection of sentiment polarity from short video
clips. On the basis of this work, Poria et al. [143] further
discussed the role of the general framework for MSA and
proposed a convolution neural network that used multiple
kernel learning (MKL) for multimodal emotion recognition
and analysis. Given three challenges of MSA in online
opinion videos, Zadeh et al. [144] constructed a multimodal
opinion-level sentiment intensity (MOSI) dataset that can be
used for sentiment, subjectivity, and multimodal language
research. Previous work is usually based on the assumption
that the utterances in the video are independent of each
other, ignoring the important role of context in identifying the
sentiment of utterance. Therefore, Poria et al. [145] proposed
an attention-based LSTM model for MSA. To combine cues
from different modalities, Chen et al. [146] proposed a gated
multimodal embedding LSTM [GME-LSTM(A)] with time
attention.

In late fusion methods, Wollmer et al. [147] proposed a
decision-level fusion method for analyzing the sentiment of
speakers in online videos. To solve the problem of modal
conflict and redundant information, Majumder et al. [148]
proposed a hierarchical method, which integrated the utterance
feature vectors of different modal combinations. Each view
from multimodal data has its own representation space and
dynamics and contains some knowledge that other views
cannot access. Therefore, to comprehensively and accurately
describe multimodal data, Zadeh et al. [149] proposed a mem-
ory fusion network (MFN) for multiview sequential learning,
which the delta memory attention network (DMAN) was
designed to predict sentiment by fusing specific and cross-
view information. To capture the contribution of different
modalities for MSA, Akhtar et al. [150] proposed a contex-
tual intermodal attention framework based on RNN, which
used multimodal and contextual information to simultane-
ously predict the sentiment and emotion of discourse in
multitask learning. MSA needs to take all modalities as
inputs, and there will be modalities missing in the process
of fusion. Tang et al. [151] proposed a coupled-translation
fusion network (CTFN) that modeled bidirectional interaction
through coupled learning to ensure robustness to missing
modalities. Previous research on MSA focused on modal

fusion and interaction, and had a lack of using the inde-
pendence and correlation between modalities for dynamic
MSA. Han et al. [152] proposed a bibimodal modality fusion
for correlation-controlled MSA. As the classification abil-
ity of each modality is suppressed by single-task learning,
Yang et al. [153] proposed a multimodal framework named
two-phase multitask SA (TPMSA).

In hybrid fusion methods, Zadeh et al. [154] proposed a
multiattention recurrent network (MARN), which used time
clues to enhance the robustness of sentiment prediction.
Although MARN used multiattention blocks to take advantage
of the temporal interaction between modalities, this method
was completely dependent on the attention mechanism so
that it was very difficult to optimize the hyperparameters
of its merged architecture. Verma et al. [155] proposed a
deep higher order sequence fusion for MSA and performed
multimodal fusion by extracting two kinds of contrast infor-
mation from multimodal time series. Similar to the research
of literature [150], Wang et al. [156] believed that not all
modalities play the same role in SA and proposed an end2end
fusion method with a transformer for MSA. Due to the het-
erogeneity of signals leading to the difference in distribution
patterns, Hazarika et al. [157] proposed a modality-invariant
and modality-specific representation for MSA, which learned
the decomposition subspace of each mode and provided better
representation as the input of fusion.

E. Model-Based Multimodal Data Fusion Methods

Traditional multimodal fusion can be divided into early
fusion, late fusion, and hybrid fusion according to the
fusion stages. With the development of deep learning tech-
nology, more and more models apply neural networks to
different fusion stages for feature extraction and fusion.
Therefore, multimodal fusion research can also be divided
into model-agnostic and model-based fusion methods. Model-
agnostic fusion means that the algorithm framework of
multimodal fusion can be applied to any feature extraction
and classification network. The process of modal fusion is
independent of the specific model. The model-based fusion
method is a model structure specially designed for specific
tasks, such as visual question answering and multimodal
dialog.

Zhu et al. [158] proposed a visual question-answering
model with an attention mechanism. Although the attention
mechanism allows attention to the visual content related
to the problem, this simple mechanism is insufficient to
model the complex reasoning features required for visual
question answering or other high-level tasks. Therefore,
Cadene et al. [159] proposed a multimodal relational reason-
ing model (MUREL) for visual question answering. The SA in
the dialog system can help the system to understand the users’
sentiments and produce a sympathetic response. However, the
current work focuses on modeling the speaker and context
information mainly on the text modality or only through
feature connection to use multimodal information. In order
to effectively carry out multimodal information fusion and
capture long-distance context information, Hu et al. [160]
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TABLE V
ANALYSIS AND COMPARISON OF DIFFERENT MULTIMODAL DATA FUSIONS
Structures Advantages Disadvantages Models
Early fusion Powerful ability to capture the interaction between  Redundancy of data and time asynchronous. [129], [130], [139], [140], [142],

different modalities.

[143], [144], [145], [146]

Late fusion Avoids the modal missing and overfitting problem.

Lacks of low-level interaction of multi-modal
data, and more computationally intensive.

[131], [132], [133], [147], [148],
[149], [150], [151], [152], [153]

Hybrid fusion ~ Combines the advantages of early and late fusion.

High computational complexity and difficult
in training.

[134], [135], [154], [155], [156],
[157]

proposed a new multimodal fusion graph convolution network
(MMGCN) to establish edge connections between nodes cor-
responding to realize the interaction of context information.

F. Multimodal Alignment-Based Methods

In addition to the above methods, some studies have
attempted to use multimodal alignment techniques for MSA.
Multimodal alignment technology aims to establish a corre-
spondence between different modalities that the information
from different modalities can be aligned with each other [125].

Truong and Lauw [161] proposed a visual aspect atten-
tion network (VistaNet) that relied on visual information
as alignment for pointing out the important sentences of a
document using attention. To address the challenge of multi-
modal inherent data misalignment, Tsai et al. [162] introduced
the Multimodal Transformer (MulT) to generically address
the above issues in an end-to-end manner without explicitly
aligning the data. As most existing methods mainly rely
on combining the whole image and text while ignoring the
implicit affective regions in the image, Li et al. [163] focused
more on the alignment of multimodal fusion of visual and
textual, and proposed a novel affective region recognition and
fusion network for target-level multimodal sentiment classifi-
cation.

G. Datasets and Performance Summary of Multimodal
Sentiment Analysis

The construction of MSA datasets involves two steps:
data collection and sentiment annotation. Data collection is
generally selected from the network’s movies, reviews, and
videos. Most sentiment labels are manually labeled, and a
small number is self-labeled. This section collects the datasets
used for MSA in recent years according to the publication time
and provides the performance summary of MSA, as shown in
Tables A4 and A9 in the Supplementary Material.

VII. CHATBOTS AND CHATGPT IN SENTIMENT ANALYSIS

With the development of deep learning, researchers are
leveraging SA techniques to empower chatbots with senti-
ment intelligence. Chatbot is a dialog system that interacts
with humans via NLP technologies, and it aims to substitute
human agents in answering questions, giving advice and pro-
viding sentiment support [164]. Ghosh et al. [165] proposed
an LSTM to customize the degree of emotional content in
generated sentences through an additional design parameter

for generating conversational text. Hu et al. [166] designed
a novel tone-aware chatbot that generated toned responses to
user requests on social media. Adikari et al. [167] proposed
an empathic conversational agent framework to detect and
predict patient emotions to improve mental health and well-
being outcomes.

Recently, a new Al-generated content (AIGC) product
named Chat Generative Pre-trained Transformer (ChatGPT)
has demonstrated amazing language understanding, genera-
tion, and knowledge reasoning capabilities [168]. ChatGPT
is associated with chatbots, but it is not equivalent to them.
In the field of SA, the main challenge lies in understanding
semantics and context. Based on LLM, ChatGPT can lever-
age its language understanding and generation capabilities
to assist SA. First, ChatGPT has good abilities of semantic
understanding and knowledge reasoning, and it can help the
model understand the contextual semantics and identify the
sentiment reason to achieve a more accurate SA. Second, due
to ChatGPT based on LLM, it can fine-tune the model on
a large corpus of sentiment data to learn the patterns and
nuances of sentiment expression. There are some LLM-based
models that have been widely applied in SA, such as BERT,
RoBERTa, and GPT-3.5. Xu et al. [169] introduced a review
reading comprehension task and explored a novel posttraining
approach on the popular language model BERT to enhance
the performance of aspect-based SA tasks. Dai et al. [170]
used the fine-tuned RoBERTa (FT-RoBERTa) to compare the
induced trees from PTMs and the dependence parsing trees
on several popular models for the ABSA task and showed
that the FT-RoBERTa outperforms the best performance.
Chen et al. [171] performed a comprehensive experimental
analysis of GPT-3.5 covering nine popular natural language
understanding (NLU) tasks that contained SA. However, Chat-
GPT also has some limitations in SA. For example, it fails to
understand subtle and implicit sentiment expressions, such as
sarcasm. Therefore, we need to combine multimodal informa-
tion to improve the language understanding of ChatGPT for
sentiment judgment.

VIII. CHALLENGES AND FUTURE TRENDS

In recent years, with the rapid development of deep learning,
frameworks based on neural networks have been widely used
in SA. However, there are different issues and challenges of
SA tasks. In this section, we discuss open research challenges
and provide three potential aspects to boost the SA tasks.
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A. Open Research Challenges

SSA has been widely recognized and applied as the most
extensive branch of SA. However, with the rapid development
of internet technology, data are no longer limited to a single
text modality but more in the form of multimodality. SSA fails
to extract full information from multimodal data. As a new
direction in SA, MSA develops rapidly and achieves better
performance compare to SSA. At the same time, the network
data have developed from a single to a diversified presentation,
and MSA is more in line with the actual needs. In this section,
we focus on the challenges of MSA.

1) Multimodal Representation: Good representation is a
prerequisite for MSA. The challenges lie in the following:
how to combine data from different sources, how to deal with
different levels of noise, and how to deal with missing data.

2) Multimodal Fusion: The feature spaces of different
modalities contain rich latent information, but how to fuse
different modal information into a stable multimodal represen-
tation for downstream tasks is challenging. In addition, signals
may not be aligned in time, and each modality shows different
types and levels of noise.

3) Multimodal Alignment: Few datasets display dimension
modal alignment. There may be one-to-one or one-to-many
alignment types, and elements in one modality may not
correspond to another modality.

4) Computational Resource: Training an accurate MSA
model may require a large amount of computing power and
storage resources; how to compress large models into smaller
ones and achieve fast generalization with a small amount of
data is a challenging task.

B. Future Trends

There are four challenges in MSA: multimodal repre-
sentation, multimodal fusion, multimodal alignment, and
computational resources. In this section, four potential aspects
of these challenges are discussed to further improve MSA
tasks.

1) Multimodal Pretraining Model: The first challenge of
MSA is the construction of multimodal representation. The
quality of multimodal representations directly determines the
final performance of the model, and many methods attempt
to construct multimodal representations. However, previous
methods use separately pretrained visual and textual models
that fail to capture the semantic and contextual relation of
different modalities [127], [138]. The multimodal PTMs can
learn the abundant knowledge of multimodal data to capture
the semantic and contextual relation of different modalities
and achieve good results with only a small amount of data
through the learned parameters. Therefore, applying the PTM
is one of the future research perspectives on MSA [172].

2) Framework for Maximum Mutual Information: The sec-
ond challenge of MSA is multimodal data fusion. The previous
studies attempt to fuse different modalities via early fusion,
late fusion, and hybrid fusion [146], [152], [160]. However,
these fusion methods lack control of the information flow
from the original input to the fused embedding resulting
in the loss of essential information and the introduction of

the unexpected noise carried by individual modalities. As a
possible solution, maximum mutual information can remove
redundant information unrelated to downstream tasks and
has excellent effects in capturing cross-domain information.
Therefore, the introduction of maximum mutual information
into multimodal data fusion and the realization of original
information capture and noise removal are worthy of further
research in MSA [173].

3) Cross-Modal Contrastive Learning: The third challenge
of MSA is multimodal alignment. There are some studies
that attempt to model multimodal alignment [161], [162],
[163]. These methods usually utilize the attention mechanism
to achieve multimodal alignment, but these methods fail to
capture the interaction between different modalities resulting
in poor modal alignment. The goal of CL is that all similar
entities are in the adjacent regions of feature space, while all
dissimilar entities are in the nonadjacent regions. Therefore,
cross-modal CL is applied to MSA so that the distance
between paired image text data and feature space is as close
as possible, while the distance between nonpaired image text
data and feature space is as far as possible. It is one of the
future development directions in MSA to realize the semantic
interaction and association of images and texts at different
levels [174].

4) Knowledge Distillation and Few-Shot Learning: The
fourth challenge of MSA is the computational resource. MSA
requires a large number of computational resources to process
a large amount of data and perform complex algorithmic
calculations, and the optimization of MSA algorithms also
requires a large number of computational resources and time.
As a representative type of model compression and acceler-
ation, knowledge distillation (KD) [175] compresses a large
BERT model into a small student model while retaining
the knowledge of the teacher model to reduce storage and
computing costs and accelerate the reasoning processing.
Meanwhile, FSL [176] is capable of learning from a very small
number of samples and can generalize quickly by transforming
and inducing limited information with prior knowledge to
achieve rapid learning. Therefore, on the basis of compress-
ing large models using KD, achieving fast generalization
via annotation-efficient learning is a potential development
direction.

IX. CONCLUSION

SA has attracted significant attention and application in
the past decade, such as public opinion monitoring, esthetic
analysis, and telephone service. This article provides a com-
prehensive survey of the current SA to provide guidance,
reference, or potential insights and inspiration to researchers.

This work first takes the modal type as the thread to summa-
rize and review the SA. We provide a novel framework to give
researchers a more comprehensive understanding. Then, the
workflow, trends, and datasets of SSA are introduced in detail,
such as text, visual, and speech. Second, a new taxonomy
is proposed to divide MSA into multimodal representation
learning and data fusion, and multimodal fusion technologies
and alignment methods are extended. Third, we discuss the
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intelligent chatbots in SA. In addition, the open research chal-
lenges in different sentiment analyses are discussed. Finally,
we introduce future directions, such as using cross-modal
comparative learning to align multimodal data for MSA.

In addition, our research involves relatively little discus-
sion on tasks that contain complex, implicit sentiment, such
as multimodal sarcasm detection and multimodal fake news
detection, which will be one of the future works.
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