
Vol.:(0123456789)1 3

Journal of Signal Processing Systems
https://doi.org/10.1007/s11265-023-01881-9

Application Level Resource Scheduling for Deep Learning Acceleration
on MPSoC

Cong Gao1 · Sangeet Saha1 · Xuqi Zhu1 · Hongyuan Jing2 · Klaus D. McDonald‑Maier1 · Xiaojun Zhai1 

Received: 1 December 2022 / Revised: 21 March 2023 / Accepted: 10 July 2023
© The Author(s) 2023

Abstract
Deep Neutral Networks (DNNs) have been widely used in many applications, such as self-driving cars, natural language
processing (NLP), image classification, visual object recognition, and so on. Field-programmable gate array (FPGA)
based Multiprocessor System on a Chip (MPSoC) is recently considered one of the popular choices for deploying DNN
models. However, the limited resource capacity of MPSoC imposes a challenge for such practical implementation. Recent
studies revealed the trade-off between the “resources consumed" vs. the “performance achieved". Taking a cue from these
findings, we address the problem of efficient implementation of deep learning into the resource-constrained MPSoC in
this paper, where each deep learning network is run with different service levels based on resource usage (where a higher
service level implies higher performance with increased resource consumption). To this end, we propose a heuristic-
based strategy, Application Wise Level Selector (AWLS), for selecting service levels to maximize the overall perfor-
mance subject to a given resource bound. AWLS can achieve higher performance within a constrained resource budget
under various simulation scenarios. Further, we verify the proposed strategy using an AMD-Xilinx Zynq UltraScale+
XCZU9EG SoC. Using a framework designed to deploy multi-DNN on multi-DPUs (Deep Learning Units), it is proved
that an optimal solution is achieved from the algorithm, which obtains the highest performance (Frames Per Second)
using the same resource budget.

Keywords  FPGA · Embedded systems · MPSoC · Deep Neutral networks · Hardware accelerator · Resource schedule strategy

1  Introduction

Deep Neutral Networks (DNN) have been widely used in
image classification and Natural Language Processing
(NLP) applications in the last decade. Due to the complex-
ity of the increased layer interconnections and weights, the
accuracy of new DNN models has been greatly improved.
However, although these models can provide more sophis-
ticated and state-of-the-art accuracy, the run-time cost of
models is also increased significantly.

In a number of fields, including computer vision, bio-
informatics, NLP, and robotics, to name a few, deep learn-
ing has recently become the de facto methodology [1]. Its

success can be attributed to its capacity to draw knowledge
from vast amounts of data. The Internet of Things is another
area well known for producing enormous amounts of data
(IoT). Due to recent developments in the reduction of low-
power embedded devices’ size and advancements in the opti-
mization of machine learning (ML) algorithms, tiny machine
learning (TinyML) is also emerging as a new Internet of
Things (IoT) prospect that calls for putting the ML algorithm
within the IoT device [2].

Traditionally, DNN models are normally deployed on
GPUs and CPUs. However, due to resource constraints
in many IoT devices, one of the widespread approaches
is to implement DNNs on an ASIC (Application-specific
integrated circuit) or an FPGA (field-programmable gate
array). As for ASIC, this usually needs a long develop-
ment cycle and cost for production, and it is unsuitable
for applications that need flexibility. Therefore, to maxi-
mize the flexibility and performance of the application at
run-time, FPGAs are usually a better choice due to their
reconfiguration ability.

 *	 Xiaojun Zhai
	 xzhai@essex.ac.uk

1	 School of Computer Science and Electronic Engineering,
University of Essex, Colchester CO4 3SQ, Essex, UK

2	 Beijing Key Laboratory of Information Service Engineering,
Beijing Union University, Beijing 100101, China

http://orcid.org/0000-0002-1030-8311
http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-023-01881-9&domain=pdf

	 Journal of Signal Processing Systems

1 3

When deploying DNN models on FPGAs, the balance
between performance and run-time cost (such as power
consumption) should be considered. Although FPGAs pro-
vide a swift hardware resource allocation mechanism, the
total hardware resources are limited. Usually, models with
a similar network structure will perform better and cost
more energy if they use more computing and memory units.
However, sometimes, the performance of an embedded
application is a higher priority. In comparison, the power
consumption can be lowered at the cost of some acceptable
accuracy loss.

Many researchers have focused on modifying the network
to achieve high performance with limited resources. Mainly
their objective was to reduce its size by pruning and quan-
tizing. Recently there have been some other approaches to
modifying the network and making models fit a specific
hardware platform: in [3], researchers raise a framework to
train the network with a flexible structure parameter (i.e.
kernel size, depth, width, and channel numbers) and gain a
super-network with 2 × 106 sub-networks contained and by
using the network searching strategy, they can select the best
network under a specific hardware platform; in [4] research-
ers modify the searching algorithm of OFA (once for all) and
raising a dynamic network searching strategy to find a set
of networks based on the accuracy and latency of the OFA
super-network.

Another research direction focuses on hardware/software
co-design and adjusting the hardware/software resources
in a customized way with FPGAs in the design stage. For
example, in [5–8], researchers develop an efficient design
methodology to consider both hardware, software, and DNN
structures in the network design or training stage.

Though FPGAs are becoming a popular choice for DNN
tasks, resource constraints are a common bottleneck. In [9,
10], the authors have assumed that the computing server has
sufficient FPGA resources to extract intermediary features
using deep learning layers. However, these assumptions will
be violated in many real-life cases. For example, in the case
of resource-constrained IoT environment [11], successful
completion of the application is more critical than achiev-
ing the higher performance [11, 12]. Hence, to successfully
execute deep learning in a resource-constrained FPGA-
based system, we consider each deep learning network to be
equipped with multiple distinct implementations represented
by “service levels”. Each implementation can produce the
same result of prediction or classification but with different
performance levels (e.g. Frames Per Second, FPS). A higher
service level normally will return a higher performance but
at a cost of increased resource utilization.

The research findings in [13] support the concept of
distinct service levels for deploying deep learning net-
works. In this work, the authors have found that the mem-
ory requirement of the weight parameters contributes most
to the memory footprint. Furthermore, the research further
proves that a reduced precision in representing 20% weight
parameters results in 1% performance loss. Taking a cue
from these findings, we assumed that depending upon the
availability of the resource budget, each deep learning
network on an FPGA platform executed at a particular
service level can be optimized in order to achieve higher
performance.

In this paper, we propose a strategy for efficiently
implementing deep learning into FPGA-based systems,
where multiple DPUs are used for executing multiple neu-
ral networks on the application level. Further, each DNN
can be executed in different service levels to achieve opti-
mal performance.

We specifically respond to the following query: How
can we guarantee that the multiple DNNs will be effec-
tively executed at a specific service level while maximizing
the overall performance (FPS), given the resource con-
straints of the DPUs in FPGA?. To this end, we proposed
a heuristic-based strategy, Application Wise Level Selec-
tor (AWLS). This scheduling strategy is incorporated and
further verified using a physical FPGA-based hardware/
software co-design framework. This framework is based
on Zynq UltraScale+ XCZU9EG multiprocessor system
on a chip (MPSoC) is used to configure the “service level"
of different DNN applications, and we can also calculate
the overall “performance" and obtain the DPU “resource"
by analyzing the data recorded with this framework. By
providing the “resource" and “performance" of each
DNN model at a different “service level" to the proposed
strategy, it will find out an optimal solution for a multi-
DNN application. It has been observed that the results
obtained from the real frameworks follow a similar trend
as observed in software simulation.

The contributions of this work are summarized as
follows:

•	 Formulating the problem and development of heuristic-
based, namely AWLS, for selecting service levels for
deep learning applications.

•	 Evaluating the proposed heuristic strategy with simu-
lation experiments and comparing it with the optimal
ILP-based technique. As a result, we found that the per-
formance of the proposed heuristic is comparable to that
of ILP.

Journal of Signal Processing Systems	

1 3

•	 Proposing a framework for deploying deep learning
in FPGA-based MPSoC systems with multiple service
levels.

•	 Demonstrating the proof-of-concept of the proposed
strategy by implementing a multi-DNN application on
an MPSoC.

2 � System Model and Problem Definition

2.1 � System Model

We assumed an FPGA-based system, where each FPGA
may contain multiple DPUs. In the given edge com-
puting environment, let us assume that A denotes the
set of N applications (DNNs) executing on the FPGA:
A = {A1,A2,,AN}.

It has been assumed that based on the degree of resources
allocated, each application will be equipped to execute in
different service levels based on the available resources.
Each DNN can only be executed in any one service level
among the possible q service levels i.e., li = {l1

i
, l2
i
,… , l

q

i
} .

Hence, jth service level of Ai can be denoted as lj
i
 . The ser-

vice of a level is proportional to its level ID. Thus, 1 is the
lowest, and q denotes the highest execution level.

It can be concluded that the higher the service lev-
els, the higher its resource consumption will be. This
resource consumption could be in terms of the hardware
resource, e.g. utilization. On the other hand, executing the
network at a high service level will enhance the perfor-
mance level more. This work assumes that higher be the
service level of Aj

i
 , the higher its resource consumption

Res
j

i
 ( lj

i
> l

j′

I
⟹ Res

j

i
> Res

j′

i
 ). Resj

i
 denotes the resource

consumed by Ai while it executes in jth service level [14].
Similarly, we have also assumed that performance perj

i
 will

be assigned to Aj

i
 if the ith the FPGA successfully executes

the deep learning network in jth service level by fulfilling
the resource demand. The overall resource budget R⃗total is
fixed for hardware. The detailed calculation is provided in
Section 2.2. Having the given R⃗total , each application has
to finish the execution of the deep learning network by
selecting a service level.

Table 1 represents all the acronyms and their explana-
tions used in this paper.

2.2 � Mathematical Representation of the Problem

In this section, we will attempt to formalize the proposed
problem based on the system mddel described in the previ-
ous section For this purpose, we define a binary decision
variable: i. Z = {Z

j

i
∶ i = 1, 2, ...,N;j = 1, 2, ..., q . Here,

indices i and j respectively denote applications and corre-
sponding selected service level ID. Zj

i
= 1 , if application Ai

executes in jth service level and obtains Perj
i
 performance

value. Zj

i
= 0 , otherwise.

We now present the required constraints on the decision
variable to model this problem before presenting its overall
objective function.

1.	 Overall resource budget constraint: The complete
amount of resources ( ⃗Rtotal ) in hardware must be used
to execute the deep learning network. This basically
indicates that the total amount of resources used by the
available accelerators shouldn’t exceed the total hard-
ware allocated budget. The following equation imposes
this restriction.

where the Resj
i
 refers to the resource utilization when

application Ai executes in jth service level.
2.	 Unique service level execution constraint: Each applica-

tion will only be allowed to execute the deep learning
network at one certain service level. That is,

(1)
N
∑

i=1

q
∑

j=1

Res
j

i
× Z

j

i
≤ R⃗total

Table 1   Acronyms and their explanations.

Acronym Explanation

DPU Deep Learning Unit
AWLS Application Wise Level Selector
VART​ Vitis AI Run-time
DF Decision Factor
PRP Performance Per Unit Resource
IGF Immediate Gain Factor
OGF Overall Gain Factor
DNN Deep Neural Network

	 Journal of Signal Processing Systems

1 3

3.	 Objective: The objective of the formulation is to choose
a feasible solution that maximizes the overall perfor-
mance of the prediction/testing process through the
appropriate choice of service levels. Hence, the objec-
tive can be written as follows:

3 � AWLS: Application Wise Level Selector
Heuristic

In this section, we propose a heuristic strategy named the Appli-
cation Wise Level Selector (AWLS). It is a fast yet efficient
heuristic strategy that allows resource balance to be restored
quickly through a greedy but elegant approach proceeding level
by level so that higher overall performance can be achieved. It is
observed that, in order to achieve a good result, AWLS must be
aware of the remaining resources at any stage of the algorithm.
Thus, AWLS must be aware of individual performances during
service level enhancements. Along with this, it also needs to
consider the account for the number of incremental resources
required during such level enhancement processes.

In order to achieve this objective, we have transformed
the parameter “performance” to “PPR” (Perfromance Per
Unit Resource) and defined two new factors. The first factor
is termed as IGF (Immediate Gain Factor). IGF defines the
difference in PPR between a current level (l) and the imme-
diate next higher ( l + 1 ) level. Thus, the Immediate Gain
Factor ( IGFi ) for an application Ai can be calculated as:

Similarly, we have defined another factor called OGF
(Overall Gain Factor). OGF defines the difference in PPR
between a current level (l) and the maximum possible ser-
vice level (q). Thus, the Overall Gain Factor ( OGFi ) for Ai
can be calculated as:

(2)
q
∑

j=1

Z
j

i
≤ 1,∀i ∈ [1,N], Z

j

i
∈ {0, 1}

(3)Maximize

N
∑

i=1

q
∑

j=1

Per
j

i
× Z

j

i

(4)IGFi =
Perl+1

i
− Perl

i

Resl+1
i

− Resl
i

Based on these derived factors, AWLS generates a key term
called as “Decision Factor (DF)”. While selecting a level, the
applications are maintained in a max-heap. An application
will be selected for the level up-gradation within the heap,
based on “DF” which is defined for each Ai as follows:

It can be observed that DFi is able to provide an appropri-
ate balance between IGF and OGF.

Implication of Decision Factor (DF)  Let us consider that the
two deep learning networks are currently executing in Ai
and Aj , respectively. Ai is executing in priority level l and Aj
is executing in level l′ . Let us assume based on the selected
level, the internal gain for Ai i.e. IGFi is lower than IGFj ,
i.e. the internal gain for Aj . However on the other hand,
OGFi >> OGFj . In this case, if OGF values are not con-
sidered as a part of the Decision Factor (DF), Aj will be
selected for level upgradation by one over Ai , despite the fact
that the OGFi is much higher than OGFj . In the worst case,
Ai will hardly get the opportunity of level upgradation, in
spite of having high OGFi . Hence, in such typical scenarios,
DF will play an important role.

Working Principle of AWLS  The working strategy of the
AWLS is described as follows. As we can observer, in line
1, AWLS calculates Decision Factor ( DFi ) for all applica-
tions. Based on the calculated DF values, AWLS constructs
a max-heap (ref. line 3). Initially, the service level for all
applications is set to one. As we can observe, from line 7 to
11, AWLS iteratively increments (updates) the service level
for all applications till the max-heap ( H ) is empty. Then
AWLS extracts Ai from the root of the H (Ref. line 8). If
the Increment in Resource (IR) is greater than the available
resource budget ( RES_BGT  ) then Ai is removed from the
max-heap. Otherwise, the AWLS increments its service level
by 1, updates the DF value, and re-cqlculates it in line 12. If
any Ai reaches its highest possible priority level (ref. line 11),
then the application is removed from the max-heap.

(5)OGFi =
Per

q

i
− Perl

i

Res
q

i
− Resl

i

(6)DFi = max(IGFi,OGFi)

Journal of Signal Processing Systems	

1 3

3.1 � AWLS at Work

In this section, we have illustrated the working mechanism
of AWLS through an example for ease of understanding. Let
us assume, there exist three applications,i.e., A1 , A2 , and A3

inside the FPGA. Resource demand (Resj
i
) and correspond-

ing performance perj
i
 value for each service level is provided

in Table 2. We have also assumed that the available overall
resource budget ( RES_BGT  ) is 35.

Table 2   Resource and performance values for each DPU.

A1 A2 A3

Service level Required
resource

Obtained
performance

Service level Required
resource

Obtained
performance

Service level Required
resource

Obtained
perfor-
mance

1 2 12 1 6 2 1 7 4
2 5 13 2 14 9 2 10 6
3 7 16 3 18 16 3 13 8

	 Journal of Signal Processing Systems

1 3

AWLS will begin its operation by calculating the DF value
by Eq. 6. The initial DF values can be calculated as follows:
DF1 = max(

13−12

5−2

16−12

7−2
) = 0.8 , DF2 = max(

9−2

14−6

16−2

18−6
) = 1.16 ,

DF3 = max(
6−4

10−7

8−4

13−7
) = 0.67 . Max-heap H is constructed

using these DF values. A2 has the highest DF value and is
extracted from the heap. RES_BGT is updated as (35 – 14)
= 21 and Curr2

lev
 becomes 2. Now, the DF2 will be re-

calculated as DF2 = max(
16−9

18−14

16−9

18−14
) = 1.75 , and again A2

has the highest DF value. Hence, the IR becomes (18 – 14) = 4
and the condition satisfies the remaining resource becomes
RES_BGT = 17 and Curr2

lev
 becomes 3. A2 is discarded from

further consideration of service level upgradation as reached
it its highest level 3. Now, A1 with the highest DF value
is extracted from the heap and similarly by completing the
iterations, the Curr1

lev
 becomes 3, and the remaining resource

is updated as RES_BGT = 17 − 7 = 10 . It can be observed
that A1 also reached its highest possible level and hence,
discarded from further consideration. The next iterations fol-
low for A3 and the level for the A3 is upgraded accordingly.
AWLS terminates when the heap becomes empty. The total
obtained result is shown in Table 3.

4 � Performance Evaluation of AWLS

The performance of the proposed AWLS has been evalu-
ated using simulation-based experiments. We have also
compared the performance of the proposed heuristic with
the optimal ILP-based strategy. In this current experi-
mental scenario, We have considered that the FPGA can
execute deep learning networks in 5 distinct service lev-
els, and FPGA consists of 2 DPUs, as shown in [15]. The
area consumption and corresponding performance values
have been taken from [16].

4.1 � Results

Experiments have been conducted to evaluate the perfor-
mance of the proposed strategies i.e., ILP-based technique
and AWLS using different performance metrics under vary-
ing scenarios. The performance metrics that have been con-
sidered for the evaluation are:

1.	 Average service level allocated to each server
2.	 Normalized Obtained Performance (NOP), NOP is

defined as the ratio between the ultimately achieved
performance value for all the applications and the maxi-
mum possible achievable performance by executing each
application at its highest service level. Mathematically,
NOP can be formulated as:

(7)
NOP =

∑N

i=1
(
Per

j

i

Per
q

i

)

N
× 100%

Table 3   Outcome: AWLS.

Applications Selected level Obtained
accuracy

A1 3 16
A2 3 16
A3 2 6
Total obtained accuracy 38

Figure 1   Average allocated
level Vs RES_BGT.

Journal of Signal Processing Systems	

1 3

Figure 1 shows the plots for the average levels allocated to
each application by both the strategies i.e. ILP-based strate-
gies and AWLS. As the overall resource budget ( RES_BGT  )
varies from 40% to 100% of the total available resource
budget. It may be observed from the figure that the aver-
age level allocated to each application increases with the
increasing available overall resource budget. This is because
the average resource that may be utilized by an application
increases as the total available overall increases.

Although the trends for both the allocation strategies in
Fig. 1 are mostly similar, AWLS is seen to allocate slightly

lower average levels than ILP-based techniques in all the sce-
narios. However, this difference in performance decreases
with the increase in resources. Hence, the performance of both
strategies becomes comparable when there exists an adequate
amount of resources. This could be attributed to the fact that
as the individual resource increases, the difference between
the values of IGF and OGF also increases. Hence, DF plays a
significant role in level selection. Thus, AWLS takes judicious
level selection decisions that are close to the optimal.

Figure 2 depicts the plot for NOP achieved by both
the strategies, as the overall resource budget ( RES_BGT  )
varies from 40% to 100% of the total available resource
budget. It may be observed from the figure that the aggre-
gate NOP obtained by both the strategies increase with
increasing available RES_BGT  . This is because the NOP
obtained by the strategy is directly proportional to the
achieved service levels of each application and therefore,
obtained levels increase with the available resource budget
(as shown in Fig. 1). Additionally, it may be observed
from the figure that as the difference between available
resources decreases, the performance difference between
both strategies is negligible.

5 � Implementation of the Proposed Framework

To further verify the proposed strategy, we implemented a
framework using a ZCU104 development board equipped
with a Zynq UltraScale+ XCZU9EG MPSoC. In our pre-
vious work, a video analysis system is designed using the
proposed framework in [17], and in this paper, we further
explore the resource scheduling algorithms to achieve
optimal performance.

Figure 2   NOP Vs RES_BGT.

Trained Networks (Pytorch/Tensorflow)

Vitis AI (Quantizer & Compiler)

XModel1 XModel2 XModel3 XModeln...

ARM FPGA

Data Streams Hardware Accelerators

DPU IP CORE

VItis AI Run-time (VART)

Applications (C++/Python)

Figure 3   Overview of the proposed framework.

	 Journal of Signal Processing Systems

1 3

AMD-Xilinx DPU IP module and Vitis-AI library are
used [18, 19] in this framework. Figure 3 shows the over-
view of the framework diagram. We will now discuss the
different components of the proposed framework.

5.1 � Vitis AI Run‑time (VART)

Vitis AI Runtime (VART) is a part of Vitis-AI software
that enables the applications to interact with the hardware
by calling the unified high-level API. VART offers asyn-
chronous submission and collection of jobs to the accel-
erator and supports multi-threading, and multi-process
execution [19].

5.2 � DPU (Deep Learning Unit)

DPU is an AMD-Xilinx hardware IP core, which can support
DNN instructions that are compiled from conventional DNN
development frameworks (e.g. PyTorch, TensorFlow, etc.)
using the Vitis-AI toolchain.

There are eight different DPU architectures in the Vitis-
AI library, where each architecture is configured according

to the three dimensions of parallelism: pixel parallelism
(PP), input channel parallelism (ICP), and output channel
parallelism (OCP).

Figure 4 shows an example of each of the three dimen-
sions. For instance, pixel parallelism (PP) is 2, and input
channel parallelism and output channel parallelism are equal
to 3. Due to the nature of the calculation, the input channel
parallelism is always similar to the output channel parallel-
ism. In general, the larger DPU architectures can achieve
better throughput than the smaller DPUs at the cost of more
hardware resources. Table 4 lists all DPU architecture and
their parallelism parameter configurations.

5.3 � Proposed Framework

To implement the framework, there are two parts to handle,
the hardware designed on the PL (Programmable Logic)/
FPGA part and the Linux system designed on the PS (Pro-
cessing System)/CPU part. A DFX (Dynamic Function
exchange) hardware platform is designed with the DPU
IP, and the DPU is set into a special reconfigure area to
enable real-time partial reconfiguration. The hardware
platform will be exported into AMD-Xilinx official Linux-
system design tools, Petalinux, and with the help of that,
an embedded Linux system with a configurable hardware
setting is created. On this system, we can access the DPUs
and send tasks to them via VART, so various DNN model-
based applications can be designed and tested on the board.
DNN model-based applications run both on ARM-based
CPUs and the DPUs accelerators on FPGAs. As can be seen
in Fig. 5, The CPU and FPGAs are physically connected
through high-speed AXI (Advanced eXtensible Interface)
protocol, which enables high bandwidth data movements
between hardware and software. For example, the instruc-
tion fetch unit in the DPU will fetch the instructions of the
DNN models through VART and XRT (i.e. Xilinx runtime),

Figure 4   An example of DPU
internal arithmetic operation
flow.

Table 4   DPU Configurations.

DPU architecture PP ICP OCP Peak operations

B512 4 8 8 512
B800 4 10 10 800
B1024 8 8 8 1024
B1152 4 12 12 1152
B1600 8 10 10 1600
B2304 8 12 12 2304
B3136 8 14 14 3136
B4096 8 16 16 4096

Journal of Signal Processing Systems	

1 3

and then the sequence of instructions will be loaded from
DDR memory to the computing unit of DPUs. A DPU
“Instruction" is a basic operator for the DPU arithmetic
calculation, such as a “convolution operation" which is a
sequence of instructions to perform a convolution operation.
In the proposed framework, 2 DPU IP cores are configured
to run different DNN models for image classification appli-
cations. The three DNN models are compiled into different
arithmetic operations, the two DPUs will then process them
in the order.

6 � Exhibition of the Proof‑of‑Concept

Before presenting our proof-of-concept study, we revisit
the problem description from a physical implementation
perspective. We have several different DNN-based models
running on various service levels. A single application on
a higher service level will cost more DPU utilization, and
the individual cost is varied on the scales of the deployed
DNN models. Our goal is to fully use the DPU resources
to achieve optimal running performance.

Figure 5   Proposed Zynq-based
MPSOC framework.

Application

1

Application

2

Application

3

Application

N

DPU 1

DPU 2

DPU 3

DPU N

XModel A

XModel B

XModel C

XModel N

ZYNQ MPSOC

ARM CPU FPGA

Vitis-AI API

VART & XRT

AXI

Instruments

Figure 6   DPU utilization in the benchmark test.

	 Journal of Signal Processing Systems

1 3

A number of onboard tests are designed to verify the
proposed strategy, and the proposed DNN-based multi-
application framework is implemented using an AMD-
Xilinx ZCU104 development board. In the test, we test
three different DNN models for image classification appli-
cations (e.g. Resnet50, Resnet18, and Mobilenet), and then
the system metrics in real-time are recorded accordingly,
which includes the FPS of each application, peak GOP
(Giga [billion] Operations Per Second) of DPU, and total
time consumption. The following sections introduce the
details of the experiment and the definitions of “service
level", “resource," and “performance" in the experiments
carried out on the physical FPGA.

6.1 � Representation of “Service Levels"

In the proposed experiment, the number of threads is chosen
to represent the different service levels. The experiment
aims to classify images, and multi-thread enables it to pro-
cess multiple images simultaneously. While applications
run with multi-threads, the quad-core (ARM Cortex™-A53)
will be able to send more image data to the DPUs simul-
taneously, thus more DPU utilization will be allocated. To
highlight the difference in performances at each service
level, the following equation is used to describe the thread
and service level:

(8)Thread = 2ServiceLevel−1

6.2 � Representation of “Resource" in MPSoC

The DPU utilization is used to represent the notion of resources
for physical MPSoC. First, a DPU performance benchmark is
proposed to use the DPU resource fully. The benchmark will
generate synthetic data and keep DPUs utilization full all the
time, as it is shown in Fig. 6, DPU is processing CONV opera-
tion all the time. Second, a DL-based image classification appli-
cation is used in the test, where different threads (e.g. threads
1-8) are used for the testing. In this case, DPUs have some idle
time due to waiting for the new data from the CPU, therefore,
there exists a gap between two basic DPU operations (CONV)
and the total utilization of the DPU is less than 100%. For
instance, Fig. 7 shows a comparison of DPU utilization between
two threads and four threads settings. In the same period of time,
it processes only 6 “CONV" operations when the application
runs in 2 threads and processes 8 when runs in 4 threads.

The GOP is considered to describe a proper “resource"
value. We choose the average GOP in the time scale (GOP/s)
as a standard unit for utilization of DPUs and consider the
average GOP in the benchmark as 100% used DPU resource.
In order to obtain the resource usage in different service
levels with various DNN models, we compare the average
GOP in a DL image classification task with the benchmark
results respectively.

Thus we obtain all the “resource" values with three DNN
models at different service levels presented in Table 5.

Table 5   Resource and
performance values for each
Application.

A1(Resnet50) A2(Resnet18) A3(Mobilenet)

Service level Required
resource

Score Service level Required
resource

Score Service level Required
resource

Score

1 133 20 1 79 23 1 14 23
2 140 21 2 88 24 2 15 24
3 166 24 3 89 25 3 15 25
4 167 24 4 88 24 4 15 24

Figure 7   DPU utilization in the application tests with different threads.

Journal of Signal Processing Systems	

1 3

6.3 � Representation of the “Performance"
in Experiment

To define the actual onboard performance for each service
level. In the proposed experiment, FPS is used as the main
performance metric. The equation below explains how the
FPS is calculated, where I denotes the number of images
processed in each thread, T denotes the total number of
threads used, and P denotes the total time consumption.

6.4 � Result and Analysis

After processing the data in the experiment, we calculate
the optimal result using both ILP and AWLS (RES_BGT =
260) algorithms, and the result is the same as the simulation,
see Table 7.

An image classification application with three different
DNNs models is designed in the proposed framework to

(9)FPS =
I × T

P

verify the result given by the proposed scheduling strategy.
In this experiment, we test three different DNN combina-
tions with various service levels at runtime. Then we meas-
ure the performance to verify whether the output combi-
nation selected by the proposed scheduling strategy can
achieve the best result.

As per Table 6, Combination-A of the strategy is set at
D1, D2, and D3 on service-level 3, 1, and 3, respectively. We
also set the other two combinations according to the resource
budget. For example, combination-B is set at D1, D2, and
D3 on service-level 1, 3, and 3, respectively. Combination-
C is set at D1, D2, and D3 on service levels 2,3, and 2,
respectively.

Figure 8, illustrates that combination-A (chosen by the
proposed strategy) obtains the highest score compared to
combination-B and combination-C. At the same time, the
recourse budget (RES_BGT = 260) remains the same as
we can observe, combination A that various deep learning
model is running at different service level. While another
interesting observation can be drawn from this figure,
i.e., though combination B obtains less score, its resource

Table 6   Applications scheduling solution suggested by AWLS.

Service level

Combination Resnet50 Resnet18 Mobilenet

A 3 1 3
B 1 3 3
C 2 3 2

Figure 8   Comparison with dif-
ferent DNN combinations.

Table 7   Outcome: Heuristic
AWLS & ILP.

Deep
learning
network

Selected
level

Obtained
score

D1 3 24
D2 1 23
D3 3 25
Total obtained per-

formance
72

	 Journal of Signal Processing Systems

1 3

consumption is significantly less. Thus, it exhibits the effi-
cacy of our proposed idea of "service levels". In case of
stringent resource constraints, our strategy will be able to
select a different combination of deep learning models with
less difference in score.

It is to be noted that the performance on the physical
test bed for multi-application does not match the “score"
obtained by the algorithm (AWLS). This is mainly due
to the fact that we set FPS to describe the performance,
and there is not a simple linear relationship with the FPS
while deploying multi-DNNs. The algorithm can guide us
to arrange the optimal combination for the applications but
can not predict the output FPS (see Table 7).

7 � Conclusion

This work introduces a new concept of efficient imple-
mentation of deep learning with multiple service lev-
els for FPGAs. The problem has been formulated as an
optimization problem where each DNN can be executed
with different service levels by exhibiting performance
Vs. Resource trade-offs. A heuristic strategy (AWLS) has
been proposed to maximize overall performance without
violating resource constraints. Then a proof of the concept
for the proposed strategy using a Xilinx ZCU104 develop-
ment board is presented, and then a set of tests is designed
to discuss the DPU resource allocation mechanism and
define the onboard concept of “service level", “resource,"
and “performance" raised in the strategy. Finally, with a
framework designed to deploy the multi-DNN application,
the proposed solution can achieve the highest performance
(FPS) using the same resource budget. Our future work will
consider using the different DPU architectures and frequen-
cies. Our final goal is to establish an adaptive system where
DNN models and hardware resource utilization can be re-
configured at runtime using a real-time scheduling strategy.

Author Contributions  CG and SS collected data and performed most
analyses and experiments as well as drafted the manuscript. XQZ
performed some analysis and summarised the conclusion. XJZ, HJ,
KDM, and SS conducted to review and editing and provided critical
contributions to the manuscript. All authors have read and agreed to
the published version of the manuscript.

Funding  This work is supported by the UK Engineering and Physi-
cal Sciences Research Council through grants EP/R02572X/1, EP/
V034111/1, EP/V000462/1, EP/X015955/1, and EP/P017487/1.

Data Availability  Not Applicable.

Declarations 

Ethics Approval  Not Applicable.

Conflict of Interest  The authors declare that they have no known com-
peting financial interests or personal relationships that could have ap-
peared to influence the work reported in this paper.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning.
MIT press.

	 2.	 Dutta, L., & Bharali, S. (2021). TinyML meets IoT: A compre-
hensive survey. Internet of Things, 16, 100461.

	 3.	 Cai, H., Gan, C., Wang, T., Zhang, Z., & Han, S. (2019). Once-for-
all: Train one network and specialize it for efficient deployment.
Preprint retrieved from http://​arxiv.​org/​abs/​1908.​09791

	 4.	 Lou, W., Xun, L., Sabet, A., Bi, J., Hare, J., & Merrett, G. V.
(2021). Dynamic-OFA: Runtime DNN architecture switching for
performance scaling on heterogeneous embedded platforms. In
Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (pp. 3110–3118).

	 5.	 Korol, G., Jordan, M. G., Rutzig, M. B., & Beck, A. C. S. (2022).
AdaFlow: A framework for adaptive dataflow CNN acceleration
on FPGAs. In 2022 Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE) (pp. 244–249). IEEE.

	 6.	 Wang, Z., Xu, K., Wu, S., Liu, L., Liu, L., & Wang, D. (2020).
Sparse-YOLO: Hardware/software co-design of an FPGA accel-
erator for YOLOv2. IEEE Access, 8, 116569–116585.

	 7.	 Hao, C., Zhang, X., Li, Y., Huang, S., Xiong, J., Rupnow, K., Hwu,
W-M., & Chen, D. (2019). FPGA/DNN co-design: An efficient
design methodology for 1ot intelligence on the edge. In 2019 56th
ACM/IEEE Design Automation Conference (DAC) (pp. 1–6). IEEE.

	 8.	 Lu, Y., Zhai, X., Saha, S., Ehsan, S., & McDonald-Maier, K. D.
(2022). A self-adaptive SEU mitigation scheme for embedded sys-
tems in extreme radiation environments. IEEE Systems Journal.

	 9.	 Li, H., Ota, K., & Dong, M. (2018). Learning IoT in edge: Deep
learning for the internet of things with edge computing. IEEE
Network, 32(1), 96–101.

	10.	 Liu, C., Cao, Y., Luo, Y., Chen, G., Vokkarane, V., Yunsheng,
M., Chen, S., & Hou, P. (2017). A new deep learning-based food
recognition system for dietary assessment on an edge computing
service infrastructure. IEEE Transactions on Services Computing,
11(2), 249–261.

	11.	 Wang, S., Tuor, T., Salonidis, T., Leung, K. K., Makaya, C., He,
T., & Chan, K. (2019). Adaptive federated learning in resource
constrained edge computing systems. IEEE Journal on Selected
Areas in Communications, 37(6), 1205–1221.

	12.	 Mohammadi, M., Al-Fuqaha, A., Sorour, S., & Guizani, M.
(2018). Deep learning for IoT big data and streaming analytics:
A survey. IEEE Communications Surveys & Tutorials, 20(4),
2923–2960.

	13.	 Deng, Z., Xu, C., Cai, Q., & Faraboschi, P. (2015). Reduced-
precision memory value approximation for deep learning. Hewlett
Packard Labs, HPL-2015-100.

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1908.09791

Journal of Signal Processing Systems	

1 3

	14.	 Gao, C., Saha, S., Lu, Y., Saha, R., McDonald-Maier, K. D., &
Zhai, X. (2022). Deep learning on FPGAs with multiple service
levels for edge computing. In 2022 27th International Conference
on Automation and Computing (ICAC) (pp. 1–6). IEEE.

	15.	 Goel, S., Kedia, R., Balakrishnan, M., & Sen, R. (2020). Infer:
Interference-aware estimation of runtime for concurrent CNN
execution on DPUS. In 2020 International Conference on Field-
Programmable Technology (ICFPT) (pp. 66–71). IEEE.

	16.	 Lin, G-Z., Nguyen, H. M., Sun, C-C., Kuo, P-Y., & Sheu, M-H.
(2021). A novel bird detection and identification based on DPU
processor on PYNQ FPGA. In 2021 IEEE International Conference
on Consumer Electronics-Taiwan (ICCE-TW) (pp. 1–2). IEEE.

	17.	 Lu, Y., Gao, C., Saha, R., Saha, S., McDonald-Maier, K. D., &
Zhai, X. (2022) FPGA-based dynamic deep learning acceleration

for real-time video analytics. In 35th GI/ITG International Confer-
ence on Architecture of Computing Systems. IEEE.

	18.	 AMD-Xilinx. (2022). DPUCZDX8G for zynq ultrascale+ MPSoCs
product guide (pg338). Retrieved August 2022, from https://​docs.​
xilinx.​com/r/​en-​US/​pg338-​dpu/​reg_​dpu_​isr

	19.	 AMD-Xilinx. (2022). Xilinx Vitis-ai 2.5 release. Retrieved August
2022, from https://​docs.​xilinx.​com/r/​en-​US/​ug1414-​vitis-​ai

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://docs.xilinx.com/r/en-US/pg338-dpu/reg_dpu_isr
https://docs.xilinx.com/r/en-US/pg338-dpu/reg_dpu_isr
https://docs.xilinx.com/r/en-US/ug1414-vitis-ai

	Application Level Resource Scheduling for Deep Learning Acceleration on MPSoC
	Abstract
	1 Introduction
	2 System Model and Problem Definition
	2.1 System Model
	2.2 Mathematical Representation of the Problem

	3 AWLS: Application Wise Level Selector Heuristic
	3.1 AWLS at Work

	4 Performance Evaluation of AWLS
	4.1 Results

	5 Implementation of the Proposed Framework
	5.1 Vitis AI Run-time (VART)
	5.2 DPU (Deep Learning Unit)
	5.3 Proposed Framework

	6 Exhibition of the Proof-of-Concept
	6.1 Representation of “Service Levels"
	6.2 Representation of “Resource" in MPSoC
	6.3 Representation of the “Performance" in Experiment
	6.4 Result and Analysis

	7 Conclusion
	References

