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Abstract
Deep Neutral Networks (DNNs) have been widely used in many applications, such as self-driving cars, natural language 
processing (NLP), image classification, visual object recognition, and so on. Field-programmable gate array (FPGA) 
based Multiprocessor System on a Chip (MPSoC) is recently considered one of the popular choices for deploying DNN 
models. However, the limited resource capacity of MPSoC imposes a challenge for such practical implementation. Recent 
studies revealed the trade-off between the “resources consumed" vs. the “performance achieved". Taking a cue from these 
findings, we address the problem of efficient implementation of deep learning into the resource-constrained MPSoC in 
this paper, where each deep learning network is run with different service levels based on resource usage (where a higher 
service level implies higher performance with increased resource consumption). To this end, we propose a heuristic-
based strategy, Application Wise Level Selector (AWLS), for selecting service levels to maximize the overall perfor-
mance subject to a given resource bound. AWLS can achieve higher performance within a constrained resource budget 
under various simulation scenarios. Further, we verify the proposed strategy using an AMD-Xilinx Zynq UltraScale+ 
XCZU9EG SoC. Using a framework designed to deploy multi-DNN on multi-DPUs (Deep Learning Units), it is proved 
that an optimal solution is achieved from the algorithm, which obtains the highest performance (Frames Per Second) 
using the same resource budget.

Keywords  FPGA · Embedded systems · MPSoC · Deep Neutral networks · Hardware accelerator · Resource schedule strategy

1  Introduction

Deep Neutral Networks (DNN) have been widely used in 
image classification and Natural Language Processing 
(NLP) applications in the last decade. Due to the complex-
ity of the increased layer interconnections and weights, the 
accuracy of new DNN models has been greatly improved. 
However, although these models can provide more sophis-
ticated and state-of-the-art accuracy, the run-time cost of 
models is also increased significantly.

In a number of fields, including computer vision, bio-
informatics, NLP, and robotics, to name a few, deep learn-
ing has recently become the de facto methodology [1]. Its 

success can be attributed to its capacity to draw knowledge 
from vast amounts of data. The Internet of Things is another 
area well known for producing enormous amounts of data 
(IoT). Due to recent developments in the reduction of low-
power embedded devices’ size and advancements in the opti-
mization of machine learning (ML) algorithms, tiny machine 
learning (TinyML) is also emerging as a new Internet of 
Things (IoT) prospect that calls for putting the ML algorithm 
within the IoT device  [2].

Traditionally, DNN models are normally deployed on 
GPUs and CPUs. However, due to resource constraints 
in many IoT devices, one of the widespread approaches 
is to implement DNNs on an ASIC (Application-specific 
integrated circuit) or an FPGA (field-programmable gate 
array). As for ASIC, this usually needs a long develop-
ment cycle and cost for production, and it is unsuitable 
for applications that need flexibility. Therefore, to maxi-
mize the flexibility and performance of the application at 
run-time, FPGAs are usually a better choice due to their 
reconfiguration ability.
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When deploying DNN models on FPGAs, the balance 
between performance and run-time cost (such as power 
consumption) should be considered. Although FPGAs pro-
vide a swift hardware resource allocation mechanism, the 
total hardware resources are limited. Usually, models with 
a similar network structure will perform better and cost 
more energy if they use more computing and memory units. 
However, sometimes, the performance of an embedded 
application is a higher priority. In comparison, the power 
consumption can be lowered at the cost of some acceptable 
accuracy loss.

Many researchers have focused on modifying the network 
to achieve high performance with limited resources. Mainly 
their objective was to reduce its size by pruning and quan-
tizing. Recently there have been some other approaches to 
modifying the network and making models fit a specific 
hardware platform: in [3], researchers raise a framework to 
train the network with a flexible structure parameter (i.e. 
kernel size, depth, width, and channel numbers) and gain a 
super-network with 2 × 106 sub-networks contained and by 
using the network searching strategy, they can select the best 
network under a specific hardware platform; in [4] research-
ers modify the searching algorithm of OFA (once for all) and 
raising a dynamic network searching strategy to find a set 
of networks based on the accuracy and latency of the OFA 
super-network.

Another research direction focuses on hardware/software 
co-design and adjusting the hardware/software resources 
in a customized way with FPGAs in the design stage. For 
example, in [5–8], researchers develop an efficient design 
methodology to consider both hardware, software, and DNN 
structures in the network design or training stage.

Though FPGAs are becoming a popular choice for DNN 
tasks, resource constraints are a common bottleneck. In [9, 
10], the authors have assumed that the computing server has 
sufficient FPGA resources to extract intermediary features 
using deep learning layers. However, these assumptions will 
be violated in many real-life cases. For example, in the case 
of resource-constrained IoT environment [11], successful 
completion of the application is more critical than achiev-
ing the higher performance [11, 12]. Hence, to successfully 
execute deep learning in a resource-constrained FPGA-
based system, we consider each deep learning network to be 
equipped with multiple distinct implementations represented 
by “service levels”. Each implementation can produce the 
same result of prediction or classification but with different 
performance levels (e.g. Frames Per Second, FPS). A higher 
service level normally will return a higher performance but 
at a cost of increased resource utilization.

The research findings in [13] support the concept of 
distinct service levels for deploying deep learning net-
works. In this work, the authors have found that the mem-
ory requirement of the weight parameters contributes most 
to the memory footprint. Furthermore, the research further 
proves that a reduced precision in representing 20% weight 
parameters results in 1% performance loss. Taking a cue 
from these findings, we assumed that depending upon the 
availability of the resource budget, each deep learning 
network on an FPGA platform executed at a particular 
service level can be optimized in order to achieve higher 
performance.

In this paper, we propose a strategy for efficiently 
implementing deep learning into FPGA-based systems, 
where multiple DPUs are used for executing multiple neu-
ral networks on the application level. Further, each DNN 
can be executed in different service levels to achieve opti-
mal performance.

We specifically respond to the following query: How 
can we guarantee that the multiple DNNs will be effec-
tively executed at a specific service level while maximizing 
the overall performance (FPS), given the resource con-
straints of the DPUs in FPGA?. To this end, we proposed 
a heuristic-based strategy, Application Wise Level Selec-
tor (AWLS). This scheduling strategy is incorporated and 
further verified using a physical FPGA-based hardware/
software co-design framework. This framework is based 
on Zynq UltraScale+ XCZU9EG multiprocessor system 
on a chip (MPSoC) is used to configure the “service level" 
of different DNN applications, and we can also calculate 
the overall “performance" and obtain the DPU “resource" 
by analyzing the data recorded with this framework. By 
providing the “resource" and “performance" of each 
DNN model at a different “service level" to the proposed 
strategy, it will find out an optimal solution for a multi-
DNN application. It has been observed that the results 
obtained from the real frameworks follow a similar trend 
as observed in software simulation.

The contributions of this work are summarized as 
follows:

•	 Formulating the problem and development of heuristic-
based, namely AWLS, for selecting service levels for 
deep learning applications.

•	 Evaluating the proposed heuristic strategy with simu-
lation experiments and comparing it with the optimal 
ILP-based technique. As a result, we found that the per-
formance of the proposed heuristic is comparable to that 
of ILP.
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•	 Proposing a framework for deploying deep learning 
in FPGA-based MPSoC systems with multiple service 
levels.

•	 Demonstrating the proof-of-concept of the proposed 
strategy by implementing a multi-DNN application on 
an MPSoC.

2 � System Model and Problem Definition

2.1 � System Model

We assumed an FPGA-based system, where each FPGA 
may contain multiple DPUs. In the given edge com-
puting environment, let us assume that A denotes the 
set of N applications (DNNs) executing on the FPGA: 
A = {A1,A2, ....,AN}.

It has been assumed that based on the degree of resources 
allocated, each application will be equipped to execute in 
different service levels based on the available resources. 
Each DNN can only be executed in any one service level 
among the possible q service levels i.e., li = {l1

i
, l2
i
,… , l

q

i
} . 

Hence, jth service level of Ai can be denoted as lj
i
 . The ser-

vice of a level is proportional to its level ID. Thus, 1 is the 
lowest, and q denotes the highest execution level.

It can be concluded that the higher the service lev-
els, the higher its resource consumption will be. This 
resource consumption could be in terms of the hardware 
resource, e.g. utilization. On the other hand, executing the 
network at a high service level will enhance the perfor-
mance level more. This work assumes that higher be the 
service level of Aj

i
 , the higher its resource consumption 

Res
j

i
 ( lj

i
> l

j′

I
⟹ Res

j

i
> Res

j′

i
 ). Resj

i
 denotes the resource 

consumed by Ai while it executes in jth service level [14]. 
Similarly, we have also assumed that performance perj

i
 will 

be assigned to Aj

i
 if the ith the FPGA successfully executes 

the deep learning network in jth service level by fulfilling 
the resource demand. The overall resource budget R⃗total is 
fixed for hardware. The detailed calculation is provided in 
Section 2.2. Having the given R⃗total , each application has 
to finish the execution of the deep learning network by 
selecting a service level.

Table 1 represents all the acronyms and their explana-
tions used in this paper.

2.2 � Mathematical Representation of the Problem

In this section, we will attempt to formalize the proposed 
problem based on the system mddel described in the previ-
ous section For this purpose, we define a binary decision 
variable: i. Z = {Z

j

i
∶ i = 1, 2, ...,N;j = 1, 2, ..., q . Here, 

indices i and j respectively denote applications and corre-
sponding selected service level ID. Zj

i
= 1 , if application Ai 

executes in jth service level and obtains Perj
i
 performance 

value. Zj

i
= 0 , otherwise.

We now present the required constraints on the decision 
variable to model this problem before presenting its overall 
objective function. 

1.	 Overall resource budget constraint: The complete 
amount of resources ( ⃗Rtotal ) in hardware must be used 
to execute the deep learning network. This basically 
indicates that the total amount of resources used by the 
available accelerators shouldn’t exceed the total hard-
ware allocated budget. The following equation imposes 
this restriction. 

where the Resj
i
 refers to the resource utilization when 

application Ai executes in jth service level.
2.	 Unique service level execution constraint: Each applica-

tion will only be allowed to execute the deep learning 
network at one certain service level. That is, 

(1)
N
∑

i=1

q
∑

j=1

Res
j

i
× Z

j

i
≤ R⃗total

Table 1   Acronyms and their explanations.

Acronym Explanation

DPU Deep Learning Unit
AWLS Application Wise Level Selector
VART​ Vitis AI Run-time
DF Decision Factor
PRP Performance Per Unit Resource
IGF Immediate Gain Factor
OGF Overall Gain Factor
DNN Deep Neural Network
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3.	 Objective: The objective of the formulation is to choose 
a feasible solution that maximizes the overall perfor-
mance of the prediction/testing process through the 
appropriate choice of service levels. Hence, the objec-
tive can be written as follows: 

3 � AWLS: Application Wise Level Selector 
Heuristic

In this section, we propose a heuristic strategy named the Appli-
cation Wise Level Selector (AWLS). It is a fast yet efficient 
heuristic strategy that allows resource balance to be restored 
quickly through a greedy but elegant approach proceeding level 
by level so that higher overall performance can be achieved. It is 
observed that, in order to achieve a good result, AWLS must be 
aware of the remaining resources at any stage of the algorithm. 
Thus, AWLS must be aware of individual performances during 
service level enhancements. Along with this, it also needs to 
consider the account for the number of incremental resources 
required during such level enhancement processes.

In order to achieve this objective, we have transformed 
the parameter “performance” to “PPR” (Perfromance Per 
Unit Resource) and defined two new factors. The first factor 
is termed as IGF (Immediate Gain Factor). IGF defines the 
difference in PPR between a current level (l) and the imme-
diate next higher ( l + 1 ) level. Thus, the Immediate Gain 
Factor ( IGFi ) for an application Ai can be calculated as:

Similarly, we have defined another factor called OGF 
(Overall Gain Factor). OGF defines the difference in PPR 
between a current level (l) and the maximum possible ser-
vice level (q). Thus, the Overall Gain Factor ( OGFi ) for Ai 
can be calculated as:

(2)
q
∑

j=1

Z
j

i
≤ 1,∀i ∈ [1,N], Z

j

i
∈ {0, 1}

(3)Maximize

N
∑

i=1

q
∑

j=1

Per
j

i
× Z

j

i

(4)IGFi =
Perl+1

i
− Perl

i

Resl+1
i

− Resl
i

Based on these derived factors, AWLS generates a key term 
called as “Decision Factor (DF)”. While selecting a level, the 
applications are maintained in a max-heap. An application 
will be selected for the level up-gradation within the heap, 
based on “DF” which is defined for each Ai as follows:

It can be observed that DFi is able to provide an appropri-
ate balance between IGF and OGF.

Implication of Decision Factor (DF)  Let us consider that the 
two deep learning networks are currently executing in Ai 
and Aj , respectively. Ai is executing in priority level l and Aj 
is executing in level l′ . Let us assume based on the selected 
level, the internal gain for Ai i.e. IGFi is lower than IGFj , 
i.e. the internal gain for Aj . However on the other hand, 
OGFi >> OGFj . In this case, if OGF values are not con-
sidered as a part of the Decision Factor (DF), Aj will be 
selected for level upgradation by one over Ai , despite the fact 
that the OGFi is much higher than OGFj . In the worst case, 
Ai will hardly get the opportunity of level upgradation, in 
spite of having high OGFi . Hence, in such typical scenarios, 
DF will play an important role.

Working Principle of AWLS  The working strategy of the 
AWLS is described as follows. As we can observer, in line 
1, AWLS calculates Decision Factor ( DFi ) for all applica-
tions. Based on the calculated DF values, AWLS constructs 
a max-heap (ref. line 3). Initially, the service level for all 
applications is set to one. As we can observe, from line 7 to 
11, AWLS iteratively increments (updates) the service level 
for all applications till the max-heap ( H ) is empty. Then 
AWLS extracts Ai from the root of the H (Ref. line 8). If 
the Increment in Resource (IR) is greater than the available 
resource budget ( RES_BGT  ) then Ai is removed from the 
max-heap. Otherwise, the AWLS increments its service level 
by 1, updates the DF value, and re-cqlculates it in line 12. If 
any Ai reaches its highest possible priority level (ref. line 11), 
then the application is removed from the max-heap.

(5)OGFi =
Per

q

i
− Perl

i

Res
q

i
− Resl

i

(6)DFi = max(IGFi,OGFi)
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3.1 � AWLS at Work

In this section, we have illustrated the working mechanism 
of AWLS through an example for ease of understanding. Let 
us assume, there exist three applications,i.e., A1 , A2 , and A3 

inside the FPGA. Resource demand (Resj
i
) and correspond-

ing performance perj
i
 value for each service level is provided 

in Table 2. We have also assumed that the available overall 
resource budget ( RES_BGT  ) is 35.

Table 2   Resource and performance values for each DPU.

A1 A2 A3

Service level Required 
resource

Obtained 
performance

Service level Required 
resource

Obtained 
performance

Service level Required 
resource

Obtained 
perfor-
mance

1 2 12 1 6 2 1 7 4
2 5 13 2 14 9 2 10 6
3 7 16 3 18 16 3 13 8
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AWLS will begin its operation by calculating the DF value 
by Eq. 6. The initial DF values can be calculated as follows: 
DF1 = max(

13−12

5−2

16−12

7−2
) = 0.8 , DF2 = max(

9−2

14−6

16−2

18−6
) = 1.16 , 

DF3 = max(
6−4

10−7

8−4

13−7
) = 0.67 . Max-heap H is constructed 

using these DF values. A2 has the highest DF value and is 
extracted from the heap. RES_BGT  is updated as (35 – 14)  
= 21 and Curr2

lev
 becomes 2. Now, the DF2 will be re- 

calculated as DF2 = max(
16−9

18−14

16−9

18−14
) = 1.75 , and again A2 

has the highest DF value. Hence, the IR becomes (18 – 14) = 4  
and the condition satisfies the remaining resource becomes 
RES_BGT = 17 and Curr2

lev
 becomes 3. A2 is discarded from 

further consideration of service level upgradation as reached 
it its highest level 3. Now, A1 with the highest DF value 
is extracted from the heap and similarly by completing the 
iterations, the Curr1

lev
 becomes 3, and the remaining resource 

is updated as RES_BGT = 17 − 7 = 10 . It can be observed 
that A1 also reached its highest possible level and hence, 
discarded from further consideration. The next iterations fol-
low for A3 and the level for the A3 is upgraded accordingly. 
AWLS terminates when the heap becomes empty. The total 
obtained result is shown in Table 3.

4 � Performance Evaluation of AWLS

The performance of the proposed AWLS has been evalu-
ated using simulation-based experiments. We have also 
compared the performance of the proposed heuristic with 
the optimal ILP-based strategy. In this current experi-
mental scenario, We have considered that the FPGA can 
execute deep learning networks in 5 distinct service lev-
els, and FPGA consists of 2 DPUs, as shown in [15]. The 
area consumption and corresponding performance values 
have been taken from [16].

4.1 � Results

Experiments have been conducted to evaluate the perfor-
mance of the proposed strategies i.e., ILP-based technique 
and AWLS using different performance metrics under vary-
ing scenarios. The performance metrics that have been con-
sidered for the evaluation are: 

1.	 Average service level allocated to each server
2.	 Normalized Obtained Performance (NOP), NOP is 

defined as the ratio between the ultimately achieved 
performance value for all the applications and the maxi-
mum possible achievable performance by executing each 
application at its highest service level. Mathematically, 
NOP can be formulated as: 

(7)
NOP =

∑N

i=1
(
Per

j

i

Per
q

i

)

N
× 100%

Table 3   Outcome: AWLS.

Applications Selected level Obtained 
accuracy

A1 3 16
A2 3 16
A3 2 6
Total obtained accuracy 38

Figure 1   Average allocated 
level Vs RES_BGT.
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Figure 1 shows the plots for the average levels allocated to 
each application by both the strategies i.e. ILP-based strate-
gies and AWLS. As the overall resource budget ( RES_BGT  ) 
varies from 40% to 100% of the total available resource 
budget. It may be observed from the figure that the aver-
age level allocated to each application increases with the 
increasing available overall resource budget. This is because 
the average resource that may be utilized by an application 
increases as the total available overall increases.

Although the trends for both the allocation strategies in 
Fig. 1 are mostly similar, AWLS is seen to allocate slightly 

lower average levels than ILP-based techniques in all the sce-
narios. However, this difference in performance decreases 
with the increase in resources. Hence, the performance of both 
strategies becomes comparable when there exists an adequate 
amount of resources. This could be attributed to the fact that 
as the individual resource increases, the difference between 
the values of IGF and OGF also increases. Hence, DF plays a 
significant role in level selection. Thus, AWLS takes judicious 
level selection decisions that are close to the optimal.

Figure 2 depicts the plot for NOP achieved by both 
the strategies, as the overall resource budget ( RES_BGT  ) 
varies from 40% to 100% of the total available resource 
budget. It may be observed from the figure that the aggre-
gate NOP obtained by both the strategies increase with 
increasing available RES_BGT  . This is because the NOP 
obtained by the strategy is directly proportional to the 
achieved service levels of each application and therefore, 
obtained levels increase with the available resource budget 
(as shown in Fig. 1). Additionally, it may be observed 
from the figure that as the difference between available 
resources decreases, the performance difference between 
both strategies is negligible.

5 � Implementation of the Proposed Framework

To further verify the proposed strategy, we implemented a 
framework using a ZCU104 development board equipped 
with a Zynq UltraScale+ XCZU9EG MPSoC. In our pre-
vious work, a video analysis system is designed using the 
proposed framework in [17], and in this paper, we further 
explore the resource scheduling algorithms to achieve 
optimal performance.

Figure 2   NOP Vs RES_BGT.

Trained Networks (Pytorch/Tensorflow)

Vitis AI (Quantizer & Compiler)

XModel1 XModel2 XModel3 XModeln...

ARM FPGA

Data Streams Hardware Accelerators

DPU IP CORE

VItis AI Run-time (VART)

Applications (C++/Python)

Figure 3   Overview of the proposed framework.
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AMD-Xilinx DPU IP module and Vitis-AI library are 
used [18, 19] in this framework. Figure 3 shows the over-
view of the framework diagram. We will now discuss the 
different components of the proposed framework.

5.1 � Vitis AI Run‑time (VART)

Vitis AI Runtime (VART) is a part of Vitis-AI software 
that enables the applications to interact with the hardware 
by calling the unified high-level API. VART offers asyn-
chronous submission and collection of jobs to the accel-
erator and supports multi-threading, and multi-process 
execution [19].

5.2 � DPU (Deep Learning Unit)

DPU is an AMD-Xilinx hardware IP core, which can support 
DNN instructions that are compiled from conventional DNN 
development frameworks (e.g. PyTorch, TensorFlow, etc.) 
using the Vitis-AI toolchain.

There are eight different DPU architectures in the Vitis-
AI library, where each architecture is configured according 

to the three dimensions of parallelism: pixel parallelism 
(PP), input channel parallelism (ICP), and output channel 
parallelism (OCP).

Figure 4 shows an example of each of the three dimen-
sions. For instance, pixel parallelism (PP) is 2, and input 
channel parallelism and output channel parallelism are equal 
to 3. Due to the nature of the calculation, the input channel 
parallelism is always similar to the output channel parallel-
ism. In general, the larger DPU architectures can achieve 
better throughput than the smaller DPUs at the cost of more 
hardware resources. Table 4 lists all DPU architecture and 
their parallelism parameter configurations.

5.3 � Proposed Framework

To implement the framework, there are two parts to handle, 
the hardware designed on the PL (Programmable Logic)/
FPGA part and the Linux system designed on the PS (Pro-
cessing System)/CPU part. A DFX (Dynamic Function 
exchange) hardware platform is designed with the DPU 
IP, and the DPU is set into a special reconfigure area to 
enable real-time partial reconfiguration. The hardware 
platform will be exported into AMD-Xilinx official Linux-
system design tools, Petalinux, and with the help of that, 
an embedded Linux system with a configurable hardware 
setting is created. On this system, we can access the DPUs 
and send tasks to them via VART, so various DNN model-
based applications can be designed and tested on the board. 
DNN model-based applications run both on ARM-based 
CPUs and the DPUs accelerators on FPGAs. As can be seen 
in Fig. 5, The CPU and FPGAs are physically connected 
through high-speed AXI (Advanced eXtensible Interface) 
protocol, which enables high bandwidth data movements 
between hardware and software. For example, the instruc-
tion fetch unit in the DPU will fetch the instructions of the 
DNN models through VART and XRT (i.e. Xilinx runtime), 

Figure 4   An example of DPU 
internal arithmetic operation 
flow.

Table 4   DPU Configurations.

DPU architecture PP ICP OCP Peak operations

B512 4 8 8 512
B800 4 10 10 800
B1024 8 8 8 1024
B1152 4 12 12 1152
B1600 8 10 10 1600
B2304 8 12 12 2304
B3136 8 14 14 3136
B4096 8 16 16 4096
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and then the sequence of instructions will be loaded from 
DDR memory to the computing unit of DPUs. A DPU 
“Instruction" is a basic operator for the DPU arithmetic 
calculation, such as a “convolution operation" which is a 
sequence of instructions to perform a convolution operation. 
In the proposed framework, 2 DPU IP cores are configured 
to run different DNN models for image classification appli-
cations. The three DNN models are compiled into different 
arithmetic operations, the two DPUs will then process them 
in the order.

6 � Exhibition of the Proof‑of‑Concept

Before presenting our proof-of-concept study, we revisit 
the problem description from a physical implementation 
perspective. We have several different DNN-based models 
running on various service levels. A single application on 
a higher service level will cost more DPU utilization, and 
the individual cost is varied on the scales of the deployed 
DNN models. Our goal is to fully use the DPU resources 
to achieve optimal running performance.

Figure 5   Proposed Zynq-based 
MPSOC framework.

Application 

1

Application 

2

Application 

3

Application 

N

DPU 1

DPU 2

DPU 3

DPU N

XModel A

XModel B

XModel C

XModel N

ZYNQ MPSOC

ARM CPU FPGA

Vitis-AI API

VART & XRT

AXI

Instruments

Figure 6   DPU utilization in the benchmark test.
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A number of onboard tests are designed to verify the 
proposed strategy, and the proposed DNN-based multi-
application framework is implemented using an AMD-
Xilinx ZCU104 development board. In the test, we test 
three different DNN models for image classification appli-
cations (e.g. Resnet50, Resnet18, and Mobilenet), and then 
the system metrics in real-time are recorded accordingly, 
which includes the FPS of each application, peak GOP 
(Giga [billion] Operations Per Second) of DPU, and total 
time consumption. The following sections introduce the 
details of the experiment and the definitions of “service 
level", “resource," and “performance" in the experiments 
carried out on the physical FPGA.

6.1 � Representation of “Service Levels"

In the proposed experiment, the number of threads is chosen 
to represent the different service levels. The experiment 
aims to classify images, and multi-thread enables it to pro-
cess multiple images simultaneously. While applications 
run with multi-threads, the quad-core (ARM Cortex™-A53) 
will be able to send more image data to the DPUs simul-
taneously, thus more DPU utilization will be allocated. To 
highlight the difference in performances at each service 
level, the following equation is used to describe the thread 
and service level:

(8)Thread = 2ServiceLevel−1

6.2 � Representation of “Resource" in MPSoC

The DPU utilization is used to represent the notion of resources 
for physical MPSoC. First, a DPU performance benchmark is 
proposed to use the DPU resource fully. The benchmark will 
generate synthetic data and keep DPUs utilization full all the 
time, as it is shown in Fig. 6, DPU is processing CONV opera-
tion all the time. Second, a DL-based image classification appli-
cation is used in the test, where different threads (e.g. threads 
1-8) are used for the testing. In this case, DPUs have some idle 
time due to waiting for the new data from the CPU, therefore, 
there exists a gap between two basic DPU operations (CONV) 
and the total utilization of the DPU is less than 100%. For 
instance, Fig. 7 shows a comparison of DPU utilization between 
two threads and four threads settings. In the same period of time, 
it processes only 6 “CONV" operations when the application 
runs in 2 threads and processes 8 when runs in 4 threads.

The GOP is considered to describe a proper “resource" 
value. We choose the average GOP in the time scale (GOP/s) 
as a standard unit for utilization of DPUs and consider the 
average GOP in the benchmark as 100% used DPU resource. 
In order to obtain the resource usage in different service 
levels with various DNN models, we compare the average 
GOP in a DL image classification task with the benchmark 
results respectively.

Thus we obtain all the “resource" values with three DNN 
models at different service levels presented in Table 5.

Table 5   Resource and 
performance values for each 
Application.

A1(Resnet50) A2(Resnet18) A3(Mobilenet)

Service level Required 
resource

Score Service level Required 
resource

Score Service level Required 
resource

Score

1 133 20 1 79 23 1 14 23
2 140 21 2 88 24 2 15 24
3 166 24 3 89 25 3 15 25
4 167 24 4 88 24 4 15 24

Figure 7   DPU utilization in the application tests with different threads.
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6.3 � Representation of the “Performance" 
in Experiment

To define the actual onboard performance for each service 
level. In the proposed experiment, FPS is used as the main 
performance metric. The equation below explains how the 
FPS is calculated, where I denotes the number of images 
processed in each thread, T denotes the total number of 
threads used, and P denotes the total time consumption.

6.4 � Result and Analysis

After processing the data in the experiment, we calculate 
the optimal result using both ILP and AWLS (RES_BGT = 
260) algorithms, and the result is the same as the simulation, 
see Table 7.

An image classification application with three different 
DNNs models is designed in the proposed framework to 

(9)FPS =
I × T

P

verify the result given by the proposed scheduling strategy. 
In this experiment, we test three different DNN combina-
tions with various service levels at runtime. Then we meas-
ure the performance to verify whether the output combi-
nation selected by the proposed scheduling strategy can 
achieve the best result.

As per Table 6, Combination-A of the strategy is set at 
D1, D2, and D3 on service-level 3, 1, and 3, respectively. We 
also set the other two combinations according to the resource 
budget. For example, combination-B is set at D1, D2, and 
D3 on service-level 1, 3, and 3, respectively. Combination-
C is set at D1, D2, and D3 on service levels 2,3, and 2, 
respectively.

Figure 8, illustrates that combination-A (chosen by the 
proposed strategy) obtains the highest score compared to 
combination-B and combination-C. At the same time, the 
recourse budget (RES_BGT = 260) remains the same as 
we can observe, combination A that various deep learning 
model is running at different service level. While another 
interesting observation can be drawn from this figure, 
i.e., though combination B obtains less score, its resource 

Table 6   Applications scheduling solution suggested by AWLS.

Service level

Combination Resnet50 Resnet18 Mobilenet

A 3 1 3
B 1 3 3
C 2 3 2

Figure 8   Comparison with dif-
ferent DNN combinations.

Table 7   Outcome: Heuristic 
AWLS & ILP.

Deep 
learning 
network

Selected 
level

Obtained 
score

D1 3 24
D2 1 23
D3 3 25
Total obtained per-

formance
72
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consumption is significantly less. Thus, it exhibits the effi-
cacy of our proposed idea of "service levels". In case of 
stringent resource constraints, our strategy will be able to 
select a different combination of deep learning models with 
less difference in score.

It is to be noted that the performance on the physical 
test bed for multi-application does not match the “score" 
obtained by the algorithm (AWLS). This is mainly due 
to the fact that we set FPS to describe the performance, 
and there is not a simple linear relationship with the FPS 
while deploying multi-DNNs. The algorithm can guide us 
to arrange the optimal combination for the applications but 
can not predict the output FPS (see Table 7).

7 � Conclusion

This work introduces a new concept of efficient imple-
mentation of deep learning with multiple service lev-
els for FPGAs. The problem has been formulated as an 
optimization problem where each DNN can be executed 
with different service levels by exhibiting performance 
Vs. Resource trade-offs. A heuristic strategy (AWLS) has 
been proposed to maximize overall performance without 
violating resource constraints. Then a proof of the concept 
for the proposed strategy using a Xilinx ZCU104 develop-
ment board is presented, and then a set of tests is designed 
to discuss the DPU resource allocation mechanism and 
define the onboard concept of “service level", “resource," 
and “performance" raised in the strategy. Finally, with a 
framework designed to deploy the multi-DNN application, 
the proposed solution can achieve the highest performance 
(FPS) using the same resource budget. Our future work will 
consider using the different DPU architectures and frequen-
cies. Our final goal is to establish an adaptive system where 
DNN models and hardware resource utilization can be re-
configured at runtime using a real-time scheduling strategy.
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