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Since Electroencephalogram (EEG) is resistant to camouflage and contains abundant neurophysiological
information, it shows significant superiorities in objective emotion recognition, making EEG-based emo-
tion recognition become a hot research field in brain-computer interface research. However, EEG is gen-
erally non-stationary and has a low signal-to-noise ratio, which is difficult to analyze. Inspired by the
consensus that exploring a discriminative subspace representation usually helps to capture the semantic
information of EEG data, in this paper we propose a Graph Adaptive Semi-supervised Discriminative
Subspace Learning (GASDSL) model for EEG-based emotion recognition. GASDSL aims to explore a dis-
criminative subspace in which the intra-class scatter decreases while the inter-class separability
increases. The adaptive maximum entropy graph construction and semi-supervised subspace emotional
state prediction are adopted to mediate the discriminative subspace learning. Extensive comparative
studies on the SEED-IV and SEED-V datasets depict that 1) GASDSL achieved satisfactory emotion recog-
nition accuracy compared with other semi-supervised learning models, 2) the discriminative abilities of
both the learned maximum entropy graph and subspace are improved as the model iterates, and 3) the
features extracted from the Gamma band, the left/right temporal, prefrontal, and (central) parietal lobes
contributed more to emotion recognition based on the spatial-frequency pattern analysis results.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Emotion plays an important role in interpersonal communica-
tion and people make behavioral decisions through emotional
interaction. Emotion recognition has become the research hotspot
in many fields such as the cognitive science and neural engineering
(Li et al., 2022e). In the field of artificial intelligence, endowing
machine the ability of understanding human emotional states is
of great significance to achieve affective brain-computer interfaces.
Current research on emotion recognition is primarily based on
non-physiological signals such as facial expressions, speech, and
text (Tang et al., 2023). However, emotions might be not external-
ized in faces or speech and research have shown that it is inaccu-
rate to judge emotional states from non-physiological signals (Wu
et al., 2023). On one hand, the way people expresses their emotions
changes with different cultures and experiences. On the other
hand, people can hide their true emotional state by deliberately
disguising their facial expressions or changing the tone of their
voices. EEG data is the scalp reflection of central neural activities
and occurs spontaneously with emotions, which has been a reliable
data source for emotion recognition. With the rapid development
of weak signal acquisition equipment and analysis technology,
EEG data has been involved in multiple studies and applications
such as fatigue detection (Wang et al., 2020), instrument control
(Li et al., 2020), emotion recognition (Li et al., 2022f, and mental
workload assessment (Kakkos et al., 2021). In this work, our focus
is the EEG-based emotion recognition.

As shown in Fig. 1, EEG-based emotion recognition system is
generally composed of four parts, i.e., signal acquisition, signal pro-
cessing, feature extraction, and emotion recognition, among which
the latter two stages are the current research hotpsots. Recently,
diverse methods were proposed for improving the performance
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Fig. 1. Flowchart of the EEG-based closed-loop emotion recognition system.
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of EEG-based emotion recognition from two aspects, i.e., feature
extraction (Zhang et al., 2019), machine learning-based feature
learning and recognition (Gu et al., 2021). Generally, feature
extraction methods aim to extract powerful features to capture
the spatial-frequency-temporal information of EEG data as much
as possible. In Gao et al. (2022), a supervised dimensionality reduc-
tion method was designed on the Riemannian manifold to reduce
the high dimensionality of the symmetric positive definite (SPD)
metrices, which were constructed by the time–frequency features
of the EEG signals. Similarly, the wavelet analysis is used for EEG-
based emotion recognition by sufficiently exploring the time–fre-
quency information from EEG data (Islam and Ahmad, 2019). To
simultaneously make use of the complementary information pro-
vided by multi-modal data, a multi-modal emotion database
(MED4) was collected for EEG emotion recognition, which consists
of synchronously recorded EEG signals, photoplethysmography,
speech and facial images (Wang et al., 2022c).

For machine learning models, they usually perform linear or
nonlinear feature transformation to enhance their discriminative
ability for subsequent classification. In Li et al. (2022d), an ensem-
ble learning method based on multiple objective particle swarm
optimization was proposed for subject-independent EEG-based
emotion recognition. Some deep neural networks completes fea-
ture learning and recognition in an end-to-end manner by taking
raw EEG data as input and directly outputting the emotion recog-
nition results (Gong et al., 2022). Based on the capsule network and
the attension mechanism, a multi-task learning framework was
proposed to improve the model generalization and robustness in
EEG-based emotion recognition (Li et al., 2022a). In Wei et al.
(2023), a Transformer Capsule Network (TC-Net) was proposed
for emotion recognition, which contains an EEG Transformer mod-
ule to extract EEG features and an Emotion Capsule module to
refine features and classify the emotional states. By combining a
multi-scale residual network with a meta-transfer learning strat-
egy, it shows that not only the relationship between connectivity
features and emotional states were explored but also the problem
of inter-subject differences was alleviated (Li et al., 2022c). In Wu
et al. (2022), the multi-scale bi-hemispheric asymmetric model
based on convolutional neural network structure was proposed,
which is inspired by the multi-scale characteristics of the EEG data
and the neural mechanisms of the emotion cognition.

Though rapid progresses were made within the field of EEG-
based emotion recognition, there still have some shortcomings
that need to be further improved, two among which are investi-
gated mainly in this paper. One is that EEG data in high-
dimensional representation often consists of both redundant and
noisy features. An intuitive and effective way is projecting EEG
data into a low-dimensional subspace for reducing the dimension-
ality and simultaneously enhancing the discriminative ability.
Adaptive selection of features is typically used for dimensionality
reduction and performance improvement (Leng et al., 2010). The
2

features with high discrimination and low correlation will be
selected and provided with high weights (Leng and Zhang, 2013).
Therefore, how to find the discriminantive subspace is the key to
solve this problem. Random projection is one of the effective meth-
ods to find the discriminantive subspace. In Leng et al. (2011), Leng
et al. (2012), two-directional two-dimensional random projection
was proposed to project high-dimensional data into a two-
dimensional discriminantive subspace. The discrimination power
analysis preserved more discriminative coefficients from dual-
source space, which was constituted by two-dimensional discrete
cosine transform (Leng et al., 2017). The other is that most of the
current models treated EEG emotion recognition as a pure pattern
classification task, which cared only about the recognition accu-
racy but paid few attention to underlying neural mechanisms
related to emotion expression.

In the present work, we take the two above mentioned limita-
tions into consideration and propose a Graph Adaptive Semi-
supervised Discriminative Subspace Learning (GASDSL) model for
cross-session EEG emotion recognition under the semi-
supervised learning framework (Jiang et al., 2017). Graph is an
effective data structure to characterize the sample correlations
by defining a similarity matrix (Jin et al., 2022), based on which
a lot of learning tasks can be performed such as clustering (Wang
et al., 2022b), dimensionality reduction (Kalantar and
Mohammadi, 2018), feature selection (Shang et al., 2022; Li et al.,
2018) and semi-supervised learning (Li et al., 2022b). However,
separately performing graph learning and emotional state estima-
tion of unlabeled EEG samples ignore the underlying interaction
between both stages. In GASDSL, such disadvantage is circum-
vented by unifying the subspace graph learning and graph-based
recognition tasks together into a single objective function. To be
specific, the updating process of the subspace projection matrix
in GASDSL is mediated by the adaptive maximum entropy graph
learning and semi-supervised subspace emotional state estima-
tion. That is, the discriminative subspace learning, adaptive maxi-
mum graph learning and the emotional state prediction of the
unlabeled samples are jointly optimized in GASDSL for better
recognition performance.

When compared with the existing studies, the present work has
the following contributions.

� We propose a unified model GASDSL to jointly complete both
the graph adaptive discriminative subspace learning and
semi-supervised EEG emotion recognition. The local manifold
of both the labeled and unlabeled EEG data is explored by intro-
ducing the maximum entropy regularizer to adaptively deter-
mine the neighborhood size of each EEG sample.

� The discriminative subspace learning serves as the central role
in our proposed GASDSL model, which is simultaneously
mediated by the semi-supervised label prediction and adaptive
graph learning processes. In other words, both the label
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information (i.e., the given and the predicted ones) and graph-
based data structure information contribute to the discrimina-
tive subspace exploration.

� Besides the improved emotion recognition accuracy, we provide
more analysis on the learned projection matrix from two
aspects. One is that it shows excellent performance in inducing
discriminative subspace. The other is that it offers us an auto-
matic and quantitative method in identifying the critical EEG
frequency bands and brain regions in emotion recognition.

The remainder of this paper is structured as follows. Section 2
introduces the detailed model formulation and optimization of
GASDSL. Comparative studies on two emotional EEG datasets and
the result analysis are provided in Section 3. Connections and dif-
ferences between GASDSL and some related models are discussed
in Section 4. Section 5 concludes this paper and points out the
future work.
2. Method

2.1. Preliminary

In this paper, uppercase and lowercase letters are respectively
used to denote matrices and vectors. For matrix A 2 Rn�m; ai

denotes its i-th row, aj denotes its j-th column, and aij denotes
its ði; jÞ-th element.

Generally, in semi-supervised EEG emotion recognition setting,
the EEG dataset we are given consists of two subsets. one is the
labeled subset, which has l labeled EEG samples
Xl ¼ ½x1;x2; . . . ;xl� 2 Rd�l and the associated label indicator matrix
Yl ¼ ½y1; y2; . . . ; yl� 2 Rl�c is given. The other is the unlabeled subset,
consisting of u unlabeled EEG samples Xu ¼ ½x1;x2; . . . ;xu� 2 Rd�u

and its label indicator matrix Yu ¼ ½y1; y2; . . . ; yu� 2 Ru�c is
unknown. Here, d represents the EEG sample dimensionality and
c represents the number of emotional states. The label indicator

vector of the ijli¼1-th sample, i.e., yi 2 R1�c , is defined as

yij ¼
1; if sample xi belongs to the j � th state;
0; otherwise:

�
ð1Þ

To simplify the notations, we introduce an augmented label indica-
tor matrix F ¼ ½Fl;Fu� 2 Rn�c , where n ¼ lþ u;Fl ¼ Yl and Fu is the
pseudo-label of the unlabeled EEG data. Our goal is to predict Fu

given X ¼ ½Xl;Xu� and Yl.
Fig. 2. The general framework of

3

2.2. GASDSL model formulation

In Fig. 2, we show the overall framework of our proposed
GASDSL model, which consists of three components, i.e., discrimi-
native subspace projection, optimal maximum entropy graph
learning and the emotion state estimation.

It it well known that according to the k-means clustering, we
can obtain the predicted labels of the unlabeled EEG samples by
iteratively updating the cluster centroids and assigning class labels
to EEG samples. Its objective function is

min
F2Ind

Xc

j¼1

X
xi2pj

kxi �mjk22; ð2Þ

where F ¼ ½Fl;Fu� ¼ ½f1; � � � ; f l; f lþ1
; � � � ; f lþu� 2 Rn�c is the label indica-

tor matrix. To be specific, the i-th row of F, i.e., f i 2 R1�c , defines the
emotional state of the i-th EEG sample xi. That is, f ij ¼ 1 if xi belongs
to the j-th emotional state and f ij ¼ 0 otherwise. In semi-supervised

setting, Fl is given while Fu is to be estimated. mj 2 Rd is the cen-
troid of the j-th emotional state pj. Mathematically, problem (2)
can be rewritten as the following matrix form

min
F2Ind;M

kX�MFTk22; ð3Þ

where M ¼ ½m1;m2; � � � ;mc� 2 Rd�c is the collection of all centroids.
When M is fixed, we should annotate each EEG sample with the
emotional state which its nearest centroid belongs to, leading to
the updated indicator matrix F. In turn, when F is fixed, M can be
updated.

Generally, EEG data is high-dimensional and non-stationary,
which inevitably includes noisy features and redundant compo-
nents (Dadebayev et al., 2022). This phenomenon is common and
challenging in EEG emotion recognition. An intuitive and effective
way is to project EEG data into a low-dimensional subspace where
the feature dimensionality is reduced while the discriminative
ability is enhanced (Zhang et al., 2019). Assume that the discrimi-
native subspace is induced by a projection matrixW 2 Rd�m, where
m is the subspace dimensionality. Then, we have the following sub-
space semi-supervised clustering model

min
Fl¼Yl ;Fu2Ind;M;W

kWTX�MFTk22; ð4Þ

where WTX 2 Rm�n is the projected subspace EEG data. To simplify
the notations, we still useM 2 Rm�c to represent the centroid matrix
though its size is different from that in Eq. (3).
the proposed GASDSL model.
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Below we describe how to find an optimal projection matrix W
from the graph-based subspace learning perspective. We propose
to explore the local structural information of EEG data within the
structured graph learning framework (Nie et al., 2023; Peng
et al., 2022a). In the low-dimensional subspace, we use S 2 Rn�n

to describe similarities of EEG samples in which sij characterizes
the connectionship between the i-th and the j-th samples. To be
specific, if the distance between WTxi and WTxj is small, they are
more likely to have the same structure. Equivalently, the similarity
sij should be large. Such property can be modeled by the following
objective function

min
W;S

Xn
i¼1

Xn
j¼1

kWTxi �WTxjk22sij;

s:t:sij P 0; si1 ¼ 1;WTStW ¼ I;

ð5Þ

where St ¼ XXT is the total data scatter matrix. The first constraint
denotes the non-negativity of the similarity matrix. The second one
enforces the summation of connection probabilities between xi and
all the other samples to be one. The third constraint ensures that
the linear correlation between the subspace data is removed. Objec-
tive function (5) might have a trivial solution that only one element
in si is one and the others are zeros Nie et al., 2014; Zheng et al.,
2017). To avoid this dilemma, we introduce a maximum entropy
regularizer to adaptively adjust the elements in si (Zhang et al.,
2020b). Based on information theory, entropy measures the disor-
der of random variables and lager entropy represents higher disor-
der. For the n elements in si, the entropy is /ðsiÞ ¼ �Pn

j¼1sij log sij.

Since sijjnj¼1 satisfies the probability constraint, /ðsiÞ reaches the

minimum if only one element in si is one and the others are zeros,
which represents the most informative distribution state of si. How-
ever, this case is similar to the trivial solution of the objective func-
tion (5), which is also the most unstable state for assessing the
probabilistic relationship. To avoid the performance loss which
might be caused by the trivial solution, we incorporate the entropy
maximization regularizer into objective function (5) to learn an
adaptive similarity matrix to characterize local data informaiton.
Then, we have

min
w;s

Xn
i¼1

Xn
j¼1

kWTxi �WTxjk22sij þ bsij log sij
� �

;

s:t:sij P 0; si1 ¼ 1;WTStW ¼ I;

ð6Þ

Finally, by combining (4) and (6), we formulate the objective
function of GASDSL as

min
F;M;W;S

a
Xn

i;j¼1

kWTxi �WTxjk22sij þ bsij log sij
� �

þkWTX�MFTk22; s:t:F ¼ ½Fl; Fu�;Fl ¼ Yl;

Fu 2 Ind; sij P 0; si1 ¼ 1;WTStW ¼ I;

ð7Þ

where a and b denote two regularization parameters to balance the
impacts of respective terms.

2.3. GASDSL model optimization

There are four variables S; Fu;M;W in GASDSL objective func-
tion (7). Below we derive the updating rule to each of them. Specif-
ically, we update one variable by fixing the three others.

j Update S. The corresponding objective function is

min
S

Xn
i¼1

Xn
j¼1

kWTxi �WTxjk22sij þ bsij log sij
� �

;

s:t:sij P 0; si1 ¼ 1:

ð8Þ
4

Since the above problem can be decoupled for each i ¼ 1;2; � � � ;n,
we propose to solve S in row-wise manner. For each i, we have
the following objective function

min
si

Xn

j¼1

kWTxi �WTxjk22sij þ bsij log sij
� �

;

s:t:si P 0; si1 ¼ 1:

ð9Þ

To simplify the notations, we define dij ¼ kWTxi �WTxjk22 and then
rewrite problem (9) as

min
siP0;si1¼1

Xn

j¼1

dijsij þ bsij log sij
� �

: ð10Þ

The corresponding Lagrangian function is

Lðsij; hÞ ¼
Xn
j¼1

dijsij þ bsij log sij
� �þ hðsi1� 1Þ; ð11Þ

where h is the Lagrange multiplier. By setting the derivative of (11)
w.r.t. sij to zero, and combining the constraint

Pn
j¼1sij ¼ 1, we obtain

the updating rule of sij as

sij ¼
expð�dij

b Þ
Xn
j¼1

expð�dij
b Þ

: ð12Þ

Obviously, the above updating rule to sij definitely satisfies the non-
negative constraint, i.e., si P 0.

j Update Fu. The sub-objective function related to Fu is

min
F

kWTX�MFTk22;
s:t: F ¼ ½Fl;Fu�; Fl ¼ Yl;Fu 2 Ind:

ð13Þ

Each row of Fu determines the emotional state of the i-th EEG sam-
ple. For each ijni¼lþ1, we have

f ij ¼
1; j ¼ argmin

c

k¼1
kWTxi �mkk22;

0; otherwise;

8<
: ð14Þ

where mk is the k-th column of the centroid matrix M. Obviously,
we should categorize the i-th sample into the class which its nearest
subspace centroid belongs to.

j UpdateM. The sub-objective function regrading to variableM
is

min
M

kWTX�MFTk22: ð15Þ

Taking the derivative of the above function w.r.t. M and setting it to
zero, we obtain

M ¼ WTXFðFTFÞ�1
: ð16Þ

j Update W. The objective function related to W is

min
WTStW¼I

kWTX�MFTk22

þa
Xn

i¼1

Xn
j¼1

kWTxi �WTxjk22sij:
ð17Þ

By substituting M into the first term of the above equation, we
obtain
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kWTX�MFTk22
¼ kWTX�WTXFðFTFÞ�1

FTk22
¼ TrðXTWWTX� XTWWTXFðFTFÞ�1

FTÞ
¼ TrðWTðXXT � XFðFTFÞ�1

FTXTÞWÞ
¼ TrðWTðSt � SbÞWÞ ¼ TrðWTSwWÞ;

ð18Þ

where Sb represents the inter-class data scatter matrix and Sw
denotes the intra-class data scatter matrix. It is easy to find that

Sw ¼ XXT � XFðFTFÞ�1
FTXT : ð19Þ

Then, problem (17) can be rewritten as

min
WTStW¼I

TrðWTSwWÞ þ aTrðWTXLXTWÞ; ð20Þ

where L ¼ D� S is the graph Laplacian matrix, D is the diagonal
matrix and its i-th diagonal element is defined as dii ¼

P
jsij. The

Lagrangian function of problem (20) is

LðW;KÞ ¼ TrðWTðSw þ aXLXTÞWÞ
�TrðKðWTStW� IÞÞ; ð21Þ

where K is the Lagrange multiplier in matrix form. By taking the
derivative of LðWÞ w.r.t. W, and setting it to zero, we have

ðSw þ aXLXTÞW� StWK ¼ 0: ð22Þ
Then, the optimal solution W� to problem (21) can be formed by
stacking the m eigenvectors of S�1

t ðSw þ aXLXTÞ corresponding to
its m smallest eigenvalues. To guarantee that St is invertible, it is
assumed that the null space of the EEG data matrix X has been
removed.

We summarize the above optimization steps to GASDSL objec-
tive function in Algorithm1.

Algorithm1 The optimization to GASDSL objective function

Input: Labeled EEG data Xl 2 Rd�l and the corresponding label
matrix Yl 2 Rl�c , unlabeled EEG data Xu 2 Rd�u, subspace
dimensionality m, parameters a and b;

Output: The estimated label indicator matrix Fu 2 Ru�c .
1: Initialize the projection matrix W by principal component

analysis;
2: Initialize the centroid matrix M by WTXl;
3: Initialize the graph similarity matrix S by solving problem

min8i;siP0;si1¼1
Pn

i¼1
Pn

j¼1kxi � xjk22sij þ bsij log sij;
4: while not converged do
5: Update Fu row-wisely by Eq. (14);
6: Update M by Eq. (16);
7: Update diagonal matrix D with dii ¼

Pn
j¼1sij;

8: Update Sw by Eq. (19);

9: Update W by the m eigenvectors of S�1
t ðSw þ aXLXTÞ

corresponding to the first m smallest eigenvalues;
10: Update S row-wisely by Eq. (12);
11: end while
2.4. Complexity and convergence analysis

Below we provide the computational complexity analysis of our
optimization algorithm to GASDSL objective function by the big O

notation. We need OðumdÞ complexity to obtain Fu. The updating of
M needs OðnmdÞ time. When updating W, the complexity is
5

Oðd3 þ n2dþ nd2Þ. For each i 2 ½1;n�, we need OðdmÞ time to update
si. Therefore, we need OðnmdÞ to obtain S. Assuming that the num-
ber of iterations is t, the computational complexity of optimizing

GASDSL objective function is Oðtðumdþ nmdþ d3 þ n2dþ nd2ÞÞ.
Considering that the usual case is n � u > d > m 	 c in semi-
supervised emotion recognition tasks, the overall complexity of
GASDSL is Oðtn2dÞ.

On the convergence property of GASDSL, we provide the analy-
sis below. The convergence of updating the label indicator matrix
Fu and centroid matrixM has been well studied in k-means cluster-
ing which definitely can be guaranteed. When updating the graph
similarity matrix row-wisely, each row of S has analytical solution
as in Eq. (12). Similarly, the solution to projection matrix W is
obtained by generalized eigen-decomposition operation. There-
fore, Algorithm1 is expected to have desirable convergence
property.

3. Experiments

In the section, comparative studies are performed to evaluate
the effectiveness of GASDSL. We are interested in the following
three aspects, the emotion recognition performance, the discrimi-
native ability of the learned subspace, and the identified EEG
spatial-frequency patterns in emotion recognition.

3.1. Data description

We perform experiments on two benchmark emotional EEG
datasets, i.e., SEED-IV (Zheng et al., 2018) and SEED-V (Liu et al.,
2022), which are provided by Shanghai Jiao Tong University and
publicly available.

In SEED-IV, 15 healthy subjects were recruited for the EEG data
collection experiment and each subject participated the experi-
ment at three different times, corresponding to the three sessions.
Therefore, there are total 45 sessions. 72 video clips were carefully
chosen to elicit four different types of emotional states, i.e., sad,
fear, happy and neutral. In each session, 24 video clips were dis-
played, among which six clips correspond to one emotional state.
During each subject watching the video clips, EEG data was col-
lected by the ESI NeuroScan system with a 62-channel electrode
cap according to the standard international 10–20 placement.

In preprocessing stage, EEG data was down-sampled from
1000 Hz to 200 Hz and then band-pass filtered to 1–50 Hz for arti-
fact removal. We adopted the Differential Entropy (DE) in the fol-
lowing experiments (Zhang et al., 2020a), which were extracted
from the five frequency bands, i.e., Delta (1–3 Hz), Theta (4–
7 Hz), Alpha (8–13 Hz), Beta (14–30 Hz) and Gamma (31–50 Hz).
There are five frequency bands and each one has 62 values (corre-
sponding to the 62 EEG channels); therefore, the feature dimen-
sionality of EEG sample vectors is 310. Due to slightly different
durations of video clips in each session, we have respectively
851, 832 and 822 EEG samples in the three sessions.

The data collection paradigm of SEED-V is similar to that in
SEED-IV; however, there are five emotional states, i.e., fear, sad,
neutral, happy and disgust. There are 20 subjects participated in
the experiment of EEG collection, and the EEG data of 16 subjects
were made publicly available. Similarly, each subject has three dif-
ferent sessions, each of which has 15 trials and three trials corre-
spond to one emotional state. We also extract the DE feature
from the above mentioned five frequency bands and then form
EEG sample vectors with dimensionality 310. There are total 681,
541 and 601 samples in the three sessions, respectively. The
general properties of the two datasets are shown in Table 1.



Table 1
Summary of the emotional EEG datasets.

Item SEED-IV SEED-V

# subject 15 16
feature differential entropy (DE) differential entropy (DE)

# electrode 62 62
frequency

bands
Delta, Theta, Alpha, Beta,

Gamma
Delta, Theta, Alpha, Beta,

Gamma
emotional

states
sad, fear, happy, neutral fear, sad, neutral, happy,

disgust
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3.2. Experimental settings

In the following experiments, we compare our proposed
GASDSL model with some semi-supervised models, including
semi-supervised Projected Clustering with Adaptive Neighbors
(sPCAN) (Nie et al., 2014), semi-supervised Support Vector
Machine (sSVM), semi-supervised Linear Square Regression (sLSR)
with linear kernel, Rescaled Linear Square Regression (RLSR) (Chen
et al., 2017; Chen et al., 2020), semi-supervised version of the Uni-
fied Framework of Dimensionality Reduction (sUFDR) (Wu et al.,
2020), semi-supervised label propagation by optimal Maximum
Entropy Graph learning (sMEG) (Nie et al., 2023; Zhong et al.,
2021), sparse discriminative semi-supervised feature selection
(SDSSFS) (Wang et al., 2022a) and semi-supervised sparse low-
rank regression (S3LRR) (Peng et al., 2022c). In sPCAN, we first learn
an optimal graph based on PCAN and then perform label propaga-
tion on it to predict the emotional states of unlabeled EEG samples.
In RLSR, an explicit feature importance descriptor is introduced
into the semi-supervised LSR model to distinguish the different
contributions of features in classifying emotional states. sLSR is a
degenerated version of RLSR without taking the adaptive feature
auto-weighting into consideration. sUFDR iteratively performs
subspace kmeans clustering and semi-supervised dimensionality
reduction. The objective of sMEG is formed by replacing the
‘2-norm regularization on the graph similarity matrix in (Peng
et al., 2022a) with the graph regularization. SDSSFS utilizes the
idea of enlarging the distance between classes and simultaneously
estimates the label information of unlabeled samples by the
learned regression coefficients and e-dragging matrix. S3LRR
improved the LSR by replacing the projection matrix with the
multiplication of two factor matrices, which realized the
unification of discriminative subspace learning and semi-
supervised emotion state recognition.

In both SEED-IV and SEED-V, each subject has multiple sessions.
Therefore, we propose to perform subject-dependent cross-session
EEG emotion recognition tasks including the ‘session1!session2’
task, ‘session1!session3’ task, and ‘session2!session3’ task. Tak-
ing the first one as an example, it means that EEG samples from
the first session are fully labeled and those from the second session
as unlabeled. Considering that there might be inter-session EEG
data variabilities, we performed a two-step preprocessing prior
to model training. One is mapping the values of each feature
dimension into [0, 1] to reduce the scale mismatch. The other is
the data centralization. The parameters involved in respective
models are tuned from f2�10;2�9; � � � ;210g. The range of regulariza-
tion parameters a and b in GASDSL is f2�5;2�4; � � � ;215g. The sub-
space dimensionality parameter m in GASDSL and sMEG are
tuned from f10, 20, 30, 50, 70, 100, 150, 200g. The maximal itera-
tion number is set as 50.
3.3. Results and analysis

The accuracies of the three cross-session emotion recognition
tasks are respectively shown in Tables 2–7, where boldface num-
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ber is used to highlight the highest one in each case. s1, s2, and
so on represent the indices of subjects. m1, m2, and so on respec-
tively correspond to sPCAN, sSVM, sLSR, RLSR, sUFDR, sMEG,
SDSSFS, S3LRR, GASDSL. These results provide us with the following
rationalities.

� Compared with the other models, GASDSL achieved the best
average accuracies in all emotion recognition tasks. On SEED-IV,
its average accuracies of the three cross-session emotion recogni-
tion tasks are 77.08%, 78.80%, and 81.88% and GASDSL respectively
improved the performance by 3.06%, 4.06%, and 4.59% when com-
pared with the second-best model. Meanwhile, GASDSL achieved
the average accuracies on the SEED-V dataset are 81.57%, 81.57%
and 82.03%, which have 3.01%-5.80% improvements in comparison
with the runner-up model. Therefore, We conclude that unifying
the graph adaptive discriminative subspace learning, and semi-
supervised subspace emotional state estimation in a single opti-
mization framework is beneficial for achieving better performance
in EEG emotion recognition.

� Based on the experimental results, sPCAN demonstrated the
worst performance among these models. To be specific, it respec-
tively obtained the average accuracies of 55.85%, 57.66%, and
58.86% on SEED-IV and 46.49%, 44.17% and 48.75% on SEED-V.
The reason accounting for such result might be from the two
defects in sPCAN. One is that the structured graph learning process
is totally unsupervised, which did not take full advantage of the
available data label information. The other is that its two-stage
strategy completes the graph learning and label propagation in
sequential manner, meaning that the underlying connections
between them are ignored. Though sSVM had sightly better perfor-
mance than sPCAN, its overall performance is still unsatisfactory.
Probably, the linear kernel in it is of limited ability in capturing
the semantic connections of EEG samples.

� By introducing a feature self-weighting variable into the
semi-supervised regression, RLSR is endowed with the ability of
adaptively learning the different contributions of EEG features in
classifying the emotional states. As a result, RLSR respectively
outperforms sLSR by 2.62%, 2.48%, and 3.01% on SEED-IV and 2.05%,
3.22% and 1.75% on SEED-V. This is consistent with our intuitive
understanding that emotion expression might be correlated more
to some specific EEG frequency bands (channels), from which EEG
features were extracted. In the subsequent section, we will show
how to quantitatively measure the importance of them.

� By pair-wisely comparing their results, GASDSL outperforms
sMEG by approximately 3.06%-8.48%. According to our under-
standing, the projection matrix induced subspace acts as different
roles in these two models. In sMEG, the subspace is mainly
explored for structured graph learning based on which the emo-
tional states of unlabeled samples are estimated by label propaga-
tion. Differently, the discriminative subspace learning in GASDSL
serves as the central position which connects the graph construc-
tion and emotional state prediction from both sides. As a semi-
supervised learning model, GASDSL can perform prediction on
unseen EEG samples besides the given unlabeled samples. How-
ever, the graph-based emotional state propagation in sMEG is a
transductive process which has no out-of-sample extension ability.

In order to show the performance of the compared models more
explicitly, the average emotion recognition accuracies of them are
provided in Fig. 3, which employs the line charts to more explicitly
show the performance differences among these models. For exam-
ple, in Fig. 3a), the blue, red and yellow lines respectively represent
the ‘session1!session2’, ‘session1!session3’ and ‘session2!ses-
sion3’ tasks on the SEED-IV dataset. The knots in each line repre-
sent the recognition accuracies of different models, from which
we can easily identify the performance trends of these models.
Besides, we find that these models exhibit better performance in
the ‘session2!session3’ task than the other two ones. For the



Table 2
Emotion recognition accuracies (%) of ‘session1!session2’ on the SEED-IV dataset.

Subject m1 m2 m3 m4 m5 m6 m7 m8 m9

s1 52.76 39.42 57.09 55.65 76.44 75.48 53.61 48.32 80.17
s2 76.32 78.97 91.23 89.18 80.05 85.82 89.66 96.88 89.06
s3 51.68 53.37 60.10 69.71 71.51 72.36 67.79 80.29 77.40
s4 37.50 31.13 63.22 68.39 82.09 70.55 70.55 70.55 76.32
s5 40.63 47.24 59.50 67.67 69.11 72.00 68.39 70.07 69.35
s6 50.12 48.32 69.83 71.03 72.24 69.35 70.55 72.84 77.16
s7 66.95 68.99 82.93 80.77 71.15 74.88 80.77 91.59 79.33
s8 66.59 70.91 68.87 69.95 78.97 76.32 70.43 71.75 80.89
s9 57.81 60.82 67.67 78.73 72.96 75.36 79.09 62.98 80.77
s10 52.64 58.17 46.75 53.85 74.16 68.15 55.89 64.18 72.48
s11 50.36 53.37 50.00 52.04 63.22 67.43 52.04 64.66 68.75
s12 44.23 40.26 60.34 53.13 60.34 58.77 70.67 69.83 60.58
s13 42.79 54.81 58.05 68.63 63.94 68.27 69.59 70.31 69.79
s14 67.79 68.75 79.33 76.92 77.88 78.13 74.76 76.92 79.63
s15 79.57 81.37 88.58 87.14 94.95 97.36 97.36 94.23 94.47
Avg. 55.85 57.06 66.90 69.52 73.93 74.02 71.41 73.69 77.08

Table 3
Emotion recognition accuracies (%) of ‘session1!session3’ on the SEED-IV dataset.

Subject m1 m2 m3 m4 m5 m6 m7 m8 m9

s1 54.99 50.12 64.72 70.68 59.12 75.67 70.19 78.71 75.84
s2 75.43 71.05 84.55 89.29 85.04 92.70 85.64 84.91 87.23
s3 45.13 57.66 48.42 48.78 62.77 75.43 45.50 59.61 83.45
s4 56.69 57.66 71.05 71.17 72.75 79.44 79.32 72.14 79.83
s5 43.07 43.07 52.55 58.39 64.72 64.11 74.57 70.07 73.84
s6 74.70 60.46 80.17 83.45 76.03 81.14 83.58 84.91 76.64
s7 66.55 57.91 86.98 88.44 81.63 86.13 84.79 86.74 88.81
s8 65.33 71.41 78.22 80.78 71.65 80.41 81.87 72.14 79.56
s9 47.57 48.30 61.68 62.77 74.09 69.10 62.77 51.22 75.43
s10 60.83 61.31 45.26 49.64 75.30 63.87 49.64 66.30 73.48
s11 54.99 60.71 76.28 71.17 79.56 65.94 70.68 84.06 78.59
s12 40.63 33.09 65.82 65.45 54.14 57.54 66.79 68.13 65.94
s13 55.84 61.80 54.87 62.41 73.11 64.11 61.31 55.23 74.09
s14 61.56 55.84 77.49 82.85 76.89 77.74 82.73 84.91 83.73
s15 61.68 80.78 85.52 85.40 82.73 87.71 85.40 87.83 85.52
Avg. 57.66 58.08 68.90 71.38 72.64 74.74 72.32 73.80 78.80

Table 4
Emotion recognition accuracies (%) of ‘session2!session3’ on the SEED-IV dataset.

Subject m1 m2 m3 m4 m5 m6 m7 m8 m9

s1 53.41 56.69 61.44 62.65 64.96 74.09 61.68 63.87 75.30
s2 81.75 79.20 85.40 83.21 85.52 89.54 86.74 89.42 86.37
s3 43.31 67.88 63.75 67.27 68.49 75.43 68.98 76.03 82.73
s4 54.14 67.64 82.48 80.17 77.01 76.03 89.54 85.04 84.43
s5 57.66 64.23 76.64 72.87 66.42 71.41 77.98 80.54 77.01
s6 60.22 65.57 76.64 83.70 77.01 84.79 93.55 88.69 85.04
s7 82.00 85.04 84.31 88.56 85.89 87.83 89.78 87.96 92.94
s8 55.96 64.48 76.52 82.97 71.29 76.52 80.41 64.96 81.75
s9 53.04 59.25 47.45 61.80 80.29 73.60 58.39 66.79 75.43
s10 45.01 53.16 72.87 78.35 80.78 79.68 78.35 70.80 85.52
s11 47.81 52.55 52.68 59.49 72.02 55.84 73.60 45.38 78.59
s12 37.47 42.09 67.88 63.63 51.95 63.02 70.32 75.43 68.98
s13 57.18 41.85 56.45 64.48 73.36 73.72 62.17 57.79 76.16
s14 68.61 71.53 88.44 87.10 87.71 87.47 87.10 95.01 90.75
s15 85.28 85.40 88.08 89.90 83.94 90.39 93.07 92.09 87.23
Avg. 58.86 63.77 72.07 75.08 75.11 77.29 78.11 75.99 81.88
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SEED-V dataset, similar trends are found in Fig. 3b) that GASDSL is
better than the others. What is the difference is that these models
obtained similar and better performance in the ‘session1!ses-
sion2’ and ‘session2!session3’ tasks but worse performance in
the ‘session1!session3’ task. In order to verify that our proposed
model is significantly different from other models, we performed
the one-way analysis of variance (ANOVA) on the experimental
results obtained by GASDSL and the other compared models. The
purpose of using ANOVA is to evaluate whether the recognition
7

accuracy of the models are significantly different. The null hypoth-
esis of ANOVA is that the means of these result groups correspond-
ing to different models are equal. Table 8 shows the p-values
returned by the ANOVA function. P-value is an index to measure
the difference between two groups. When the p-value approaches
0, it indicates that the null hypothesis is rejected. P-value less than
0.05 shows the significant difference between the two models,
while p-value less than 0.01 indicates extremely significant
difference. Therefore, we conclude that GASDSL significantly



Table 5
Emotion recognition accuracies (%) of ‘session1!session2’ on the SEED-V dataset.

Subject m1 m2 m3 m4 m5 m6 m7 m8 m9

s1 47.69 72.46 87.80 84.29 77.82 82.26 87.80 87.80 88.72
s2 46.21 40.11 62.48 62.29 76.52 77.08 70.98 75.60 82.62
s3 53.97 39.00 51.02 59.52 70.24 67.65 61.37 68.95 80.04
s4 49.72 57.30 90.20 90.57 80.96 85.21 93.90 85.77 88.35
s5 53.97 47.32 74.49 79.67 68.95 70.24 79.30 76.16 76.52
s6 40.85 54.34 68.95 72.64 79.30 75.23 75.97 72.64 82.26
s7 49.91 49.35 81.59 81.59 76.16 75.79 82.44 81.89 81.70
s8 44.36 60.07 62.66 74.68 78.00 69.69 80.59 78.19 83.18
s9 44.55 50.09 69.32 72.46 74.86 80.22 79.85 81.15 87.99
s10 43.81 46.40 54.90 58.23 60.81 68.13 60.44 67.10 68.58
s11 52.31 63.77 66.73 71.90 63.22 76.21 75.79 66.91 76.52
s12 41.77 49.54 77.63 81.15 76.89 66.54 81.52 82.99 76.89
s13 42.33 66.36 81.15 84.66 81.70 83.92 89.65 90.76 90.39
s14 43.25 36.41 76.71 73.01 73.57 77.08 88.17 78.56 77.45
s15 48.06 56.93 52.68 48.98 80.59 69.69 56.56 79.30 84.10
s16 41.04 53.79 90.94 86.51 68.21 72.83 90.94 82.07 79.85
Avg. 46.49 52.70 71.83 73.88 74.24 74.86 78.45 78.49 81.57

Table 6
Emotion recognition accuracies (%) of ‘session1!session3’ on the SEED-V dataset.

Subject m1 m2 m3 m4 m5 m6 m7 m8 m9

s1 49.92 73.71 69.88 70.72 65.89 87.35 75.04 73.54 80.03
s2 37.60 55.74 60.73 64.23 66.06 57.74 68.05 67.22 77.54
s3 40.10 56.07 56.91 69.55 72.38 72.38 78.20 75.71 84.69
s4 49.25 67.22 89.52 89.52 86.86 83.03 93.18 90.02 90.35
s5 46.42 51.91 57.40 65.56 74.21 74.38 74.88 76.04 81.86
s6 41.43 45.76 45.26 48.09 73.54 42.26 52.58 57.40 77.04
s7 38.77 54.58 75.87 79.53 74.04 73.38 91.18 91.35 86.86
s8 58.57 50.08 73.04 68.89 75.54 60.73 67.89 76.54 84.19
s9 44.09 72.71 80.70 76.37 79.03 92.85 91.01 92.18 85.86
s10 47.09 38.44 46.92 46.59 58.23 55.41 54.24 50.58 70.38
s11 43.43 58.07 73.04 75.71 73.21 79.03 89.85 93.84 84.86
s12 38.94 57.40 68.89 79.87 69.72 78.87 92.85 89.02 83.69
s13 37.27 70.72 71.55 72.21 77.04 80.37 77.04 92.85 89.85
s14 44.09 53.24 55.57 65.72 58.40 81.20 64.89 64.56 67.89
s15 43.93 40.27 44.09 43.09 68.22 64.39 54.74 60.23 72.88
s16 45.76 49.08 61.73 66.89 75.71 70.05 68.55 61.23 87.19
Avg. 44.17 55.94 64.44 67.66 71.75 72.09 74.64 75.77 81.57

Table 7
Emotion recognition accuracies (%) of ‘session2!session3’ on the SEED-V dataset.

Subject m1 m2 m3 m4 m5 m6 m7 m8 m9

s1 50.92 62.06 89.35 89.52 68.39 91.68 96.51 96.51 79.37
s2 45.92 58.07 82.20 80.53 70.55 74.38 89.35 94.68 71.05
s3 42.60 51.08 69.72 64.56 76.54 74.88 75.54 75.04 84.53
s4 67.72 65.39 70.38 79.20 84.86 86.52 85.36 80.87 90.35
s5 49.42 49.75 56.24 65.89 79.20 67.22 66.56 64.73 79.70
s6 40.77 48.92 64.23 65.56 71.55 65.39 68.89 72.55 82.03
s7 44.43 47.25 80.37 95.17 76.21 80.53 97.84 93.51 86.36
s8 49.92 50.75 78.04 73.04 82.03 67.89 84.86 92.85 86.86
s9 51.91 51.08 85.36 80.37 83.36 94.34 88.35 90.52 88.85
s10 39.60 59.73 37.60 44.59 63.89 65.56 47.75 47.75 73.71
s11 58.57 52.91 80.53 75.21 71.88 62.40 79.37 77.54 82.70
s12 47.25 64.89 83.86 83.36 69.05 76.87 88.35 91.51 78.54
s13 44.09 62.56 70.72 82.86 80.87 84.36 84.36 86.36 88.85
s14 43.59 38.60 47.42 47.75 63.06 54.08 56.41 58.07 71.55
s15 51.41 58.07 63.73 60.90 76.71 80.70 72.21 65.72 82.03
s16 51.91 59.40 70.88 70.05 76.54 72.71 71.15 76.04 86.02
Avg. 48.75 55.03 70.66 72.41 74.67 74.97 78.30 79.02 82.03
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outperforms all the other models in emotion recognition based on
the results in Table 8.

In addition to the recognition accuracy, we show the confusion
matrices of GASDSL on SEED-IV and SEED-V in Fig. 4, from which
we know the recognition accuracy of GASDSL for each emotional
state. In confusion matrices, different depth of the color indicates
different values. The darker the color, the larger the value. Taking
8

SEED-IV for example, the recognition rates of the four emotional
states sad, fear, happy and neutral, by GASDSL are 79.44%, 70.10%,
72.94% and 88.85%, respectively. Obviously, neutral is the state
with the highest recognition rate; therefore, the corresponding
block has the darkest color. In addition, we know that 5.12%,
3.07%, and 2.96% of the neutral EEG samples were respectively mis-
classified as the sad, fear, and happy states.



Fig. 3. Average emotion recognition accuracies of different models (%) represented by curves.

Table 8
The analysis of the variance(ANOVA) between GASDSL and the other models (**p-
value < 0.01, *p-value < 0.05).

ANOVA SEED-IV SEED-V

m1 2.23e-16** 2.56e-48**
m2 1.92e-13** 3.49e-30**
m3 3.05e-05** 4.55e-08**
m4 8.18e-04** 1.72e-06**
m5 0.002325** 1.21e-08**
m6 0.002725** 2.16e-05**
m7 0.015448* 0.004296**
m8 0.032722* 0.018284*
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3.4. Insights into the GASDSL model learning

3.4.1. Discriminative subspace learning
In GASDSL, the discriminative subspace learning is mediated by

the graph learning and the pseudo-label estimation of unlabeled
EEG samples. Mathematically, as shown by Eq. (20), it simultane-
ously minimizes the within-class data scatter (i.e., the between-
class scatter is accordingly maximized since the total scatter is
fixed) and the discriminative information depicted by the learned
Fig. 4. Recognition accuracies (%) of GASD
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graph. This section investigates the discriminative ability of the
learned subspace by comparing GASDSL with sPCAN and sUFDR
on both synthetic data and real EEG data.

First, we explore a toy example to verify the ability of GASDSL in
dealing with non-Gaussian distributed data. The synthetic dataset
is generated randomly and contains two classes of data points,
consisting a labeled subset and an unlabeled subset. The dimension
of each data point is two. We first add Gaussian noises on this data-
set and then different dimensionality reduction methods are used
to project it onto a 2D space. As shown in Fig. 5, all the three mod-
els perform well on this dataset when the noise variance is one and
the number of noisy dimensions is 10. However, when the noise
variance is enlarged to eight and the number of noisy dimensions
is 100, the separability of datasets achieved by GASDSL signifi-
cantly outperforms the other two models, as shown in Fig. 6.

Second, an example case (subject1: session1!session2) from
the SEED-IV dataset is used to visualize the learned subspaces. In
Fig. 7, the red, blue, green and yellow data points indicate the
EEG samples respectively belonging to the neutral, sad, fear and
happy states. It is obvious that in Fig. 7d), the samples from differen
classes are almost perfectly separated, indicating the effectiveness
of GASDSL in discriminative subspace learning.
SL represented by confusion matrices.



Fig. 5. Subspaces learning on a synthetic dataset with moderate noises.
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3.4.2. Graph similarity learning
According to the graph theory, a desirable graph should prop-

erly establish connections for within-class samples but remove
connections for between-class samples to enhance its discrimina-
tive ability. In GASDSL, the graph learning process is coupled with
the other components of discriminative subspace learning and the
pseudo-label estimation. Therefore, the maximal entropy graph
learning is guided by the discriminative information consisting of
given labels and estimated pseudo ones, which is expected to accu-
rately characterize the semantic relationship of samples. In Fig. 8,
some EEG sample pairs are respectively utilized to show the simi-
larity learning of GASDSL. That is, the gradually increasing and
decreasing similarity values respectively corresponding to the
within-class and between-class cases are found in these two
subfigures.
3.4.3. Parameter sensitivity analysis
This section investigates the performance of GASDSL in terms of

the model parameters. There are three parameters in GASDSL, i.e.,
a; b, and m, in order to balance the impacts of respective terms.
Specifically, a controls the impact of graph similarity matrix learn-
ing and b is associated with the entropy regularization, and m is
the subspace dimensionality. Fig. 9 corresponds to the case of ‘sub-
10
ject1: session1!session2’ from SEED-IV, where we show the per-
formance variations of GASDSL in terms of two among the three
parameters by fixing the third one m; b;a respectively as 30,
28;29. Obviously, we find that GASDSL is slightly more sensitive
to b than a and m. According to the definition of entropy regular-
ization, different bs controls the number of neighboring samples
for a certain EEG sample to connect, i.e., the neighborhood size.
Equivalently, it mainly functions for local data submanifold explo-
ration. Due to the irregularity of EEG features and even the inter-
session variabilities, the flexibility of parameter b coincides with
our intuitive understanding to the EEG data properties. Generally,
we can select a; b;m respectively from candidate values
f27;28; � � � ;212g; f27;28; � � � ;211g and f20;30; � � � ;100g to make
GASDSL achieve good performance.

3.5. Insights into the EEG spatial-frequency patterns

In the above two sections, we have confirmed that GASDSL not
only improves the emotion recognition accuracy, but also identifies
the discriminative subspace, from pattern classification perspec-
tive. Below we take a closer look at the contributions of different
EEG features and further the different frequency bands and
channels in emotion recognition. To this end, we should first



Fig. 6. Subspace learning on a synthetic dataset with large noises.
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quantitatively calculate the importance of all feature dimensions
on one hand; on the other hand, we should build the correspon-
dence between EEG frequency bands (channels) and feature
dimensions.

We propose to use the normalized ‘2-norm of each row of the
learned projection matrix in GASDSL to serve as the quantitative
importance of each feature dimension. Specifically, we calculate

the importance of the i-th EEG feature, hijdi¼1, by

hi ¼ kwik2Xd

j¼1

kwjk2
; ð23Þ

where wi is the i-th row of the projection matrix W. Obviously, the
larger hi, the more discriminative the i-th EEG feature dimension in
differentiating emotional states. If we have p EEG frequency bands
and q channels, according to the established correspondence
between EEG frequency bands (channels) and feature dimensions
(Peng et al., 2022b), the importance of the ijpi¼1-th frequency band
can be calculate by

xðiÞ ¼ hði�1Þ�qþ1 þ hði�1Þ�qþ2 þ . . .þ hi�q: ð24Þ
Similarly, the importance of the jjqj¼1-th channel can be calculated by
11
wðiÞ ¼ hj þ hjþq þ . . .þ hjþðp�1Þ�q: ð25Þ
There are 62 EEG channels and five frequency bands in both

SEED-IV and SEED-V. Therefore, we respectively set p to 5 and q
to 62 in the rules (24) and (25). The average results of EEG fre-
quency bands across the three cross-session emotion recognition
settings on these two datasets are presented as bar plots in
Figs. 10a) and 11a). According to our results, features extracted
from the Gamma band play the most important roles in emotion
recognition. Such data-driven results might be explained from
two aspects. One is that the Gamma band indeed correlates more
to the neural mechanism of affective information processing and
the other is that the Gamma band contains the broadest frequency
interval (i.e., 31–50 Hz) among the five bands.

Based on the rule (25), we obtain the importance values of dif-
ferent EEG channels. By visualizing the EEG channel importance
values by the form of brain topology in Figs. 10b), we gain some
insights into the discriminative abilities of different brain regions
in emotion recognition. We conclude that the left/right temporal,
prefrontal, and (central) parietal lobes are identified to be more
correlated to emotion expression. The above critical frequency
bands and channels identification results are generally consistent
with some existing studies (Peng et al., 2022b; Zheng and Lu,
2015; Zheng et al., 2019).



Fig. 7. Subspace learning of different models on an example EEG emotion recognition case ‘subject 15: session1!session2’.

Fig. 8. Similarity learning of sample pairs in the maximum entropy graph.
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Fig. 9. Parameter sensitivity analysis on an example case of ‘subject 1: session 1!session 2’ in SEED-IV.

Fig. 10. Analysis of affective activation patterns in SEED-IV.

Fig. 11. Analysis of affective activation patterns in SEED-V.
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4. Discussions

What these models have in common are three folds. First, they
are all joint models to unify some sub-tasks together by different
strategies. For example, PCAN can be seen as a joint model for
structured graph learning and spectral clustering. Second, all of
them are closely related to graph construction. In sPCAN, graph
learning is enforced to satisfy three properties of non-negativity,
row-normalization and rank constraint while in both sMEG and
GASDSL, the rank constraint is replaced by the entropy regularizer.
Though there is not explicit graph learning in sUFDR, the dimen-
sionality reduction step is equivalent to the strategy that first con-
structs a graph via the given and estimated data labels and then
finds a subspace to preserve the data structure information
depicted by this graph, according to the spectral regression theory
(Peng et al., 2020). Third, all these models involve subspace learn-
ing for graph construction or label prediction.

The differences between GASDSL and each of the other models
are described below.

� In sPCAN, the structured graph learning process is unsuper-
vised, which cannot make full use of the given label information
of data. Though the pseudo-cluster assignment of data is coupled
with the graph learning, the cluster indicator matrix is in real-
valued coding, which is not capable enough in guiding the graph
learning from our point of view.

� In both sPCAN and sMEG, the graph construction serves as the
central place. That is, subspace learning aims to more accurately
characterize the similarity between samples and then it is
expected to obtain more accurate label propagation performance.
However, in GASDSL, discriminative subspace learning acts the
central role, whose learning process is mediated by both the graph
learning and the semi-supervised label prediction processes.

� sUFDR uses an iterative way to explore the discriminative sub-
space and predict the label of unlabeled samples. Though it is ter-
med an unified framework for dimensionality reduction, it has no
unified objective function. The dimensionality reduction in sUFDR
is only guided by the given and estimated data label information.

� In both sPCAN and sMEG, the label propagation on learned
graph is usually restricted within the transductive paradigm and
has no out-of-sample extension ability. That is, it is often necessary
to contruct a new graph again when given a new sample. However,
based on the learned subspace projection matrix and centroid, our
proposed GASDSL can preform label prediction on unseen samples.
5. Conclusion and future work

In this paper, we proposed a Graph Adaptive Semi-supervised
Discriminative Subspace Learning (GASDSL) model for recognizing
emotional states from EEG data. GASDSL projected EEG data into a
discriminative subspace to decrease the intra-class scatter and
simultaneously increase inter-class separability. Moreover, we
employed an adaptive graph construction component and a
semi-supervised emotional state prediction component to mediate
the discriminative subspace learning. The adaptive graph not only
adopted the maximum entropy regularizer to exploit local struc-
tural information of EEG data, but also combined discriminative
subspace learning into a single objective function to avoid the
sub-optimality problem. In the learned discriminative subspace,
the emotional state prediction of a certain sample was effectively
achieved by discovering its nearest emotional state center. Based
on the experimental results on the SEED-IV and SEED-V datasets,
we concluded that 1) the joint learning strategy in GASDSL effec-
tively improved the emotion recognition performance; 2) both
the learned subspace and the maximum graph are discriminative
for depicting the semantic information of EEG samples; and 3)
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the spatial-frequency patterns (i.e., key EEG frequency bands and
brain regions) in emotion recognition are quantitatively analyzed
by the learned projection matrix. In the future, we will continue
investigating the graph-based learning models for issues within
EEG-based emotion recognition. Specifically, we will attempt to
deal with the inter-subject variabilities in cross-subject EEG emo-
tion recognition, i.e., the bipartite graph-based adaptive data trans-
ferability quantification in cross-subject EEG emotion recognition
(Li et al., 2022g). We will continue to explore discriminantive sub-
space learning guided by adaptive graphs, and attempt to solve the
problem of emotion recognition in the case of multimodal data.
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