
Neurocomputing 553 (2023) 126547

Available online 20 July 2023
0925-2312/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

On k-means iterations and Gaussian clusters

Renato Cordeiro de Amorim a,*, Vladimir Makarenkov b

a School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe, UK
b Département d’informatique, Université du Québec à Montréal, C.P. 8888 succ. Centre-Ville, Montreal (QC) H3C 3P8, Canada

A R T I C L E I N F O

Communicated by Zidong Wang

Keywords:
k-means
Clustering
Feature selection

A B S T R A C T

Nowadays, k-means remains arguably the most popular clustering algorithm (Jain, 2010; Vouros et al., 2021).
Two of its main properties are simplicity and speed in practice. Here, our main claim is that the average number
of iterations k-means takes to converge (τ) is in fact very informative. We find this to be particularly interesting
because τ is always known when applying k-means but has never been, to our knowledge, used in the data
analysis process. By experimenting with Gaussian clusters, we show that τ is related to the structure of a data set
under study. Data sets containing Gaussian clusters have a much lower τ than those containing uniformly random
data. In fact, we go considerably further and demonstrate a pattern of inverse correlation between τ and the
clustering quality. We illustrate the importance of our findings through two practical applications. First, we
describe the cases in which τ can be effectively used to identify irrelevant features present in a given data set or
be used to improve the results of existing feature selection algorithms. Second, we show that there is a strong
relationship between τ and the number of clusters in a data set, and that this relationship can be used to find the
true number of clusters it contains.

1. Introduction

Cluster analysis is a key tool in data science as it can be used to reveal
the class structure of a data set, without requiring labelled samples.
Hence, it has been applied to many different problems in areas such as
cybersecurity, streaming, Internet-of-Things, anomaly detection, and
others (see for instance [3–6], and references therein).

Clustering algorithms can be divided into different categories, such
as partitional, hierarchical, and density-based. The latter refers to al
gorithms following the idea that a cluster is a high-density region of data
points (i.e. objects or entities), and that clusters are separated by
contiguous regions of low-density. Hierarchical algorithms produce a
clustering, usually represented as a tree-like partition of the given data
points as well as information regarding the relationship among clusters.
Such tree-like relationships can be visualised using a dendogram.
Further information regarding hierarchical and density-based algo
rithms can be found in many sources (see for instance [7–9], and ref
erences therein). Here, we focus on partitional clustering, and more
specifically, on the k-means algorithm [10,11], which is arguably the
most popular partitional clustering algorithm [1,2].

Given a data set X containing n data points xi ∈ Rm,k-means produces
a partition S = {S1, S2,…, Sk} of X, such that each cluster Sl ∈ S is non-

empty, and each xi ∈ X is included in exactly one subset of S. In any
clustering algorithm the general aim is that data points in the same
cluster (i.e. a subset of S) should be similar, and data points between
clusters should be dissimilar. In the case of k-means, the (dis) similarity
between data points is measured using the Euclidean squared distance.
That is, given two data points xi, xj ∈ X, the distance between them is
calculated as follows:

d(xi, xj) =
∑m

v=1
(xiv − xjv)

2
, (1)

where xiv and xjv are respectively the values of xi and xj corresponding to
feature (i.e variable) v, and m is the number of features.

An optimal k-means clustering is that which minimises the value of
the following objective function:

W =
∑k

l=1

∑

xi∈Sl

d(xi, zl), (2)

where zl is the centroid of cluster Sl ∈ S, computed as the component-
wise mean over all xi ∈ Sl. In order to minimise (2), k-means follows
three simple steps:

* Corresponding author.
E-mail addresses: r.amorim@essex.ac.uk (R. Cordeiro de Amorim), makarenkov.vladimir@uqam.ca (V. Makarenkov).

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

https://doi.org/10.1016/j.neucom.2023.126547
Received 25 November 2022; Received in revised form 3 May 2023; Accepted 8 July 2023

mailto:r.amorim@essex.ac.uk
mailto:makarenkov.vladimir@uqam.ca
www.sciencedirect.com/science/journal/09252312
https://www.elsevier.com/locate/neucom
https://doi.org/10.1016/j.neucom.2023.126547
https://doi.org/10.1016/j.neucom.2023.126547
https://doi.org/10.1016/j.neucom.2023.126547
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2023.126547&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Neurocomputing 553 (2023) 126547

2

1. Select k data points in X at random, and copy their values to the k
initial centroids z1, z2,…, zk.
2. Assign each xi ∈ X to the cluster represented by its nearest
centroid.
3. Update each centroid zl to the component-wise mean over all data
points in Sl. If any of the centroids changes its value, go to Step 2.

Let (ωt)
τ
t=1 be a sequence of values such that ωt holds the value of (2)

at iteration t. We have that ωt⩾0 (i.e. this sequence has a lower bound)
and ωt+1 < wt (i.e. it decreases monotonically). Also, since X is finite,
there exists a finite number of different partitions of X. Hence, this
sequence (and k-means) not only converges, but it does so in a finite
number of iterations. This number of iterations (τ) has, to our knowl
edge, always been discarded in the data analysis.

The time complexity of k-means is O(knmτ), where k is the number of
clusters, n is the number of data points, m is the number of features, and
τ is the number of iterations in the internal loop of the algorithm. Often
the maximum number of iterations in the internal loop of k-means is
limited by a constant (e.g. τ = 100). However, if the number of itera
tions τ is not limited, and depends on the speed of the convergence of the
objective function (2) to a certain local or global minimum, then the
known upper bound on the running time of k-means is O(nkm) (i.e. it is in
general exponential in the number of data points when km = Ω(n/logn))
[12], whereas the improved lower bound determined by Vattani is 2Ω(n)

[13]. These results suggest that in its worst-case scenario k-means re
quires exponentially many iterations even in the plane. However, in
practice, the number of iterations k-means takes to converge is rather
linear in the number of data points.

The main contribution of this paper is to show that the number of k-
means iterations, τ, is in fact very informative. In our experiments, we
use data sets containing Gaussian clusters under different parameter
configurations as well as data sets containing uniformly random values.
In our four sets of experiments, we show that: (i) with certain data set
configurations, τ has a negative correlation with the quality of the
recovered clustering (see Section 3); (ii) the lower the covariance within
Gaussian clusters, the lower the average value of τ in small data sets, and

the opposite holds in larger data sets (see Section 4); (iii) τ can help
identify noise features (here, an irrelevant feature composed of uni
formly random values) in small data sets containing Gaussian clusters
(see Section 5); (iv) there is a relationship between τ and the number of
clusters in data sets containing Gaussian clusters (see Section 6).

2. Data sets

In this paper, we perform a number of experiments using k-means
(for details see Section 1) and and some other clustering and feature
selection algorithms (see Sections 5.1 and 5.2). Generally speaking, we
consider three different types of data sets, which we present below.

We began by creating 18 basic data configurations, containing 50
synthetic data sets each. We follow the standard nxm -k. For instance,
any data set in the configuration 1000x20-3 contains 1,000 data points,
each described over 20 features, with the data points distributed over
three clusters. There are three versions of each of these data configu
rations, leading to a total of 3× 18 = 54. Each version contains
spherical Gaussian clusters with diagonal covariance matrices of 0.5,1.0,
and 1.5, respectively. A within-cluster covariance of 0.5 leads to tighter
clusters, while a within-cluster covariance of 1.5 leads to clusters of
higher spread (and by consequence higher overlap), see Fig. 1. In all
cases, we generated each centroid component independently from a
Gaussian distribution N(0, 1), and each data point was uniformly
distributed over the clusters. In total, we created 54 × 50 = 2, 700 data
sets.

For comparison, we also generated data sets under the nxm -k
standard containing solely noise features. Here, a noise feature is a
feature containing solely uniformly random values. Given these have no
within-cluster covariance, there are 18 such configurations with 50 data
sets each. The results of our experiments for these data sets appear under
“Random data” in Table 2 (more details are given in Section 4). For our
experiments with feature selection (see Section 5), we considered the 2,
700 data sets containing Gaussian clusters, adding a noise feature to
each of them (hence the “+1 NF” in their names). This way, if we request
a feature selection algorithm to identify a single irrelevant (noise)
feature, we know which one should be selected. Fig. 1 shows some

Fig. 1. Examples of data sets under the 1000x10-5 configuration (1,000 data points, 10 features, and 5 clusters) with different within-cluster covariances — and their
versions with one added noise feature. We plot the data sets over their first and second principal components.

R. Cordeiro de Amorim and V. Makarenkov

Neurocomputing 553 (2023) 126547

3

informative examples of the impact of a single noise feature on data
structures.

3. Iterations and cluster recovery

In this section, we explore the relationship between the number of
iterations k-means takes to converge (τ) and the quality of the clusters
recovered. Here, we measure clustering quality using the popular
Adjusted Rand Index (ARI) [14]. This is a corrected-for-chance version
of the Rand Index [15]. An ARI close to zero implies the clustering is
(nearly) as poor as a uniformly random partition. Our choice of the
evaluation measure is supported by the literature, which shows ARI to
be superior to other measures when evaluating clustering quality [16].
In this set of experiments, we carried out k-means 100 times on each of
the 50 considered data sets and for each of parameter configurations we
experimented with. For each k-means run, we calculated the value of
ARI of the produced clustering, and saved the corresponding number of
iterations τ. That is, for each data set we had 100 values of ARI and 100
values of τ. With these, we were able to calculate the correlation index
between the values of ARI and τ for each single data set.

Table 1 reports the average correlations over the 50 data sets for each
configuration considered, and the related standard deviations. Our ex
periments show that in some cases there is a considerable negative

correlation. For instance, in the case of 100000x100-3 on data sets
whose within-cluster covariance is 0.5, we have the most noticeable
average correlation of − 0.93. One can observe a general pattern that the
negative correlation is higher on larger data sets (i.e. those with 10,000
data points or more). In these data sets the lowest negative correlation is
− 0.55, which is rather meaningful. The correlations in smaller data sets
(i.e. those with 1,000 data points) are not always as indicative but we
can see a clear pattern. The negative correlation in smaller data sets is
higher for the configurations with a higher number of features, a lower
number of clusters, and a lower within-cluster covariance. This result
follows intuition as such data sets would have a small number of well-
formed tight clusters, leading to a higher chance of well-placed initial
centroids in k-means and by consequence a lower τ. Table 1 also shows
that if one adds a single noise feature to a data set, this can have drastic
consequences to the correlation we analyse. For instance, 1000x10-5
data sets present a correlation of − 0.5 for configuration with clusters
whose within-cluster covariance equals 0.5. However, if one adds a
single irrelevant feature to such data sets (i.e. configuration 1000x10-
5+1NF), then the corresponding correlation drops to 0.07. The same can
be observed in other data sets, such as 20000x30-10 and its added noise
version 20000x30-10+1NF.

Fig. 2 shows the distribution of ARIs with respect to τ (or if the reader
prefers, that of τ with respect to ARI) for some of the data sets we
experiment with. To generate these results, we ran k-means 100 times on
each of the 50 data sets for a given configuration. We recorded all values
of ARI in relation to the ground truth, and the related values of τ. Each
point in Fig. 2 represents a pair (ARI, τ), and there are 100 × 50 = 5,000
points on each subfigure. Figs. 2 (a)-(c) present the results for 1000x20-3
with the within-cluster covariances of 0.5, 1.0, and 1.5, respectively.
These results show the effect that an increased within-cluster covariance
has on the correlation between ARI and τ. These figures also illustrate
that the pairs (ARI,τ) form two well-separated clusters, one close to a
perfect ARI of 1, and another around the ARI close to 0.45. This supports
our view that the high negative correlation we observed (see Table 1) is
indeed related to how good the initial centroids of k-means are in these
small data sets. With good initial centroids the algorithm converges
quickly, and because of the nature of the data, this convergence tends to
a good clustering solution. If the initial centroids are not good (e.g. all
the three initial centroids belong to the same ground truth cluster), then
τ is higher and the convergence tends to a poorer clustering solution.
Figs. 2 (d)-(f) illustrate the correlation results for the 1000x20-3 + 1NF
configuration (i.e. the same data sets with an added noise feature). For
these noisy data, the correlation is indeed poorer compared to our
previous results. Fig. 2 also shows our results for the 1000x10-5 data
configuration for a visual comparison.

Our main conclusion in this section is that there are data sets for
which the number of iterations, τ, negatively correlates with ARI. This
property concerns particularly two classes of data sets: (i) those that are
large (i.e. with at least 10,000 data points); (ii) smaller data sets (i.e.
those with 1,000 data points) with a higher number of features, a lower
number of clusters, and a lower within-cluster covariance. However, this
negative correlation can be lost if the clusters have a higher spread
(higher within-cluster covariance) or some noise is added to the data set,
even if this takes the form of a single noise feature.

4. Iterations and within-cluster covariance

The k-means algorithm is popular, but it is not without weaknesses.
One such weakness is that k-means will produce a clustering for any data
set, even if the data set itself has no cluster structure. This issue raises
two questions that we aim to answer in this section: (i) If we were to
apply k-means to two data sets of equal size (with n objects and m fea
tures) - one containing Gaussian clusters and the other composed solely
of uniformly random values, would the τ values be approximately the
same?; (ii) For data sets containing Gaussian clusters, will the within-
cluster variance have an impact on τ?.

Table 1
Correlation (ρ) between the ARI values (representing clustering quality) and the
numbers of k-means iterations calculated for each considered parameter
configuration. The average values over 50 data sets per configuration are
reported.

Original data sets (no noise)

0.5 cov. 1.0 cov. 1.5 cov.

ρ sd ρ sd ρ sd

1000x5-3 -0.16 0.33 -0.05 0.19 0.07 0.22
1000x5-5 -0.09 0.25 0.12 0.17 0.13 0.14
1000x5-10 0.14 0.12 0.14 0.12 0.09 0.08
1000x10-3 -0.59 0.29 -0.22 0.32 -0.03 0.23
1000x10-5 -0.50 0.18 -0.18 0.24 -0.02 0.16
1000x10-10 -0.14 0.14 0.14 0.12 0.16 0.11
1000x20-3 -0.83 0.12 -0.77 0.18 -0.42 0.35
1000x20-5 -0.73 0.06 -0.61 0.10 -0.42 0.15
1000x20-10 -0.33 0.09 -0.23 0.11 -0.04 0.14
10000x25-3 -0.92 0.04 -0.83 0.30 -0.77 0.32
10000x25-5 -0.85 0.06 -0.84 0.08 -0.80 0.18
10000x25-10 -0.57 0.13 -0.67 0.09 -0.67 0.08
20000x30-3 -0.92 0.05 -0.91 0.15 -0.82 0.31
20000x30-5 -0.85 0.06 -0.87 0.05 -0.88 0.06
20000x30-10 -0.55 0.11 -0.71 0.08 -0.73 0.08
100000x100-3 -0.93 0.04 -0.92 0.04 -0.95 0.04
100000x100-5 -0.83 0.06 -0.87 0.05 -0.87 0.05
100000x100-10 -0.58 0.11 -0.61 0.11 -0.63 0.11

Data sets with an added noise feature

1000x5-3+1NF -0.06 0.29 0.02 0.22 0.00 0.20
1000x5-5+1NF 0.08 0.17 0.05 0.13 0.09 0.13
1000x5-10+1NF 0.06 0.12 0.14 0.11 0.11 0.09
1000x10-3+1NF -0.27 0.21 -0.17 0.23 -0.03 0.24
1000x10-5+1NF 0.07 0.19 0.15 0.16 0.09 0.14
1000x10-10+1NF 0.09 0.09 0.10 0.09 0.13 0.10
1000x20-3+1NF -0.41 0.21 -0.24 0.18 -0.26 0.24
1000x20-5+1NF -0.25 0.15 -0.05 0.13 0.01 0.17
1000x20-10+1NF -0.02 0.12 0.19 0.12 0.16 0.11
10000x25-3+1NF -0.63 0.20 -0.39 0.28 -0.59 0.20
10000x25-5+1NF -0.52 0.19 -0.29 0.19 -0.04 0.24
10000x25-10+1NF -0.22 0.15 0.14 0.21 0.22 0.15
20000x30-3+1NF -0.75 0.14 -0.37 0.26 -0.58 0.25
20000x30-5+1NF -0.67 0.17 -0.40 0.15 -0.16 0.25
20000x30-10+1NF -0.36 0.19 -0.13 0.22 0.22 0.17
100000x100-3+1NF -0.95 0.02 -0.95 0.02 -0.92 0.05
100000x100-5+1NF -0.92 0.03 -0.91 0.04 -0.89 0.04
100000x100-10+1NF -0.59 0.10 -0.62 0.11 -0.64 0.09

R. Cordeiro de Amorim and V. Makarenkov

Neurocomputing 553 (2023) 126547

4

It is intuitive to think that the structure of a data set (or the lack of it)
has an impact on τ. We first demonstrate that this is indeed the case, and
later show how this property can be used in practice (see Sections 5 and
6). To answer both questions raised above, we ran k-means 100 times on
each of the 50 data sets we generated for each considered parameter
configuration. For each run, we saved the number of iterations k-means
took to converge (τ), and calculated their average (τ) as well as the
standard deviation over these values.

Table 2 reports the results of this set of experiments. Here, we can
observe some interesting patterns. For instance, τ is much higher for data
sets containing uniformly random values than for data sets containing
Gaussian clusters. This suggests that k-means takes, on average, more
iterations to converge on data sets that lack structure. The presence of
areas of low-density is not a sufficient condition to indicate cluster
structure, but such presence is a necessary condition. Hence, a data set
containing a cluster structure will have areas of high-density and areas
of low-density. With more areas of low-density, we have a higher
probability of a centroid moving to (or starting at) an area with less
neighbours. Hence, the number of centroid updates is likely to be less
than if the data set were to contain solely uniformly random values.

When we analyse the results for data sets containing Gaussian clus
ters (see Table 2), we can observe another interesting pattern. In small
data sets (those with 1,000 data points) the lower the within-cluster
variance, the lower the value of τ (and the related standard deviation,
in the majority of cases). This seems well-aligned with intuition as the
clusters are tighter. However, in larger data sets (those with at least
10,000 data points) the pattern is the opposite. That is, the higher the
within-cluster variance, the lower the value of τ. It is tempting to think
this happens because a within-cluster variance of 1.5 leads k-means to
converge quickly but to wrong clusterings in large data sets. This cannot
be true as Table 1 shows that large data sets have a higher inverse
correlation between τ and cluster quality. Hence, a significant propor
tion of these low τ convergences are to correct clusterings. With these
results, we can now move to a couple of interesting applications.

5. Iterations and feature selection

Feature selection is a major area of research in data science. A feature
is one of the m components shared by all data points xi ∈ X. The general
idea behind any feature selection algorithm is to identify whether a
given feature is relevant, and to remove it from all xi ∈ X should this not

be the case. The literature on feature selection is rather vast but tends to
focus on supervised methods (see for instance [17,18], and references
therein). Here, we are particularly interested in unsupervised feature
selection. That is, algorithms capable of assigning a degree of relevance
to each feature without relying on labelled samples. In this section, we
deal solely with data sets containing Gaussian clusters (to ensure the
presence of relevant features). Our two main objectives are to show that
there are data set configurations in which: (i) τ can be used on its own to
identify a noise feature, producing competitive results; (ii) it is possible
to use the information present in τ to improve the results of feature se
lection algorithms. We tackle these issues by experimenting on different
data set configurations to which we added a single noise feature
(composed of uniformly random values). We then ask each algorithm
considered to identify a single irrelevant feature and calculate the pro
portion of times it identified the added noise feature as irrelevant.

5.1. Background on feature selection

In this section, we recall the main properties of a few feature selec
tion algorithms, including those we believe to be the most popular.
These algorithms allow one to determine how many features should be
selected for data analysis.

Feature selection using feature similarity (FSFS) [19] is, arguably,
the most popular unsupervised feature selection algorithm. It aims at
identifying a set of maximally independent features by calculating
pairwise feature similarities using the maximum information compres
sion index and applying k-nearest neighbours (k-NN) [20]. Given two
features v1 and v2, this index is defined as follows:

2λ2(v1, v2) = σ2
v1
+ σ2

v2
−

̅̅̅

(σ2
v1
+ σ2

v2
)

2
− 4σ2

v1
σ2

v2
(1 − ρ(v1, v2)

2
)

√

, (3)

where ρ(v1, v2) is the Pearson correlation coefficient between v1 and v2,
and σ2

vj
represents the variance of a feature vj with 1⩽j⩽m. The value of

λ2 is inversely proportional to the dependency between v1 and v2, with
the greatest lower bound of zero. Another interesting point, which is
rather useful to us, is that this algorithm takes the number of features to
be removed as a parameter.

Feature Selection using Feature Similarity (FSFS)

1. Set V = {1, 2, …, m}, and consider the user-defined value of k
(subject to 1⩽k⩽m − 1).

Table 2
The average numbers of iterations k-means takes to converge (τ) and the related standard deviations (sd). There are 50 data sets for each parameter configuration, and
k-means was carried out 100 times per data set (i.e. 100 random starts per data set were performed). Random data columns report the results obtained for data set
containing solely uniformly random features.

Data sets with Gaussian clusters

Random data 0.5 covariance 1.0 covariance 1.5 covariance

τ sd τ sd τ sd τ sd

1000x5-3 25.06 10.63 9.69 5.84 14.05 7.53 19.35 10.75
1000x5-5 28.38 11.54 16.11 8.82 22.69 10.13 26.07 11.31
1000x5-10 29.06 11.16 23.01 8.97 27.14 9.50 27.28 9.70
1000x10-3 30.10 11.71 6.07 4.44 8.75 4.27 10.32 4.88
1000x10-5 31.97 11.65 9.25 4.94 12.99 6.39 16.89 7.93
1000x10-10 29.92 10.27 13.29 5.76 20.30 8.06 25.36 9.25
1000x20-3 30.16 11.05 5.04 4.97 5.30 4.03 6.37 3.41
1000x20-5 30.67 10.43 7.45 4.96 8.41 4.72 9.53 4.90
1000x20-10 26.74 8.14 8.76 3.64 11.29 5.06 14.51 5.99
10000x25-3 123.58 48.25 9.65 17.14 8.16 13.55 8.06 11.19
10000x25-5 144.85 53.82 18.28 18.60 16.56 17.72 13.42 14.07
10000x25-10 140.22 45.93 24.66 13.01 22.49 13.01 20.80 13.28
20000x30-3 157.96 63.03 12.33 24.30 10.56 20.90 9.94 18.63
20000x30-5 231.11 86.86 24.45 26.48 20.47 25.19 17.80 22.31
20000x30-10 226.41 76.26 35.16 19.30 30.55 19.85 27.65 19.98
100000x100-3 518.21 197.00 24.09 55.17 20.57 54.14 17.56 49.72
100000x100-5 637.53 245.95 48.63 58.61 47.92 61.55 46.07 69.05
100000x100-10 617.13 198.55 76.21 45.08 75.67 47.02 74.95 52.86

R. Cordeiro de Amorim and V. Makarenkov

Neurocomputing 553 (2023) 126547

5

2. For each v ∈ V, compute rk
v . That is, the dissimilarity between v

and its kth nearest neighbour in V using (3).
3. Identify the feature v′ for which rk

v′ is minimum.
4. Remove from V the k-nearest features of v′, and set ∊ = rk

v′.
5. Set k = min(k, |V| − 1).
6. If k = 1 go to Step 9.
7. While rk

v′ > ∊

(a) k = k − 1
(b) rk

v′ = minv∈Vrk
v

(c) If k = 1 go to Step 9.
8. Go to Step 2.
9. Return the set of selected features, V.

The intelligent Minkowski weighted k-means (IMWK) [21,3] calcu
lates, independently, the degree of relevance of each feature at each

Fig. 2. Correlation between ARI and the number of k-means iterations under the 1000x10-5 and 1000x20-3 parameter configurations, with different within-cluster
covariances — and their versions with one added irrelevant feature. The data were plotted over their first and second principal components.

R. Cordeiro de Amorim and V. Makarenkov

Neurocomputing 553 (2023) 126547

6

cluster (wlv). This algorithm applies a weighted version of the Minkowski
distance:

dp(xi, zl) =
∑m

v=1
wp

lv|xiv − zlv|
p
, (4)

and follows the intuitive idea that a given feature may have different
degrees of relevance at different clusters. This is modelled using the
within-cluster dispersion of each feature given by Dlv =

∑
xi∈Sl

|xiv − zlv|
p,

where zlv is the vth component of the centroid of cluster Sl. After calcu
lating all dispersions, the degree of relevance (weight) of each feature at
each cluster is given by:

wlv =

(
∑m

u=1

[
Dlv

Dlu

]1/(p− 1)
)− 1

. (5)

As per the above, the lower the within-cluster dispersion of a feature,
the higher its weight [22]. Hence, uniformly distributed features receive
a lower weight than those concentrated around their centroids. We can
then set the feature with the lowest average weight over all clusters as
irrelevant.

Intelligent Minkowski weighted k-means (IMWK)

1. Set X′←X, Z = W = ∅,wlv = m− 1 with l = 1,2,…, k and v = 1,2,…,

m, and z to be the Minkowski centre over all xi ∈ X.
2. Set zt = argmaxxi∈X′dp(xi, z),St = Sz = ∅.
3. For each xi ∈ X′, if dp(xi,zt) < dp(xi,z), add xi to St. Otherwise, add
xi to Sz. If this step does not change St or Sz, then go to Step 5.
4. Update zt to the Minkowski centre over all xi ∈ St, and each wlv as
per (5). Go to Step 3.
5. Add (zt , |St |) to Z and w to W. In any case, set X′←X′⧹St. If |X′| > 0
go to Step 2.
6. Select the k centroids in Z (first component of each pair in Z) whose
cluster cardinality (second component of each pair in Z) is the
highest. Set Sl = Sz = ∅.
7. Add each xi ∈ X to the cluster Sl whose centroid zl is the nearest to
xi as per (4). If this produces no changes to any Sl ∈ S, go to Step 9.
8. Update each centroid zl to the Minkowski centre over all xi ∈ Sl.
Update each wlv following (5). Go to Step 7.
9. Remove the feature v whose average weight over all clusters, that
is k− 1∑k

l=1wlv, is the lowest.

The Minkowski centre of a feature v at a cluster Sl with an exponent p
is the value μ that minimises

∑
xi∈Sl

|xiv − μ|p. This algorithm has a
parameter, p, used as the Minkowski and weight exponent. In our ex
periments, we set p equal to two, leading to the squared Euclidean dis
tance. This parameter could be optimised (see [23]) but given our
objectives we see no need to do so.

Multi-cluster feature selection (MCFS) [24] is an interesting and
popular algorithm that, unlike others, takes into consideration possible
correlations between features. It does so by making use of developments
in spectral analysis (in particular, manifold learning) and L1-regularised
models for subset selection (for details, see [25–28]), preserving the
multi-cluster structure of the data set. MCFS requires three parameters,
one of which is the number of features to be selected. The other two
parameters are the number of eigenfunctions used, and the number of
neighbours for a k-NN graph. The original MCFS authors suggest default
values of five for both of these parameters but unfortunately this setting
produced poor results. With this in mind, we decided to search for the
best values for these two parameters (between one and five) for each run
of our experiments using the existing labels (the best pair of parameters
is that which leads to the best cluster recovery when removing one
feature). This clearly biases our MCFS experiments but does not obstruct
our objectives.

Multi-cluster feature selection (MCFS)

1. Produce a k-nearest neighbours graph.
2. Solve a generalised eigen-problem and obtain the k top eigen
vectors with respect to the smallest eigenvalues.
3. Solve k L1-regularised regression problems, obtaining k sparse
coefficient vectors.
4. For each feature v = {1,2,…,m}, compute its MCFS score.
5. Return the m′ features with the highest MCFS scores, where m′ is a
user-defined parameter and m′ < m.

Further details regarding the steps above can be found in the original
paper [24]. The above algorithms produce a good baseline for the
analysis of our experiments.

5.2. Feature selection using k-means iterations

In order to meet our objectives for this section (stated under Section
5), we introduce two unsupervised feature selection methods. The first
of them is solely based on the average number of iterations k-means
takes to converge (that is, τ). We assume that the data set X has a
structure containing Gaussian clusters, which is being concealed by a
noise feature. Moreover, we know that the average τ is lower on data sets
with a cluster structure than on data sets containing solely noise features
(see Section 4). Hence, the feature identified as irrelevant in X is that
corresponding to the maximum value of τ.

Feature selection via k-means iterations (FSKI)

1. For each v = 1,2,…,m
(a) Set X′←X, and remove from each xi ∈ X′ the feature v.
(b) Run k-means on X′ 100 times, saving the average number of
iterations, (τv), it takes to converge.

2. Return the feature v′ corresponding to the lowest value of τv′.

The second algorithm we introduce aims at showing that it is possible
to use τ to increase the feature selection capabilities of existing algo
rithms. In our example, τ is used to re-scale a data set before applying a
feature selection algorithm.

Intelligent Minkowski weighted k-means rescaled (IMWKR)

1. For v = 1,2,…,m
(a) Set X′←X, and remove from each xi ∈ X′ the feature v.
(b) Run k-means on X′ 100 times, set τv to be the average number
of iterations k-means takes to converge.

2. For v = 1,2,…,m, set rv =

∑m
j=1

τj

τv
.

3. Set rv = rv∑m
j=1

rj
, that is, normalise each rv.

4. For each xi ∈ X and each v = 1,2,…,m, set xiv = rv × xiv.
5. Apply IMWK to X.

In the above, Step 2 ensures that if feature v leads to a low average
number of k-means iterations (τv), its rv will be high. This increases the
re-scaled value of v in X (Step 4) and by consequence the dispersion of v.
Hence, IMWK (Step 5) is more likely to give a lower weight to v. Thus,
the probability of v being chosen as irrelevant increases.

5.3. Experiments and discussion

In this section, we present the results of our experiments applying the
algorithms described in Sections 5.1 and 5.2 on data sets containing
Gaussian clusters to which we added one noise feature (an irrelevant
feature composed of uniformly random values). Table 3 and Fig. 3 report
the proportion of times each competing algorithm correctly identified
the added noise feature as being the irrelevant one. In our experiments,
we ran the non-deterministic algorithms (that is, FSKI and IMWKR) 100
times on each data set. We present only the results for small data sets (i.
e. those with 1,000 data points) because the others presented mixed

R. Cordeiro de Amorim and V. Makarenkov

Neurocomputing 553 (2023) 126547

7

results without a clear pattern one way or the other.
The first thing we can observe by analysing the results presented in

Table 3 and Fig. 3 is that FSKI is rather competitive, on small data sets,
when compared to the popular feature selection methods. On the small
data sets containing Gaussian clusters with 0.5 within-cluster covariance
(i.e. tight clusters), FSKI outperformed FSFS for eight of the nine
considered data configurations. On the same data sets, FSKI performed
at least as well as MCFS for seven of the nine parameter configurations.
This is an impressive performance, particularly given that FSKI is a
simple method that uses nothing but the number of iterations k-means
takes to converge (τ). We can also see that IMWKR (a version of IMWK
that uses τ to improve its performance) is the best overall performer,
with a noticeably low standard deviation.

Regarding the experiments on small data sets containing Gaussian
clusters with a within-cluster covariance of 1.0, the results related to τ
(FSKI and IMWKR) are still promising. FSKI performed better than FSFS
for six of the nine parameter configurations. This time FSFS performed
better on data sets with a low number of features (five). FSKI performed
at least as well as MCFS for seven of the nine parameter configurations.
Overall, the best algorithm was still IMWKR - this becomes clear after
observing the obtained results for data sets with at least 10 features (i.e.
the best overall results were obtained for six out of nine configurations).
The small data sets with within-cluster covariance of 1.5 contain clusters
that are much more likely to overlap. Hence, it is fair to expect a
decrease in performance of τ-based methods. However, FSKI still out
performed FSFS for five and MCFS for six of the nine parameter con
figurations. In terms of overall performance, FSKI performed at least as
well as all the other methods for five parameter configurations, and

IMWKR for four of them. Generally speaking, the τ-based methods seem
to perform particularly well, on small data sets, when the number of
features is higher.

6. Iterations and the number of clusters

Identifying the number of clusters in a data set is one of the major
problems faced in clustering. Some clustering algorithms, such as k-
means require this number to be known by the user beforehand. Others,
attempt to identify the number of clusters as part of the clustering

Table 3
The proportion of times the correct noise feature has been identified by each
algorithm (and standard deviation, when appropriate). There are 50 data sets for
each of the nine parameter configurations below. A single uniformly random
feature, which had to be identified by each algorithm, was added to each data set
considered.

0.5 within-cluster covariance

FSFS MCFS IMWK FSKI IMWKR

1000x5-3+1NF 0.48 0.34 0.90 0.88/0.33 0.90/0.01
1000x5-5+1NF 0.64 0.52 1.00 0.72/0.45 1.00/0.00
1000x5-10+1NF 0.86 0.34 0.86 0.58/0.50 0.92/0.03
1000x10-3+1NF 0.20 0.68 1.00 0.98/0.14 1.00/0.00
1000x10-5+1NF 0.22 0.84 1.00 0.98/0.14 1.00/0.00
1000x10-10+1NF 0.54 0.94 1.00 1.00/0.00 1.00/0.00
1000x20-3+1NF 0.04 0.82 1.00 0.20/0.40 1.00/0.00
1000x20-5+1NF 0.02 1.00 1.00 0.22/0.42 1.00/0.00
1000x20-10+1NF 0.26 1.00 1.00 1.00/0.00 1.00/0.00

1.0 within-cluster covariance

1000x5-3+1NF 0.86 0.48 0.60 0.62/0.49 0.54/0.03
1000x5-5+1NF 0.70 0.36 0.28 0.38/0.49 0.30/0.03
1000x5-10+1NF 0.92 0.50 0.34 0.16/0.37 0.26/0.05
1000x10-3+1NF 0.44 0.32 0.88 0.92/0.27 0.95/0.01
1000x10-5+1NF 0.68 0.30 0.88 0.94/0.24 0.98/0.02
1000x10-10+1NF 0.68 0.24 0.98 0.94/0.24 1.00/0.01
1000x20-3+1NF 0.12 0.88 1.00 0.86/0.35 1.00/0.00
1000x20-5+1NF 0.32 0.96 1.00 0.98/0.14 1.00/0.00
1000x20-10+1NF 0.46 0.96 1.00 1.00/0.00 1.00/0.00

1.5 within-cluster covariance

1000x5-3+1NF 0.90 0.50 0.38 0.32/0.47 0.32/0.03
1000x5-5+1NF 0.94 0.36 0.10 0.16/0.37 0.10/0.03
1000x5-10+1NF 0.90 0.38 0.24 0.26/0.44 0.15/0.03
1000x10-3+1NF 0.62 0.32 0.84 0.92/0.27 0.79/0.02
1000x10-5+1NF 0.80 0.26 0.58 0.88/0.33 0.72/0.03
1000x10-10+1NF 0.76 0.28 0.78 0.36/0.48 0.86/0.04
1000x20-3+1NF 0.36 0.36 1.00 1.00/0.00 1.00/0.00
1000x20-5+1NF 0.56 0.50 1.00 1.00/0.00 1.00/0.00
1000x20-10+1NF 0.58 0.34 1.00 1.00/0.00 1.00/0.00

Fig. 3. Boxplot diagrams summarising our results for the proportion of times
the correct noise feature was identified by each of the five competing algo
rithms. A single uniformly random noise feature, which had to be identified by
each algorithm, was added to each data set considered.

R. Cordeiro de Amorim and V. Makarenkov

Neurocomputing 553 (2023) 126547

8

process or as a pre-clustering step (see for instance, [29–32], and ref
erences therein). Identifying the number of clusters in a data set is a
difficult task, and there is no standard method that works in all cases.
This difficulty probably stems from the fact that there is no an agreed
definition of what a cluster is, and that a precise definition may depend
on the context and the clustering aims (for a full discussion, see [33]).
Here, we take the view that clusters are approximately spherical and
compact, and can be approximated well by Gaussian distributions. This
is not an arbitrary view but rather one based on the algorithm we are
analysing here, i.e. k-means. In order to identify other types of clusters,
one should probably apply a different clustering algorithm.

In this section, we aim at verifying whether there is a relationship
between the average number of iterations k-means takes to converge (τ)
and the number of clusters k in X. To meet our objective we ran k-means
100 times on each of our data sets (there are 50 data sets for each
parameter configuration) with and without supplying k-means with the
correct number of clusters. In this study, each of our data sets has a
correct k ∈ {3,5,10}, so we experiment with these numbers. That is, for
a parameter configuration such as 1000x5-10 (correct k = 10), we
carried out k-means, supplying it with the following numbers of clusters
k ∈ {3,5,10} — in this example k = 3 and k = 5 are the incorrect

numbers of clusters.
Table 4 presents the results of our experiments. An interesting

pattern can be observed here. Given any parameter configuration nxm -
k (e.g. 1000x5-3, 1000x10-5, etc.), its correct number of clusters is
usually that producing the lowest τ in comparison to the data sets with
the same n, m, and within-cluster covariance, but different k. For
example, the correct k for 1000x10-5 (that is, k = 5) has a lower τ than
those of the configurations 1000x10-3 and 1000x10-10 (under the same
within-cluster covariance). Table 4 shows this is true for 41 out of 54
cases.

Let us analyse the above a bit further. In the case of small data sets (i.
e. those with 1,000 data points) the pattern we state holds for 24 out of
27 cases. In the three cases the pattern did not hold, the differences were
rather small. For instance, in the column k = 10 for data sets with a
within-cluster covariance of 1.0 we can see the pattern incorrectly
suggests 1000x5-5 has 10 clusters (it has five) given τ = 26.01 is the
lowest value for rows 1000x5-3, 1000x5-5, and 1000x5-10. However,
the correct (see the row for 1000x5-10) has τ = 27.09 which is just
slightly higher. In the case of larger data sets (i.e. those with 10,000 data
points or more), our pattern identified the correct number of clusters in
17 out of 27 cases but this is mostly because of poor performance on data

Table 4
Average number of iterations (τ) per value of k supplied to k-means. The shaded cells represent cells with the correct k for a given parameter configuration. The
experiments in this table were conducted on synthetic data sets containing Gaussian clusters with within-cluster covariance of 0.5, 1.0, and 1.5.

R. Cordeiro de Amorim and V. Makarenkov

Neurocomputing 553 (2023) 126547

9

sets containing clusters with within-cluster variance of 0.5. If we were to
ignore these, the pattern would hold true for 14 out of 18 cases. Taking
all of the results into account, we can see there is a relationship between
τ and the correct number of clusters of X. We find this to be a particularly
interesting result because we calculate τ using solely k-means and the
given data set X.

Internal cluster validity indices, that is indices requiring nothing
external to X and claiming to be related to how good a clustering is (for
an extensive review and comparison, see [34]) are often used to deter
mine the number of clusters. However, the way these are applied is
rather different. Given a data set X, one usually runs k-means on X with
different values of k and then applies one such index to the obtained
clusterings in order to determine best one (and by consequence the best
value of k). When we want to use the number of k-means iterations τ as a
criterion, the approach is different. To find the best number of clusters
for X, one should generate data sets as close to X as possible but with
different numbers of clusters — the most appropriate number of clusters
for X is that which leads to the lowest value of τ.

7. Conclusion

K-means remains arguably the most popular clustering algorithm
used in scientific and industrial applications [35]. In this paper, we
focused on τ, that is the average number of iterations k-means takes to
converge on a given data set X. This value is always produced when
applying k-means, but to the best of our knowledge, it has never been
used in the data analysis process. Here, we showed that τ is in fact a very
informative parameter of k-means.

First, we discovered that in some cases there is a strong negative
correlation between τ and the quality of the recovered clusters, if
running k-means multiple times on the same data set. This trend is
particularly noticeable in large data sets, or in the case of smaller data
sets in those with a high number of features, a low number of clusters,
and containing Gaussian clusters with a low within-cluster covariance.
However, our experiments also showed that this correlation can be lost if
the clusters had a higher spread (higher within-cluster covariance,
particularly in small data sets) or if a single noise feature was added to
them (see Section 3). We also found that τ is lower on X if the latter
contains Gaussian clusters, as opposed to uniformly random values. In
fact, we went even further and showed that on small data sets containing
Gaussian clusters, the lower the within-cluster covariance (i.e. the
tighter the clusters are), the lower τ is (see Section 4). Interestingly, we
also showed that the pattern is the opposite for larger data sets. In any
case, the structure of X (or the lack of) has an impact on τ. Moreover, we
also investigated two interesting applications of τ. First, τ can be used to
help identify an irrelevant feature (e.g. a feature composed of uniformly
random values) on small data sets containing Gaussian clusters. We
showed this by experimenting with two new methods: (i) removing from
X the feature that increases τ the most; (ii) using τ as the base of a feature
rescaling procedure in the data pre-processing stage, improving an
existing feature selection algorithm — and comparing these two with
some popular unsupervised feature selection methods (see Section 5).
Second, we showed that there is a close relationship between τ and the
number of clusters in data sets containing Gaussian clusters (see Section
6).

We see our work in this paper as potentially leading to improvements
in unsupervised feature selection and in the identification of the number
of clusters in data sets. In terms of future work, we plan to investigate
whether τ could have other practical applications.

CRediT authorship contribution statement

Renato Cordeiro de Amorim: Conceptualization, Methodology,
Software, Formal analysis, Writing - original draft. Vladimir Makar
enkov: Methodology, Formal analysis, Writing - original draft, Writing -
review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

References

[1] A. Jain, Data clustering: 50 years beyond k-means, Pattern Recognition Letters 31
(8) (2010) 651–666, https://doi.org/10.1016/j.patrec.2009.09.011.

[2] A. Vouros, S. Langdell, M. Croucher, E. Vasilaki, An empirical comparison between
stochastic and deterministic centroid initialisation for k-means variations, Machine
Learning 110 (8) (2021) 1975–2003.

[3] R.C. de Amorim, C.D.L. Ruiz, Identifying meaningful clusters in malware data,
Expert Systems with Applications 177 (2021), 114971.

[4] A. Zubaroğlu, V. Atalay, Data stream clustering: a review, Artificial Intelligence
Review 54 (2) (2021) 1201–1236.

[5] Z. Cui, X. Jing, P. Zhao, W. Zhang, J. Chen, A new subspace clustering strategy for
ai-based data analysis in iot system, IEEE Internet of Things Journal 8 (16) (2021)
12540–12549.

[6] J. Li, H. Izakian, W. Pedrycz, I. Jamal, Clustering-based anomaly detection in
multivariate time series data, Applied Soft Computing 100 (2021), 106919.

[7] P. Bhattacharjee, P. Mitra, A survey of density based clustering algorithms,
Frontiers of Computer Science 15 (1) (2021) 1–27.

[8] B. Mirkin, Clustering for data mining: a data recovery approach, Chapman and
Hall/CRC, 2012.

[9] F. Murtagh, P. Contreras, Algorithms for hierarchical clustering: an overview,
Wiley Interdisciplinary Reviews, Data Mining and Knowledge Discovery 2 (1)
(2012) 86–97.

[10] J. MacQueen, Some methods for classification and analysis of multivariate
observations, in: Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, Vol. 1, California, USA, 1967, pp. 281–297.

[11] G.H. Ball, D.J. Hall, A clustering technique for summarizing multivariate data,
Behavioral Science 12 (2) (1967) 153–155.

[12] D. Arthur, S. Vassilvitskii, How slow is the k-means method?, in: Proceedings of the
Twenty-Second Annual Symposium on Computational Geometry, SCG ’06,
Association for Computing Machinery, New York, NY, USA, 2006, p. 144–153.

[13] A. Vattani, K-means requires exponentially many iterations even in the plane, in:
Proceedings of the Twenty-Fifth Annual Symposium on Computational Geometry,
SCG ’09, Association for Computing Machinery, New York, NY, USA, 2009, p.
324–332.

[14] L. Hubert, P. Arabie, Comparing partitions, Journal of classification 2 (1) (1985)
193–218.

[15] W.M. Rand, Objective criteria for the evaluation of clustering methods, Journal of
the American Statistical association 66 (336) (1971) 846–850.

[16] D. Steinley, Properties of the hubert-arable adjusted rand index, Psychological
methods 9 (3) (2004) 386.

[17] J. Li, K. Cheng, S. Wang, F. Morstatter, R.P. Trevino, J. Tang, H. Liu, Feature
selection: A data perspective, ACM computing surveys (CSUR) 50 (6) (2017) 1–45.

[18] B. Xue, M. Zhang, W.N. Browne, X. Yao, A survey on evolutionary computation
approaches to feature selection, IEEE Transactions on Evolutionary Computation
20 (4) (2015) 606–626.

[19] P. Mitra, C. Murthy, S.K. Pal, Unsupervised feature selection using feature
similarity, IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (3)
(2002) 301–312.

[20] N.S. Altman, An introduction to kernel and nearest-neighbor nonparametric
regression, The American Statistician 46 (3) (1992) 175–185.

[21] R.C. De Amorim, B. Mirkin, Minkowski metric, feature weighting and anomalous
cluster initializing in k-means clustering, Pattern Recognition 45 (3) (2012)
1061–1075.

[22] R.C. de Amorim, V. Makarenkov, Applying subclustering and lp distance in
weighted k-means with distributed centroids, Neurocomputing 173 (2016)
700–707.

[23] R.C. de Amorim, A. Shestakov, B. Mirkin, V. Makarenkov, The minkowski central
partition as a pointer to a suitable distance exponent and consensus partitioning,
Pattern Recognition 67 (2017) 62–72.

[24] D. Cai, C. Zhang, X. He, Unsupervised feature selection for multi-cluster data, in:
Proceedings of the 16th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2010, pp. 333–342.

[25] T. Hastie, R. Tibshirani, J.H. Friedman, J.H. Friedman, The elements of statistical
learning: data mining, inference, and prediction, Vol. 2, Springer, 2009.

[26] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, Least angle regression, The Annals
of statistics 32 (2) (2004) 407–499.

[27] A. Ng, M. Jordan, Y. Weiss, On spectral clustering: Analysis and an algorithm,
Advances in neural information processing systems 14.

[28] M. Belkin, P. Niyogi, Laplacian eigenmaps and spectral techniques for embedding
and clustering, Advances in neural information processing systems 14.

R. Cordeiro de Amorim and V. Makarenkov

https://doi.org/10.1016/j.patrec.2009.09.011
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0010
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0010
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0010
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0015
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0015
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0020
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0020
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0025
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0025
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0025
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0030
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0030
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0035
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0035
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0040
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0040
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0045
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0045
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0045
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0055
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0055
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0070
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0070
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0075
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0075
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0080
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0080
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0085
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0085
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0090
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0090
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0090
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0095
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0095
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0095
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0100
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0100
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0105
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0105
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0105
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0110
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0110
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0110
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0115
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0115
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0115
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0120
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0120
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0120
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0125
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0125
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0130
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0130

Neurocomputing 553 (2023) 126547

10

[29] R. Ünlü, P. Xanthopoulos, Estimating the number of clusters in a dataset via
consensus clustering, Expert Systems with Applications 125 (2019) 33–39.

[30] B. Mirkin, Choosing the number of clusters, Wiley Interdisciplinary Reviews, Data
Mining and Knowledge Discovery 1 (3) (2011) 252–260.

[31] M.A. Masud, J.Z. Huang, C. Wei, J. Wang, I. Khan, M. Zhong, I-nice: A new
approach for identifying the number of clusters and initial cluster centres,
Information Sciences 466 (2018) 129–151.

[32] C. Hennig, How many bee species? a case study in determining the number of
clusters, in: Data Analysis, Machine Learning and Knowledge Discovery, Springer,
2014, pp. 41–49.

[33] C. Hennig, What are the true clusters? Pattern Recognition Letters 64 (2015)
53–62.

[34] O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J.M. Pérez, I. Perona, An extensive
comparative study of cluster validity indices, Pattern recognition 46 (1) (2013)
243–256.

[35] P. Berkhin, A Survey of Clustering Data Mining Techniques, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2006, pp. 25–71.

Renato Cordeiro de Amorim is a Senior Lecturer in Computer
Science and AI at the University of Essex. He has published a
number of papers introducing novel methods following the
unsupervised and semi-supervised learning frameworks, with
applications in fields such as security, biosignal processing and
general data mining. His research is funded by the Royal Soci
ety and Innovate UK.

Vladimir Makarenkov is a Full Professor and Director of a
graduate Bioinformatics program at the Department of Com
puter Science at the Université du Québec à Montréal. His
research interests are in the fields of Bioinformatics, Operations
Research, Artificial Intelligence, and Mathematical
Classification.

R. Cordeiro de Amorim and V. Makarenkov

http://refhub.elsevier.com/S0925-2312(23)00670-7/h0145
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0145
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0150
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0150
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0155
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0155
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0155
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0165
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0165
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0170
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0170
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0170
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0175
http://refhub.elsevier.com/S0925-2312(23)00670-7/h0175

	On k-means iterations and Gaussian clusters
	1 Introduction
	2 Data sets
	3 Iterations and cluster recovery
	4 Iterations and within-cluster covariance
	5 Iterations and feature selection
	5.1 Background on feature selection
	5.2 Feature selection using k-means iterations
	5.3 Experiments and discussion

	6 Iterations and the number of clusters
	7 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References

