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Improved tests for stock return predictability
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aSchool of Economics, University of Nottingham, Nottingham, UK; bEssex Business School, University of Essex,
Colchester, UK

ABSTRACT
Predictive regression methods are widely used to examine the predictabil-
ity of (excess) stock returns by lagged financial variables characterized by
unknown degrees of persistence and endogeneity. We develop a new hybrid
test for predictability in these circumstances based on simple regression t-
statistics. Where the predictor is endogenous, the optimal, but infeasible, test
for predictability is based on the t-statistic on the lagged predictor in the basic
predictive regression augmented with the current period innovation driving
the predictor. We propose a feasible version of this augmented test, designed
for the case where the predictor is an endogenous near-unit root process, using
a GLS-based estimate of the innovation used in the infeasible test regression.
The limiting null distribution of this statistic depends on both the endogeneity
correlation parameter and the local-to-unity parameter characterizing the
predictor. A method for obtaining asymptotic critical values is discussed and
response surfaces are provided. We compare the asymptotic power proper-
ties of the feasible augmented test with those of a (non augmented) t-test
recently considered in Harvey et al. and show that the augmented test is
more powerful in the strongly persistent predictor case. We then propose
using a weighted combination of the augmented statistic and the t-statistic
of Harvey et al., where the weights are obtained using the p-values from a
unit root test on the predictor. We find this can further improve asymptotic
power in cases where the predictor has persistence at or close to that of a unit
root process. Our final hybrid testing procedure then embeds the weighted
statistic within a switching-based procedure which makes use of a standard
predictive regression t-test, compared with standard normal critical values,
when there is evidence for the predictor being weakly persistent. Monte Carlo
simulations suggest that overall our new hybrid test displays superior finite
sample performance to comparable extant tests.

ARTICLE HISTORY
Received 11 January 2022
Accepted 06 March 2023

KEYWORDS
Augmented regression;
endogeneity; persistence;
predictive regression;
weighted statistics

JEL CLASSIFICATION
C12, C22

1. Introduction

Many studies in the applied economics and finance literature have focused on testing for the pre-
dictability of asset returns, employing a range of candidate predictor variables, such as valuation ratios,
interest rates, and other financial and macroeconomic variables. By way of examples, Fama (1981)
considers various predictors including interest rates, industrial production, GNP, and capital stock and
expenditure, while Campbell and Yogo (2006) consider the dividend-price ratio, the earnings-price ratio,
the three-month T-bill rate, and the long-short yield spread. Standard approaches to testing predictability
are based on a simple linear regression model with a constant and lagged putative predictor (xt−1 say),
with a corresponding regression coefficient β .
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In empirical studies, it is commonly found that the candidate predictor variables are highly persistent
(with either unit root or near unit root autoregressive processes) and also endogenous with a non zero
(often strongly negative) correlation between the errors in the predictive regression and the innovations
driving the predictor process; see, inter alia, Campbell and Yogo (2006), Goyal and Welch (2003),
and Welch and Goyal (2008). In the presence of strong persistence and endogeneity, Cavanagh et al.
(1995) show that the standard t-test on the estimate of β suffers from severe size distortions; see also
Campbell and Yogo (2006), Nelson and Kim (1993), and Stambaugh (1999). This finding has motivated
the development of tests for predictability that are designed to allow for both endogeneity and strong
persistence in the predictor series xt , modeled by a first-order autoregression with a local-to-unity
coefficient φ = 1 − cT−1 (where c is an unknown finite constant and T is the sample size).

As a result, a number of likelihood-based predictability tests have been developed in the literature
which are designed to be asymptotically valid when the predictor is strongly persistent and endogenous;
see, inter alia, Cavanagh et al. (1995), Lewellen (2004), Campbell and Yogo (2006), Elliott et al. (2015)
[EMW, hereafter], and Jansson and Moreira (2006), and most recently a hybrid test, based around a
number of simple regression t-ratios, developed in Harvey et al. (2021) [HLT hereafter]. Arguably the
most widely applied of these tests in the literature is the Q test of Campbell and Yogo (2006), which falls
within the general control variable approach outlined in Elliott (2011). Here the simple linear predictive
model is augmented by an additional regressor used as a proxy for the current period innovation driving
the predictor; an infeasible version of this test using the actual current period innovation is optimal
when the predictor is endogenous. In particular, in its simplest form, Q is based around the infeasible
t-statistic on β when (xt − φxt−1) is added as a regressor to the predictive regression. Campbell and
Yogo (2006) develop a feasible version of this test, using the approach of Cavanagh et al. (1995), based
on a Bonferroni confidence interval for β obtained using a confidence interval for φ (equivalently c)
formed from the well-known quasi-GLS demeaned augmented Dickey-Fuller [ADF] unit root statistic
of Elliott et al. (1996).

Among the likelihood-based approaches listed above, only the procedures developed in EMW and
HLT are also asymptotically valid for the case of a weakly persistent predictor.1 Like Lewellen (2004),
the testing procedure outlined in EMW rules out the possibility that the predictor xt is locally explosive
(by imposing that c is non negative), while HLT and Campbell and Yogo (2006) allow for some local
explosivity (−5 ≤ c < 0) in the predictor. Simulation results presented in HLT suggest that where the
predictor is locally explosive the Q test of Campbell and Yogo (2006), although valid, displays very
poor power and is easily dominated by the hybrid test proposed in HLT, while the EMW test is highly
unreliable. Where the possibility of local explosivity in the predictor can be ruled out, based on their
simulation results HLT find that the EMW test dominates other tests where the predictor is either a pure
unit root process (c = 0) or lies very close to a unit root process (c is small and positive) arguing that
“... it appears that exclusion of robustness to the case of explosive predictors affords the EMW test the
opportunity of greater power in the unit root setting...” op. cit. p.207. For larger c, HLT argue on the basis
of their simulations that their proposed hybrid test offers superior power to all of the leading tests in the
literature, including the EMW test.

Our aim in this article is to investigate an alternative to the hybrid testing procedure of HLT designed
to exploit available power advantages that exist for strongly persistent predictors when c is either zero
or small and positive in cases where locally explosive predictors can be ruled out, a priori. This then
allows us to develop a procedure that can be compared on a level playing field with the EMW test. The
approach we outline will be focused on easy to implement tests based on regression t-ratios. The hybrid
testing procedure we propose can be viewed as an extension of the hybrid test outlined in HLT with the

1A different strand of the literature which allows for both weakly and strongly persistent predictors is characterized by
contributions from Phillips and Magdalinos (2009), Kostakis et al. (2015) and Breitung and Demetrescu (2015) and focuses
on instrumental variable [IV] estimation using an instrument constructed from the predictor variable and designed to be
less persistent than a local-to-unity process. While such IV based tests are valid regardless of the degree of persistence in
the predictor, they are less powerful than the tests of EMW and HLT, particularly so when the predictor is weakly persistent
or where it is strongly persistent with c zero or close to zero; see Figures 2–6 in HLT pp.208-212.
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introduction of information from an additional t-ratio motivated by the control variable approach of
Elliott (2011). This t-ratio is formed on the lagged predictor in the basic predictive regression augmented
with a GLS-based estimate used to proxy the current period innovation driving the predictor. In the
strongly persistent case, we show that the limiting null distribution of this statistic depends on both
the endogeneity correlation parameter and the local-to-unity parameter characterizing the predictor.
We therefore propose a feasible method for obtaining asymptotically conservative critical values and
provide response surfaces for practical use. An analysis of the asymptotic local power function of
the resulting conservative test together with a corresponding feasible (conservative) implementation
of the t-ratio proposed in HLT, obtained from a variant of the standard predictive regression where
the OLS demeaned returns are regressed on the GLS demeaned lagged predictor, shows that, in the
empirically most relevant case where a significant negative correlation exists between returns and the
predictor’s innovations, the new proxy-based test is more powerful than the corresponding test from
HLT for positive predictability (β > 0) for c = 0 and small values of c; that is, exactly the areas where the
original hybrid test of HLT is less powerful than the EMW test. We then show that substantial further
power improvements can be obtained in these scenarios by considering a weighted combination of the
new t-ratio and the t-ratio from HLT, the weights depending on the persistence of the predictor via a
function of the p-values from a standard Dickey-Fuller-type unit root test applied to the predictor, again
made operational using asymptotically conservative critical values with a response surface provided for
practical implementation.

Like HLT we find that when testing for positive persistence with a positive or small negative endo-
geneity correlation, or when testing for negative predictability (β < 0) with an endogeneity correlation
that is not significantly positive, asymptotic local power is improved by using the standard predictive
regression t-statistic with an asymptotically conservative critical value. Consequently, when testing for
positive (negative) predictability, our recommended procedure in the near-unit root environment is to
use the conservative standard t-ratio when the estimated endogeneity correlation is either positive or
“small” and negative (either negative or “small” and positive), but to use the conservative test based on the
weighted statistic otherwise. Further, in common with EMW and HLT, if the data suggest the predictor is
weakly persistent, we propose switching into the standard t-ratio test with reference to standard normal
critical values. Like HLT we base our switching function not on an (inconsistent) estimate of c, but rather
on the familiar augmented Dickey-Fuller normalized bias coefficient unit root test.

In Monte Carlo simulations, we find that the hybrid test proposed in this article performs well in
terms of finite sample size and power across a range of correlation parameters and persistence levels
for the predictor, and compares very favorably with extant tests, offering a simple yet highly effective
method for predictability testing. In particular, our proposed hybrid test almost always outperforms
both the EMW and HLT hybrid test procedures in the case of strongly persistent predictors, with all
three being largely identical for predictors displaying only very weak levels of persistence (as expected,
given all three switch to a conventional t-test in this case). In cases where one is prepared to rule out the
possibility of an explosive predictor, we therefore recommend the hybrid test developed in this article.
Otherwise the hybrid test in HLT is preferred.

The remainder of the article is organized as follows. Section 2 introduces the predictive regression
model which we will consider in this article together with the assumptions which we place on this data
generating process [DGP]. In Section 3, we present the new augmented t-statistic that will subsequently
feature in our hybrid testing procedure and detail its asymptotic properties. Here we also outline our
method for obtaining asymptotic critical values and provide numerical comparisons with existing tests
based on asymptotic local power functions. These simulation results provide motivation for the weighted
statistics that we propose and evaluate in Section 4. Our final proposed hybrid testing procedure that
allows for both weakly and strongly persistent predictors is then outlined in Section 5. Section 6 discusses
extensions to deal with higher order serial correlation in the predictor. In Section 7, we investigate the
finite sample size and power properties of our proposed hybrid test, comparing with the test procedures
of EMW and HLT. Section 8 concludes. We use the notation x := y (x =: y) to denote that x is defined
by y (y is defined by x), and ⇒ to denote weak convergence.
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2. The predictive regression model

Let yt denote the (excess) stock return in period t and let xt−1 denote a variable observed at time t − 1
which is considered to be a putative predictor for yt . The predictive regression model we consider is

yt = αy + βxt−1 + εyt , t = 2, ..., T (1)

where xt is an observed process, specified according to the DGP

xt = αx + st , t = 1, ..., T
st = φst−1 + εxt , t = 2, ..., T (2)

with s1 a mean zero Op(1) random variable.
As discussed in Section 1, it is important for practical purposes to allow for the possibility of high

persistence in the predictor variable xt and to allow the shocks driving the predictor, εxt in (2), to be
correlated with the unpredictable component of stock returns, εyt in (1). As regards the latter, we assume
that the innovation vector εt := (εxt , εyt)′ is IID with finite fourth-order moments and satisfying[

εxt
εyt

]
∼ IID

(
0,

[
σ 2

x σxy
σxy σ 2

y

])
.

Remark 1. The assumption that εt is a vector IID process is made purely to simplify our presentation.
All of the large sample results given in this article continue to hold in the case where εt is a (bivariate)
martingale difference process satisfying the conditions given on p.200 of HLT. Indeed, for the case of a
strongly persistent predictor (Assumption S), it is also possible to allow for conditional heteroskedasticity
of the form considered in Assumption A.1 of Campbell and Yogo (2006) without altering the large sample
results which are given in what follows. In the case of a weakly persistent predictor (Assumption W),
the same would be true for conditional heteroskedasticity of the form given in, for example, Assumption
INNOV(ii) of Kostakis et al. (2015, p.1512) providing the regression t-ratios discussed in what follows
are implemented using White standard errors rather than OLS standard errors; notice, however, that
for our final hybrid test outlined in Section 5 only the conventional t-test, TN , would actually need
to be based on a t-statistic computed with White standard errors. The assumption that εxt is serially
uncorrelated is also not crucial and we will subsequently discuss in Section 6 how the methods we
propose can be modified to allow for weak dependence in εxt . The methods developed in the literature
on predicting returns are, however, based on the assumption that εyt is serially uncorrelated; different
methods are required in cases where εyt may be serially correlated and, as such, will not be considered
here.

With respect to the degree of persistence in xt , we assume that the true value of φ in (2) is unknown
to the practitioner and satisfies one of the following two assumptions:

Assumption S. Strongly persistent predictor: The autoregressive parameter φ in (2) is local-to-unity
with φ := 1 − cT−1 where c is a fixed non negative constant.

Assumption W. Weakly persistent predictor: The autoregressive parameter φ in (2) is fixed and bounded
away from unity, |φ| < 1.

Remark 2. Many putative predictors are strongly persistent, with sums of sample autoregressive
coefficients close to or only slightly smaller than unity. In such cases, near-integrated asymptotics provide
good approximations for the behavior of test statistics. However, not all possible predictors are strongly
persistent and many models in the literature treat xt as generated from a stable autoregressive process. We
therefore allow for either of these possibilities to hold for xt . As discussed in Section 1, our assumptions
exclude the possibility of explosive predictors (φ > 1), in line with the approach of, for example, EMW
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and Lewellen (2004). In contrast, HLT and Campbell and Yogo (2006) both allow for a small degree of
local explosivity (−5 ≤ c < 0) in the predictor in the tests they develop.

In this article, our focus is on developing tests of the null hypothesis that yt is not predictable by
xt−1, i.e., H0 : β = 0 in (1), which do not require the practitioner to know which of Assumption S or
Assumption W holds for φ in (2). The alternative hypothesis is that yt is predictable by xt−1, in which case
β > 0 or β < 0 (one-sided alternatives are commonly adopted in practice). We will establish the large
sample behavior of the predictability tests considered in this article under local alternatives such that the
slope parameter β in (1) is local-to-zero. This approach permits analysis of the tests’ local asymptotic
power, and is consistent with the fact that predictive regressions for stock returns typically exhibit a
small R2 and low signal-to-noise ratios, with departures from the null being small when predictability
is present. The appropriate localization rate (Pitman drift) is dictated by which of Assumption S and
Assumption W holds. Under Assumption S, where xt is strongly persistent, the appropriate local
alternative is given by H1,S : β = gT−1, while for weakly dependent xt under Assumption W, it is given
by H1,W : β = gT−1/2, where in each case g is a finite constant.

The familiar Cholesky decomposition allows us to write the two components of εt in the form

εxt = σxe1t (3)

εyt = σy
(
ρxye1t +

√
1 − ρ2

xye2t
)

where et := (e1t , e2t)′ ∼ IID (0, I2) and ρxy := σxy/(σxσy) is the contemporaneous correlation between
the innovations driving the predictor, εxt , and the unpredictable component of stock returns, εyt . Using
this representation, we can then re-write the predictive regression in (1) as

yt = αy + βxt−1 +
(

σy

σx
ρxy

)
εxt +

(
σy

√
1 − ρ2

xy

)
e2t . (4)

The representation in (4) is instructive, in that it demonstrates how a predictive regression featuring an
endogenous predictor xt−1, such as (1), can be re-written using εxt as an additional covariate in a form
in which the predictor regressor, xt−1, is strictly exogenous.

3. A new predictability test

In what follows it is convenient to define a generically notated regression model:

yt = α + βxt−1 + δzxt + vt (5)

and consider the generic t-statistic associated with the OLS estimate of β in (5).

3.1. An infeasible test

If εxt was observed, which is equivalent to knowing φ (abstracting from the unknown constant, αx),
we could then perform a standard OLS regression in (5) with zxt =εxt , which is clearly a correct
specification with respect to the DGP in (4). Denoting the corresponding infeasible t-statistic asTinf , it is
straightforward to show that Tinf has a standard normal limiting distribution under the null hypothesis
H0, irrespective of whether Assumption S or Assumption W holds. Moreover, under Gaussianity this
would be an efficient test (among αy, αx invariant tests) whenever ρxy �= 0. Note that including εxt as
a regressor reduces the error variance from σ 2

y in (1) to σ 2
y (1 − ρ2

xy) in (4); that is, with knowledge
of φ we can essentially subtract off the part of the innovation to returns that is correlated with the
innovation to the predictor variable, thereby delivering a more powerful test. When ρxy = 0,Tinf remains
asymptotically efficient as incorporation of the redundant regressor εxt has no effect in large samples.
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3.2. A feasible test using a proxy measure for εxt

Given that εxt is unobservable, one might ask if it is possible to obtain a proxy measure for εxt? In fact,
this testing problem falls within the general control variable approach outlined in Elliott (2011). Here,
(1) is augmented by an additional regressor used as a proxy for the current period innovation driving the
predictor, εxt ; so we may consider (5) as this augmented regression with zxt the proxy regressor. There are
a number of ways in which this approach can be implemented, including the Bonferroni-based method
advocated in Campbell and Yogo (2006) which as discussed in Section 1 is based on a sequence of such
augmented regressions. Here we consider an alternative approach based on a single regression including
a covariate zxt in (5) acting as a direct proxy for εxt in (4). We will also primarily focus our discussion
on the case of Assumption S where xt is strongly persistent, as this is the most problematic case where
the standard t-statistic based on OLS estimation of (1), which we denote by T, has a non pivotal limiting
distribution. An obvious approach to obtaining a proxy for εxt is to assume a particular value for the
local-to-unity parameter c, say c̄; we would then construct zxt =xt − (1 − c̄T−1)xt−1 (assuming αx = 0
for simplicity). If it happened to be the case that c̄ = c, then zxt =εxt and we obtain the asymptotically
standard normal and efficient test, Tinf . However, when c̄ �= c the critical values for this test will depend
on both ρxy and c, and it will no longer be an efficient test, with power being a (decreasing) function of the
distance |c − c̄|. This clearly poses a problem in implementation as c cannot be consistently estimated.

An obvious proxy for εxt is the OLS estimate, ε̂xt say, obtained from an OLS regression of 	xt on a
constant and xt−1. However, setting zxt = ε̂xt in (5) runs into the problem that zxt is exact orthogonal to
the predictive regressor xt−1. The estimate of β from such a fitted model is then numerically identical
to that which would be obtained if zxt was omitted from (5). Moreover, the corresponding statistic is
approximately 1/

√
1 − ρ2

xy times the simple t-statistic, T, and so the inference drawn from such a test
would essentially be identical to that from T, hence using the proxy regressor ε̂xt delivers no benefit
whatsoever.

An alternative method for obtaining a proxy for εxt , which takes account of a strongly persistent
autoregressive structure in estimating the intercept term αx, is to employ a quasi-GLS estimate of
αx obtained from the quasi-differenced OLS regression of (x1, x2 − φ̄x1, ..., xT − φ̄xT−1) on (1, 1 −
φ̄, ..., 1 − φ̄) where φ̄ := 1 − c̄/T with c̄ = 7; see Elliott et al. (1996) for further details. We denote this
estimator α̃x. We would then estimate the OLS regression

	xt = φ(xt−1 − α̃x) + ηt (6)

and, denoting the estimate of φ by φ̃, construct the residuals ε̃xt := 	xt − φ̃(xt−1 − α̃x). Then we
consider setting zxt = ε̃xt in (5). In contradistinction to the OLS-based proxy regressor ε̂xt , the GLS-
based proxy regressor ε̃xt is not orthogonal to xt−1. This lack of orthogonality raises the potential for
ε̃xt to act as a useful proxy for εxt in the strongly persistent case. We therefore construct the t-statistic
associated with the OLS estimate of β in the regression

yt = α + βxt−1 + δε̃xt + vt (7)

and denote this t-statistic as T∗ in what follows. As we shall establish in Section 3.3, the limiting null
distribution of T∗ depends on both ρxy and c in the case where xt is strongly persistent (Assumption S),
although this issue notwithstanding, we might anticipate that this procedure could deliver decent power
performance due to the inclusion of a proxy for εxt . Under Assumption W, the asymptotic distribution
of ε̃xt , and therefore that of T∗, will depend on the distribution of s1, so this statistic is appropriate only
under Assumption S.

3.3. Asymptotic distribution of T∗

In Theorem 1 we now report the asymptotic distribution of the T∗ statistic under both the null and local
alternatives under H1,S. A proof of Theorem 1 is provided in the appendix.

mailto:appendix
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Theorem 1. Let yt and xt be generated according to the model in (1)-(2) under the conditions stated in
Section 2 and let Assumption S hold. Then, as T → ∞, under H1,S:

T∗ ⇒ gσx
σy

√∫ 1
0 W̄1c(r)2dr√

1 − ρ2
xy

+
∫ 1

0 W̄1c(r)dW2(r)√∫ 1
0 W̄1c(r)2dr

+
ρxy

√∫ 1
0 W̄1c(r)2dr

∫ 1
0 W1c(r)dW1(r)√

1 − ρ2
xy

∫ 1
0 W1c(r)2dr

=: S∗(gσx/σy, ρxy, c)

where W1(r) and W2(r) are independent standard Brownian Motions, W̄1c(r) := W1c(r) − ∫ 1
0 W1c(s)ds

with W1c(r) := ∫ r
0 e−(r−s)cdW1(s).

Remark 3. The result in Theorem 1 highlights that the offset seen in the limiting distribution under
the local alternative, H1,S, given by the first term in the expression for S∗(gσx/σy, ρxy, c), is a function of
the deterministic offset term gσx/σy, comprised of the Pitman drift, g, and the signal-to-noise ratio
associated with the predictor, σx/σy, weighted by a stochastic offset term. Consequently, the test’s
asymptotic local power is higher, other things being equal, the larger the Pitman drift, and the larger
the amount of variability in the predictor, relative to the error term in the predictive regression in (1).
Under the null hypothesis, H0, the asymptotic distribution of the statistic is non standard and depends
on both ρxy and c.

We do not present the limiting distribution for T∗ under H1,W because, as noted above, it depends
on the distribution of s1. The test procedure we will subsequently develop is such that it never selects T∗
in large samples under Assumption W and, hence, the limit in that case is not relevant.

3.4. Asymptotic critical values for T∗

Considering the case of strong dependence in Theorem 1 above, under H0, relevant critical values for the
test based on T∗ will depend on the unknown nuisance parameters ρxy and c. At a practical level, and as
we will show below, ρxy can be consistently estimated and so this dependence is easily dealt with (at least
in large samples). The dependence on c, however, cannot be dealt with as easily because c, unlike ρxy, is
not consistently estimable. We therefore adopt a scheme for simulating critical values that will, by design,
yield asymptotically conservative tests. HLT propose such a method for the statistics they consider, and
here we outline a similar approach for the T∗ statistic and its null limit distribution S∗(0, ρxy, c). For
expository purposes we will focus attention here on upper tail critical values relevant for upper tailed
tests, as this is the case of most practical relevance, but the same approach could be used in an obvious
way for lower-tailed and two-tailed tests. In outlining our final preferred hybrid procedures inbreak
Section 5 we will detail how to perform both upper-tailed and lower-tailed tests, and two-tailed tests.

The steps to obtaining the conservative critical values are as follows:

1. For a chosen value of ρxy, simulate the null distribution S∗(0, ρxy, c) for different c across an interval
c ∈ [0, cmax].

2. At each value of c, compute the π-level upper-tail critical value, cv∗
π (ρxy, c) say.

3. Set the π-level critical value for T∗ equal to cv∗
π (ρxy) := maxc∈[0,cmax] cv∗

π (ρxy, c).

Using cv∗
π (ρxy) will yield a correct π-level sized test when c = arg maxc∈[0,cmax] cv∗

π (ρxy, c), and
give a conservatively sized test for other values of c. We simulated critical values in this manner,
approximating the Brownian motion processes in the limiting functional from Theorem 1 using
IIDN(0, 1) random variates, and with the integrals approximated by normalized sums of 1,000 steps,
with 20,000 replications (these values are used throughout our asymptotic analyses). This was carried out
for the conventional significance levels π ∈ [0.1, 0.05, 0.025, 0.01] for ρxy ∈ [−0.95, −0.925, −0.90, ..., 0],
with the setting cmax = 25 and the grid of c values being c ∈ [0, 1, 2, ..., 25]. For these values of ρxy,
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Table 1. Response surface coefficient estimates for T∗
con .

cv∗
π (ρxy)

Regressor π = 0.1 π = 0.05 π = 0.025 π = 0.01

1 1.275 1.673 1.957 2.332
ρxy −1.833 0.442 −2.025 −1.980
ρ2

xy −41.401 4.969 −57.589 −52.176
ρ3

xy −466.409 3.326 −684.237 −624.069
ρ4

xy −2655.171 −17.923 −3960.352 −3657.310
ρ5

xy −8601.081 −15.799 −12872.743 −12091.819
ρ6

xy −16495.430 57.865 −24624.370 −23603.705
ρ7

xy −18541.439 53.300 −27527.328 −26985.531
ρ8

xy −11286.255 −59.652 −16640.543 −16700.284
ρ9

xy −2873.828 −62.108 −4205.605 −4321.007

arg maxc∈[0,cmax] cv∗
π (ρxy, c) is obtained for c much smaller than cmax; for example, with ρxy = −0.95,

it is obtained at c = 0 for each value of π .
To automate selection of an appropriate critical value for a given value of ρxy, we calculated a response

surface by regressing cv∗
π (z) on F(z) := [1, z, z2, ..., z9] with z = ρxy for the 38 data points corresponding

to the grid of values for ρxy.2 The response surface critical value is the fitted value from this regression,
and the coefficient estimates are given in Table 1. In practice, the response surface critical values can
be calculated by substituting the unknown correlation parameter ρxy with a consistent estimate. To that
end, as in HLT, we suggest using the estimator

ρ̂xy :=
∑T

t=2 ε̂xt ε̂yt√∑T
t=2 ε̂2

xt
∑T

t=2 ε̂2
yt

(8)

where ε̂yt are the OLS residuals from regressing yt on a constant and xt−1, and where it is recalled
from Section 3.2 that ε̂xt denote the OLS residuals from regressing 	xt on a constant and xt−1. It
is straightforward to show that ρ̂xy is a consistent estimator of ρxy under either Assumption S or
Assumption W. In what follows, we denote tests based on comparison of T∗ with an asymptotically
conservative critical value by T∗

con.

3.5. Alternative feasible tests

One alternative feasible test is the standard t-statistic T. Under Assumption W, it is straightforward
to show that T has a standard normal limiting null distribution for any value of ρxy, and thus has
the potential for nuisance parameter free inference in this world. With respect to the DGP in (4), T
is based on a correctly specified regression when ρxy = 0, but when ρxy �= 0, the regression omits a
relevant regressor; while this does not affect the limiting null distribution, T will be inefficient relative
to the infeasible test if ρxy �= 0. However, among feasible tests, T is asymptotically optimal (under
Gaussianity) for all ρxy (see Jansson and Moreira, 2006, p.704), hence we would wish to apply this
test under Assumption W, as is done in HLT’s hybrid procedure. Theorem 2 of HLT shows that under
Assumption W, as T → ∞, T ⇒ N(g, 1) under H1,W . Under Assumption S, T has a standard normal
limit null distribution provided ρxy = 0, in which case it is also efficient; whenever ρxy �= 0, however, its
limit null distribution depends on ρxy and c.

2The response surface functional form F(z) was adopted after considerable experimentation and is similar to that employed
in HLT, but with the addition of a ρ9

xy term and a finer grid of ρxy values. The response surface was found to work very well,

with the regression R2 being in excess of 0.999.



ECONOMETRIC REVIEWS 9

A second feasible statistic proposed by HLT is a variant of the standard t-statistic, appropriate in the
case of strongly persistent xt , taking the form of the t-statistic associated with the OLS estimate of β in
the regression

(yt − α̂y) = β(xt−1 − α̃x) + vt (9)

where α̂y := (T − 1)−1 ∑T
t=2 yt . We denote this statistic as T′. Under Assumption W, the limiting null

distribution of T′ will depend on the (unknown) distribution of s1 (as with T∗), hence the statistic is
again only designed for use in the strongly persistent world (in contrast to T). Under Assumption S, it
follows from Theorem 1 of HLT that

T ⇒ gσx
σy

√∫ 1

0
W̄1c(r)2dr +

∫ 1
0 W̄1c(r)d

{
ρxyW1(r) +

√
1 − ρ2

xyW2(r)
}

√∫ 1
0 W̄1c(r)2dr

=: S(gσx/σy, ρxy, c)

T′ ⇒ gσx
σy

∫ 1
0 W̄1c(r)2dr√∫ 1

0 W1c(r)2dr
+

∫ 1
0 W̄1c(r)d

{
ρxyW1(r) +

√
1 − ρ2

xyW2(r)
}

√∫ 1
0 W1c(r)2dr

=: S′(gσx/σy, ρxy, c).

In what follows, we denote tests based on comparison of T and T′ with asymptotically conservative
critical values by Tcon and T′

con, respectively (response surfaces for the conservative critical values are
provided in HLT).

3.6. Asymptotic local power comparisons under strong persistence

Under Assumption S, we can use the limiting representations given in Theorem 1 to compare the
asymptotic local powers of tests based on the T, T′ and T∗ statistics for a range of values of the relevant
nuisance parameters on which these depend, ρxy and c.3 We simulate S(g, ρxy, c), S′(gσx/σy, ρxy, c)
and S∗(gσx/σy, ρxy, c) and compare these to the relevant conservative critical values. In what follows,
we set π = 0.05 and conduct upper tail tests. For a given value of ρxy and c, we compute asymptotic
powers across g ≥ 0 (g = 0 representing asymptotic size). We consider ρxy ∈ [−0.95, −0.7, −0.5, −0.1]
and c ∈ [0, 1.25, 2.5, 5, 10, 25, 50, 100]. For positive values of ρxy, we find a result similar to HLT in that
Tcon becomes the best performing test as ρxy increases; in the hybrid procedure that we later propose,
we follow HLT and make use of Tcon for ρ̂xy > −0.1, hence here our focus is on negative values of ρxy.
Note that this is also the reason why our response surfaces for T∗

con outlined above were based only on
non positive values of ρxy.

The results for ρxy = −0.95 are given in Fig. 1. For c = 0 we see that T∗
con is more powerful than

Tcon and T′
con, substantially so with respect to T′

con. This remains the case for c = 1.25 and c = 2.5; we
observe the power advantage over Tcon increasing for these values of c, although the power advantage
of T∗

con relative to T′
con is diminishing as c increases. Once c = 5 or greater, T∗

con is only marginally more
powerful than T′

con, but both are considerably more powerful than Tcon. In Figs. 2–4, the analysis is
repeated with ρxy = −0.7, ρxy = −0.5, and ρxy = −0.1. Again T∗

con is more powerful than T′
con for the

lower values of c and they appear to be very similar for the higher values of c. Comparing T∗
con with Tcon,

we observe similar patterns of relative power behavior in Figs. 2 and 3 as were seen in Fig. 1, with T∗
con

outperformingTcon, increasingly so as c increases. However, as ρxy becomes less negative, the differences
in power between T∗

con and Tcon become less marked. Indeed, in Fig. 4 where ρxy = −0.1, the powers of
T∗

con and Tcon become almost indistinguishable across almost all c.

3Recall from Remark 1 that these limiting distributions do not depend on any nuisance parameters arising from conditional
heteroskedasticity in the innovations of the form given in Assumption A.1 of Campbell and Yogo (2006), and so the analysis
which follows remains valid in the presence of conditional heteroskedasticity.
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Figure 1. Asymptotic local power of nominal 0.05-level tests, ρxy = −0.95;T∗
con : ,T′

con : ,Tcon : ,Tw
con : .
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Figure 2. Asymptotic local power of nominal 0.05-level tests, ρxy = −0.7;T∗
con : ,T′

con : ,Tcon : ,Tw
con : .
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Figure 3. Asymptotic local power of nominal 0.05-level tests, ρxy = −0.5;T∗
con : ,T′

con : ,Tcon : ,Tw
con :
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Figure 4. Asymptotic local power of nominal 0.05-level tests, ρxy = −0.1;T∗
con : ,T′

con : ,Tcon : ,Tw
con :
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4. A weighted test under strong persistence

Given the asymptotic power simulation results reported above, it is interesting to consider whether we
might be able to combine T∗ and T′ (the two best performing tests) in a way to possibly improve power
over and above that displayed by T∗. For the purposes of illustration, our arguments will concentrate on
the environment of Fig. 1(a), where ρxy = −0.95 and c = 0 where, as noted above, T∗ is clearly the more
powerful test. Now, under H0 the correlation between T∗ and T′ is 0.90. A consequence of this high
level of correlation is that the rejections obtained from T′ under H1,S are close to being a subset of those
obtained from T∗. This implies that any (linear) combination of T∗ and T′ of the form w∗

f T
∗ + w′

f T
′,

where w∗
f and w′

f are some fixed positive weights standardized such that w∗
f + w′

f = 1, cannot lead to
improved levels of power above that of T∗ because the correlation between the components w∗

f T
∗and

w′
f T

′ is identical to that between T∗ and T′. We can, however, consider a randomized weighting scheme,
with the random weights w∗

r and w′
r , say, determined from the available data, and with w∗

r and w′
r having

support on [0, 1] and w∗
r + w′

r = 1. The aim is for w∗
r T

∗ and w′
rT

′ to have lower correlation than holds
between T∗ and T′, although it is crucial that the two components remain positively correlated. In this
way, each component can potentially make a greater individual contribution to overall power. In what
follows we will use xt to construct the weights because, unlike yt , its behavior does not depend on whether
H0 or H1,S is true.

The distribution of any data dependent weights based on xt will, of course, depend on the value
of c. The weight scheme we consider here is based on the p-value, denoted pNB, associated with
the familiar local-GLS demeaned normalized bias unit root test statistic of Elliott et al. (1996),
i.e., NB := Tφ̃ in the context of (6). Well known results show that, under Assumption S, NB ⇒
(
∫ 1

0 W1c(r)dW1c(r))/(
∫ 1

0 W1c(r)2dr) =: SNB(c), and denoting the density function of SNB(0) by f (x),
we can write pNB ⇒ ∫ SNB(c)

−∞ f (x)dx =: pNB(SNB(c)). The attractive feature of using pNB in the weight
scheme is that when c = 0, pNB ⇒ pNB(SNB(0)) = U(0, 1). Hence in the c = 0 case where most difference
is observed between the power profiles of T∗ and T′, the weights can be based on a uniformly distributed
variate on (0, 1). As c becomes large, the power gains of T∗ over T′ diminish and consequently the role
of the weight function becomes less critical; use of a weight scheme based on pNB is again appealing
here, because as c → ∞, pNB ⇒ 0.

Following such considerations, the weights we consider are defined as w∗
r := (pNB)λ and w′

r := 1 −
(pNB)λ, where the positive constant λ is introduced to permit an additional degree of calibration in the
weight specification. We therefore consider the weighted statistic

Tw := w∗
r T

∗ + w′
rT

′.

With this weighting scheme, the asymptotic correlation between w∗
r T

∗ and w′
rT

′ remains positive across
all values of ρxy and c we consider (and for all λ). The weighted statistic Tw is thus comprised of a
weighted average of T∗ and T′, with the weighted average of the tests having most effect when c = 0 and
reducing towards simply T′ as c becomes large.

In Theorem 2 we next state the limiting distribution of Tw under Assumption S. The stated result
follows straightforwardly from the result given in Theorem 1 and the limiting distribution for T′ given
in Section 3.5.

Theorem 2. Under the conditions of Theorem 1,

Tw ⇒ {pNB(SNB(c)}λS∗(gσx/σy, ρxy, c) + [1 − {pNB(SNB(c)}λ]S′(gσx/σy, ρxy, c)
=: Sw

NB(gσx/σy, ρxy, c, λ).

In order to implementTw, we obtain a response surface for pNB based on simulated limit distributions.
We simulated the limit of NB under c = 0, i.e., SNB(0), and then calculated the numerical approximation
to pNB(x) for x ∈ [−20, −19.95, −19.9, ..., 4]. To automate selection of an appropriate asymptotic p-
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Table 2. Response surface coefficient estimates for pNB .

Regressor pNB(x)

1 0.0004
z0.25 0.2706
z0.5 0.6951
z −0.8366
z2 2.2851
z3 −1.4128

Note: z = 1/(1 + e−x)

Table 3. Response surface coefficient estimates for Tw
con .

λmax(ρxy) cv∗
π (ρxy)

Regressor π = 0.1 π = 0.05 π = 0.025 π = 0.01 π = 0.1 π = 0.05 π = 0.025 π = 0.01

1 0.061 0.050 0.098 0.043 1.264 1.625 1.918 2.308
ρxy −3.724 0.088 0.601 −0.315 1.517 −0.955 −0.314 −0.506
ρ2

xy 16.242 −23.567 −9.284 8.438 28.840 −14.187 10.874 −9.799
ρ3

xy 479.214 −627.685 −161.781 187.413 223.885 −87.859 147.135 −97.115
ρ4

xy 3418.236 −4773.695 −890.161 1811.938 985.886 −234.740 878.957 −501.689
ρ5

xy 12052.607 −17736.573 −2701.112 7722.234 2578.918 −221.424 2875.649 −1483.912
ρ6

xy 23830.004 −36158.566 −4747.985 16982.123 4081.238 224.125 5448.789 −2547.421
ρ7

xy 26653.271 −41265.834 −4830.732 20165.939 3832.415 705.946 5947.498 −2476.120
ρ8

xy 15696.413 −24739.360 −2667.365 12281.453 1964.964 596.176 3468.018 −1245.259
ρ9

xy 3777.182 −6067.789 −623.772 3006.942 423.771 175.342 836.452 −246.514

value for a given value of x, we once again calculated a response surface by regressing pNB(x) on
G(z) := [1, z0.25, z0.5, z, z2, z3] with z = 1/(1 + e−x) (481 data points), the logistic function z being a
natural choice given that we are approximating a cumulative density function.4 The response surface p-
value is the fitted value from this regression, and the response surface coefficient estimates are provided
in Table 2, denoted pNB(x). In practice, the response surface p-value can be calculated using x = NB.

4.1. Asymptotic critical values and selection of λ

Calculation of conservative asymptotic critical values for the Tw statistic is carried out in exactly the
same manner as for the T∗ statistic in Section 3.4, but based on Sw

NB(0, ρxy, c, λ). For a given value of λ,
we obtain the conservative critical value cvw

π (ρxy, λ). At the same time, we evaluate the local alternative
distribution Sw

NB(gσx/σy, ρxy, c, λ) with σx = σy = 1 for g =7.5 over c ∈ [0, 1, 2, ..., 25] and compare this
with cvw

π (ρxy, λ). We choose λ to maximize the average power across c, where the candidate values of
λ we consider are λ ∈ [0.05, 0.1, 0.15, ..., 2.5]. We denote the power-maximizing value of λ as λmax(ρxy)
and the corresponding conservative critical value as cvw

π (ρxy). As with cv∗
π (ρxy) in the context of T∗

con,
we found cvw

π (ρxy) is obtained with c = 0 when ρxy = −0.95.
To select the appropriate value of λ and conservative critical value for a given value of ρxy, we

calculated responses surfaces by regressing λmax(ρxy) and cvw
π (ρxy), respectively, once again on F(z) =

[1, z, z2, ..., z9] with z = ρxy for the 38 data points in our grid of values for ρxy. The response sur-
face coefficient estimates for the ρxy-dependent values of λ and associated critical values for π ∈
[0.10, 0.05, 0.025, 0.01] can be found in Table 3 (the remarks made in footnote 2 apply here also). We
will refer to this testing procedure in what follows as Tw

con.

4The response surface functional form G(z) was adopted after considerable experimentation and differs from that used for
F(z) in Section 3.4 due to the use of the logistic function and p-values, with relatively few terms required for a good fit. The
response surface was found to work very well, with the regression R2 again exceeding 0.999.
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4.2. Asymptotic local power comparisons of T∗, T′ and Tw under strong persistence

Figure 1(a) also presents simulations of the asymptotic powers of the Tw
con procedure for c = 0, again

using upper tail tests for π = 0.05, eliciting a direct comparison with T∗
con and T′

con. We see that Tw
con

(calculated using λmax(ρxy) and compared to its conservative critical value cvw
π (ρxy)) is substantially

more powerful than T∗
con. So we obtain a situation where combining the tests produces useful gains in

the sense that the combined procedure has higher power than both of the individual constituent tests.
This is made possible because the components ofTw, i.e., (pNB)λT∗ and {1 − (pNB)λ}T′, have asymptotic
correlation 0.43 under H0, which is positive but much lower than that of T∗ and T′ (0.90). It is also
interesting to note that the critical value of Tw

con here is 1.96, which is close to the critical value of T′
con

(1.94) and substantially smaller than that of T∗
con (5.40).

For the other values of c in Fig. 1, we see Tw
con still dominating T∗

con (and hence T′
con) until c = 10. At

this point its power essentially coincides with that of T′
con since pNB is now generally close to zero. For

ρxy = −0.7 and ρxy = −0.5 in Figs. 2 and 3, respectively, we see that the power levels of Tw
con are near to

those of T∗
con, even for small values of c where T∗

con is more powerful than T′
con. Hence it is not always

the case that the weighted combination improves upon the better of T∗
con and T′

con, but we do find that
Tw

con is never meaningfully outperformed by the better of the two individual tests. When ρxy = −0.1 in
Fig. 4, Tw

con has a power profile that essentially coincides with T∗
con.

We investigated the effects of switching the weights inTw such that w∗
r = 1 − (pNB)λ and w′

r = (pNB)λ

in the case of ρxy = −0.95 and c = 0 (i.e., the settings of Fig. 1(a)). The components of this variant of Tw,
{1 − (pNB)λ}T∗ and (pNB)λT′, now have asymptotic correlation −0.38 under H0 and the critical value
of Tw

con is 5.66, somewhat larger than that of T∗
con (5.40). The powers of Tw

con were found to be uniformly
below those of T′

con, let alone T∗
con, which serves to illustrate the importance of the components of Tw

being positively correlated.

5. A hybrid procedure allowing for strong or weak persistence

Although the main focus of our analysis thus far has been on the case of strong persistence, we now
outline our proposed hybrid testing procedure which closely mirrors the hybrid testing procedure,
denoted Thyb in what follows, outlined in Section 3.3 of HLT. This procedure is designed to capitalize
on the optimality property of the conventional t-test (where T is compared to a standard normal critical
value) under weak persistence (Assumption W), and exploit the relative local power advantages of Tw

con
and Tcon observed from the analysis in Section 4.2 for different values of ρxy under strong persistence
(Assumption S). This will entail the use of two switching mechanisms. The first involves a switching
approach similar to that used in EMW, whereby the standard test is selected when evidence of a weakly
persistent predictor is present. In the absence of such evidence, a secondary switching mechanism is
needed to determine whether Tw

con or Tcon should be applied, this time on the basis of a consistent
estimate of ρxy; in particular, for a strongly persistent predictor we would want to make use of Tw

con
for more negative values of ρxy, and Tcon for small negative and positive ρxy.

The hybrid testing procedure we outline below can therefore be seem to parallel the structure of
the Thyb procedure of HLT, with the statistic T′ in HLT’s procedure replaced by the weighted statistic
Tw, developed in Section 4 above, in the light of its superior power performance documented in
Section 4.2. Denoting such a procedure by Tw

hyb, our proposed hybrid testing approach proceeds as
follows:

1. If NBOLS < −4T1/2 performTN , whereTN denotes the test which comparesT with a standard normal
critical value, and where NBOLS := Tφ̂ is the standard OLS demeaned Dickey-Fuller normalized bias
unit root statistic based on φ̂, the OLS slope estimate obtained from regressing 	xt on a constant and
xt−1.
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Figure 5. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.95;Thyb : ,Tw
hyb : , EMW : .
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Figure 6. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.7;Thyb : ,Tw
hyb : , EMW : .
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Figure 7. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.5;Thyb : ,Tw
hyb : , EMW : .
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Figure 8. Finite sample power of nominal 0.05-level tests, T = 200, ρxy = −0.1;Thyb : ,Tw
hyb : , EMW : .
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2. Otherwise:

(a) For upper-tail tests against the alternative β > 0,

if ρ̂xy > −0.1 perform Tcon (T with a conservative critical value)
if ρ̂xy < −0.1 perform Tw

con (Tw with λmax(ρ̂xy) and conservative critical value cvw
π (ρ̂xy))

(b) For lower-tail tests against the alternative β < 0,

if ρ̂xy < 0.1 perform Tcon (T with a conservative critical value)
if ρ̂xy > 0.1 perform Tw

con (Tw with λmax(−ρ̂xy) and conservative critical value − cvw
π (−ρ̂xy))

Remark 4. Step 1 coincides with Step 1 of the corresponding hybrid testing procedure, Thyb, from HLT.
As in HLT, the normalized bias statistic is used to distinguish between the strongly and weakly persistent
cases. Under Assumption S, NBOLS = Op(1), while under Assumption W, NBOLS diverges to minus
infinity. For the reasons outlined on p.205 of HLT, we implement NBOLS with a sample size dependent
critical value of −4T1/2. Under Assumption W, NBOLS diverges to infinity at a rate faster than T1/2,
hence TN is always selected asymptotically under weak persistence because Pr(NBOLS < −4T1/2) → 1
as the sample size diverges.

Remark 5. Under strong persistence and the values of ρxy we have considered in our asymptotic power
analysis in Section 4.2, the asymptotic behavior of the hybrid test procedure Thyb of HLT coincides with
that ofT′

con, while the asymptotic behavior of the new procedureTw
hyb coincides with that ofTw

con. As such,
Tw

hyb will have considerably higher asymptotic power than Thyb in this environment when c is small.

Remark 6. Although we have outlined our hybrid testing procedure in terms of upper- and lower-tail
one-sided tests for predictability, in principle these could also be used to perform two sided tests for
predictability. In particular, supposing the upper- and lower-tail versions of the test were both run at
the (asymptotic) π/2% significance levels, then combining inference from the two individual one sided
tests for predictability would lead to an overall two sided test for predictability with asymptotic size of
no greater than π%.

6. Higher-order predictor serial correlation

We next consider how our procedures should be adapted to take account of possible additional serial
correlation in the process for the predictor series xt . To that end, we generalize the AR(1) formulation
placed on st in (2) to the AR(p + 1) formulation,

st = φst−1 + νt , ψ(L)νt = εxt (10)

where ψ(L) := 1 + ∑p
j=1 ψjLj is a finite-order stationary AR(p) polynomial such that all of the roots

of ψ(z) = 0 lie outside the unit circle, |z| = 1. The assumption of a finite-order autoregression for νt ,
and hence st , appears to be standard in both the control variable and residual-augmented strands of
the predictive regression literature; see, for example, Campbell and Yogo (2006), Elliott (2011), and
Demetrescu and Rodrigues (2022), all of whom assume finite-order autoregressions. As argued in
Demetrescu and Rodrigues (2022, p.431), in practice we might view this as an approximation to a more
general linear process for νt , although formally this would require establishing a suitable rate at which
p → ∞ as T → ∞. We conjecture that the conventional rate conditions on p associated with unit root
test statistics given in, for example, Chang and Park (2002), should suffice for this purpose.

To accommodate the additional stationary serial correlation introduced through (10), the following
modifications to the procedures outlined previously need to be made. First, NBOLS and NB need to be
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based on the corresponding estimated augmented Dickey-Fuller regressions

	xt = μ̂ + φ̂xt−1 +
p∑

i=1
γ̂ i	xt−i + ε̂xt (11)

and

	xt = φ̃(xt−1 − α̃x) +
p∑

i=1
γ̃i	xt−i + ε̃xt (12)

respectively, with the statistics re-defined as NBOLS := Tφ̂/(1 − ∑p
i=1 γ̂i) and NB := Tφ̃/(1 − ∑p

i=1 γ̃i).
Each of these ADF regressions now includes p lagged difference terms. In practice p can be chosen by
any consistent lag selection method; the numerical simulations reported in Section 7 use the MBIC rule
of Ng and Perron (2001). Next, the residual ε̂xt from (11) is used to calculate ρ̂xy in (8), and finally,
the residual ε̃xt from (12) enters the regression (Eq. 7) for calculating T∗. With these modifications
implemented, the hybrid procedure outlined in Section 5 can continue to be implemented using the
same set of conservative critical values.

7. Finite sample simulations

In this section, we evaluate the finite sample size and power properties of the Tw
hyb procedure developed

in Section 5. We generate data using a sample size T = 200 from the model (1)–(3) with (e1t , e2t)′ ∼
IIDN (0, I2), σx = σy = 1 and drawing s1 as a standard normal variate. We set αy = αx = 0 as the tests
we calculate are invariant to these constant terms. The values of ρxy, c and g we consider are the
same as in the asymptotic analysis of Figs. 1–4 to facilitate a comparison between finite sample and
asymptotic performance. Upper tail 0.05-level tests are again conducted, with the results based on
20,000 replications. Throughout, we estimate p using the MBIC rule of Ng and Perron (2001) with a
maximum permitted lag order of pmax = �12(T/100)1/4 (�. denoting the integer part) together with
the modification suggested by Perron and Qu (2007).

We first consider simulations of the finite sample size ofTw
hyb, i.e., setting g = 0, allowing for additional

serial correlation in the process for xt through the specification

st = φst−1 + νt (13)
νt = ϕνt−1 + e1t − θe1,t−1 (14)

for various values of ϕ, θ ∈ {−0.5, 0, 0.5}. The simulation DGP for νt in (14) allows for MA behavior
whenever θ �= 0. We recall that this is not formally allowed for in the DGP specified for νt in (10), but
it is still of interest to consider MA errors in the simulations to investigate how well our proposed tests
work in such cases, not least given our conjecture that the tests will remain valid for MA errors under a
suitable rate condition on p.

Table 4 reports the results across the different settings for c and ρxy. We observe size to be generally
well-controlled and close to the nominal level, with the serial correlation parameter settings for φ and
θ having relatively little bearing on the rejection frequency under the null. Some modest over-size is
apparent for the more negative values of ρxy when c is zero or small, but this diminishes as c increases
and as the model innovations become less correlated.

That the over-size is most apparent around c = 0 and ρxy = −0.95 is a consequence of (i) in this
region the Tw

hyb procedure will be almost always be performing Tw
con and (ii) as noted above cvw

π (ρxy)

is obtained with c = 0 (i.e., Tw
con is asymptotically correctly sized for c = 0 and conservative elsewhere).

Consequently, when finite sample over-size of Tw
hyb occurs via Tw

con it would be expected to be most
prominent when c = 0. Of course, this does not resolve why finite sample over-size (as opposed to near
correct- or under-size) should be manifest in the first place and we have no ready explanation for this.
What we can say is that the over-size diminishes reasonably quickly as the sample size increases and the
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Table 4. Finite sample size of nominal 0.05-level Tw
hyb tests, T = 200.

φ θ c = 0 c = 1.25 c = 2.5 c = 5 c = 10 c = 25 c = 50 c = 100

Panel A. ρxy = −0.95
0.0 0.0 0.075 0.067 0.065 0.061 0.052 0.038 0.056 0.057
0.0 0.5 0.072 0.063 0.058 0.050 0.040 0.035 0.047 0.053
0.0 −0.5 0.078 0.070 0.067 0.065 0.059 0.046 0.035 0.065
0.5 0.0 0.075 0.069 0.069 0.066 0.061 0.052 0.039 0.036
−0.5 0.0 0.076 0.066 0.062 0.055 0.045 0.031 0.049 0.050
0.5 −0.5 0.080 0.071 0.070 0.068 0.061 0.052 0.044 0.038
−0.5 0.5 0.077 0.061 0.051 0.041 0.032 0.030 0.043 0.050

Panel B. ρxy = −0.7
0.0 0.0 0.068 0.064 0.063 0.059 0.054 0.043 0.050 0.054
0.0 0.5 0.064 0.060 0.057 0.051 0.043 0.036 0.046 0.049
0.0 −0.5 0.070 0.066 0.064 0.062 0.058 0.052 0.042 0.060
0.5 0.0 0.068 0.064 0.063 0.062 0.058 0.054 0.046 0.040
−0.5 0.0 0.068 0.064 0.061 0.056 0.048 0.035 0.045 0.048
0.5 −0.5 0.072 0.066 0.065 0.063 0.058 0.053 0.049 0.043
−0.5 0.5 0.062 0.058 0.052 0.044 0.034 0.032 0.042 0.049

Panel C. ρxy = −0.5
0.0 0.0 0.061 0.060 0.059 0.057 0.055 0.047 0.048 0.052
0.0 0.5 0.059 0.058 0.056 0.051 0.046 0.038 0.045 0.049
0.0 −0.5 0.063 0.061 0.060 0.059 0.058 0.053 0.046 0.056
0.5 0.0 0.063 0.060 0.059 0.058 0.057 0.056 0.049 0.042
−0.5 0.0 0.062 0.060 0.059 0.056 0.050 0.039 0.044 0.048
0.5 −0.5 0.065 0.061 0.060 0.060 0.057 0.055 0.052 0.046
−0.5 0.5 0.060 0.057 0.054 0.046 0.039 0.034 0.043 0.049

Panel D. ρxy = −0.1
0.0 0.0 0.053 0.049 0.049 0.050 0.049 0.046 0.045 0.048
0.0 0.5 0.051 0.049 0.050 0.050 0.048 0.044 0.045 0.048
0.0 −0.5 0.053 0.050 0.050 0.049 0.049 0.048 0.045 0.047
0.5 0.0 0.052 0.051 0.050 0.050 0.049 0.048 0.047 0.043
−0.5 0.0 0.051 0.050 0.050 0.050 0.050 0.044 0.044 0.047
0.5 −0.5 0.053 0.052 0.051 0.050 0.050 0.049 0.049 0.046
−0.5 0.5 0.052 0.051 0.049 0.049 0.046 0.042 0.047 0.050

asymptotics start to assert themselves. For example, the leading entry of Table 4 (c = 0, ρxy = −0.95)
shows a size of 0.075 when T = 200. For T = 400 and T = 800 the corresponding sizes are 0.060 and
0.056, respectively.

We next evaluate the finite sample power of Tw
hyb, and do so through comparison with the Thyb

procedure of HLT and the test procedure proposed by EMW, which we denote by EMW. As discussed
in Section 1, the EMW test procedure is the most natural extant comparator for the Tw

hyb test, given
that both exclude explosive predictors (recall that HLT’s Thyb procedure allows for a small degree
of local explosivity). Here we set ϕ = θ = 0, but do not assume knowledge of this and continue to
determine p using the method of the previous section. To implement the EMW procedure, we adopt the
switching function specified on p.799 of EMW so that the standard t-test, TN , is applied if an estimate
of the local offset c is at least 130, while their weighted average power criterion-based test is applied
otherwise, using the sample statistics and long run correlation estimator specified on p.697 of Jansson
and Moreira (2006). To estimate c we follow HLT and use −Tφ̂ from (11), and when the standard
t-test is used in EMW, we follow EMW’s approach of setting the critical value to the usual value of
1.645 for non negative estimates of the long run correlation parameter, but to set it to 1.7 for negative
estimates. Long run variances are calculated using a Bartlett kernel with lag truncation

⌊
T1/3⌋. The Thyb

procedure was implemented as in HLT, i.e., the same procedure as Tw
hyb in Section 5 above, but with T′

con
replacing Tw

con.
We first consider the comparison between Tw

hyb and Thyb. Figure 5 gives the results for ρxy = −0.95.
In Fig. 5(a) where c = 0, we see that Tw

hyb and Thyb have approximately the same size, slightly above the
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nominal level (cf. Table 4 for Tw
hyb). It is clear however that Tw

hyb is substantially more powerful than Thyb.
The relevant asymptotic counterpart here is a comparison between Tw

con and T′
con in Fig. 1(a) and the

power differences there appear even more significant, suggesting that we would see further power gains
ofTw

hyb overThyb for finite sample sizes larger than T = 200. Elsewhere in Fig. 5 we see thatTw
hyb continues

to be more powerful than Thyb for values of c up to c = 5; thereafter Tw
hyb and Thyb have identical power

profiles. Notice again that the slight over-size associated with the tests is less apparent for the larger
values of c. Figures 6–8 show the results for the other values of ρxy. For small c we continue to see Tw

hyb
outperform Thyb, while they behave similarly elsewhere, again in line with the asymptotic comparisons
of Tw

con and T′
con in Figs. 2–4. Clearly then, there are potential benefits to be gained in practice by using

the procedure Tw
hyb instead of Thyb, since it performs either as well as or better than Tw

hyb, offering power
gains when the predictor variable is highly persistent, without worry of compromise when less persistent
predictors are employed.

Finally, comparing our Tw
hyb procedure to EMW, we find that, across the ρxy values we consider, the

tests have very similar levels of power for the smaller values of c, while for larger c, Tw
hyb clearly emerges

as the more powerful procedure, with increasing gains over EMW seen as the magnitude of c increases.
This feature is most apparent for the most negative values of ρxy, where the power gains of Tw

hyb relative
to EMW are apparent even for c = 2.5. Overall, in addition to offering a generally superior power profile
to Thyb, the Tw

hyb procedure can achieve substantial power advantages over the procedure of EMW for a
wide range of ρxy and c combinations, while the reverse is never true.

8. Conclusions

In this article, we have proposed a new hybrid procedure designed to test for predictability in returns
which is valid in cases where the predictor is either weakly or strongly persistent. Our proposed
hybrid test is a complement to the closely related hybrid testing procedure of HLT. In particular,
the simulation results presented in HLT highlight that their hybrid test outperforms other extant
predictability tests in most settings, but is outperformed by the test procedure of EMW in the case of
strongly persistent predictors with the persistence parameter c either zero or small. The comparison
is, however, not on a level playing field because EMW rule out the possibility of mild explosivity
(c < 0) in the predictor, while HLT allow for some mild explosivity. By restricting the predictor to
be non explosive, we are able to consider using a control variable based test (in the spirit of Elliott,
2011), whereby the predictive regression is augmented by a GLS-based proxy for the innovation
driving the predictor. We have shown that a feasible conservative implementation of this augmented
test improves upon the asymptotic local power of the feasible test used in HLT, which is based on
using a quasi-GLS demeaned version of the predictor (but no covariate), in precisely the region of
the parameter space where the HLT procedure is less powerful than the EMW test. Moreover, we
show that a test based on a weighted average of the augmented statistic and the quasi-GLS statistic
from HLT delivers notable further improvements in asymptotic local power in this region. Our
hybrid test then replaces the quasi-GLS test used in the hybrid procedure in HLT with this weighted
test. Like the hybrid tests in both EMW and HLT our proposed hybrid test procedure reverts to
a conventional regression t-test on the predictor (comparing to standard normal critical values) if
the data suggest that the predictor is weakly persistent. Monte Carlo simulations presented in this
article demonstrate that our proposed hybrid procedure is overall more powerful than both the EMW
and HLT test procedures across a wide spectrum of values of the persistence level in the predictive
regressor (including where c is zero or small) and the correlation coefficient between the innovations
in the model. Where explosive predictors can be ruled out, we therefore recommend the procedure
developed in this paper. Otherwise we recommend using the corresponding procedure we developed in
HLT.
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x̄−1 = (T − 1)−1 ∑T
t=2 xt−1. Summations are taken over t = 2, ..., T, and integrals over [0, 1], unless otherwise

stated. We will make use the following weak convergence results:

T−1/2
�Tr∑
t=1

e1t ⇒ W1(r), T−1/2
�Tr∑
t=1

e2t ⇒ W2(r)

where [W1(r), W2(r)]′ is a bivariate standard Brownian Motion process. Then we can also write

T−1/2
�Tr∑
t=1

εxt ⇒ σxW1(r)

T−1/2
�Tr∑
t=1

εyt ⇒ σy
{
ρxyW1(r) +

√
1 − ρ2

xyW2(r)
}

and, under Assumption S, T−1/2x�Tr ⇒ σxW1c(r) = σx
∫ r

0 e−(r−s)cdW1(s).
We will make use of the following easily established results: T−1 ∑

(yt − ȳ)2 p→σ 2
y , α̃x = x1 + op(1),

T−1 ∑
ε̃2

xt
p→ σ 2

x . Next,

Tφ̃ ⇒
∫

W1c(r)dW1c(r)∫
W1c(r)2dr

= c +
∫

W1c(r)dW1(r)∫
W1c(r)2dr

:= SNB(c)

T−1
∑

(xt−1 − x̄−1)ε̃xt = T−1
∑

(xt−1 − x̄−1){	xt − φ̃(xt−1 − x1)} + op(1)

= T−1
∑

(xt−1 − x̄−1)	xt − Tφ̃T−2
∑

(xt−1 − x̄−1)xt−1 + op(1)

⇒ σ 2
x

∫
W̄1c(r)dW1c(r) − σ 2

x S
NB(c)

∫
W̄1c(r)2dr

T−1
∑

(xt−1 − x̄−1)yt ⇒ gσx

∫
W̄1c(r)2dr + σxσy

∫
W̄1c(r)d

{
ρxyW1(r) +

√
1 − ρ2

xyW2(r)
}

T−1
∑

ε̃xt(yt − ȳ) = T−1
∑

ε̃xt(gT−1(xt−1 − x̄−1) + εyt − ε̄y)

= gT−2
∑

(xt−1 − x̄−1)ε̃xt + T−1
∑

ε̃xt(εyt − ε̄y)

= T−1
∑

{	(xt − x1) − φ̃(xt−1 − x1)}(εyt − ε̄y) + op(1)

= T−1
∑

(εyt − ε̄y)	xt + op(1) ⇒ σxy

T−1
∑

v̂2
t = T−1

∑
{(yt − ȳ) − β̂(xt−1 − x̄−1) − δ̂(ε̃xt − ε̃x)}2

= T−1
∑

(yt − ȳ)2 + β̂2T−1
∑

(xt−1 − x̄−1)
2 + δ̂2T−1

∑
ε̃2

xt

− 2β̂T−1
∑

(yt − ȳ)(xt−1 − x̄−1) − 2δ̂T−1
∑

(yt − ȳ)ε̃xt + 2β̂δ̂T−1
∑

(xt−1 − x̄−1)ε̃xt

+ op(1)

= T−1
∑

(yt − ȳ)2 + δ̂2T−1
∑

ε̃2
xt − 2δ̂T−1

∑
(yt − ȳ)ε̃xt + op(1)

⇒ σ 2
y + (σxy/σ

2
x )2σ 2

x − 2(σxy/σ
2
x )σxy = σ 2

y (1 − ρ2
xy)
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using the fact that ε̃x = T−1 ∑
ε̃xt = T−1 ∑

	(xt − x1) − Tφ̃T−2 ∑
(xt−1 − x1) + op(1) ⇒ 0. Then,

[
β̂

δ̂

]
=

[ ∑
(xt−1 − x̄−1)

2 ∑
(xt−1 − x̄−1)ε̃xt∑

(xt−1 − x̄−1)ε̃xt
∑

ε̃2
xt

]−1 [ ∑
(xt−1 − x̄−1)yt∑
ε̃xt(yt − ȳ)

]
[

Tβ̂

δ̂

]
=

([
T−1 0
0 T−1

] [ ∑
(xt−1 − x̄−1)2 ∑

(xt−1 − x̄−1)ε̃xt∑
(xt−1 − x̄−1)ε̃xt

∑
ε̃2

xt

] [
T−1 0
0 1

])−1

.
[

T−1 ∑
(xt−1 − x̄−1)yt

T−1 ∑
ε̃xt(yt − ȳ)

]

=
[

T−2 ∑
(xt−1 − x̄−1)

2 T−1 ∑
(xt−1 − x̄−1)ε̃xt

T−2 ∑
(xt−1 − x̄−1)ε̃xt T−1 ∑

ε̃2
xt

]−1 [
T−1 ∑

(xt−1 − x̄−1)yt
T−1 ∑

ε̃xt(yt − ȳ)

]

⇒
[

σ 2
x

∫
W̄1c(r)2dr σ 2

x
∫

W̄1c(r)dW1c(r) − σ 2
x S

NB(c)
∫

W̄1c(r)2dr
0 σ 2

x

]−1
(A.1)

.

[
gσ 2

x
∫

W̄1c(r)2dr + σxσy
∫

W̄1c(r)d
{
ρxyW1(r) +

√
1 − ρ2

xyW2(r)
}

σxy

]

=
[

1
σ 2

x
∫

W̄1c(r)2dr −
∫

W̄1c(r)dW1c(r)−SNB(c)
∫

W̄1c(r)2dr
σ 2

x
∫

W̄1c(r)2dr
0 1/σ 2

x

]

.

[
gσ 2

x
∫

W̄1c(r)2dr + σxσy
∫

W̄1c(r)d
{
ρxyW1(r) +

√
1 − ρ2

xyW2(r)
}

σxy

]

=
⎡
⎣ gσ 2

x
∫

W̄1c(r)2dr+σxσy
∫

W̄1c(r)d
{
ρxyW1(r)+

√
1−ρ2

xyW2(r)
}

σ 2
x

∫
W̄1c(r)2dr − σxy

∫
W̄1c(r)dW1c(r)−SNB(c)

∫
W̄1c(r)2dr

σ 2
x

∫
W̄1c(r)2dr

σxy/σ 2
x

⎤
⎦ .

The expression for Tβ̂ can be simplified as follows:

Tβ̂ ⇒ g +
σxσy

∫
W̄1c(r)d

{
ρxyW1(r) +

√
1 − ρ2

xyW2(r)
}

σ 2
x

∫
W̄1c(r)2dr

− σxy

∫
W̄1c(r)dW1c(r) − SNB(c)

∫
W̄1c(r)2dr

σ 2
x

∫
W̄1c(r)2dr

= g +
σxσy

∫
W̄1c(r)d

{
ρxyW1(r) +

√
1 − ρ2

xyW2(r)
}

σ 2
x

∫
W̄1c(r)2dr

− σxy

(∫
W̄1c(r)dW1c(r)

σ 2
x

∫
W̄1c(r)2dr

− SNB(c)
σ 2

x

)

= g +
σxσy

√
1 − ρ2

xy
∫

W̄1c(r)dW2(r)

σ 2
x

∫
W̄1c(r)2dr

+ σxσyρxy
∫

W̄1c(r)dW1(r)
σ 2

x
∫

W̄1c(r)2dr

− σxy

σ 2
x

(
c +

∫
W̄1c(r)dW1(r)∫

W̄1c(r)2dr
− SNB(c)

)

= g +
σxσy

√
1 − ρ2

xy
∫

W̄1c(r)dW2(r)

σ 2
x

∫
W̄1c(r)2dr

− σxy

σ 2
x

(
c − c −

∫
W1c(r)dW1(r)∫

W1c(r)2dr

)

= g +
σxσy

√
1 − ρ2

xy
∫

W̄1c(r)dW2(r)

σ 2
x

∫
W̄1c(r)2dr

+ σxy
∫

W1c(r)dW1(r)
σ 2

x
∫

W1c(r)2dr
.
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Hence, using m to denote element [1,1] of the inverse matrix in (A.1), we find

T∗ = Tβ̂√
T−1 ∑

v̂2
t T2m

⇒
g + σxσy

√
1−ρ2

xy
∫

W̄1c(r)dW2(r)

σ 2
x

∫
W̄1c(r)2dr + σxy

∫
W1c(r)dW1(r)

σ 2
x

∫
W1c(r)2dr√

σ 2
y (1−ρ2

xy)

σ 2
x

∫
W̄1c(r)2dr

=
⎡
⎢⎣g +

σxσy
√

1 − ρ2
xy

∫
W̄1c(r)dW2(r)

σ 2
x

∫
W̄1c(r)2dr

+ σxy
∫

W1c(r)dW1(r)
σ 2

x
∫

W1c(r)2dr

⎤
⎥⎦

√
σ 2

x
∫

W̄1c(r)2dr
σ 2

y (1 − ρ2
xy)

= gσx
σy

√∫
W̄1c(r)2dr√
1 − ρ2

xy

+
∫

W̄1c(r)dW2(r)√∫
W̄1c(r)2dr

+
ρxy

√∫
W̄1c(r)2dr

∫
W1c(r)dW1(r)√

1 − ρ2
xy

∫
W1c(r)2dr

.


	Abstract
	1.  Introduction 
	2.  The predictive regression model 
	3.  A new predictability test 
	3.1.  An infeasible test 
	3.2.  A feasible test using a proxy measure for εxt 
	3.3.  Asymptotic distribution of T 
	3.4.  Asymptotic critical values for T 
	3.5.  Alternative feasible tests 
	3.6.  Asymptotic local power comparisons under strong persistence 

	4.  A weighted test under strong persistence 
	4.1.  Asymptotic critical values and selection of λ 
	4.2.  Asymptotic local power comparisons of T, T and Tw under strong persistence 

	5.  A hybrid procedure allowing for strong or weak persistence 
	6.  Higher-order predictor serial correlation 
	7.  Finite sample simulations 
	8.  Conclusions
	Acknowledgments
	Funding
	References
	A.  Appendix


