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ALEXEI LISITSA, VIKTOR LOPATKIN, AND ALEXEI VERNITSKI

ABSTRACT. Two recent publications describe realizable Gauss diagrams using conditions stating
that the number of chords in certain sets of chords is even or odd. We demonstrate that these
descriptions are incorrect by finding multiple counter-examples. However, the idea of having a
parity-based description of realizable Gauss diagrams is attractive. We recall that realizability of
Gauss diagrams as touch curves can be described via bipartite graphs. We show that realizable
Gauss diagrams can be described via bipartite graphs.

1. INTRODUCTION

A Gauss diagram captures some information about a closed plane curve. This is not a one-
to-one correspondence; that is, two different closed plane curves can have the same Gauss
diagram. An interlacement graph captures some information about a Gauss diagram. This
is not a one-to-one correspondence; that is, two different Gauss diagram can have the same
interlacement graph.

Not every Gauss diagram corresponds to a closed plane curve. If a Gauss diagram does
correspond to a closed plane curve, the Gauss diagram is called realizable. A remarkable fact
which has hardly ever been stated explicitly is that it is possible to decide whether a Gauss
diagram is realizable just by inspecting its interlacement graph; that is, the interlacement
graph retains enough information about the Gauss diagram to decide if the Gauss diagram
is realizable.

As we describe below, several recent publications [GL18, B19, GL20] offer especially simple
elegant descriptions of realizability of Gauss diagrams expressed (implicitly) in the language
of their interlacement graphs. Every condition in these descriptions is based on parity, that is,
it checks whether a certain set of edges in the graph has an even or odd size. Unfortunately, as
we show below, these descriptions are wrong, and we generate a family of counterexamples.

Nevertheless, the idea of having a parity-based description of realizable Gauss diagrams
in the language of their interlacement graphs is attractive, so in this paper we achieve one
possible description of this kind. On the one hand, we note that realizability of Gauss dia-
grams as touch curves can be described via bipartite graphs. On the other hand, we note that
a recent publication [STZ09] gives a (very inefficient) description of realizability of Gauss di-
agrams expressed (implicitly) in the language of their interlacement graphs. Combining the
two ideas, we show that a Gauss diagram is realizable if and only if a certain modification
of its interlacement graph is bipartite. Not only this description is theoretically interesting as
based on parity and on the interlacement graphs of Gauss diagrams, but also it can be easily
implemented as a fast and simple algorithm for checking realizability of Gauss diagrams.

2. AN OVERVIEW OF THE HISTORY OF REALIZABILITY

The Gauss code of the curve was first defined by C.F. Gauss [G]. This sequence also
determines a chord diagram which in the context of the study of plane curves is called a
Gauss diagram, and the question raised by Gauss is to recognize which chord diagrams arise

from some plane curves.
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The Gauss problem about realizability of a chord diagram is an old one and has been
solved in many different ways. We briefly survey some known realizability descriptions for
Gauss diagrams which are most relevant to our study. In 1936, M. Dehn [D36] solved the
Gauss problems for the first time, finding an algorithmic solution based on the existence of a
touch Jordan curve which is the image of a transformation of the knot diagram by successive
splits replacing all the crossings. (An improved and clearer version of Dehn’s algorithm can
be found in [RT84].) Much later, in 1976, L. Lovasz and M.L. Marx [LM76] found alternative
criteria for realizability. At the same time, R.C. Read and P. Rosenstiehl [R76, RR76] showed
that one can express realizability in terms of interlacement graphs. The last characterization is
based on the tripartition of such graphs into cycles, cocycles and bicycles. H. de Fraysseix
and P. Ossona de Mendz in [dFOdM97], using a modification of Dehn’s ideas, obtained
a new characterization of Gauss codes which led them to a short self-contained proof of
Rosenstiehl’s characterization. Next, B. Shtylla, L. Traldi and L. Zulli in [STZ09] reformulated
answers to the Gauss problem given by P. Rosenstiehl and by H. de Fraysseix and P. Ossona
de Mendz to give new graph-theoretic and algebraic characterizations of realizable Gauss
codes.

We also refer the reader to the book of E. Ghys [Gh17, Gauss is back: curves in the plane] for
more discussion and bibliography, and other realization criteria. See also [M84] for another
parity-based approach to chord diagrams.

According to M. Dehn result [D36, RT84] the Gauss problem reduces to a touch realization
of a diagram obtained from the first one by some transformation. Further, being touch-
realizable is equivalent to the corresponding interlacement graph being bipartite.

3. DEFINITIONS

Consider a plane curve 7y whose self-intersections are double points, as in Fig. 1 a). Assume
that each crossing is labelled by some label. Walk along the curve until returning back to
where we started, and generate a word w which records the labels of the crossings in the
order we pass over them on the curve. For example, starting in Fig. 1 a) at the crossing 1
and moving along the curve to the right initially (and turning as the curve turns), we obtain
w = 12334124. The word w is a double occurrence word, that is, each letter features in it
exactly twice. It is called the Gauss code of the curve 7. Obviously, a curve can have many
Gauss codes, since the definition of the Gauss code depends on the starting point and the
direction of the walk around the curve. To capture all Gauss codes of a curve in one object, it
is convenient to represent Gauss codes of a curve diagrammatically; namely, if we place the
letters of a Gauss code w around a circle in the order in which the letters occur in w and if
we join up each pair of identical letters by a chord, then the obtained chord diagram is called
the Gauss diagram ®(+y) of the plane curve (see Fig. 1 a), and b)).

A Gauss diagram © is called realizable if there is a closed plane curve 7 such that & = G(vy).

With any chord diagram one can associate a graph, which is called a circle graph or a chord-
intersection graph or an interlacement graph, whose set of vertices is the set of all chords of the
chord diagram, and in which a pair of two vertices u, v is connected with an edge if and only
if the chords u, v intersect (see Fig. 1 c)).

4. REALIZABILITY DESCRIPTIONS BASED ON INTERLACEMENT GRAPHS

The first of the following two conditions was known to Gauss, and the second one features
in a number of recent papers, starting from [CE93, CE96].

Definition 4.1 (The Evenness Conditions). We say that a Gauss diagram © satisfies the even-

ness conditions if its interlacement graph I'(®) has the following properties:
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FiGure 1. Example of a) a planar curve; b) its Gauss diagram and c) its inter-
lacement graph. The corresponding Gauss code is 12334124

(1) the degree of each vertex is even,
(2) each pair of non-neighboring vertices has an even number of common neighbors (pos-
sibly, zero).

It is well known that the evenness conditions are necessary but not sufficient for a Gauss
diagram to be realizable; see [CE96], and counterexamples below in Fig. 2, 3, 4.

For the first time the relizability description for Gauss words and diagrams expressed solely
in terms of interlacement graphs was found by P. Rosenstiehl in [R76]. Following [dFOdM97]
Rozentiehl’s conditions can be formulated as follows.

Theorem 4.2 (The Rosentiehl Criteria of Realizability, [R76, dFOdM97]).
A Gauss diagram & is realizable if and only if its interlacement graph I'(®) = (V, E) has the following
properties:

(1) the degree of each vertex is even,
(2) there is a subset of vertices A C V of I'(®) such that the following two conditions are equiva-
lent for any two vertices u and v:
i) the vertices u and v have an odd number of common neighbors,
ii) the vertices u and v are neighbors and either both are in A or neither is in A.

Next, B. Shtylla, L. Traldi and L. Zulli in [STZ09] presented an algebraic re-formulation of
the Rosentiehl criteria of realizabity of Gauss diagrams as follows.

Theorem 4.3 (The STZ-criteria of Realizability, [STZ09, Theorem 2]).
Let & be Gauss diagram, T'(®) its interlacement graph and M(®) its interlacement matrix. Then &

is realizable if and only if there exists a diagonal matrix D such that M + D is idempotent over the
field GF(2).

5. COUNTEREXAMPLES TO SOME PUBLISHED DESCRIPTIONS

We will present counterexamples to two recently published results. One of them is [GL20,
Theorem 3.11] claiming (incorrectly) that a Gauss diagram & is realizable if and only if the
following conditions hold:

(I) for each chord, the number of chords intersecting this chord is even; for each two
non-intersecting chords, the number of chords that intersect both these chords is even;
(II) for every chord ¢ € ® the Gauss diagram ®. (that is, Conway’s smoothing of the
chord ¢, which is an operation similar to reversing described below in Example 7.2)

also satisfies the above condition.
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It was (correctly) shown in [GL20] (in the proof of Theorem 4.3) that the two conditions
(I), (II) above can be reformulated in terms of the adjacency matrix M of the interlacement
graph of @ as the following three conditions (1)—(3). For details of the notation, please see
the following section.

(1) (mj,m;) =0 (mod2),1<i<mn,

(2) (m;, m]-> = 0 (mod?2), if the corresponding chords do not intersect,

(3) (m;,m;) + (m;, my) + (mj, m) =1 (mod2), if the corresponding chords intersect pair-
wise.

Hence, it was incorrectly concluded in [GL20, Theorem 4.3] that a Gauss diagram is realiz-
able if and only if its interlacement graph satisfies the three conditions (1)—(3).

Another publication [B19] quotes an earlier version of [GL20], [GL18], and makes the same
(incorrect) conclusion, namely, that a Gauss diagram is realizable if and only if its interlace-
ment graph satisfies the three conditions (1)—(3).

We have implemented conditions (1)—(3) in a computer tool [KLV21b] and conducted ex-
tensive computational experiments for verification of these and other realizability conditions
and for enumeration of classes of Gauss diagrams, see [KLV21a, KLV21c]. We found a fam-
ily of counterexamples showing that conditions (1)—(3) are necessary but not sufficient for
a Gauss diagram to be realizable. See also [KLV22] where we apply machine learning to
understand why these counterexamples remained unnoticed for some time.

The three conditions (1)—(3) describe realizability correctly for Gauss diagrams with up to
eight chords. There is exactly one Gauss diagram with nine chords, see Fig. 2, which satisfies
conditions (1)—(3) but is not realizable. There are 6 Gauss diagrams with ten chords which
satisfy conditions (1)-(3) but are not realizable, see Fig. 3. The results for Gauss diagrams
of various sizes are summarized in Table 1; it shows how many Gauss diagrams satisfy the
STZ-conditions and the above three conditions.

Condition (3) speaks of 3 chords each intersecting both others!. What if there are no such
3 chords in a Gauss diagram? In [GL20] (in the proof of Theorem 4.3) it is claimed that if in a
Gauss diagram there are no 3 chords each intersecting both others then the Gauss diagram is
realizable if and only if conditions (1), (2) are satisfied. Our counterexamples show that this
claim is incorrect. Indeed, consider the Gauss diagram at the bottom right of Figure 3. It has
no 3 chords each intersecting both others. It satisfies conditions (1), (2). However, this Gauss
diagram is not realizable.

It will be useful to quote one more counterexample to clarify the context of our research. In
graph theory, graphs which can be produced as interlacement graphs of chord diagrams are
called circle graphs. Our research presented in this paper and the related research which we
surveyed in Section 4 describes how to detect, for a given circle graph, if it can be produced
as an interlacement graph of a realizable Gauss diagram. In this context, we always assume
that the graphs that we are working with are circle graphs. If one wants to find out, for a
given graph, whether this graph is a circle graph, this is a separate question, and to answer
this question, one has to use a complicated algorithm [S94]. One can ask if every graph
which satisfies realizability conditions (for example, STZ) is a circle graph. The answer to
this question is negative. Indeed, an example of a graph is known? which satisfies the STZ
realizability conditions but is not a circle graph. In this sense, there are more graphs that
satisfy realizability conditions than graphs that are interlacement graphs of realizable Gauss
diagrams; this sounds like a paradox, but this is a true statement.

1Equivalen’dy, one can speak of there being a clique of size 3 in the interlacement graph.
’The graph is K3[OK3; see [STZ09, Figure 1] or [SZ06, Figure 10].
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FiGure 2. This is only one Gauss diagram with nine chords which satisfies
conditions (1)—(3) but is not realizable

FiGure 3. All counterexamples for conditions (1)-(3) among Gauss diagrams
with ten chords

Size of a Gauss diagram |3 |4 |5|6|7 | 8| 9 | 10 | 11 | 12
STZ 1/1{2(3]10|27|101|364 |1610 | 7202
(1)-(3) 1[1(2(3[10|27|102 370 | 1646 | 7437
TaBLE 1. The number of non equivalent Gauss diagrams of sizes = 3, ..., 12,
satistying STZ-conditions and above conditions (1)—(3)

6. REALIZABILITY VIA LINEAR EQUATIONS IN GF(2)

We show that the realizability of a Gauss diagram is equivalent to the existence of a solution
of the corresponding system of linear equations over the field GF(2).

Let M be the adjacency matrix of a Gauss diagram ®. Being M symmetric we then have
M? = ((mj, m;))1<ij<n, over GF(2), where

(mj,mj) i=miymjy + -+ My My,

and my := (mg1,...,My,) is the kth row of the M.
Let D be a diagonal n x n matrix, i.e., D = Y ;cx Exr, where K C {1,...,n}, and Eyj the
elementary matrix, that is Exx = (e;)1<ij<n, Wheree;; = lifand only if i = j = kand ¢;; = 0
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otherwise. Since M is symmetric then DM + MD = Y ;g M, where Mj is obtained from M
by zeroing all elements of M except elements of the kth row and the kth column.

Note that if K = {1,...,n} then D is the identity n x n matrix, and the STZ-criteria implies
M? =M, ie, M is idempotent.

Thus the STZ-criteria can be reformulated as follows

Proposition 6.1. Let & be a Gauss diagram and M the adjacency n x n matrix of its interlacement
graph T(®). Then & is realizable if and only if whenever m; ; = X(mod2) then (m;, m;) = X(mod
2),1<i,j<nX=0,1.

Proof. Indeed, the first condition holds when the matrix M is idempotent, M> = M and by
the STZ-criteria, D is zero matrix. Next, if M is not idempotent the STZ conditions imply that

a diagonal matrix D must have a form D = Y ;g Ex where K C {1,...,n} and the statement
follows. O

We thus can reformulate the STZ-criteria as follows. One can say that this is merely a
change of notation in the STZ-criteria with D having X; on the diagonal. However, what
is important, from the point of view of computational complexity, is that the exponential-
complexity task of finding D is replaced by a relatively simple task of solving simultaneous
equations. This will enable us to construct a convenient and efficient algorithm for checking
realizability, see Theorem 8.2.

Proposition 6.2. Let & be a Gauss diagram, M = (m;;)1<;j<y its adjacency matrix. Then the
diagram & is realizable if and only if the following system of equations

{m;jX; +m; X; = (mj,mj) +m;;, 1<ij<n,
has a solution over a field GF(2).

Proof. Let M be an adjacency matrix of a Gauss diagram &, say M = (m;;)1<;j<u. Set M’ :=

M+ M?, M = (m; ;)1<ijj<n- We then obtain m; ; = m;; + (m;, m;), forall 1 <i,j <n.

Next, since M is symmetric with zero diagonal we then get

0 (X1 + Xz)mLz (X1 + Xg)m1,3 <. (X1 + Xn)mlln
n (X1 + Xz)mm 0 (XZ + X3)ﬂ12,3 <. (Xz + Xn)mz,n
Z XiM; = : : : - : ’
i=1 : : : . :
(Xl + Xn)ml,n (XZ + Xn)mZ,n (X3 + Xn)m3,n Tt 0

where Xy, ..., X, € GF(2).
Thus, by the STZ-criteria, M = M? + Y i—1 XgMy. Hence we get the following system of
equations

{mi,jxi + ml,]X] = m'- 1 S l,] S n,

i,j’

and the statement follows. It is clear that in the case K = {1,...,n} the statement holds
because STZ-criteria implies that M? =M, ie., all X; = 1. O

Remark 6.3. Let us show that STZ-criteria implies the condition (2) of Definition 4.1. Indeed,
let M = (m;)1<ij<n be its adjacency matrix. By the assumptions there exist at least two i, j
such that m;; = 0 and (m;, m;) = 1. Hence the system contains the equations 0 = 1 that gives
a contradiction.

Thus in practice to know whether a Gauss diagram is realizable it is useful firstly to check

the evenness conditions are holding.
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Corollary 6.4. Let a Gauss diagram & satisfy the evenness conditions, M = (m;j)1<ij<, its ad-
jacency matrix. Let K C {1,...,n} x{1,...,n} be a subset such that whenever (i,j) € K then
m;; = 1. Then © is realizable if and only if the following system of equations

XZ+X] = <mi,m]->+1, (l,]) € K
has a solution over the field GF(2).

Proof. Indeed, if  satisfies the evenness conditions then whenever m; ; = 0 we have (m;, m;) =
0 and by Proposition 6.2 the statement follows. 4

Example 6.5. Let us show that the Gauss diagram in Fig. 4 is not realizable.

Its adjacency matrix is

1
0
1
1
1
1

N Ul = WO N =
el == )
__ —_0 O~ W
R OO R P R
OO R = = Ul
OR R EFPEFP O

)

1

We get K = {(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,5),(3,6), (4,6) }. Hence, the cor-
responding system of equations contains, among others, the following equations

X{+ X5 =1,
X{+Xs =1,
X3+ X5 =1,

which show that the system has no solution, thus the diagram is not realizable.

Example 6.6. Let us consider the following Gauss diagram and show that it is realizable.




We have

1 2 3 456

1/0 11110 010010
211 01110 100010
311 1.0 011 000000
M=li10011) M=loooo0oo0
51711100 110000
6\0 0 1 1 0 0 000000

We thus have the following system of equations

(X1 + X =0

X1+X3=1

X1 +Xg=1

X1+X5=0

Xo + X3 =1

Xo + X, =1

Xo+X5=0

X3+X5=1

X3+ Xe =1

X, +Xs =1

\X4+X6:1

It follows that X; = ¢,Xp = ¢, X3 =1+ ¢,X4 =1+ ¢, X5 = ¢,Xg = ¢, where ¢ € GF(2) i.e,
the system has a solution and hence the diagram is realizable.

O

For a given Gauss diagram ® and its interlacement graph I'(®) = (V, E), where V is a set
of vertices and E is a set of edges, we consider a weighted graph I',,(®) := (V, E,w), where
the edge weight function w : E — GF(2) is defined as follows

w((i,j)) = (mi,mj),
where m;, m; are the ith and the jth rows of the adjacency matrix M of I'(®).
Corollary 6.7. A Gauss diagram & is realizable if and only if its interlacement graph T'(®) is euler
and for any cycle C = (cq,...,cy) of the T(®), we have

4

Y w(c;) = ¢ (mod2).

Proof. Indeed, by Corollary 6.4,

where we have put ¢; = (i1,12),...,¢¢ = (i, 11), and the statement thus follows. O

Let us turn the previous examples and apply the previous criteria.
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Example 6.8. Let us consider the Gauss diagram & from Example 6.5 (see Fig. 4). It is easy
to see that M? = 0 for its adjacency matrix M. Next, consider its weighted graph I'y,(®); all
its edges have thus weight equal to 0. We see that this graph does not satisfy the conditions
of Corollary 6.7. Indeed, cycle (1,2,5) has length 3 but w((1,2)) + w((2,5)) + w((5,1)) =
0 (mod2). Hence the diagram is not realizable.

FIGURE 4.

Example 6.9. Let us consider the Gauss diagram from Example 6.6 (see Fig. 5). Knowing its
adjacency matrix M and M? we obtain

w(e) = {1' tte e 1(1.2),(1,5). (2.5)}
0, in otherwise.

By the straightforward verification we see that the graph I'(®) satisfies the conditions of
Corollary 6.7 and thus the diagram is realizable.

4

FIGURE 5. The Gauss diagram ® and its weighted graph I',,(®); the thick edges
have weight equal to 1 and the other have weight equal to 0. We see that this
graph satisfies the conditions of Corollary 6.7 and thus the diagram is realizable

7. TOUCH REALIZATION OF (GAUSS DIAGRAMS AND DEHN’S CRITERIA

In this section we consider the problem of touch realization of Gauss diagrams. The results
in this section are not, strictly speaking, new, because they form a part of some descriptions
of realizable Gauss diagrams; however, they are never presented on their own and explicitly.
We essentially follow the definitions and concepts of [dFOdM97]. The results in this section
are also very similar to [RT84, Lemma 3]. See also [I11] for another approach to comparing
touch realizability and classical realizability.

A parametrized curve { is a continuous mapping ¢ : [0,1] — IR? such that £(0) = ¢(1) and for
which the underlying curve ([0, 1]) is piecewise smooth and has a finite number of multiple
points, all of which have multiplicity two. Let P({) denote the set of the points of multiplicity
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two. To any point p € P({), we associate the two parameter values t,,t,; € [0,1] such that
t, < t, and {(t,) = {(t;) = p. A point p € P({) is a touching point if any local deformation
of { in a neighborhood of #}, does not preserve the existence of a double point. A touch curve
is a parametrized curve with only touching points.

For a given touch curve { we can similarly associate a Gauss code; walking on a path along
the ¢ until returning back to the origin and then generate a double occurrence word of the
curve (. Putting the labels of the crossings on a circle in the order of the word and joining
by a chord all pairs of identical labels we then obtain a chord diagram (=Gauss diagram) of
a touch curve ©({) (see Fig. 8)

FIGURE 6. A touch curve and its Gauss diagram

Touch realization of Gauss diagrams has been employed in some steps of some algorithms
for checking realizability of Gauss diagrams, including the first description of realizability,
in which M. Dehn calls them “Baum-Zwiebel Figur” (“tree-and-onion diagram”) [D36] (see
Fig. 7) and [RT84].

Theorem 7.1. [D36, §3] A Gauss code is realizable (in the classical sense) if and only if it satisfies
both the following conditions:

(1) (Gauss’ parity condition) any matching pair of symbols must be separated by an even number
of other symbols,

5 2

FiGure 7. The touch realizable Gauss diagram shown above can be also shown
as follows; we see that a possibility to lay out some chords inside and outside
the circle without intersections exactly corresponds to its interlacement graph
being bipartite

10



FIGURE 8. A Gauss diagram with a Gauss code 1234512543

(2) (Dehn’s untangling condition) after reversing every substring bounded by matching symbols,
the resulting Gauss code is touch-realizable; in other words, the corresponding interlacement
graph must be bipartite®.

It is clear that Gauss’ parity condition is a partial case of the evenness condition (see Defi-
nition 4.1), that is every chord is crossed by an even (possibly zero) number of chords.

Example 7.2. Let us consider the following Gauss diagram (see Fig. 8). We have the following
code 1234512543. It is clear that Gauss’ parity condition holds. Reversing every substring
bounded by matching symbols we obtain

1234512543 — 1543 212543 — 154 3212543 — 1543452123
— [ —

and
15434 52123 — 1543452123 — 1543452123.
| I | I |

The corresponding Gauss diagram and its interlacement graph is shown in Fig. 9 We see
that its interlacement graph is bipartite, hence the Gauss diagram in Fig. 8 is realizable.

If we choose another order in which substrings are reversed, that is, if we do not use the
bounding symbols in the order 1, 2, 3, 4, 5 as above, but in a different order, the resulting
Gauss diagram and even its graph may be different. For instance, on the right in Fig. 9 we
present the graph corresponding to using the order of the bounding symbols 5, 1, 2, 3, 4. This
latter graph is also bipartite, but it is not isomorphic to the former graph.

FIGURE 9. Gauss diagram and its interlacement graph, which is bipartite. On
the right, a graph is shown corresponding to another order in which substrings
are reversed; this graph also is bipartite

3To clarify, we can add that the resulting graph is not unique; it depends on the choice of the order in which
substrings are reversed. However, the property of the graph to be bipartite does not depend on the order in
which substrings are reversed. See Example 7.2.
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We see that in the criteria of realizability appears a bipartite condition for a graph. We
are going to show that the problem of touch realization of a Gauss diagram (i.e., is there a
touch curve { such that & = ®({)?) can be solved in the same manner as the classical Gauss
problem by a system of equations (see Proposition 6.2). To do so we prove the following
lemma.

Lemma 7.3. Let & be a Gauss diagram, M = (m; ;)1<; j<n its adjacency matrix. For each non-zero
entry m; j, consider an equation X; + X; = 1. Thus we get a system of equation S. The diagram & is
touch-realizable if and only the system S has a solution over a field GF(2).

Proof. Indeed, our aim is to lay out the chords inside and outside the circle to remove all
intersections. We can conveniently encode this process by saying that X; = 0 (resp. X; = 1)
means that the i-th chord is drawn inside (resp. outside) the circle. It is easy to see that solving
the system S is equivalent to laying out the chords in a way which removes all crossings. [

Proposition 7.4. A Gauss diagram is touch-realizable if and only if its interlacement graph is bipar-
tite.

Proof. It is easy to see that a solution to the system of equations in the lemma exists if and
only if the graph is bipartite. O

8. REALIZABILITY VIA BIPARTITE GRAPHS

In this section, we aim to give a new description of the realizability of Gauss diagrams in
terms of the adjacency matrix of its interlacement graphs by using STZ-criteria.

Definition 8.1. For a given interlacement graph I'(®) = (V,E) of a Gauss diagram ®& we
construct a new graph I’A(_@) as follows. For all pairs of vertices v;,v; € V such that (v;,v;) € E
and the number of their common neighbors is odd we replace the edge (v;,v;) by two new
edges (v;, 1), and (u;;,v;), where u; ; is a new vertex.

Theorem 8.2. A Gauss diagram ® is realizable if and only if the evenness conditions hold and the

—_~—

graph T'(®) is bipartite.

Proof. Let M = (m;)1<ij<n be an adjacency matrix of the ®. By Corollary 6.4 the ® is
realizable if and only if and only if the following system of equations

X; + X]' = (mi,mj> +1, (Z,]) €K

has a solution over the field GF(2), where K C {1,...,n} x {1,...,n} is a subset such that
whenever (i, ) € K then m;; = 1.

Next, let us decorate the graph I'(®) as follows; mark any vertex v; by X;. Since X; € GF(2)
we can interpret this label as a color of the v;. It is clear that if (m;,m;) = 1(mod2) then
X; = Xj, and if (m;, m;) = 0(mod2) then X; # X;.

Further, it is clear that the conditions m;; = 1, (m;,m;) = 1(mod2) (resp. (m; m;) =
0(mod2)) can be reformulated in the terms of the graph I'(®) as follows; (v;,v;) € E and the
number of common neighbors for v;,v; is odd (resp. even).

Finally, if (v;,v;) € E, (m;, m;) = 1(mod2), and thus X; = X, then by construction of 1:(\(_53/)
we have to add a new vertex u;; and replace the edge (v;,v;) by new two edges (v;, u;;),
(u;j,v;) and hence any two vertexes with the same color will not adjacent to each other in

new graph I'(®), i.e., we get a bipartite graph and the statement follows. O]
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Remark 8.3. Realiziability criteria proposed in Theorem 8.2 have simplest known to authors
definition in terms of interlacement graphs in a precise sense. Their formal definitions can

—

be done via stating bipartite property for a graph I'(®) definable in terms of the interlacement
graph using only first-order logic extended by parity (MOD;) quantifier [NOO]. The previously
known criteria such as in [LM76, R76, RR76, STZ09] require second-order quantifiers to define
them. Furthermore the criteria from [D36] also apply bipartite property checking but to
a graph defined using an iterative procedure beyond first-order logic extended by MOD;.
Further discussion of related definability questions can be found in [KLV21a]
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