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1. Introduction

The groups of Fibonacci type are the groups defined by the following cyclic presenta-
tions:

Gn(m, k) = 〈 x0, . . . , xn−1 | xixi+m = xi+k (0 ≤ i < n) 〉

(subscripts mod n) which were introduced independently in [14,3] for algebraic and 
topological reasons. They include the Fibonacci groups F (2, n) = Gn(1, 2) [7], the Sier-
adski groups S(2, n) = Gn(2, 1) [22], and the Gilbert-Howie groups H(n, m) = Gn(m, 1)
[11]. With the exception of two challenging cases H(9, 4), H(9, 7), the finite groups 
Gn(m, k) and the aspherical defining presentations were classified in [11,2,23,4,8], the 
hyperbolic groups Gn(m, k) were classified and the Tits alternative proved for the class 
of groups Gn(m, k) in [5,6], the groups Gn(m, k) that are 3-manifold groups were classi-
fied in [12]. The perfect groups Gn(m, k) were classified in [20,24]. A partial classification 
of the groups Gn(m, k) that are Labelled Oriented Graph groups was obtained in [19]. 
The shift dynamics of the groups Gn(m, k) were studied in [15]. Isomorphisms of groups 
within this class were considered in [2,4,15]. See [25] for a 2012 survey. We say that 
the group Gn(m, k) is irreducible if 0 < m, k < n, m �= k, and the greatest common 
divisor (n, m, k) = 1 (this is essentially the definition given in [2] except we omit the ad-
ditional condition that m < k, which is unnecessary for our purposes); the irreducibility 
condition prevents Gn(m, k) decomposing as a free product of d = (n, m, k) copies of 
Gn/d(m/d, k/d) [2, Lemma 1.2] (see also [9]).

The problem of determining the number of isomorphism classes of irreducible groups 
Gn(m, k) as a function σ(n) was investigated in [4] and, when n is a prime power, its 
value was conjectured. (A similar investigation was carried out in [17] for the cyclically 
presented groups with length three positive relators xixi+kxi+l.) For prime p and l ≥ 1
let

C(pl) =
{
pl−1(p + 1)/2 − 1 if p ≥ 3 is prime,
3 · 2l−2 if p = 2 and l ≥ 2.

(1)

Conjecture A ([4, Conjecture 8]). If n �= 2, 4 is a prime power then σ(n) = C(n).

The hypothesis n �= 2, 4 is necessary in Conjecture A since σ(4) = 2 =
C(4) − 1 (and C(2) is not defined). In [4] Conjecture A was confirmed for n =
3, 5, 7, 8, 9, 11, 13, 16, 25, 27, and for n ∈ {17, 19, 23} (the remaining prime powers at 
most 27) it was shown that σ(n) ∈ {C(n), C(n) − 1}, with σ(n) = C(n) if and only if 
Gn(1, 3) � Gn(4, 5), and for prime powers n where 28 ≤ n ≤ 200 it was confirmed that 
σ(n) ≤ C(n).

A powerful technique for proving non-isomorphism of pairs of cyclically presented 
groups is to compare abelianisations. For this reason we similarly consider the number 
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of isomorphism classes of irreducible abelianised groups Gn(m, k)ab as a function τ(n)
and, when n is a prime power, conjecture its value. For prime p and l ≥ 1 let

D(pl) =

⎧⎪⎪⎨
⎪⎪⎩
pl−1(p + 1)/2 − 2 if p ≥ 5,
2 · 3l−1 − 1 if p = 3,
2l−1 + 1 if p = 2 and l ≥ 2.

(2)

Conjecture B. If n �= 2, 4, 5, 7, 8, 13, 23 is a prime power then τ(n) = D(n).

Note that C(pl) = D(pl) + 1 if p ≥ 5 is prime, C(pl) = D(pl) if p = 3 and C(pl) =
3(D(pl) −1)/2 if p = 2. The hypothesis n �= 2, 4, 5, 7, 8, 13, 23 is necessary in Conjecture B
since τ(n) = D(n) − 1 for n ∈ {4, 23}, τ(n) = D(n) + 1 for n ∈ {5, 7, 8, 13}, and D(2) is 
not defined. The suggestion that for odd prime powers n > 23, τ(n) = C(n) or C(n) − 1
was essentially made in [4, Section 5.1] and confirmed for n ≤ 200.

In support of Conjectures A, B our next two results prove that C(n) is an upper bound 
for σ(n) and, with a few exceptions, D(n) is an upper bound for τ(n). (The functions 
σi(n), τi(n), Ci(n), Di(n) (i = 1, 2) will be introduced in Section 2.)

Theorem C. Let n �= 2 be a prime power. Then σ1(n) ≤ C1(n), σ2(n) ≤ C2(n), and 
hence σ(n) ≤ C(n).

Theorem D. Let n �= 2, 5, 7, 8, 13 be a prime power. Then τ1(n) ≤ D1(n), τ2(n) ≤ D2(n), 
and hence τ(n) ≤ D(n).

In the case where n is prime Theorem C was proved in [4, Proposition 7]. In Section 6
we provide computational evidence that (for n �= 4, 23) D(n) is a lower bound for τ(n) 
(and hence for σ(n)). Supposing the truth of Conjecture B, in the next result we give 
necessary and sufficient conditions for the truth of Conjecture A (here k−1 denotes 
the inverse of k mod n and we exclude the values n = 2, 4, 5, 7, 8, 13, 23 because the 
hypothesis τ(n) = D(n) does not hold in those cases):

Theorem E. Let n �= 2, 4, 5, 7, 8, 13, 23 be a power of a prime p and suppose τ(n) = D(n). 
Then σ(n) = C(n) if and only if one of the following holds:

(a) p ≥ 5 and Gn(1, 3) � Gn(4, 5); or
(b) p = 3; or
(c) p = 2 and

(i) Gn(n/2, 1) � Gn(n/4, 1); and
(ii) Gn(1, k) � Gn(1, k−1) for all odd 3 ≤ k ≤ n − 3, where k �= n/2 ± 1.

Thus, by Theorem E (and [4] for the excluded values of n), if Conjecture B holds, then 
Conjecture A holds if and only if each of the following questions has a positive answer:
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Question 1.1. Is G2l(1, k) � G2l(1, k−1) for all l ≥ 4 and all odd k where 3 ≤ k ≤ 2l − 3, 
k �= 2l−1 ± 1?

Question 1.2. Is G2l(2l−1, 1) � G2l(2l−2, 1) for all l ≥ 4?

Question 1.3. Is Gn(1, 3) � Gn(4, 5) for all prime powers n �= 5, 7, 13 that are coprime 
to 6?

In Example 4.3 we show that Question 1.1 has a positive answer for l = 4; in Exam-
ple 5.2 we show that Question 1.2 has a positive answer for 4 ≤ l ≤ 6; and in Example 5.7
we show that Question 1.3 has a positive answer for n = 11, 25.

All isomorphisms stated in this paper can be obtained by applying (possibly repeat-
edly) the following proposition:

Proposition 1.4 ([4, Proposition 6], [2, Lemmas 1.1(3),1.3]).

(a) Gn(m, k) ∼= Gn(m, n + m − k) ∼= Gn(n −m, n −m + k);
(b) if (n, t) = 1 then Gn(m, k) ∼= Gn(mt, kt).

Further isomorphism theorems for the groups Gn(m, k) were provided in [2, Theorem 
1.1], [4, Theorem 2] (see also [16, Corollary 2]) and in [15, Lemma 3.2].

We make frequent use of the following expression for the order of the abelianisation:

|Gn(m, k)ab| = |Res(f, g)| (3)

where f(t) = tm − tk + 1 is the representer polynomial of Gn(m, k), g(t) = tn − 1, and 
Res(·, ·) denotes the resultant [13, page 82].

2. Refining Conjectures A and B

For a group G we let [G] denote the isomorphism class of G and for n ≥ 1 we define

S(n) = {[Gn(m, k)] | 0 < m, k < n,m �= k, (n,m, k) = 1},
T (n) = {[Gn(m, k)ab] | 0 < m, k < n,m �= k, (n,m, k) = 1},

and set σ(n) = |S(n)|, τ(n) = |T (n)| (so τ(n) ≤ σ(n)). For a prime p and l ≥ 1, where 
pl > 2, we introduce the following notation:

S1(pl) = {[Gpl(m, k)] | 0 < m, k < pl,m �= k, (pl,m, k) = 1, p|m},
S2(pl) = {[Gpl(m, k)] | 0 < m, k < pl,m �= k, (pl,m, k) = 1, p � m},
T1(pl) = {[Gpl(m, k)ab] | 0 < m, k < pl,m �= k, (pl,m, k) = 1, p|m},
T2(pl) = {[Gpl(m, k)ab] | 0 < m, k < pl,m �= k, (pl,m, k) = 1, p � m},
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and set σ1(pl) = |S1(pl)|, σ2(pl) = |S2(pl)|, τ1(pl) = |T1(pl)|, τ2(pl) = |T2(pl)| (so 
τ1(pl) ≤ σ1(pl), τ2(pl) ≤ σ2(pl)). Then

S(pl) = S1(pl) ∪ S2(pl),

T (pl) = T1(pl) ∪ T2(pl),

σ(pl) = σ1(pl) + σ2(pl) − |S1(pl) ∩ S2(pl)|,

τ(pl) = τ1(pl) + τ2(pl) − |T1(pl) ∩ T2(pl)|.

In addition to the functions C(pl), D(pl) defined at (1), (2) we set

C1(pl) =
{

(pl−1 − 1)/2 if p ≥ 3 is prime,
2l−2 + 1 if p = 2 and l ≥ 2,

C2(pl) =
{

(pl − 1)/2 if p ≥ 3 is prime,
2l−1 − 1 if p = 2 and l ≥ 2,

D1(pl) =
{

(pl−1 − 1)/2 if p ≥ 3 is prime,
2l−2 if p = 2 and l ≥ 2,

D2(n) =

⎧⎪⎪⎨
⎪⎪⎩

(pl − 3)/2 if p ≥ 5 is prime,
(3l − 1)/2 if p = 3,
2l−2 + 1 if p = 2 and l ≥ 2.

We note the following: C(pl) = C1(pl) + C2(pl) and D(pl) = D1(pl) + D2(pl); if p ≥ 5
then C1(pl) = D1(pl) and C2(pl) = D2(pl) + 1; if p = 3 then C1(pl) = D1(pl) and 
C2(pl) = D2(pl); and if p = 2 then C1(pl) = D1(pl) + 1 and C2(pl) = 2D2(pl) − 3. 
Note also that S1(pl) = T1(pl) = ∅ if l = 1, so we often only consider S1(pl), T1(pl), 
σ1(pl), τ1(pl) when l ≥ 2.

In Corollaries 3.3 and 5.11 we show that (once C(n), D(n) have been established 
as upper bounds for σ(n), τ(n), respectively) Conjectures A and B are, respectively, 
equivalent to the following conjectures:

Conjecture A′. Suppose n �= 2, 4 is a prime power. Then S1(n) ∩ S2(n) = ∅, σ1(n) =
C1(n), and σ2(n) = C2(n).

Conjecture B′. Suppose n �= 2, 4, 5, 7, 8, 13, 23 is a prime power. Then T1(n) ∩T2(n) = ∅, 
τ1(n) = D1(n), and τ2(n) = D2(n).

(Note that if T1(n) ∩ T2(n) = ∅, as in Conjecture B′, then S1(n) ∩ S2(n) = ∅, as 
in Conjecture A′.) Theorem C (stated in the Introduction) will show that (for n �= 2) 
C1(n), C2(n) are upper bounds for σ1(n), σ2(n), respectively; and Theorem D will show 



892 E. Mohamed, G. Williams / Journal of Algebra 633 (2023) 887–905
that (for n �= 2, 4, 5, 7, 8, 13) D1(n), D2(n) are upper bounds for τ1(n), τ2(n), respec-
tively. In Section 6 we provide computational evidence that they are also lower bounds 
for τ1(n), τ2(n). The proof of Theorem D depends on Corollary 4.2, Lemma 5.1, and 
Lemma 5.5, which we now describe.

Corollary 4.2 will show that if n = 2l and k is odd then Gn(1, k)ab ∼= Gn(1, k−1)ab, 
prompting Question 1.1 which asks if, nevertheless, the groups themselves are non-
isomorphic. Lemma 5.1 will show, in particular, that if n = 2l, l ≥ 4 then Gn(n/2, 1)ab ∼=
Gn(n/4, 1)ab, prompting Question 1.2 which asks if the groups themselves are non-
isomorphic. Lemma 5.5 will show, in particular, that if n = pl ≥ 5 where p ≥ 5 is 
prime, then Gn(1, 3)ab ∼= Gn(4, 5)ab, prompting Question 1.3 which asks if the groups 
themselves are non-isomorphic. (We ask Questions 1.2 and 1.3 for prime powers n, but 
they could reasonably be asked for all n divisible by 16, and all n coprime to 6, respec-
tively.)

3. Upper bound for σ(pl)

In this section we prove Theorem C.

3.1. Upper bound for σ1(pl)

Lemma 3.1. Let n = pl where p ≥ 2 is prime and l ≥ 2. If p ≥ 3 then

S1(n) = {[Gn(min(pi, pi(pi− 1)−1 mod n), 1)] | 1 ≤ i < pl−1}

and if p = 2 then

S1(n) = {[Gn(2, 1)], [Gn(2l−1, 1)], [Gn(2l−1 + 2, 1)]} ∪
{[Gn(min(2i, 2i(2i− 1)−1 mod n), 1)] | 2 ≤ i < 2l−1, i �= 2l−2, 2l−2 + 1}.

Hence σ1(n) ≤ C1(n).

Proof. Suppose p|m, 0 < m, k < n, m �= k and let G = Gn(m, k). Since 1 = (n, m, k) =
(m, k) we have p � k so (n, k) = 1 so G ∼= Gn(mk−1, 1) (where k−1 denotes the 
multiplicative inverse of k mod n). Therefore G ∼= Gn(pi, 1) for some 1 ≤ i < pl−1. 
Now Gn(pi, 1) ∼= Gn(pi, pi − 1). But (pi − 1, n) = 1 so (pi − 1) has a multiplica-
tive inverse (pi − 1)−1 mod pl. Then Gn(pi, pi − 1) ∼= Gn(pi(pi − 1)−1, 1). That is, 
Gn(pi, 1) ∼= Gn(pi(pi − 1)−1, 1). Therefore

S1(n) = {[Gn(min(pi, pi(pi− 1)−1 mod n), 1)] | 1 ≤ i < pl−1}.

We now give an upper bound for the size of this set, and therefore of σ1(n). Suppose

pi ≡ pi(pi− 1)−1 mod pl. (4)
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Then (working mod pl), with 1 ≤ i < pl−1, the congruence (4) implies

pi(pi− 2) ≡ 0 mod pl. (5)

Hence, since l > 1 and 1 ≤ i < pl−1, p divides (pi − 2), so p|2, i.e. p = 2. Then (5)
implies 4i(i − 1) ≡ 0 mod 2l, so i(i − 1) ≡ 0 mod 2l−2, and hence i ≡ 0 mod 2l−2 or 
i − 1 ≡ 0 mod 2l−2. That is, i = 2l−2 or i = 1 or i = 2l−2 + 1.

Therefore, if p ≥ 3 then σ1(n) = |S1(n)| ≤ (pl−1 − 1)/2 = C1(n) and if p = 2 and 
l ≥ 2 then

S1(n) ={[Gn(2i, 1)] | i ∈ {1, 2l−2, 2l−2 + 1}} ∪
{[Gn(min(2i, 2i(2i− 1)−1 mod n), 1)] | 2 ≤ i < 2l−1, i �= 2l−2, 2l−2 + 1}

={[Gn(2, 1)], [Gn(2l−1, 1)], [Gn(2l−1 + 2, 1)]} ∪
{[Gn(min(2i, 2i(2i− 1)−1 mod n), 1)] | 2 ≤ i < 2l−1, i �= 2l−2, 2l−2 + 1}

so σ1(n) = |S1(n)| ≤ 3 + (2l−1 − 2 − 2)/2 = 2l−2 + 1 = C1(n), as required. �
3.2. Upper bound for σ2(pl)

Lemma 3.2. Let n = pl where p ≥ 2 is prime and l ≥ 1.

(a) If p ≥ 3 then S2(n) = {[Gn(1, k)] | 2 ≤ k ≤ (pl + 1)/2}.
(b) If p = 2 then S2(n) = {[Gn(1, k)] | 2 ≤ k < 2l, k odd}.

Hence σ2(n) ≤ C2(n).

Proof. If G ∈ S2(n) then G ∼= Gn(m, k) for some m �= k where (n, m, k) = 1 and p � m. 
Therefore (m, n) = 1 so G is isomorphic to Gn(1, k′) for some 2 ≤ k′ < n.

Suppose p ≥ 3. If (pl+1)/2 ≤ k′ < n then k′′ = pl+1 −k′ satisfies 2 ≤ k′′ ≤ (pl+1)/2
and Gn(1, k′) ∼= Gn(1, k′′) so k′ can be chosen to be one of the C2(n) = (pl− 1)/2 values 
in the range 2 ≤ k′ ≤ (pl +1)/2. Suppose then p = 2. If 1 < k < 2l is even, then n +1 −k

is odd and since Gn(1, k) ∼= Gn(1, n + 1 − k) we may assume k is odd, giving at most 
C2(n) = 2l−1 − 1 values for k. �
3.3. Proof of Theorem C and the equivalence of Conjectures A and A′

Proof of Theorem C. Lemmas 3.1 and 3.2 imply

σ(n) = σ1(n) + σ2(n) − |S1(n) ∩ S2(n)|
≤ σ1(n) + σ2(n)

≤ C1(n) + C2(n)
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= C(n). �
We now show that Conjectures A and A′ are equivalent.

Corollary 3.3. Suppose n �= 2, 4 is a prime power. Then σ(n) = C(n) if and only if 
S1(n) ∩ S2(n) = ∅, σ1(n) = C1(n), and σ2(n) = C2(n).

Proof. Suppose first S1(n) ∩ S2(n) = ∅, σ1(n) = C1(n), and σ2(n) = C2(n). Then

σ(n) = σ1(n) + σ2(n) − |S1(n) ∩ S2(n)|
= σ1(n) + σ2(n)

= C1(n) + C2(n) = C(n).

Suppose then σ(n) = C(n). Then

C(n) = σ1(n) + σ2(n) − |S1(n) ∩ S2(n)|
≤ C1(n) + C2(n) − |S1(n) ∩ S2(n)|
= C(n) − |S1(n) ∩ S2(n)|

(where we used Theorem C for the inequality), and hence S1(n) ∩ S2(n) = ∅. If σ1(n) <
C1(n) or σ2(n) < C2(n) then

C(n) = σ1(n) + σ2(n)

< C1(n) + C2(n)

= C(n)

(again using Theorem C), a contradiction. Therefore σ1(n) = C1(n) and σ2(n) =
C2(n). �
4. An isomorphism theorem for abelianised groups Gn(m, k)ab

Theorem 4.1. Let n ≥ 2 be even, 0 < m, k < n, where m is odd, and suppose (α, n) = 1, 
where α is odd. Then

Gn(m, k)ab ∼=
{
Gn(α(k −m), n− αm)ab if k is even,
Gn(αk, αm)ab if k is odd.

Proof. For each 0 ≤ j < n let yj = xα−1j mod n if j is even and yj = x−1
α−1j mod n if j

is odd (where α−1 denotes the multiplicative inverse of α mod n). If αi mod n is even 
then yαi mod n = xi and yαi mod n = x−1

i otherwise. Since n is even, αi mod n is even if 
and only if i is even. Thus, xi = yαi mod n if i is even and xi = y−1

αi mod n if i is odd, i.e. 
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xi = y
(−1)i
αi mod n. For the remainder of the proof, subscripts of generators xi, yi are to be 

taken mod n.
Writing j = αi mod n, the i-th relation of Gn(x0xmx−1

k )ab is

xixi+mx−1
i+k = y

(−1)i
j y

(−1)(i+m)

j+αm y
−(−1)(i+k)

j+αk

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yjy
−1
j+αmy−1

j+αk if k is even and i is even,
y−1
j yj+αmyj+αk if k is even and i is odd,
yjy

−1
j+αmyj+αk if k is odd and i is even,

y−1
j yj+αmy−1

j+αk if k is odd and i is odd.

Cyclically permuting and inverting relators, and commuting generators, if required, the 
set of these relators is equivalent to the set of the following relators:

{
yjyj+α(k−m)y

−1
j+n−αm if k is even,

yjyj+αky
−1
j+αm if k is odd,

which are the relators of Gn(α(k −m), n − αm)ab, Gn(αk, αm)ab respectively. �
Restricting to the case n = 2l, m = 1, and odd k, by setting α = k−1 mod n, we 

obtain the following corollary.

Corollary 4.2. If n = 2l, l ≥ 2, 0 < k < n, where k is odd, then Gn(1, k)ab ∼=
Gn(1, k−1)ab.

Noting that for n = 2l, k ≡ k−1 mod n if and only if k ≡ n/2 ± 1 or ±1 mod n, 
Corollary 4.2 prompts Question 1.1 which asks if Gn(1, k) � Gn(1, k−1) for odd k �≡
n/2 ±1 mod n. The next example (which is implicit in [4, Section 5.1]) gives an affirmative 
answer for n = 16.

Example 4.3 (G16(1, 3) � G16(1, 11), G16(1, 5) � G16(1, 13)). Computations in GAP [10]
show that the second derived quotients of G16(1, 3) and G16(1, 11) are Z4

3 and Z20
3 , respec-

tively, so G16(1, 3) � G16(1, 11). Similarly, the second derived quotients of G16(1, 5) and 
G16(1, 13) are Z8

4⊕Z25
17⊕Z16 and Z8

4⊕Z10
17⊕Z289, respectively, so G16(1, 5) � G16(1, 13).

5. Upper bound for τ (pl)

In this section we prove Theorem D.
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5.1. Upper bound for τ1(pl)

For p ≥ 3, and since τ1(pl) ≤ σ1(pl), Lemma 3.1 implies τ1(pl) ≤ C1(pl) = D1(pl). 
Therefore it remains to consider the case p = 2. First we obtain a coincidence in abelian-
isations:

Lemma 5.1. If n is even then Gn(n/2, 1)ab ∼= Z2n/2−1 and if 16|n then Gn(n/4, 1)ab ∼=
Z2n/2−1.

Proof. In the group Gn(n/2, 1)ab the i-th relation xixi+n/2 = xi+1 and (i + n/2)-th 
relation xi+n/2xi = xi+n/2+1 combine to show xi+1 = xi+n/2+1, so xi = xi+n/2 for each 
0 ≤ i < n. Therefore

Gn(n/2, 1)ab = 〈 x0, . . . , xn−1 | xixi+n/2 = xi+1, xi = xi+n/2 (0 ≤ i < n) 〉ab

= 〈 x0, . . . , xn/2−1 | xixi = xi+1 (0 ≤ i < n/2) 〉ab

= Gn/2(0, 1)ab

∼= Z2n/2−1

by [2, Lemma 1.1(1)], thus proving the first statement.
We now consider the groups Gn(n/4, 1)ab. We first show |Gn(n/4, 1)ab| = 2n/2 − 1, 

then show that there is an epimorphism from Gn(n/4, 1)ab onto Z2n/4+1 ⊕ Z2n/4−1
∼=

Z2n/2−1 and so Gn(n/4, 1)ab ∼= Z2n/2−1. Now

|Gn(n/4, 1)ab| = |Res(1 − t + tn/4, tn − 1)|

= |Res(1 − t + tn/4, (tn/2 − 1)(tn/2 + 1))|

= |Res(1 − t + tn/4, tn/2 − 1)| · |Res(1 − t + tn/4, tn/2 + 1)|

= |Gn/2(n/4, 1)ab| · |Res(1 − t + tn/4, tn/2 + 1)|

= (2n/4 − 1) · |Res(1 − t + tn/4, tn/2 + 1)|

by replacing n by n/2 in the first statement of the lemma and taking the order. Now

|Res(1 − t + tn/4, tn/2 + 1)| = |Res((1 + tn/4) − t, (tn/4 −
√
−1)(tn/4 +

√
−1))|

= |Res((1 +
√
−1) − t, tn/4 −

√
−1)|

· |Res((1 −
√
−1) − t, tn/4 +

√
−1)|

= ((1 +
√
−1)n/4 −

√
−1) · ((1 −

√
−1)n/4 +

√
−1)

= 2n/4 + 1

(since 16|n). Therefore |Gn(n/4, 1)ab| = (2n/4 − 1) · (2n/4 + 1) = 2n/2 − 1, as required.
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Now let

φ : Gn(n/4, 1)ab → Z2n/4+1 ⊕ Z2n/4−1

be given by

φ(xi) = ((2n/8 + 1)i, 2i)

for each 0 ≤ i < n. Then, for each 0 ≤ i < n, φ(xixi+n/4x
−1
i+1) = (0, 0), so φ is a 

homomorphism, and since φ(x0) = (1, 1), which generates Z2n/4+1 ⊕Z2n/4−1, we deduce 
that φ is an epimorphism, as required. �

Lemma 5.1 prompts Question 1.2 which asks if (for n = 2l, where l ≥ 4) Gn(n/2, 1) �
Gn(n/4, 1). The following example gives a positive answer in the cases 4 ≤ l ≤ 6 (the 
case l = 4 being implicit in [4, Section 5.1]); note, however, that these are the only cases 
where we have been able to answer Question 1.2.

Example 5.2 (G2l(2l−2, 1) � G2l(2l−1, 1) for 4 ≤ l ≤ 6). Computations in GAP show 
that if l = 4, 5, 6 then each of G2l(2l−1, 1), G2l(2l−2, 1) has a unique index 3 subgroup, 
and these index 3 subgroups have non-isomorphic abelianisations so G2l(2l−1, 1) �
G2l(2l−2, 1). The same argument also shows that G48(1, 24) � G48(1, 12).

We now show that D1(2l) is an upper bound for τ1(2l) when l ≥ 4. (Note that 
τ1(8) = D1(8) + 1, τ1(4) = D1(4) − 1.)

Lemma 5.3. Let n = 2l where l ≥ 4. Then

T1(n) = {[Gn(min(2i, 2i(2i− 1)−1 mod n), 1)ab] | 2 ≤ i < 2l−1, i �= 2l−2 + 1}.

Hence τ1(n) ≤ D1(n). Moreover, if τ1(n) = D1(n) then σ1(n) = C1(n) if and only if 
Gn(n/2, 1) � Gn(n/4, 1).

Proof. By Lemma 3.1

T1(n) = {[Gn(min(2i, 2i(2i− 1)−1 mod n), 1)ab] | 2 ≤ i < 2l−1, i �= 2l−2, 2l−2 + 1}.

But by Lemma 5.1 Gn(2l−2, 1)ab ∼= Gn(2l−1, 1)ab. The first of these groups corresponds 
to the value i = 2l−3, and the second corresponds to i = 2l−2. Therefore we may remove 
i = 2l−2 from the set above to get the set in the statement, and hence τ1(n) ≤ C1(n) −1 =
D1(n).

Now suppose τ1(n) = D1(n). Then σ1(n) > τ1(n) = D1(n) if and only if Gn(2l−2, 1) �
Gn(2l−1, 1); that is, σ1(n) = C1(n) if and only if Gn(n/2, 1) � Gn(n/4, 1), as re-
quired. �
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5.2. Upper bound for τ2(pl)

For p = 3 Lemma 3.2 implies τ2(pl) ≤ σ2(pl) ≤ C2(pl) = D2(pl). Therefore it remains 
to consider the case p ≥ 5 and the case p = 2.

5.2.1. Upper bound for τ2(pl) where p ≥ 5
In this section (in Corollary 5.6) we show that D2(pl) is an upper bound for τ2(pl) in 

the case p ≥ 5, pl �= 5, 7, 13. For prime p ≥ 3, and l ≥ 1 let

κ =
{

(pl + 5)/4 if pl ≡ 3 mod 4,
(pl − 1)/4 if pl ≡ 1 mod 4,

(6)

and note that κ = 3 if and only if pl = 7 or 13.

Lemma 5.4. Let n = pl, where p ≥ 3 is prime, l ≥ 1 and let κ be as defined at (6). Then 
Gn(1, κ) ∼= Gn(4, 5).

Proof. First suppose pl ≡ 3 mod 4. Then 4((pl + 1)/4) ≡ 1 mod n so

Gn(4, 5) ∼= Gn(1, 5(pl + 1)/4) = Gn(1, (pl + 5)/4) = Gn(1, κ).

Now suppose pl ≡ 1 mod 4. Then 4((3pl + 1)/4) ≡ 1 mod n so

Gn(4, 5) ∼= Gn(1, 5((3pl + 1)/4)) = Gn(1, (3pl + 1)/4 + 1)
∼= Gn(1, pl + 1 − ((3pl + 1)/4 + 1)) = Gn(1, (pl − 1)/4) = Gn(1, κ),

as required. �
Lemma 5.5. If n ≥ 2 and (n, 6) = 1 (in particular, if p ≥ 5 is prime and n = pl for 
l ≥ 1) then Gn(1, 3)ab ∼= Gn(4, 5)ab.

We give two proofs of Lemma 5.5. The first is a direct argument using Tietze trans-
formations, but involves pulling a rabbit out of a hat in the second equality. The second 
requires the use of matrices in companion rings, and provides the insight that led to the 
first proof. (Essentially, the expression of the relators xixi+4x

−1
i+5 in the form yi+2y

−1
i+1yi

where yi = xixi+1x
−1
i+3 in the first proof is the group presentation equivalent of the 

factorisation of the representer polynomial 1 + t4 − t5 = (t2 − t + 1)(1 + t − t3).)

Proof of Lemma 5.5 using Tietze transformations.

Gn(4, 5)ab = 〈 xi | xixi+4x
−1
i+5 (0 ≤ i < n) 〉ab

= 〈 xi | (xi+2xi+3x
−1
i+5)(xi+1xi+2x

−1
i+4)

−1(xixi+1x
−1
i+3) (0 ≤ i < n) 〉ab

= 〈 xi, yi | yi+2y
−1
i+1yi, yi = xixi+1x

−1
i+3 (0 ≤ i < n) 〉ab.
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For every i, the relators yi+2y
−1
i+1yi and yi+3y

−1
i+2yi+1 imply yi = y−1

i+3 and hence yi = yi+6. 
Since (n, 6) = 1 the sequence of equalities y0 = y6 = y12 = · · · = y6(n−1) = y0 includes 
each y0, . . . , yn−1 so yi = y0 for all 0 ≤ i < n. Therefore

Gn(4, 5)ab = 〈 xi, yi | yi+2y
−1
i+1yi, yi = xixi+1x

−1
i+3, yi = y0 (0 ≤ i < n) 〉ab

= 〈 xi, y0 | y0y
−1
0 y0, y0 = xixi+1x

−1
i+3 (0 ≤ i < n) 〉ab

= 〈 xi | 1 = xixi+1x
−1
i+3 (0 ≤ i < n) 〉ab

= Gn(1, 3)ab. �
Proof of Lemma 5.5 using matrices in companion rings. The representer polynomial of 
Gn(4, 5) is f(t) = 1 +t4−t5 = (t2−t +1)(1 +t −t3) = Φ6(t)F (t), where F (t) = 1 +t −t3, 
which is the representer polynomial of Gn(1, 3), and Φ6 is the 6-th cyclotomic polynomial. 
Letting g(t) = tn−1, in the notation of [18], the relation matrices of Gn(4, 5) and Gn(1, 3)
are f(Cg) and F (Cg), respectively.

Now since (n, 6) = 1 the resultant Res(Φ6, g) = ±1 by [1], so by [18, Corollary 8]
the Smith form of f(Cg) is equal to the Smith form of F (Cg) and thus Gn(4, 5)ab ∼=
Gn(1, 3)ab, as required. �
Corollary 5.6. Let n = pl �= 5, 7, 13 where p ≥ 5 is prime, l ≥ 1, and let κ be as defined 
at (6). Then

T2(n) = {[Gn(1, k)ab] | 2 ≤ k ≤ (pl + 1)/2, k �= 3}

= {[Gn(1, k)ab] | 2 ≤ k ≤ (pl + 1)/2, k �= κ}.

Hence τ2(n) ≤ D2(n). Moreover, if τ2(n) = D2(n) then σ2(n) = C2(n) if and only if 
Gn(1, 3) � Gn(4, 5).

Proof. First observe κ �= 3 (since n �= 7, 13) and 2 ≤ κ ≤ (pl + 1)/2. Lemma 3.2 implies

T2(n) = {[Gn(1, k)ab] | 2 ≤ k ≤ (pl + 1)/2}

but, by Lemmas 5.4 and 5.5, Gn(1, 3)ab ∼= Gn(1, κ)ab so

T2(n) = {[Gn(1, k)ab] | 2 ≤ k ≤ (pl + 1)/2, k �= 3}

as required, and hence τ2(n) ≤ D2(n).
By Lemma 3.2(a), S2(n) = {[Gn(1, k)] | 2 ≤ k ≤ (pl + 1)/2}. Therefore σ2(n) <

C2(n) if and only if there exist distinct k1, k2 with 2 ≤ k1, k2 ≤ (pl + 1)/2, such that 
Gn(1, k1) ∼= Gn(1, k2). This would imply Gn(1, k1)ab ∼= Gn(1, k2)ab so, if τ2(n) = D2(n), 
this can only happen for the pair {k1, k2} = {3, κ}. Therefore σ2(n) = C2(n) if and only 
if Gn(1, 3) � Gn(1, κ), or equivalently that Gn(1, 3) � Gn(4, 5) by Lemma 5.4. �
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(Note that the hypothesis n �= 5, 7, 13 in Corollary 5.6 is necessary since τ2(n) =
D2(n) + 1 in these cases.) Lemma 5.5 prompts Question 1.3 which asks (for n = pl, 
where p ≥ 5 is prime) if Gn(1, 3) � Gn(4, 5) for all prime powers n �= 5, 7, 13 coprime 
to 6. (If n = 7 or 13 then Gn(1, 3) ∼= Gn(4, 5) by Lemma 5.4 and if n = 5 then Gn(4, 5)
is not irreducible.) The following example (extracted from [4, Section 5.1]) confirms this 
in the cases n = 11, 25.

Example 5.7 (Gn(1, 3) � Gn(4, 5) for n ∈ {11, 25}). Let G = G11(1, 3) and H =
G11(4, 5). Then G′/G′′ ∼= Z11

2 and H ′/H ′′ ∼= Z11
3 so G11(1, 3) � G11(4, 5). As reported in 

[4, Section 5.1] GAP can be used to show that G25(1, 3) has an epimorphism to PSL(2, 5)
and G25(4, 5) does not. An alternative computational proof is to observe that G25(1, 3)
has an index 5 subgroup, whereas G25(4, 5) does not.

We now provide a theoretical proof of the epimorphism to PSL(2, 5) in Example 5.7.

Lemma 5.8. For each t ≥ 1 there exists an epimorphism from G5t(1, 3) onto SL(2, 5)
and hence onto PSL(2, 5).

Proof. Adjoining the relations xi = xi+5 for each 0 ≤ i < 5t to the presentation 
G5t(x0x1x

−1
3 ) yields a presentation for G5(x0x1x

−1
3 ) = G5(1, 3) ∼= SL(2, 5), so G5t(1, 3)

maps onto SL(2, 5) and the result follows. �
In a similar spirit we have the following.

Lemma 5.9. Let n = pl where p is prime, l ≥ 1 and suppose p|m. Then there is an 
epimorphism from the group Gpl(m, k) onto Z2pα−1 where α is the p-adic valuation of 
m. In particular, if G ∈ S1(pl) then there is an epimorphism from G onto Z2p−1.

Proof. The group Gpl(m, k) is isomorphic to the free product of d = (pl, m, k) copies 
of Gpl/d(m/d, k, d) and so maps onto Gpl/d(m/d, k/d), and so we may assume d = 1, 
and hence (p, k) = 1. By adjoining relations xi = xi+pα for each 0 ≤ i < n we see that 
Gn(m, k) maps onto Gpα(0, k) which is isomorphic to Gpα(0, 1) by [2, Lemma 1.1(1)].

If G ∈ S1(pl) then G ∼= Gpl(m, k) for some 0 < m, k < pl, where p|m and (p, k) = 1
(since (pl, m, k) = 1), so G maps onto Z2pα−1 (where α is the p-adic valuation of m), 
which maps onto Z2p−1. �

Additional results like Lemmas 5.8 and 5.9 can be obtained using (for example) the 
finite groups G4(2, 1) ∼= SL(2, 3) and the Gilbert-Howie group H(8, 3) = G8(3, 1) of 
order 310 · 5.

5.2.2. Upper bound for τ2(2l)
We now show that D2(2l) is an upper bound for τ2(2l).
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Lemma 5.10. Let n = 2l, where l ≥ 3. Then

T2(n) = {[Gn(1, k)ab] | k ∈ {n/2 − 1, n/2 + 1, n− 1} ∪K}

where

K = {min(k, k−1 mod n) | 3 ≤ k ≤ n− 3, k �= n/2 ± 1, k odd}

(where 1 ≤ k−1 < n denotes the multiplicative inverse of k mod n), and therefore 
τ2(n) ≤ D2(n). Moreover, if τ2(n) = D2(n) then σ2(n) = C2(n) if and only if 
Gn(1, k) � Gn(1, k−1) for each odd k, 3 ≤ k ≤ n − 3, where k �= n/2 ± 1.

Proof. By Lemma 3.2(b), S2(n) = {[Gn(1, k)] | 2 ≤ k < 2l, k odd} so

T2(n) = {[Gn(1, k)ab] | 2 ≤ k < 2l, k odd}

and by Corollary 4.2 Gn(1, k)ab ∼= Gn(1, k−1)ab. Now, for odd k, k ≡ k−1 mod n if and 
only if k ≡ ±1 or n/2 ± 1 mod n. Therefore

T2(n) = {[Gn(1,min(k, k−1 mod n))ab] | 2 ≤ k < 2l, k odd}

= {[Gn(1, k)ab] | k ∈ {n/2 − 1, n/2 + 1, n− 1} ∪K}

where K is as given in the statement. There are 2l−1−4 odd numbers k with 3 ≤ k ≤ 2l−3
and k �= n/2 ± 1, and for each of these k �≡ k−1 mod n. Therefore |K| = (2l−1 − 4)/2 =
2l−2 − 2, and so

τ2(n) = |T2(n)| ≤ (2l−2 − 2) + 3 = 2l−2 + 1 = D2(n).

Now suppose τ2(n) = D2(n). If g2(n) = D2(n) then if k1 �≡ k2, k
−1
2 mod n then 

Gn(1, k1)ab � Gn(1, k2)ab so Gn(1, k1) � Gn(1, k2); if, in addition, Gn(1, k) � Gn(1, k−1)
for each odd k, 2 ≤ k < n, where k �≡ n/2 − 1, n/2 + 1, n − 1 then

|{[Gn(1, k)] | 2 ≤ k < 2l, k odd}| = (2l − 2)/2 = 2l−1 − 1 = C2(n).

Conversely, if Gn(1, k) ∼= Gn(1, k−1) for some odd k, 2 ≤ k < n, where k �≡ n/2 −1, n/2 +
1, n − 1 then k �≡ k−1 mod n, so [Gn(1, k)] = [Gn(1, k−1)], so

σ2(n) ≤ |{[Gn(1, k)] | 2 ≤ k < 2l, k odd}| < C2(n). �
5.3. The proofs of Theorems D and E and the equivalence of Conjectures B and B′

We are now in a position to prove Theorem D.
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Proof of Theorem D. If p ≥ 3 then (using Theorem C) τ1(pl) ≤ σ1(pl) ≤ C1(pl) =
D1(pl). If n = 4 then τ1(n) = D1(n). If p = 2 and l ≥ 4 then τ1(pl) ≤ D1(pl) by 
Lemma 5.3. If p ≥ 5 then τ2(pl) ≤ D2(pl) by Corollary 5.6. If p = 3 then (using 
Theorem C) τ2(pl) ≤ σ2(pl) ≤ C2(pl) = D2(pl). If p = 2 then τ2(pl) ≤ D2(pl) by 
Lemma 5.10. Then

τ(n) = τ1(n) + τ2(n) − |T1(n) ∩ T2(n)|
≤ τ1(n) + τ2(n)

≤ D1(n) + D2(n) = D(n). �
We now show that Conjectures B and B′ are equivalent.

Corollary 5.11. Let n �= 2, 4, 5, 7, 8, 13, 23 be a prime power. Then τ(n) = D(n) if and 
only if T1(n) ∩ T2(n) = ∅, τ1(n) = D1(n), τ2(n) = D2(n).

Proof. Suppose first that T1(n) ∩ T2(n) = ∅, τ1(n) = D1(n), τ2(n) = D2(n). Then

τ(n) = τ1(n) + τ2(n) − |T1(n) ∩ T2(n)| = τ1(n) + τ2(n) = D1(n) + D2(n) = D(n).

Suppose then τ(n) = D(n). Then

D(n) = τ1(n) + τ2(n) − |T1(n) ∩ T2(n)|
≤ D1(n) + D2(n) − |T1(n) ∩ T2(n)|
= D(n) − |T1(n) ∩ T2(n)|

(where we used Theorem D for the inequality), and hence T1(n) ∩ T2(n) = ∅. If τ1(n) <
D1(n) or τ2(n) < D2(n) then

D(n) = τ1(n) + τ2(n)

< D1(n) + D2(n)

= D(n)

(again using Theorem D), a contradiction. Therefore τ1(n) = D1(n) and τ2(n) =
D2(n). �

We now prove Theorem E.

Proof of Theorem E. If n = 8 then the result follows from [4], so assume n �= 8. Since 
τ(n) = D(n), Corollary 5.11 implies τ1(n) = D1(n), τ2(n) = D2(n), and T1(n) ∩T2(n) =
∅, so S1(n) ∩ S2(n) = ∅. By Corollary 3.3 σ(n) = C(n) if and only if σ1(n) = C1(n)
and σ2(n) = C2(n). If p ≥ 3 then C1(n) = D1(n) = τ1(n) ≤ σ1(n) ≤ C1(n) (by 
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Lemma 3.1) so σ1(n) = C1(n). If p ≥ 5 then by Corollary 5.6 σ2(n) = C2(n) if and 
only if Gn(1, 3) � Gn(4, 5). If p = 3 then C2(n) = D2(n) = τ2(n) ≤ σ2(n) ≤ C2(n) (by 
Theorem C) so σ2(n) = C2(n). If p = 2 then Lemma 5.3 implies σ1(n) = C1(n) if and 
only if Gn(n/2, 1) � Gn(n/4, 1), and Lemma 5.10 implies σ2(n) = C2(n) if and only if 
Gn(1, k) � Gn(1, k−1) for each odd k, 3 ≤ k ≤ n − 3, k �= n/2 ± 1. �
6. Lower bound for τ (pl): computational evidence

In this section we present computational evidence that (for prime powers pl �= 4, 23) 
D(pl) is a lower bound for τ(pl). Since this is an upper bound for τ(pl), by Theorem D, 
this presents evidence for Conjecture B. To prove non-isomorphism of pairs of abelianised 
groups Gn(m, k)ab, it is usually sufficient to show that they have different orders. (There 
are exceptions, however; for example, G29(1, 10)ab ∼= Z2

59 versus G29(1, 7)ab ∼= Z592 and 
G41(1, 15)ab ∼= Z83⊕Z2

83 versus G41(1, 8)ab ∼= Z83⊕Z832 .) Recalling (3), these orders are 
given by resultants and these are typically faster to compute than the abelianisations 
themselves. For this reason we introduce sets R(n) = {|A| | A ∈ T (n)} and Ri(n) =
{|A| | A ∈ Ti(n)}, and set υ(n) = |R(n)| and υi(n) = |Ri(n)| (i ∈ {1, 2}). Then υ(n) ≤
τ(n), υ1(n) ≤ τ1(n), υ2(n) ≤ τ2(n) and if R1(n) ∩ R2(n) = ∅ then T1(n) ∩ T2(n) = ∅. 
Moreover, if ω ∈ R1(n), where n is a power of a prime p, then ω ≡ 0 mod (2p − 1) by 
Lemma 5.9.

Using the expressions for T1(n), T2(n) given in (or directly implied by) Lemma 3.1, 
Lemma 5.3, Corollary 5.6, and Lemma 5.10 and performing computations in GAP we 
show the following for prime powers n �= 2, 4:

• If n ≤ 38 is a power of an odd prime p and ω ∈ R2(n) then ω �≡ 0 mod (2p − 1), and 
hence R1(n) ∩R2(n) = ∅.

• If n = 2l, 3 ≤ l ≤ 12 then R1(n) ∩R2(n) = ∅.
• If n ≤ 38, n �= 8 is a prime power then D1(n) ≤ υ1(n).
• If n ≤ 41, n �= 23 is a prime power then D2(n) ≤ τ2(n).
• If 41 < n ≤ 38 is a prime power then D2(n) ≤ υ2(n).

Together with Theorem D this implies the following.

Theorem 6.1. Suppose n ≤ 38 is a prime power, n �= 2, 4, 5, 7, 8, 13, 23. Then T1(n) ∩
T2(n) = ∅, τ1(n) = D1(n), τ2(n) = D2(n), and hence τ(n) = D(n).

7. Epilogue: decidability of the value of σ(n)

We close by observing that for arbitrary n ≥ 2, there is an algorithm that decides if 
two irreducible groups of Fibonacci type with n generators are isomorphic, and hence 
there is an algorithm that determines the value of σ(n).
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Theorem 7.1. There is an algorithm that, given input n, m1, k1, m2, k2 such that n ≥ 2, 
1 ≤ m1, k1, m2, k2 < n, (n, m1, k1) = 1, (n, m2, k2) = 1, m1 �= k1, m2 �= k2, decides if 
the groups Gn(m1, k1), Gn(m2, k2) are isomorphic.

Proof. If n < 13 then by [4] the values of m1, k1, m2, k2 for which Gn(m1, k1), Gn(m2, k2)
are isomorphic are known (see also [5, Table 1]). Thus we may assume n ≥ 13.

For i ∈ {1, 2} let Ai = ki, Bi = ki − mi, Γi = Gn(mi, ki). By [5, Corollary B] the 
following hold for each i ∈ {1, 2}:

(a) Γi
∼= Z2n−1 if and only if Ai ≡ Bi mod n;

(b) Γi
∼= Z2n/2−(1)m+n/2 if and only if Ai ≡ n/2 mod n or Bi ≡ n/2 mod n;

(c) Γi is isomorphic to the Sieradski group S(2, n) if and only if Ai + Bi ≡ 0 mod n;
(d) Γi is isomorphic to the Gilbert-Howie group H(n, n/2 + 2) if and only if Ai + Bi ≡

n/2 mod n;

and, moreover, Γi is elementary hyperbolic if and only if either (a) or (b) hold, and is non-
hyperbolic if and only if either (c) or (d) hold. The groups Z2n−1, Z2n/2−(1)m+n/2 , S(2, n),
H(n, n/2 + 2) are pairwise non-isomorphic, as the first two are finite of different orders, 
the second two are infinite [11], and S(2, n) is a 3-manifold group, whereas H(n, n/2 +2)
is not [12].

Thus we may assume that none of (a), (b), (c), (d) hold for either set of parameters 
(n, m1, k1), (n, m2, k2). Then Γ1, Γ2 are (non-elementary) hyperbolic [5, Corollary B], 
and torsion-free [11,23], and so there is an algorithm that decides if Γ1 ∼= Γ2 [21]. �
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