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Abstract 

 

This paper investigates the role of textual information in a U.S. bank merger prediction task. Our intuition behind this 

approach is that text could reduce bank opacity and allow us to understand better the strategic options of banking firms. 

We retrieve textual information from bank annual reports using a sample of 9,207 U.S. bank-year observations during 

the period 1994-2016. To predict bidders and targets, we use textual information along with financial variables as 

inputs to several machine learning models. We find that when we jointly use textual information and financial variables 

as inputs, the performance of our models is substantially improved compared to models using a single type of input. 

Furthermore, we find that the performance improvement due to the inclusion of text is more noticeable in predicting 

future bidders, a task which is less explored in the relevant literature. Therefore, our findings highlight the importance 

of textual information in a bank merger prediction task. 

 

 

 

 

JEL classification: C63, G14, G21, G34, G40 

Keywords: Finance; Bank merger prediction; Textual analysis; Natural language processing; Machine learning 

 

 

This version: June, 2023 

  

                                                           
*
Corresponding author: Department of Accounting and Finance, School of Business, Athens University of Economics and 

Business, 76 Patission Str., 104 34, Athens, Greece; Tel.: +30 210 8203459. E-mail addresses: katsafados@aueb.gr (A. 

Katsafados), gleledak@aueb.gr (G. Leledakis), e.pyrgiotakis@essex.ac.uk (E. Pyrgiotakis), ion@aueb.gr (I. Androutsopoulos), 

fergadiotis@aueb.gr (M. Fergadiotis). We would like to thank Ilias Chalkidis, Nikolaos Gkoumas, Prodromos Malakasiotis, 

Thanos Verousis, and the participants at the Annual Event of Finance Research Letters 2022 CEMLA Conference: New Advances 

in International Finance for their valuable comments and suggestions. Apostolos Katsafados acknowledges financial support co-

financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources 

Development, Education and Lifelong Learning» in the context of the project “Strengthening Human Resources Research Potential 

via Doctorate Research” (MIS-5000432), implemented by the State Scholarships Foundation (ΙΚΥ). George Leledakis greatly 

acknowledges financial support received from the Research Center of the Athens University of Economics and Business (EP-2256-

01). All remaining errors and omissions are our own. 

                  



3 

 

1. Introduction 

Over the last decades, the U.S. banking industry has experienced a severe wave of consolidation through mergers 

and acquisitions (M&A). Aligned with this trend, the academic literature has given increased attention to the topic of 

bank M&As. The vast majority of the literature focuses on investigating the shareholder wealth effects around the 

announcement of bank mergers (Houston et al., 2001; DeLong and DeYoung, 2007; Filson and Olfati, 2014; Leledakis 

and Pyrgiotakis, 2022), while other studies analyze the merger-related performance changes (Cornett and Tehranian, 

1992; Cornett et al., 2006), or the efficiency effects (Rhoades 1993; 1998).  

Another strand of the literature attempts to identify the characteristics of merging U.S. banks, especially from the 

perspective of the target (Prasad and Melnyk, 1991; Wheelock and Wilson, 2000). These studies report that smaller, 

less profitable, and poorly-managed banks are more attractive acquisition targets. In this respect, Katsafados et al. 

(2021) find that banks with more positive (negative) tone in their annual reports have a higher probability of becoming 

bidders (targets). However, the latter study focuses on the determinants of merger likelihood, and not in the prediction 

of future merger participants. Up to date, therefore, there is a gap in the literature regarding the development of 

classification models in a U.S. bank merger prediction task.  

In the non-financial sector, there is a plethora of studies that utilize classification models to predict M&As (Palepu, 

1986; Slowinski et al., 1997; Espahbodi and Espahbodi, 2003; Edmans et al., 2012; Routledge et al., 2017; Delis et al., 

2023). One possible explanation on why there is no substantial empirical work on this issue for U.S. banks could be 

that the banking industry is inherently more opaque than other industries (Flannery et al., 2004; Blau et al., 2017). 

Opacity means that banking assets are hard-to-value due to their financial nature which distinguishes banks from non-

bank firms (Morgan, 2002). In other words, banks hold very few physically-fixed assets compared to other types of 

firms. Instead, banks primarily hold loans, which are privately negotiated transactions with their borrowers. The 

opaqueness of these types of assets limits the ability of investors to properly evaluate the financial condition of a bank 

(Huizinga and Laeven, 2012; Jones et al., 2013). Researchers in merger prediction for non-financial firms use 

accounting measures to evaluate the financial condition of the firm. Potential bidders are perceived to be in sound 

financial position, whereas potential targets may face financial constraints (Espahbodi and Espahbodi, 2003). Taken 

altogether, it is likely that bank opacity could be one possible reason for the lack of empirical work on bank merger 

prediction.  

Bank opacity is inversely related to disclosure of information, as the level of bank opacity decreases with the quality 

of disclosure (Flannery et al., 2013; Jiang et al., 2016; Zheng, 2020). Banks disclose information to the public mainly 

through their financial statements and annual reports. On the one hand, financial statements may not effectively reduce 

opacity, as banks manage their statements to smooth their earnings and circumvent the capital requirements (Ahmed et 

al., 1999; Beatty et al., 2002; Bushman and Williams, 2012; Gandhi et al., 2019). On the other hand, bank annual 

reports contain one other important source of information besides balance sheet data: textual information.  

There is a growing literature on how textual information can reduce firms’ valuation uncertainty and the asymmetry 

of information on the initial public offerings (IPOs) in the U.S. (Hanley and Hoberg, 2010; Loughran and McDonald, 

2013; Jegadeesh and Wu, 2013). Collectively, these studies find that the textual information of the IPO prospectuses 

can mitigate the uncertain valuation of IPO firms, a fact that leads to a more accurate pricing of the newly issued 
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shares. In a similar manner, Gandhi et al. (2019) use the sentiment of banks’ annual reports to gauge financial distress. 

The authors argue that text is more informative than simple accounting measures, as the latter source of information 

could be influenced by bank managers. This happens because over-optimism in annual reports by managers increases 

litigation risk (Rogers et al., 2011; Loughran and McDonald, 2013). Building on these arguments, it is reasonable to 

assume that the use of textual information could improve our ability to evaluate the financial condition of banks by 

reducing bank opacity. Hence, if this assumption is valid, textual information may also enable us to more accurately 

identify bidders and targets in the U.S. banking industry. 

Apart from reducing bank opacity, textual information could have an additional benefit in a merger prediction task. 

In most cases, the choice to engage in a merger is a strategic decision for the bank, especially on the part of the bidder 

(Ramaswamy, 1997). Potential bidders have different characteristics from potential targets, as they are usually larger 

and more profitable (Becher, 2009). However, the fact that a bank is financially healthier (according to its financial 

statements), does not necessarily imply that its strategy is to engage in M&As. For this reason, annual reports may be 

more insightful regarding the bank’s strategic options, as managers disclose information regarding the future prospects 

of their bank in these reports. In fact, managerial motives consist one of the main explanations behind M&As 

(Gregoriou and Renneboog, 2007).  

Therefore, the primary aim of this paper is to investigate whether the use of textual information from bank annual 

reports is meaningful in a merger prediction task. More precisely, we develop classification models to identify bidders 

and targets in the U.S. banking industry, and we use both textual information and financial variables as inputs in these 

models. In our classification task, we choose to employ several machine learning algorithms instead of traditional 

econometric techniques. We do so, because machine learning algorithms make fewer assumptions about the data and 

can often produce more accurate estimates (Mai et al., 2019). 

To address our research question, we collect annual reports from banks that filed the reports over the period 1994-

2016. By doing so, we obtain a large sample of 9,207 U.S. bank-year observations, which includes bidders, non-

bidders, targets, and non-targets. For each year and for each bank, we retrieve the annual reports from the SEC’s 

Electronic Data Gathering, Analysis, and Retrieval (EDGAR) website. For the purpose of our analysis, we extract 

textual information by creating textual features from these reports using the bag of words approach. In fact, we use the 

following textual features as inputs: term frequency (TF) features, and term frequency-inverse document frequency 

(TF-IDF) features corresponding to words (or combination of words and bigrams). Finally, we use these textual 

features along with financial variables in the classification machine learning models. More precisely, we use the 

following models: (1) logistic regression, (2) linear support vector machine, (3) support vector machine with radial 

basis function kernel, (4) random forest, and (5) multilayer perceptron. 

A key innovation of our study is that apart from the aforementioned textual features, we create textual features 

based on word embeddings. In addition to the frequently-used generic word embeddings, we also create our own 

finance word embeddings. Textual features based on word embeddings are used as inputs to the multilayer perceptron 

model. 

As a first step in our empirical analysis, we run our models using only financial variables as inputs, and we consider 

these models our benchmark. Then, we re-run our models using only textual features as inputs. Finally, we augment 
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our benchmark models by combining both financial and textual data. Our results indicate that in both prediction tasks, 

textual features are meaningful inputs in our models. More precisely, we achieve the highest prediction scores when we 

augment our benchmark models with textual features. It is noteworthy that textual features have higher incremental 

value in the bidder prediction task. This is expected to some extent, as the language used by managers in the annual 

reports may be more informative regarding the bidding banks’ strategic decisions, compared to financial ratios. By 

contrast, target banks’ prediction relies more on weak fundamentals (Becher, 2009). These findings are also consistent 

with Cornett et al. (2011), which suggest bidders can be predicted more accurately than targets.  

We conduct a series of robustness tests. First, we employ the bootstrap resampling method of Berg-Kirkpatrick et 

al. (2012) to validate the performance of our models. More precisely, in both tasks, we compare the best-performing 

models that use both financial and textual data as inputs with the benchmark models. We find that the former models 

statistically outperform the latter in both tasks, a fact that provides further support to our conjecture regarding the 

importance of textual information in a merger prediction task. Second, we compute the importance score for each 

variable in our best-performing models using the Gini impurity technique of Kurt et al. (2008). The results of this 

analysis indicate that in the bidder prediction task, textual features are more important inputs than traditional financial 

variables. In the target prediction task, the scores of financial variables are slightly higher than the ones of textual 

information, a finding which is also consistent with our main results, as we have documented that weak fundamentals 

are the main driver behind target prediction. Third, we use the Local Interpretable Model-agnostic Explanations 

(LIME) method as in Ribeiro et al. (2016), to find out which specific textual features increase the predictive ability of 

our best-performing models. The results for both tasks were in line with our intuition. Fourth, we use word embeddings 

(both the generic and the finance-specific ones) as inputs in Bi-directional Long Short-Term Memory Recurrent Neural 

Network (BLSTM-RNN) models. We do so, as BLSTM-RNNs are very effective for modelling sequential data like 

documents (word sequences). The results indicate that our finance-specific word embeddings are the most informative 

textual features when combined with sophisticated deep learning models (BLSTM-RNN in our case). 

Our findings could benefit all key parties of a bank merger transaction. From the regulators’ perspective, identifying 

future acquirers may be more beneficial than identifying future targets. When acquirers grow large through M&As, 

they can become too-big-to-fail (TBTF) and enjoy oligopolistic market power (O’hara and Shaw, 1990; Demirgüç-

Kunt and Huizinga, 2013). Furthermore, TBTF banks usually enjoy special treatment from policy-makers, as they are 

more likely to receive government bailouts in case of insolvency, compared to their smaller and less systemically 

important peers (Bernanke, 2010). This special treatment creates moral hazard issues, because TBTF banks are more 

inclined to engage in excessive risk-taking, which poses a threat to the stability of the banking industry (Brewer and 

Jagtiani, 2013). Therefore, the development of an accurate classification model could enable regulatory authorities to a 

priori evaluate any merger-related anticompetitive effects and ensure the stability of the banking industry. These 

regulatory actions are of major importance for social welfare, since changes in the structure of the banking industry 

may have a detrimental effect on competition (Koskela and Stenbacka, 2000). From the investors’ perspective, 

identifying future bank merger participants could be a profitable strategy, because bidders (targets) typically realize 

negative (positive) abnormal returns around the announcement of the merger (DeLong, 2001). In this case, an investor 

can apply a merger arbitrage strategy by purchasing shares of the target firm and short-selling shares of the acquiring 
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firm (Buehlmaier and Zechner, 2021). Finally, the development of an accurate classification model could also be of use 

to bank managers. Managers of banks who want to expand via M&As can use such a tool to identify potential targets. 

At the same time, financially constrained banks that have to be acquired may use such classification models to identify 

and attract potential bidders (Pasiouras et al., 2010). 

We contribute to the literature in four main aspects. First, instead of focusing merely on predicting future 

acquisition targets, we also attempt to predict future acquiring banks, as this task is more important to regulators and 

depositors. Notably, we provide evidence that textual information can significantly improve the prediction of bank 

bidders, a fact that might provide fertile ground for future research on this topic. Second, instead of using econometric 

techniques to perform our task, we utilize several machine learning models, which have several advantages over 

traditional econometric methodologies (Mai et al., 2019). This argument is supported by our findings, since more 

sophisticated machine learning algorithms, such as the random forest or the BLTSM-RNNs, yield more accurate 

estimates compared to the traditional logistic regressions. Hence, any improvement in prediction accuracy is important, 

considering that there is still no consensus regarding the development of an accurate method to predict M&A activity 

(Very et al., 2012). Third, we create our own finance word embeddings, which appear to be the most meaningful 

textual inputs in the bidder prediction task. Finally, we provide evidence that textual information can effectively 

complement traditional financial variables in bank merger prediction. Our study contributes to the textual analysis 

literature by adding fresh insights into how textual features can significantly improve the predictive performance of 

classification models (Stevenson et al., 2021; Kriebel and Stitz, 2022; Nguyen and Huynh, 2022). Our interpretation of 

this result is that textual information reduces bank opacity, since the language used by managers in the annual reports 

provides a clearer picture of the financial condition of the bank and its future strategic options.  

The rest of the paper is organized as follows. Section 2 describes our sample collection and our textual analysis 

procedure. Section 3 discusses our classification models, and Section 4 reports our empirical findings. Finally, Section 

5 concludes the paper. 

2. Data and textual analysis 

2.1. Sample selection 

To construct our dataset, we follow a three-step approach. The first step is to collect bank annual reports (10-Ks, 10-

K405s, 10-KSBs, and 10-KSB40s) from the SEC’s Electronic Data Gathering, Analysis, and Retrieval (EDGAR) 

website. To do so, we use a web-crawling algorithm, which gathers the reports and excludes all amended documents. 

In our primary sample, we require that banks’ filing dates are between 1994 and 2016. Furthermore, we exclude 97 

observations from our sample because the filing contained fewer than 2,000 words (Loughran and McDonald, 2011). 

Further, we also exclude 2 observations from our sample, due to the fact that 2 banks had more than one filing in the 

same fiscal year (we include only the first filing). By applying these criteria, our initial sample consists of 18,031 bank-

year observations.  

The second step is to gather bank-specific characteristics from the Federal Reserve Bank of Chicago (FRBC), as in 

Katsafados et al. (2021). More precisely, we acquire financial information of bank holding companies (BHCs) from the 

FR Y-9C reports and of commercial banks and savings institutions from Call Reports. Then, we collect banks RSSD 
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IDs using the Federal Reserve Bank of New York’s CRSP-FRB link. Next, we use the bank names and locations (state 

and/or city) to merge our initial sample from EDGAR with FRBC data. By doing so, we are able to link the banks’ 

RSSD IDs with their corresponding Central Index Keys (CIK). To ensure the maximum number of observations, we 

manually match banks’ RSSD IDs with their CIKs using the National Information Centre (NIC) database. This 

matching process leaves us with a final sample of 9,207 bank-year observations consisting of 1,160 unique banks.  

As a third step, we obtain our bank merger sample from the Thomson ONE database. We focus on deals announced 

between February, 1994 and December, 2017.
1
 To filter our sample, we use the following criteria similar to Leledakis 

et al. (2021): 

1. Both bidders and targets are commercial banks with a three-digit primary SIC code of 602, savings 

institutions with a three-digit primary SIC code of 603, or bank holding companies with a four-digit 

primary SIC code of 6712. 

2. The bidder is publicly-traded. The target can be a public firm, a private firm, or an unlisted subsidiary of a 

publicly-traded firm. 

3. All public firms are listed on NYSE, AMEX, or NASDAQ. 

4. The bidder acquired an interest of more than 50% of the target firm after the merger. Before the merger, its 

interest was below 50%.  

5. Failed bank acquisitions are excluded. 

The above selection process results in a sample of 966 bank M&As. As described in the filter criteria, all bidders are 

publicly-traded. However, in the case of targets, 389 are publicly-traded, and the remaining ones are either private-

owned banks or subsidiaries of listed banks. Since the sample also includes unlisted targets, our sample selection 

process ensures that our subsample of bidding banks includes all listed banks that had acquired another bank during our 

examination period. Hence, from the final sample of 9,207 bank-year observations, 8,241 refer to non-bidder banks and 

8,818 to non-target banks. Table 1 reports the number of bidders (non-bidders) and targets (non-targets) on an annual 

basis over our examination period.  

2.2. Financial variables 

We choose to use a set of financial variables as inputs in our predictive models that satisfy the following two 

criteria: (i) they are likely to influence acquisition decisions (Wheelock and Wilson, 2000; Pasiouras et al., 2010), and 

(ii) these variables are limited in number to avoid overfitting of our models (Palepu, 1986). In what follows, we briefly 

describe the twelve financial variables used in this study. Eight of these variables are variables from financial 

statements and the remaining four are market variables.
2
 

The first two financial variables relate to the inefficient management hypothesis. According to this hypothesis, the 

motive behind M&As is to replace the inefficient management of the target firm (Manne, 1965). Hence, following 

Pasiouras et al. (2010), we employ two bank efficiency measures: the cost-to-income ratio (Cost efficiency), and the 

return on total assets (ROA). Capital strength is also an important determinant of bank acquisition behavior, as weaker-

capitalized banks are more likely to be acquired (Hannan and Rhoades, 1987; Pasiouras et al., 2007). For this reason, 

we use the ratio of common equity to total assets (Capital strength). Moreover, we control for the impact of loan 

                                                           
1
 To be included in our merger sample, a bank should be a bidder or a target in a twelve-month period after the filing date 

(Routledge et al., 2017). The earliest filing date of our sample is in the end of January, 1994 and the latest is in the end of 

December, 2016. 
2
 All variables from financial statements are measured at the most recent fiscal year end prior to the filing date. 
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activity on bank acquisition likelihood using the ratio of loans to total assets (Loans), as in Pasiouras et al. (2010).  

Market power is a commonly-stated motive behind bank M&As (Hankir et al., 2011). Hence, we also use in our 

models the ratio of each bank’s deposits to the total deposits of the U.S. banking industry in a given year (Market 

power). Further, acquired banks tend to have higher amounts of loan loss reserves relative to non-acquired banks 

(Wheelock and Wilson, 2000; Pasiouras et al., 2010). In line with these results, we include the ratio of loan loss 

provisions to total loans (Asset quality). Further, we proxy for the banks’ dependence on off-balance sheet activities 

using the ratio of non-interest income to total income (Non-interest income), as in Ellul and Yerramilli (2013). Finally, 

in the spirit of Cornett et al. (2006), we use the ratio of deposits to total assets (Deposits) as a measure of liquidity. 

Table A1 in the Appendices provides a detailed list of these eight variables, along with the corresponding codes from 

the FR Y-9C reports for bank holding companies and the Call reports for commercial banks and savings institutions. 

Table 1 
Yearly distribution of observations 

Filing year Bidders Non-bidders Targets Non-targets 

1994 39 81 5 115 

1995 39 128 11 156 

1996 55 308 14 349 

1997 84 410 33 461 

1998 81 423 30 474 

1999 49 464 24 489 

2000 43 466 29 480 

2001 35 451 21 465 

2002 35 446 17 464 

2003 66 430 32 464 

2004 48 464 16 496 

2005 57 435 18 474 

2006 57 414 25 446 

2007 37 366 13 390 

2008 15 368 8 375 

2009 4 369 3 370 

2010 10 350 11 349 

2011 11 330 7 334 

2012 29 321 10 340 

2013 40 335 16 359 

2014 48 316 16 348 

2015 52 300 17 335 

2016 32 266 13 285 

Total 966 8,241 389 8,818 

This table summarizes the yearly distribution of our sample based on the 10-K filing year. Bidders is the number of banks that 

participate in a merger with the role of the bidder within a twelve-month period after the 10-K filing date, while Non-bidders is the 

number of banks that do not participate in a merger with the role of the bidder. Similarly, Targets is the number of banks that 

participate in a merger with the role of the target within a twelve-month period after the 10-K filing date, and Non-targets is the 

number of banks that do not participate in a merger with the role of the target. 

Furthermore, we include the following market variables that are frequently-used in the merger literature: (1) MTB 

the ratio of the market value of equity to book value of equity (Palepu, 1986; Ambrose and Megginson, 1992; 

Espahbodi and Espahbodi, 2003; Cremers et al., 2009; Cocco and Volpin, 2013), (2) LnMV the natural logarithm of the 

market value of equity (Cremers et al., 2009) and it is a proxy for bank size since smaller banks are more likely to 

become acquisition targets (Wheelock and Wilson, 2000), (3) ERet the excess returns over the cumulative value-

weighted return of a portfolio with NYSE/AMEX or NASDAQ stocks within a 12-month period before the 10-K filing 
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date similar to Espahbodi and Espahbodi (2003), and (4) DVOL the daily return volatility over the 12-month period 

prior to the 10-K filing date (Cocco and Volpin, 2013). The forward-looking nature of market variables might contain 

important information for our merger classification task, as they capture the investors’ perception regarding the future 

prospects of the banks. Table 2 reports the summary statistics of all financial variables. Particularly, we split the 

sample into the following four categories: bidders (Panel A), targets (Panel B), non-bidders (Panel C), and non-targets 

(Panel D). 

2.3. Textual analysis and parsing methodology 

2.3.1. Textual sources 

All bank annual reports are encoded in the hypertext markup language (HTML). Hence, as in most studies using 

textual analysis in finance, we follow the parsing process of Loughran and McDonald (2011). Through this process, we 

remove HTML formatting and any other non-textual information, such as embedded images or spreadsheets that might 

be present in the text (Bodnaruk et al., 2015). Moreover, we exclude all identified HTML tables, if their numeric 

character content is higher than 10%, as effectively documented by Loughran and McDonald (2014). 

2.3.2. Pre-processing and bag of words 

After the parsing procedure, we have to transform the textual information into numerical features before we insert 

them as inputs to our models. To do so, we follow the pre-processing procedure, which consists of several steps 

(Jegadeesh and Wu, 2013; Loughran and McDonald, 2014; Nassirtoussi et al., 2014).  

First, we eliminate single letter words, abbreviations, numbers, punctuation marks, and stop words (Gandhi et al., 

2019; Anastasiou and Katsafados, 2023). Second, we impose a minimum occurrence threshold in order to remove 

words with low frequency (Chen et al., 2020). Bernabé-Moreno et al. (2020) highlight that such a filtering process is 

important as it helps to avoid sparsity and noise. Following Mai et al. (2019), we consider the 20,000 most frequent 

words of the bank annual reports of the remaining text. Third, we use the bag of words (BOW) approach to transform 

our unstructured textual information into inputs with explicit numerical structure. More precisely, we use the Natural 

Language Toolkit (NLTK) to tokenize text into individual words. As a matter of fact, this approach treats each unique 

word as a separate textual feature, and constructs a document-term matrix, where each row and column represent a 

document and a word, respectively (Loughran and McDonald, 2011).  

In the textual analysis literature, raw counts of textual features are not considered the best measure of a text’s 

information content. Therefore, we represent each textual feature using the two most widely-used term weighting 

schemes: (1) the term frequency (TF) normalized by document length, and (2) the term frequency-inverse document 

frequency (TF-IDF). TF is calculated as the proportion of each textual feature in each document, so it assigns an equal 

weight for each feature. TF-IDF adjusts the TF scores by putting a lower weight on features that appear more 

frequently in our sample of bank annual reports (Jegadeesh and Wu, 2013; Loughran and McDonald, 2016; Katsafados 

et al., 2021). Prior studies suggest that TF-IDF is a more effective weighting scheme compared to TF, as it assigns 

lighter weights to common words, which have a less meaningful impact on textual analysis tasks (Balakrishnan et al., 

2010; Brown and Tucker, 2011; Loughran and McDonald, 2011; Loughran and McDonald, 2016; Mai et al, 2019). We 

calculate the TF-IDF weight of word i in the j
th
 document as reported in the equation below: 
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Table 2 
Summary statistics 
Variables N Mean Median Std. Dev. 

Panel A: Bidders     

Cost efficiency % 966 63.15 63.09 10.37 

ROA % 966 1.07 1.08 0.48 

Capital strength % 966 9.58 9.24 2.37 

Loans % 966 65.97 66.93 10.17 

Market power % 966 0.35 0.06 1.08 

Asset quality % 966 0.34 0.28 0.47 

Non-interest income % 966 24.90 23.58 11.99 

Deposits % 966 76.22 77.87 8.66 

MTB 966 1.92 1.78 0.86 

LnMV 966 13.43 13.29 1.66 

ERet % 966 7.22 2.51 24.00 

DVOL % 966 1.69 1.59 0.89 

Panel B: Targets     

Cost efficiency % 389 67.88 66.42 15.66 

ROA % 389 0.82 0.91 0.79 

Capital strength % 389 9.28 8.69 2.94 

Loans % 389 66.56 67.17 10.23 

Market power % 389 0.17 0.02 0.65 

Asset quality % 389 0.43 0.25 0.86 

Non-interest income % 389 20.74 18.50 11.82 

Deposits % 389 77.31 78.61 9.64 

MTB 389 1.61 1.52 0.72 

LnMV 389 12.21 11.95 1.64 

ERet % 389 4.42 1.29 30.51 

DVOL % 389 2.02 1.77 1.01 

Panel C: Non-bidders     

Cost efficiency % 8,241 68.15 65.35 21.38 

ROA % 8,241 0.74 0.91 1.07 

Capital strength % 8,241 9.34 8.99 2.88 

Loans % 8,241 66.27 67.36 12.09 

Market power % 8,241 0.21 0.02 1.20 

Asset quality % 8,241 0.57 0.29 0.99 

Non-interest income % 8,241 22.15 20.11 13.52 

Deposits % 8,241 77.12 79.19 10.27 

MTB 8,241 1.56 1.43 0.95 

LnMV 8,241 12.25 11.92 1.71 

ERet % 8,241 4.93 1.36 32.79 

DVOL % 8,241 2.33 1.95 1.52 

Panel D: Non-targets     

Cost efficiency % 8,818 67.62 64.97 20.76 

ROA % 8,818 0.77 0.94 1.04 

Capital strength % 8,818 9.37 9.04 2.83 

Loans % 8,818 66.23 67.31 11.97 

Market power % 8,818 0.23 0.02 1.21 

Asset quality % 8,818 0.55 0.29 0.96 

Non-interest income % 8,818 22.52 20.49 13.46 

Deposits % 8,818 77.01 79.05 10.14 

MTB 8,818 1.60 1.46 0.97 

LnMV 8,818 12.40 12.09 1.75 

ERet % 8,818 5.23 1.50 31.99 
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DVOL % 8,818 2.27 1.92 1.49 

- ( ) ( ) log i
ij ij

n
TF IDF t TF t

N

  
     

  
   (1) 

where TF(tij) is the number of times a term i appears in a document j, divided by the total word count of the same 

document for normalization purposes, N represents the number of documents in our entire dataset, and ni is the total 

number of documents including at least one occurrence of the i
th
 word. 

At this point, it is worth mentioning that one limitation of the BOW is that it does not control for the presence of 

polysemous words (words with multiple meanings) in the text. To control for this issue, we also use bigrams in our 

textual analysis. Bigrams are essentially word pairs, obtained using the word n-gram features (n equal to 2). The use of 

bigrams may improve the ability of our models to disambiguate the meaning of a polysemous word. Note that the 

BOW approach is also based on word n-gram features, when n equals 1 (unigrams). 

2.3.3. Word embeddings  

The aforementioned BOW approach has a prevalent role in studies that employ textual analysis in finance. As 

mentioned before, a main drawback of this approach is that it does not account for polysemous words, an issue which 

can be partially resolved with the use of bigrams. However, another drawback of the BOW approach is that it is not 

able to capture well the morpho-syntactic and semantic properties of the words of the text (Manning and Schutze, 

1999; Loughran and McDonald, 2016). This happens because conventional BOW models rely on the frequency of 

words under the assumption that each word occurs independently of all others. In this regard, it is likely that models 

that use conventional BOW representations as textual inputs are not fully capable of understanding the underlying 

semantics of the text (Loughran and McDonald, 2016). To alleviate this concern, we also employ word embedding 

features to represent textual information.  

The word embedding approach is a relatively new representation of textual data in natural language processing 

(NLP). The fundamental concept behind this model is that words with similar properties co-occur with similar 

neighbors (Mai et al., 2019). In other words, a word embedding is a type of word representation which allows words 

with similar properties to have a similar representation. More precisely, this model represents each word as a vector in 

a low-dimensional space (Goldberg, 2017). The word embedding vector includes real values, which reflect the 

morpho-syntactic and semantic properties of the word.  

Mikolov et al. (2013) develop the word2vec technique, where word embeddings can be produced either through the 

continuous bag of words (CBOW) model, or the skip-gram model. Both models use shallow neural networks to learn 

word representations for each unique word. The CBOW model combines the embeddings of surrounding words to 

predict the word in the middle of a window of text, whereas the skip-gram model tries to predict the context words in a 

window of text for a given word in the middle of the window. 

Pennington et al. (2014) introduce an alternative method for producing word embeddings, known as global vectors 

for word representation (GloVe). GloVe embeddings typically lead to similar performance in NLP tasks as word2vec 

embeddings, but GloVe embeddings are more readily available in different dimensionalities, and pre-trained on diverse 

corpora. Therefore, in our paper, we employ the available 200-dimension generic embeddings created by Pennington et 
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al. (2014). These embeddings are obtained from 6 billion tokens from Wikipedia 2014 and Gigaword 5, and have a 

vocabulary size of 400K words.
3
 

In our empirical setting, one possible concern with the generic word embeddings is that they are not trained on 

(obtained from) a finance-specific corpus. To account for this issue, we also employ domain-specific (DS) word 

embeddings. DS word embeddings are trained on data from a specific domain of interest. For this reason, they may be 

able to represent better the semantics of the text compared to generic word embeddings. In particular, we use word2vec 

to create our 200-dimension finance word embeddings (FWE) induced from textual disclosure in the finance domain.
4
 

In particular, our finance word embeddings are derived from 4.9 billion tokens of EDGAR financial disclosures from 

1994 to 2016 (including all 10-K, 10-Q, and S-1 filings), and have a vocabulary size of 2.3M words.  

In more detail, we employ the skip-gram model to produce our finance word embeddings. As noted earlier, the skip-

gram model learns word vector representations aiming to predict the context (surrounding words in a window) from the 

central word of each (sliding) text window (Mikolov et al., 2013). In this regard, if we have a corpus of T words w1, 

w2,.., wT, skip-gram aims to maximize the following log-likelihood objective: 

1 , 0

log ( | )
T m

t i t

t m m i m i

P w w




     

     (2) 

where wt is the central word of the (sliding) window at location t in the corpus, wt+i is the context word at location t+i, 

and m defines the window size (     ) of the window around wt. Our FWE are created with window size equal to 

5. 

Each word has two embeddings (vectors of real numbers), an input (w
in
) and an output (w

out
) one, which are 

randomly initialized, and learned by minimizing the objective. For every token wt at position t of the corpus and every 

position t+i (i≠0) within a window [t-m, t+m] around position 𝑡, we aim to be capable of predicting which vocabulary 

word occurs at position t+i by multiplying (dot product)   
   and     

   . The basic form of skip-gram employs the 

softmax function to calculate the likelihood of a surrounding word wt+i given a center word wt: 

 
 
 
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p wx
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
    (3) 

where V is the vocabulary. We learn the   
   and     

    by maximizing the probability we assign to the word wt+i that 

actually occurs at each position t+i of each window. In fact, we obtain the word embeddings as follows:  

, 1 , 0

log ( |g ), ar max
in out

T m

t i t

t m

in out

E m m i iE

E P w wE




     

       (4) 

where E
in
 and E

out
 are matrices that include in their columns all the in (  

  ) and out (    
   ) vectors of all words in the 

                                                           
3
 These word embeddings have been proved to be efficient to many tasks. Also, they are publicly available 

https://nlp.stanford.edu/projects/glove/  
4
 To do so, we use the free available Python library of gensim (https://radimrehurek.com/gensim/).  
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vocabulary. We maximize the objective by stochastic gradient ascent. However, in practice the softmax of 

 (    |  ) is computationally expensive, because of the large size of the vocabulary  . We, therefore, use the 

negative sampling version of the skip-gram model. Instead of predicting the context word      from the central word 

  , we now aim to be able to identify the true context word     , when given the true context word      and a 

randomly sampled word   (multiple randomly sampled words are used in practice, instead of just one). In effect, 

instead of aiming to produce a probability distribution over the vocabulary   for position 𝑡   , we now have a binary 

classification problem, where we need to classify      in the true (positive) class, and   to the false (negative) class. 

The objective now becomes:  

   
, 1 , 0

, argmax lolo gg w 1
in out

T m
ouin out in in

t t

m

t out

t i

t iE m m iE

E E w wr




     

     
    (5) 

where   is the sigmoid (logistic) function, and  (    
      

  ) is the probability estimate that word   is the true 

context word. After maximizing the objective, we keep the vectors of     as word embeddings, though the vectors of 

     can also be used alternatively. 

For visualization purposes, we project our finance word embeddings (with 200 dimensions) into 2 dimensions using 

the t-Distributed Stochastic Neighbor Embedding (t-SNE) dimensionality reduction technique. We plot the various 

words from our financial word embeddings in a 2-dimensional vector space (see Figure A1 in the Appendices). Words 

with similar properties are located in close proximity to each other in the word embedding space. For instance, words 

close to the upper right corner of the embedding space relate to merger events, such as acquired, acquire, target, 

purchase, merger, and acquisition. This finding is in line with our conjecture that annual reports contain information 

regarding the banks’ strategic choices, and particularly their M&As strategies. Furthermore, at the bottom of the 

embedding space, there is a set of words that express negativity, such as crisis, distress, weak, recession, and turmoil 

among others. Considering the previous facts, we can infer that our FWE serve their purpose of being specialized in 

financial texts. 

 

3. Methodology 

In this section, we describe the three parts of our methodological approach. First, how we split our datasets into 

training set and out-of-sample (testing) set, and how we match our training sets to control for the imbalance issue. 

Second, we analyze the machine learning models we employ in our study. Third, we describe the measure we use to 

evaluate the performance of our models.  

3.1. Splitting datasets and matching training sets 

To address our research question, we specify two binary models that are capable of distinguishing between: (1) 

bidders and non-bidders and (2) targets and non-targets. To do so, we have to construct our two datasets in a proper 

way. The first dataset will include only bidders and non-bidders, and the second dataset will include only targets and 

non-targets. Then, we split our two datasets into training and out-of-sample datasets. Following Geng et al. (2015), 

Doumpos et al. (2017), and Routledge et al. (2017), we select 80% of each dataset as the training set, and the remaining 
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20% as the out-of-sample. The out-of-sample is selected from a future period, as the usefulness of a classification 

model is evaluated according to its ability to correctly predict observations that occur in the future (Espahbodi and 

Espahbodi, 2003). More precisely, for both prediction tasks, the out-of-sample covers the period from March, 2012 to 

December, 2016 in terms of 10-K filing date. 

It is obvious from Table 1 that the number of bidders and targets is disproportionally smaller compared to non-

bidders and non-targets. This suggests that our datasets are imbalanced. Imbalanced datasets are a common issue in 

finance classification tasks, a fact which might jeopardize the training of our models (Neophytou and Mar Molinero, 

2004; Pasiouras et al., 2007, 2010). To address this issue, we adopt the undersampling approach of Veganzones and 

Severin (2018), and we balance our training samples by excluding observations from the majority category. We use the 

filing year of the banks’ annual reports as the matching criterion. This matching criterion has two main benefits: (1) it 

helps us control for any time effects in our analysis, (2) it allows us to include all the other variables as inputs in our 

models (Hasbrouck, 1985).
5
 However, we leave the out-of-sample datasets imbalanced, because the out-of-sample 

dataset should be representative of the whole sample. We do so, to test whether textual features can enhance the 

performance of our models in a real-time setting. 

3.2. Machine learning models 

To perform our merger classification task, we use our machine learning models.
6
 The machine learning models we 

use are: (1) logistic regression (LOGIT), (2) linear support vector machine (SVM-linear), (3) support vector machine 

with radial basis function kernel (SVM-RBF), (4) random forest (RF), and (5) multilayer perceptron (MLP). These 

models use as textual inputs the features obtained by the BOW approach. We select these models for our merger 

prediction task, as they are widely-used in several finance classification tasks due to their prediction efficacy in such 

tasks (Mai et al., 2019; Stevenson et al., 2021; Yildirim et al., 2021). Therefore, we rely on this literature, and we 

choose the machine learnings that all these studies have in common. By doing so, our results can be comparable to 

findings from other finance classification tasks such as bankruptcy prediction. Furthermore, in the MLP, we use the 

textual features obtained by word embeddings (generic or finance).
7
 Figure 1 illustrates this process step by step. 

We note that using centroids of word embeddings is still, in effect, a bag of words approach, since word order is 

discarded. More powerful deep learning models, like Convolutional Neural Networks (CNNs) and Recurrent Neural 

Networks (RNNs) can be applied to text (Goldberg, 2017), using word embeddings as inputs, in ways that consider 

word order. Also, more recent deep learning models for text, mostly Transformer-based models (Vaswani et al., 2017) 

                                                           
5
 Size is also frequently-used as a matching criterion. However, if we use size to match our datasets, then we have to exclude it 

from our classification models. In line with previous studies, we prefer to use size as a control variable rather than as a matching 

criterion, because it is an important factor in explaining merger behavior (Espahbodi and Espahbodi, 2003; Pasiouras et al., 2007, 

2010). 
6
 In all our models, all financial variables are standardized. Textual features are also standardized when they are combined with 

financial variables. The hyper-parameters of the models are tuned using grid search based on the 5-fold cross-validation 

performance of the training set. 
7
 The python algorithms were run through Google Colab, a product of Google Research, which allows anyone to write and run 

arbitrary python code. Since Colab randomly assigns GPU cards with different features each time, the estimated time for each 

experiment is approximately as follows: the average time needed to train a model with BOW textual features was 1.5 hours for 

bidders and 1 hour for targets. Word embeddings are more time consuming, especially with TF-IDF weights. More precisely, the 

equivalent average time for TF word embeddings was 2 hours for bidders and 1.5 hours for targets. Strikingly, for TF-IDF word 

embeddings, the average time for was 15 hours for bidders and 12 hours for targets, respectively. 
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can be pre-trained on gigantic corpora (Wikipedia and book collections) of unlabelled documents and then fine-tuned 

(further trained) on much fewer (compared to a gigantic corpus) task-specific labelled training instances, achieving 

better performance than when using only the task-specific labelled training instances. However, models of this kind can 

so far cope only with very short documents. For example, the commonly used BERT models (Devlin et al., 2018), 

which employ Transformers, can typically process up to 512 sub-word tokens (sub-word tokenizers break words into 

smaller units). Even very recently proposed variants of Transformer-based models for “long” text (Zaheer et al., 2020) 

can only process text input of up to 4,096 sub-word tokens, whereas the documents we consider are much longer. By 

contrast, centroids of word embeddings have no input length limitation. 

One possible methodological concern with our machine learning models is the risk of overfitting. More precisely, 

overfitting is a serious issue where the models perform much better on the training set than on the out-of-sample (low 

bias, but high variance). In other words, in such a case the models learn the peculiarities of the training data to an 

excessive degree. We address this issue in several ways. First, we decrease the feature space by using dimensionality 

reduction techniques. Second, we optimize the hyper-parameters of our machine learning models to reduce the 

likelihood of overfitting. Third, in the MLP model, we employ regularization terms, dropout techniques, and early 

stopping. More details will be provided next. 

Figure 1 

Flow chart of analysis 

 

 

3.2.1. Machine learning models with bag of words approach 

3.2.1.1. Logistic regression 

Logistic regression (LOGIT) is also one of the most commonly-used models in merger prediction task (Hasbrouck, 

1985; Palepu, 1986; Ambrose and Megginson, 1992; Barnes, 1998, 1999; Powel, 2001; Espahbodi and Espahbodi, 

2003; Cremers et al., 2009; Routledge et al., 2017). LOGIT belongs to the generalized linear models and uses a 

sigmoid function to convert the log-odds to probability as the predictive output of the model. LOGIT’s rationale is to 
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maximize the conditional log-likelihood of training samples in order to learn the parameters of the model. In fact, it 

typically uses stochastic gradient ascent or variants. To deal with overfitting the training dataset, regularization terms 

could be added to the log-likelihood. In our empirical setting, we employ L2 regularization, which subtracts the 

squared L2 norm of the weights vector (multiplied by a hyper-parameter), from the log-likelihood. The mathematical 

formula behind this model is described as follows: 

P(Yt+1 = 1| Xi,t) = 

n
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    (6) 

where Y is the binary output. In the bidder prediction task Y equals if the firm i is a bidding bank at year t, and 0 

otherwise. In the target prediction task Y equals if the firm i is a target bank at year t, and 0 otherwise. Xi,t is a vector of 

n control variables at time t, bi are parameters of the model, and b0 is a bias term. 

3.2.1.2. Support vector machine 

Support vector machine (SVM) is a non-probabilistic supervised learning algorithm, first introduced by Vapnik 

(1998). So far, several studies have used SVMs in finance tasks, such as bankruptcy forecasting (Min and Lee, 2005; 

Shin et al., 2005; Wu et al., 2007; Manthoulis et al., 2020), stock price forecasting (Cao, 2003; Pai and Lin, 2005). 

Given a set of training instances that explicitly belong to various pre-defined categories, the SVM learns a decision 

boundary that defines the predicted identity of each instance. This decision boundary is practically a hyperplane in the 

feature space. The aim is to find the optimal hyperplane that maximizes the width of the gap (margin) among the 

instances of different categories (Kumar and Ravi, 2016). Notably, only the training samples near the hyperplane, 

either at the boundaries of the margin or inside the margin in case of letting “slack” in the separation, matter when 

creating the hyperplane. It is worth mentioning that finding the maximum margin hyperplane belongs to the general 

quadratic programming optimization problems. Interestingly, SVM has the advantage that being able to handle non-

linearly separable data. In such a case, it can employ non-linear kernel functions such as radial basis function (RBF) 

kernel. As a result, our training data are projected into a higher dimensional space so that our data become more 

separable. (Nassirtoussi et al., 2014). Hence, in our empirical analysis, we use: (i) a linear SVM, and (ii) an SVM with 

RBF kernel. To prevent the overfitting issue, we choose the appropriate hyper-parameter value of the regularization 

parameter (C). In the case of SVM-linear, C equals 1 for both tasks. For SVM-RBF, C equals 0.5 (5) in the bidder 

(target) prediction task. As in all non-linear SVM models, there is another hyper-parameter known as gamma that 

controls for the curvature of the decision boundary. In our study, gamma is set to 0.01 for both tasks. 

3.2.1.3. Random forest 

Random forest (RF) is an ensemble machine learning algorithm, initially designed by Breiman (2001) as a variant 

of Bagging (Breiman, 1996). We employ RF by creating several uncorrelated decision tree classifiers. These decision 

trees are typically trained on bootstrap copies of original samples by randomly selecting a subset of features (Mai et al., 

2019). The prediction process is then performed with each individual tree predicting a class. Based on majority voting, 

the class with the most votes becomes the output of our model. In general, RF outperforms the classical decision trees 

(DT), since it addresses the DT issue of overfitting to the training sample. To address overfitting, we optimize the two 
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key hyper-parameters of the RF model: (1) the number of decision trees, and (2) the number of features randomly 

chosen to grow each decision tree when searching for the best split (max_features). First, the number of decision trees 

is defined as 200 for bidders and 100 for targets. Second, in addition to the randomization of training samples 

(bootstrap), the tuning optimization of max_features allows the proper randomization of feature space, leading to a 

decreased variance (low overfitting). We choose max_features to be equal to 10. 

3.2.1.4. Multilayer perceptron  

Artificial neural networks (ANNs) have widely been used in several prediction tasks in the area of finance (Kumar 

and Ravi, 2016). Among them, one of the simplest kinds of neural networks, and at the same time very popular is the 

multilayer perceptron (MLP) model. Not only for these reasons but also because MLP is able to handle all the text 

representations we use (TF-IDF-based or embedding-based) makes it an ideal choice for our analysis along with the 

rest of the machine learning models we use. Given that MLP is a feed-forward model, it maps inputs (financial 

variables and textual features) to a binary outcome. In a typical MLP model, there is an input layer of neurons, where 

our variables, textual or financial, are used as inputs (Goldberg, 2017). Next, there are one or more hidden layers. Each 

neuron computes a weighted sum of its inputs, applies a non-linear activation function to the resulting sum, and passes 

its output to the neurons of the next layer. The weights are learned by minimizing a loss function via back-propagation, 

a version of stochastic gradient descent for networks with hidden layers. In a classification task, the non-linear 

activation functions allow the model to cope with non-linearly separable data. In binary classification, as in our case, 

the output layer contains a single neuron with a sigmoid activation function, which provides the probability the model 

assigns to the positive class. The loss function is typically binary cross-entropy, in effect minimizing the divergence of 

the predicted probability distribution over the two classes from the correct (one-hot) distribution, for each training 

example. In the bidder prediction task, we use 3 hidden layers of 100 neurons in each.
8
 In the target prediction task, the 

MLP model has 3 hidden layers, each of which has 200 neurons. 

3.2.2. MLP model with word embedding approach 

In all the previous models, we use the BOW text representations as textual inputs. Word embeddings are very 

uncommon in non-neural models, such as LOGIT, SVM, and RF, firstly for historical reasons; they were developed in 

the realm of neural network research. There are also theoretical reasons. In particular, each dimension (feature) of the 

word embeddings provides latent information, not easily interpretable on its own, and typically multiple dimensions of 

the word embeddings need to be non-linearly combined, by several hidden layers in MLPs, to obtain useful features. 

Linear models (e.g., LOGIT, linear SVMs) do not form such non-linear feature combinations. Also, in deep learning 

multiple stacked layers of approximately the same number of neurons lead to better performance compared to fewer 

stacked layers with many more neurons. Non-linear SVMs can be viewed as belonging to the latter kind as they project 

the input feature space only once to a higher-dimensional space. Furthermore, the dimensions of the word embeddings 

are real-valued with unknown and possibly skewed distributions, which requires considering multiple alternative 

                                                           
8
 We use Adam (a version of stochastic gradient descent) as the optimizer algorithm, and rectified linear unit (ReLU) as the 

activation function of each hidden layer. ReLU is defined as f(x) = max (0, x). Finally, we use early stopping to mitigate overfitting 

(Mai et al., 2019). To do so, we set aside 10% of training data as validation or development set. 

                  



18 

 

discretizations or multiple alternative value-splits, which increases the computational cost of decision tree-based 

learners, including RF. 

Kriebel and Stitz (2022) demonstrate that the MLP models with word embeddings as inputs provide comparable 

performance with more complicated deep learning networks in credit default prediction. To utilize textual information 

based on word embeddings, we have a vector (embedding) for each vocabulary word (obtained using tools like 

word2vec, see Section 2.3.3). To obtain a vector representation of an entire text, we can average the word embeddings 

of its words, called “centroid”. Equivalently, we can obtain the centroid of a text by summing the word embeddings of 

all the words of the vocabulary, but weighting each word embedding in the sum as many times as the TF of the 

corresponding word in the text. As follows, we first provide the mathematical formula of the TF centroid textual 

feature: 
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
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
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where i represents each text in the sample, j represents each word in the vocabulary (V),   ⃗⃗⃗⃗  represents the 200-

dimensional word embedding of each word j, and      represents the term frequency of the word j in the text i.  

Alternatively, TF-IDF scores can also be combined with word embeddings. Notably, we can obtain the centroid of a 

text by weighting each word embedding using the TF-IDF weighting scheme. We multiply each embedding by the TF-

IDF score. This has the effect that words of the text that are very common in the language (low IDF, e.g., articles) are 

in effect ignored when forming the centroid of word embeddings of a text, even if their TF is high in the particular text. 

Moreover, we present the mathematical formula for TF-IDF centroid textual feature: 
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where      represents the inverse document frequency of each word j. 

With both kinds of centroids, a text can initially be viewed as a (d x n) matrix, where d is the dimensionality of the 

word embeddings and n is the length of the text in words (word occurrences). By computing the centroid of the text, 

the text representation becomes a (d x 1) matrix (vector), as illustrated in Figure 2. In particular, the word embeddings 

could be either pre-trained, such as the generic word embeddings of GloVe, or be our financial word embeddings 

trained on the EDGAR documents. Finally, we use these word embedding textual features as inputs to a MLP model. 

Figure 2 illustrates the architecture of the MLP models with the word embedding approach. First, we use a 200-

dimensional vector to represent each document, as the size of the pre-trained word embeddings is 200. Second, these 

vectors are inserted as inputs in the model, and then they are processed by some hidden layers with the rectified linear 

unit (ReLU) activation function. Finally, there is the output layer where a sigmoid function provides the probability of 

the positive class. 

We create our models using the Keras library with a TensorFlow backend (Chollet, 2017). We employ a batch size 

of 16, and the models take less than 12 epochs to converge. In the bidder prediction task, the models have 2 hidden 

                  



19 

 

layers without any linear projection in the input layer. In the target prediction task, the input layer linearly projects into 

50 dimensions, and afterwards, there are 2 hidden layers. It is worth mentioning that linear projection is a beneficial 

mechanism, as it can limit the overfitting problem by reducing the number of features used as inputs in the model. 

Further, our models use the Glorot weight initialization scheme and each layer contains 512 neurons. Finally, to control 

for the issue of overfitting, we use the dropout technique and the early stopping strategy, as in Mai et al. (2019). The 

dropout method randomly omits a subset of hidden neurons at every step of the training process. The dropout rate in 

our models is defined as 10%. On the other hand, early stopping requires monitoring the performance of the validation 

set, a subset of the training set, so that we stop the training process when there is no more improvement. 

3.3. Evaluation measure 

We evaluate the out-of-sample performance of our classification models using the Area Under the Curve (AUC) 

score, which is frequently-used in studies with imbalanced datasets (Yildirim et al., 2021). The AUC score is computed 

from the receiver operating characteristic (ROC) curves, which are typically used in finance prediction tasks, such as 

bankruptcy prediction (Chava and Jarrow, 2004; Mai et al., 2019; Manthoulis et al., 2020; Borchert et al., 2023; 

Korangi et al., 2023), and credit risk prediction (Stevenson et al., 2021; Dumitrescu et al., 2022). The ROC curve plots 

the true-positive rate of the classifier on the vertical axis, and the false-positive rate on the horizontal axis, as the 

classification threshold varies. The area under this curve is called AUC, and its values are in the range of [0, 1]. Higher 

AUC values imply better out-of-sample classification ability of our models. 

Figure 2 

Architecture of the MLP models with the word embedding approach 

 
4. Empirical results and discussion 

4.1. Prediction with financial variables 

As the first step in our empirical analysis, we examine the predictive power of our models when we use only 

financial variables as inputs. In fact, we investigate whether financial variables alone can distinguish between bidders 

and non-bidders or targets and non-targets. The results are reported in Table 3. First, we present the AUC scores of our 

classification models for the bidding banks. AUC scores range from 0.500 (SVM-RBF) to 0.604 (MLP). Furthermore, 
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LOGIT, which is the most frequently-used model in the literature, performs relatively well with an AUC score of 

0.595. 

Second, we present the results for the target firms. In general, our benchmark models perform better compared to 

what is reported by the bidding banks. In fact, with the exception of SVM-linear, all other models yield higher AUC 

scores. More precisely, AUC scores range from 0.512 (SVM-linear) to 0.669 (RF). These results suggest that 

traditional financial variables are more informative in a target prediction task. This is expected to a large extent, since 

the target prediction usually focuses on weak bank fundamentals. However, in the case of bidding banks, financial 

variables do not account for strategic managerial decisions. To this end, we expect textual features to be more 

informative in the case of bidder prediction.  

Table 3 

Out-of-sample performance using only financial variables 

 LOGIT SVM-linear SVM-RBF RF MLP  

Bidders 0.595 0.598 0.500 0.581 0.604  

Targets 0.655 0.512 0.636 0.669 0.666  

This table reports the AUC scores for our machine learning models, using financial variables as inputs. 

4.2. Prediction with textual features 

In this section, we investigate whether the language used by managers in the bank annual reports has any predictive 

power in our merger classification task. To be consistent with our empirical setting, we will first analyze results based 

on the BOW approach, and then, we will report the results of the word embedding approach.  

Table 4 presents out-of-sample AUC scores of our prediction models, using only textual data as inputs based on the 

BOW approach. We use four different types of textual features: (1) term frequency (TF), (2) term frequency-inverse 

document frequency (TF-IDF), (3) term frequency with bigrams (TF + bigrams), and (4) term frequency-inverse 

document frequency with bigrams (TF-IDF + bigrams). Types 1 and 2 use only unigrams, and types 3 and 4 use a 

combination of unigrams and bigrams. 

Table 4 

Out-of-sample performance using only textual features based on bag of words approach 

 LOGIT SVM-linear SVM-RBF  RF MLP 

Panel A: Bidders      

TF 0.658 0.626 0.616 0.511 0.645 

TF-IDF 0.595 0.657 0.636 0.638 0.643 

TF + bigrams 0.658 0.645 0.621 0.581 0.650 

TF-IDF + bigrams 0.657 0.666 0.599 0.620 0.651 

Panel B: Targets     

TF 0.615 0.500 0.573 0.587 0.579 

TF-IDF 0.596 0.579 0.599 0.623 0.587 

TF + bigrams 0.520 0.542 0.546 0.575 0.562 

TF-IDF + bigrams 0.590 0.561 0.549 0.605 0.604 

This table reports the AUC scores for our machine learning models, using textual features based on the bag of words approach. 

The first two lines of each panel report results using only unigrams, while the last two lines report results using combinations of 

unigrams and bigrams.  

Panel A of Table 4 shows the results for our first dataset (bidders and non-bidders). Overall, our models using only 

textual data as inputs perform better than our benchmark models. SVM-linear yields the highest AUC score (0.666) 

followed by LOGIT (0.650) and MLP (0.650). Notably, almost all AUC scores (except the RF model with TF textual 

features) are equal to or higher than the ones reported in Table 3. This fact indicates that textual information of the 10-
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K filings contains vital information for predicting future acquirers in the U.S. banking industry, a finding which is in 

line with our research question.  

Panel B of Table 4 shows the results for our second dataset (targets and non-targets). In this task, the results are 

mixed. For instance, SVM-linear performs better with textual features compared to our benchmark models. For the 

remaining models, traditional financial variables are more meaningful inputs compared to textual features. However, 

this is legitimate considering that target prediction relies on weak fundamentals, as measured by the financial variables 

that we also use in our benchmark models. Taken altogether, our results might explain why the relevant literature, 

which almost exclusively uses financial variables, focuses primarily on target prediction rather than bidder prediction.  

Table 5 reports the results when we employ textual features based on the word embedding approach. We examine 

the performance of two different models, the TF centroid embedding model and the TF-IDF centroid embedding 

model. In each model, we use as inputs either the generic word embeddings based on GloVe, or our finance word 

embeddings. More precisely, we use the MLP model with four different word embedding features: (1) TF Centroid 

with generic word embeddings as inputs (TF Generic centroid), (2) TF-IDF Centroid with generic word embeddings as 

inputs (TF-IDF Generic centroid), (3) TF Centroid with finance word embeddings as inputs (TF Finance centroid), and 

(4) TF-IDF Centroid with finance word embeddings as inputs (TF-IDF Finance centroid). 

Panel A presents the results for the bidders and Panel B presents the results for the targets. In predicting future 

bidders, the TF-IDF Finance centroid embedding model has the best performance (0.568). Similarly, in predicting 

future targets, the TF-IDF Finance centroid embedding has the best performance, with an AUC score of 0.579. 

Collectively, these results highlight two important issues. First, our FWE embeddings are more informative textual 

features compared to generic word embeddings since they are trained on a finance-specific corpus. Second, in all cases, 

our MLP models with word embeddings perform better with the use of the TF-IDF weighting scheme. However, the 

results obtained are inferior to the ones obtained by the BOW approach and the benchmark models.  

4.3. Prediction with both financial variables and textual features 

In this section, we jointly use both financial variables and textual features as inputs in our classification models. We 

do so, in order to investigate whether and to what extent textual information can effectively be combined with financial 

variables in our merger classification task.  

Table 5 

Out-of-sample performance of the MLP model using only textual features based on word embedding approach 

 Generic centroid Finance centroid 

Panel A: Bidders   

TF 0.481 0.528 

TF-IDF 0.521 0.568 

Panel B: Targets  

TF 0.560 0.577 

TF-IDF 0.562 0.579 

This table reports the AUC scores for the MLP model using textual features as inputs. 

 

4.3.1. Combination of financial variables with bag of words textual features 

We now investigate the prediction performance when both financial variables and textual features based on BOW 

are utilized. One issue that emerges here is that textual features dramatically outnumber financial variables, and as a 
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result, the plethora of textual data may overrule the role of financial variables. Such a model may suffer from the 

“curse of dimensionality” (Mai et al., 2019). To alleviate this concern, we decrease the dimensionality of our textual 

features (number of words in the vocabulary).  

We project our high-dimensional document vectors into a low-dimensional space using the singular value 

decomposition (SVD) dimensionality reduction technique as in Kim et al. (2005), and Degiannakis et al. (2018), 

among others. In our empirical analysis, we use SVD to project the original feature vectors to 100 dimensions 

(SVD100). We consider only the 100 first SVD components, as they were found to explain almost 80% of the joint 

variance of the 20,000 most frequent textual features in the 10-K filings. Hence, this method reduces the dimensions of 

our textual features from 20,000 to 100. By using such a low level of textual representation, we are able to deal with 

the curse of dimensionality, while preserving the meaningful information of the 10-K filings. 

Table 6 presents the results of this analysis. Panel A reports the AUC scores for our first dataset (bidders and non-

bidders). First, RF is the best-performing model with an AUC score of 0.706. This score is achieved with the 

combination of financial variables and TF-IDFSVD100 textual features. Next, SVM-linear produces the second-best AUC 

score (0.681), followed by SVM-RBF (0.664) and MLP (0.662). Finally, LOGIT produces the lowest AUC score, 

which equals to 0.659. These findings could imply that machine learning models such as the RF can handle textual data 

more efficiently compared to traditional techniques such as logistic regression. 

Table 6 
Out-of-sample performance using both SVD100 textual features based on the bag of word approach and financial 

variables as inputs 
 LOGIT SVM-linear SVM-RBF  RF MLP 

Panel A: Bidders      

TFSVD100 0.658 0.669 0.616 0.638 0.647 

TF-IDFSVD100 0.640 0.654 0.664 0.706 0.662 

(TF + bigrams)SVD100 0.659 0.681 0.621 0.669 0.659 

(TF-IDF + bigrams)SVD100 0.638 0.659 0.662 0.673 0.658 

Panel B: Targets     

TFSVD100 0.517 0.552 0.570 0.632 0.582 

TF-IDFSVD100 0.569 0.518 0.618 0.695 0.637 

(TF + bigrams)SVD100 0.519 0.541 0.588 0.647 0.583 

(TF-IDF + bigrams)SVD100 0.568 0.533 0.599 0.689 0.623 

This table reports the AUC scores for our machine learning models, using both textual features based on the bag of word approach 

and financial variables. The first two lines of each panel report results using only unigrams, while the last two lines report results 

using combinations of unigrams and bigrams.  

Two inferences are obtained when we compare the results of the models using both types of inputs with the models 

using a single type of input. On the one hand, the performance of our models is substantially improved when we use 

both textual features and financial variables instead of a single type of input. On the other hand, in some cases, the 

performance of the augmented models is comparable to the performance of the models using only textual features as 

inputs. Collectively, these findings may indicate that textual information from the bank annual reports is more 

informative relative to financial variables in the bidder prediction task. 

Panel B of Table 6 reports the AUC scores for our second dataset (targets and non-targets). Interestingly, we 

achieve the highest AUC score when we augment our benchmark models with textual features. More precisely, RF 

yields an AUC score of 0.695 when we use TF-IDFSVD100 as textual features, which is the highest score in the target 
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prediction task so far. Furthermore, in all cases, the SVM-linear outperforms the benchmark SVM-linear model of 

Table 3. However, the scores for the three remaining models (LOGIT, SMV-RBF, and MLP) are inferior to the ones 

produced by the benchmark models. Overall, our results indicate that textual features can also have some incremental 

value in the target prediction task. Nevertheless, bank fundamentals, as proxied by our financial variables, are strong 

predictors of future targets, a fact which is consistent with the relevant literature. 
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4.3.2. Combination of financial variables with word embedding textual features 

In this section, we examine the out-of-sample performance of the MLP model using a combination of word 

embedding textual features and financial variables as inputs. Table 7 presents our findings for bidder classification 

(Panel A) and target classification (Panel B). 

The results of Panel A suggest that the combination of word embeddings with financial variables can improve the 

performance of the MLP model. More specifically, the TF-IDF Finance centroid produces an AUC score of 0.663 

which is substantially higher than the score of the benchmark MLP model in Table 3. The TF-IDF Generic centroid 

also slightly outperforms the benchmark with a score of 0.607. The results of Panel B of Table 7 indicate that the 

combination of financial variables with word embeddings performs well also in the target classification task. More 

precisely, all models (except the TF Generic centroid) outperform the benchmark MLP model of Table 3. Similar to the 

bidder classification task, the TF-IDF Finance centroid yields the highest AUC score (0.690), followed by the TF-IDF 

Generic centroid (0.680), and the TF Finance centroid (0.670). 

Table 7 

Out-of-sample performance of the MLP model using both textual features based on the word embedding approach and 

financial variables as inputs 

 Generic centroid Finance centroid 

Panel A: Bidders   

TF 0.559 0.590 

TF-IDF 0.607 0.633 

Panel B: Targets  

TF 0.660 0.670 

TF-IDF 0.680 0.690 

This table reports the AUC scores for the MLP model using both textual features and financial variables as inputs. 

Further, our results provide two additional important findings. First, the TF-IDF centroid embedding model 

outperforms the TF centroid embedding model in all cases. This means that the TF-IDF weighting scheme produces a 

set of weights for our textual features that enhance the classification ability of our models. This result is consistent with 

previous findings, as the TF-IDF approach tends to perform better in many NLP tasks compared to simple proportional 

weighting (Loughran and McDonald, 2011; Loughran and McDonald, 2016; Katsafados et al., 2023). Second, the use 

of our finance word embeddings yields more accurate estimates, compared to using generic word embeddings. 

Therefore, we argue that the finance word embeddings are more meaningful inputs than generic word embeddings in 

both classification tasks. This is expected to some extent, because FWEs take into account the most likely meaning of a 

word in a business context, and as such, they are able to understand better the semantics of the text. 

4.4. Robustness tests 

4.4.1. Bootstrap statistical significance test 

So far, our findings provide supportive evidence that the inclusion of textual features substantially improves the 

performance of our benchmark models, especially in the bidder classification task. In both tasks, the best-performing 

model is the RF with TF-IDFSVD100 as textual features. However, it is important to test the consistency of these results, 

by including statistical significance tests to validate metric gains. To do so, we employ the bootstrap resampling 

method of Berg-Kirkpatrick et al. (2012), and we examine whether the best-augmented model outperforms the best 

benchmark model in both tasks. We provide a more detailed description of this technique in Appendix B. 
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Table 8 presents the results of this analysis. Initially, we compare the RF(TF-IDFSVD100) model of Table 6 with the 

MLP model of Table 3, which was the best-performing benchmark model in the bidder classification task. The 

comparison suggests that the RF(TF-IDFSVD100) significantly outperforms the benchmark MLP model (p=0.000). For 

the target classification task, we compare the performance of the RF(TF-IDFSVD100) of Table 6 with the benchmark RF 

of Table 3, which was the best-performing benchmark model in the target classification task. Similar to the bidder 

classification task, the RF(TF-IDFSVD100) significantly outperforms the benchmark RF model (p=0.006). Hence, our 

findings provide further support to our argument that textual features can significantly complement traditional financial 

variables in merger prediction tasks.  

Table 8 

Bootstrap randomization and statistical significance 

Comparisons Task Winner p-value 

RF(TF-IDFSVD100) vs benchmark MLP Bidders RF(TF-IDFSVD100) 0.000*** 

RF(TF-IDFSVD100) vs benchmark RF Targets RF(TF-IDFSVD100) 0.006*** 

This table reports the p-values of our results based on bootstrap statistical significance tests. In each task (bidders or targets), we 

compare the best performing model with textual features and financial variables as inputs with the best benchmark model of Table 

3. P-vales are calculated using the bootstrap resampling method of Berg-Kirkpatrick et al. (2012). 

4.4.2. Importance of textual features 

To further illustrate the high importance of textual features, we adopt the Gini impurity technique (Kurt et al., 

2008). Practically, this technique computes the importance score for each variable in the model, and it is applied to the 

RF models. Hence, we compute the Gini importance scores for the 25 most important features of our RF models, which 

are the best-performing models in both tasks. We limit the analysis to the 25 most important features, due to the fact 

that our textual features substantially outnumber our financial variables. Then, we compute the sum of these scores 

separately for textual features and for financial variables.  

Panel A of Table 9 presents the Gini importance scores for our bidder classification task. By comparing those sums, 

we observe that textual features are more important inputs than financial variables in all cases and by a large margin. 

This result is in line with our baseline findings, since we have documented the importance of textual features in 

predicting bidders in U.S. bank M&As. Furthermore, Panel B of Table 9 reports the Gini importance scores for our 

target classification task. In this task, the scores for financial variables are slightly higher compared to textual features 

in all cases except the (TF-IDF + bigrams)SVD100 textual features. Again, this finding is consistent with what we have 

reported so far. In fact, identifying future targets in the banking industry is usually conditional upon the weak bank 

fundamentals measured by financial variables. However, textual features are still important inputs in such a task.  

4.4.3. Identification of important textual features 

To understand which are the most important features in our prediction tasks, we adopt the novel LIME method 

which practically explains the predictions of any classifier (Ribeiro et al., 2016). More precisely, we employ LIME to 

visualize the important bigrams of the RF model, as it is the best-performing model with textual features in both tasks.  
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Table 9 

Sum of Gini impurity scores 

 Financial variables Gini Textual variables Gini 

Panel A: Bidders   

TFSVD100 0.054 0.232 

TF-IDFSVD100 0.063 0.229 

(TF + bigrams)SVD100 0.077 0.210 

(TF-IDF + bigrams)SVD100 0.069 0.221 

Panel B: Targets   

TFSVD100 0.246 0.194 

TF-IDFSVD100 0.236 0.199 

(TF + bigrams)SVD100 0.258 0.191 

(TF-IDF + bigrams)SVD100 0.229 0.236 

This table reports the Gini impurity scores when both SVD100 textual features and financial variables are used as inputs in the RF 

model. We provide the sum of Gini scores separately for financial variables and textual features. However, in our calculations we 

consider only the 25 most important features. The first two lines of each panel report results using only unigrams, while the last 

two lines report results using combinations of unigrams and bigrams. 

 

Table 10 presents the results of this analysis. Positive (negative) impact translates to higher (lower) probability to be 

classified as bidder or target. By looking at the results, we observe that they are in line with our intuition. For instance, 

bigrams that relate to the banks’ organizational structure can explain merger activity. Typically, bidding banks operate 

as bank holding companies (BHCs).  BHCs file consolidated financial statements because they own a controlling stake 

in one or more banks and non-bank financial institutions. By contrast, stand-alone commercial banks are rarely bidders 

and more likely targets in the U.S. bank merger market. These banks do not operate as holding companies and they do 

not file consolidated financial statements. Therefore, it is reasonable why terms like “Consolidated financial” or 

“Holding company” are positively related to bidder prediction and negatively related to target prediction. Furthermore, 

in the case of targets, the positive impact relates to words that describe weak bank fundamentals, such as loan losses 

and credit losses, a result that was consistent with our expectations.  

 

Table 10 

LIME visualization of textual features 
Panel A: Bidders Panel B: Targets 

Positive Impact Negative Impact Positive Impact Negative Impact 

Financial group Subsidiary banks Credit losses Internal control 

Bank holding Loan losses Loan losses Federal reserve 

Consolidated financial Affiliate banks Fair value Mortgage loans 

Internal control Federal reserve Assets liabilities Loan portfolio 

Interest rates Investment securities Interest revenue Investment securities 

Preferred securities Mortgage loans Financial reporting Increased million 

Fair value Depository institutions Net interest Allowance loan 

Financial statements Deferral plan Results operations Loan leases 

Loan portfolio Loss share Cash flows Consolidated financial 

Interest income Subordinated debentures Interest income Holding company 

This table reports the most important bigrams used as inputs in the RF model in both tasks. Their importance is computed using 

the LIME methodology. Positive (negative) impact translates to higher (lower) probability to be classified as bidder or target.  
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4.4.4. Recurrent neural network analysis 

One final concern regarding our empirical setup is the degree to which word embeddings, and particularly our 

finance-specific ones, are more meaningful inputs than the ones produced with the traditional BOW approach. In the 

target prediction task, MLP models with word embeddings outperform the vast majority of models with BOW textual 

features. However, in the bidder prediction task, evidence along these lines is not yet conclusive. 

To alleviate this concern, we employ another, more sophisticated (but also computationally more expensive) deep 

learning model, namely the Bi-directional Long Short-Term Memory Recurrent Neural Network (BLSTM-RNN). In 

the computer science literature, BLSTM-RNNs with word embeddings have been proved to be quite effective in 

producing accurate predictions due to their capability in modelling sequential data (Wang et al., 2015). Furthermore, in 

their recent survey paper, Doumpos et al. (2023) suggest that BLSTM-RNNs should be considered for further research 

in banking prediction tasks. Hence, we run both prediction tasks using word embeddings and financial variables as 

inputs to BLSTM-RNN models. 

In the bidder prediction task with GloVe word embeddings, the model has 2 Bi-directional LSTM layers with 256 

neurons in each layer (128 neurons in each direction) and linear projection to 64 dimensions where the outcome is 

transmitted to an MLP model with 1 hidden layer of 256 neurons. For regularization reasons, we employ a drop-out 

rate equal to 0.3. When we use our finance word embeddings, the model has 1 Bi-directional LSTM layer with 256 

neurons (128 neurons in each direction), and linear projection to 128 dimensions where the outcome is transmitted to 

an MLP model with 2 hidden layers of 256 neurons in each layer. The drop-out rate equals 0.1. In the target prediction 

task with GloVe word embeddings, the model has 2 Bi-directional LSTM layers with 256 neurons in each layer (128 

neurons in each direction) and linear projection to 64 dimensions where the outcome is transmitted to an MLP model 

with 2 hidden layers of 128 neurons in each layer. The drop-out rate equals 0.2. When we use our finance word 

embeddings, the model has 1 Bi-directional LSTM layer with 256 neurons (128 neurons in each direction) and linear 

projection to 128 dimensions where the outcome is transmitted to an MLP model with 2 hidden layers of 256 neurons 

in each layer. The drop-out rate equals 0.1. In all experiments, we use class weighting to deal with the class imbalance 

which proved to be more efficient than undersampling in the case of BLTSM-RNNs.
9
 

Table 11 reports the results of the BLSTM-RNN models. By comparing our results with the ones in Table 7 (MLP 

models with word embeddings), we see that the AUC scores are substantially improved in the bidder prediction task. 

More importantly, when we compare our results with Table 6, the AUC score for bidders using FWE is the highest one 

reported in our study (0.725). Hence, this evidence suggests that our finance word embeddings can be the most 

informative textual features when used as inputs in the appropriate deep learning model. For targets, AUC scores range 

from 0.661 to 0.669, scores which are higher than most scores reported in Table 6. Furthermore, in both tasks, AUC 

scores are higher with FWE compared to GloVe word embeddings. The importance of these findings is twofold. First, 

BLSTM-RNNs are more efficient in handling textual information from word embeddings, especially in the bidder 

prediction task. Second, domain-specific word embeddings, in conjunction with the appropriate model, should be 

                                                           
9
 The hyperparameters of the models are tuned using a development set containing 15% of the training set selected at random. 
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considered as inputs in such prediction tasks. 

Table 11 

Bi-directional LSTM predictions 

 GloVe FWE 

Bidders 0.720 0.725 

Targets 0.661 0.669 

This table reports the AUC scores for the Bi-directional LSTM model using both word embedding textual features and financial 

variables as inputs. 

5. Conclusions 

In this study, we utilize several machine learning models to predict bank mergers in the U.S. Our key innovation is 

that we investigate the role of textual disclosure of bank annual reports in our merger prediction task. More precisely, 

we examine whether the language used by bank managers in the annual reports has any additional predictive power in 

our classification models beyond the traditional financial variables. The intuition behind this text-based approach is 

that textual information could reduce the opaqueness of bank assets and provide some important insights regarding the 

strategic options of the banking firms. Hence, our study contributes to the recent body of research that utilizes textual 

analysis in various finance tasks.  

We create a comprehensive dataset of 9,207 U.S. bank-year observations during the period 1994-2016. To create 

our textual features, we use the bag of words and the word embedding approaches. One important aspect of our 

empirical approach is that we go beyond the frequently-used generic word embeddings, and we create our own word 

embeddings specialized in the finance sector. Then, we use our textual features (with or without financial variables) as 

inputs in our classification models, and we examine whether the inclusion of textual data can improve the performance 

of our benchmark models. 

Our findings provide strong evidence for the importance of textual information in a bank merger classification task. 

In fact, when we augment our benchmark models with textual data, we achieve the highest AUC scores. In the bidder 

classification task, textual data alone are in many cases more informative than financial variables. When we combine 

both types of inputs, our models significantly outperform all our benchmark models. By using the bootstrap resampling 

method of Berg-Kirkpatrick et al. (2012), we find that this outperformance is also statistically significant. Furthermore, 

we employ additional robustness tests to quantify the importance of textual features in our merger prediction task, and 

to examine which textual features indeed contribute to the enhanced performance of our best models. Finally, to 

illustrate the predictive ability of our finance word embeddings, we use them as inputs (along with financial variables) 

in BLSTM-RNN models, which are more capable of exploiting such information. Our findings suggest that in the 

bidder prediction task, our finance word embeddings are the most informative textual sources since we achieve the 

highest AUC score. This is in line with our intuition that textual information is more meaningful in this task, since the 

choice to become a bidder is a strategic decision for the bank. To conclude, we hope that our study will provide fertile 

ground for future research in the fast-growing literature of textual analysis in finance. 
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