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Abstract—Mathematical competence is important to acquire
for everyday and professional purposes, but often represents
a considerable hurdle for students, who may associate it with
unpleasant experiences. Our goal is to use neuroscience and
neural engineering to support students to improve their math-
ematical understanding. More specifically, we are interested in
the development of a non-invasive electroencephalogram (EEG)-
based neuroadaptive Brain-Computer Interface (BCI) learning
environment that optimizes learning outcomes by adapting the
learning content provided according to the cognitive load of the
learner. In this paper, we investigate what cognitive states occur
when students with and without Math Anxiety learn to solve a
math problem presented in the form of a novel computer puzzle.
Results of an offline analysis of data recorded from 10 study
participants suggest that different cognitive states occur, each
with specific features that a BCI could potentially detect.

Index Terms—Math Anxiety, neuroadaptive technologies,
Brain Computer Interfaces (BCI), electroencephalogram (EEG)

I. INTRODUCTION

Math Anxiety is defined as a “feeling of tension and
anxiety that interferes with the manipulation of numbers and
the solving of mathematical problems in ordinary life and
academic situations” [1]. This has consequences on the career,
occupation, and personal growth of a person as the desire to
avoid math shapes the choices of an individual. Approaches
to reduce Math Anxiety, especially in a classroom setting,
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usually focus on expressive writing [2] to help students control
anxious feelings or on changing the mindset and motivation of
the students thanks to the use of Mindset theories and Math-
ematical mindset approaches, respectively [3]. In the context
of education, it has been shown that learning outcomes are
best if the training program and learning content are tailored
to the learner’s specific needs [4]. According to the Cognitive
Load Theory, in fact, the type and amount of cognitive load
learners experience while studying instructional materials is
one of the crucial factors for successful learning [5]. Optimal
learning conditions are characterized by providing challenges
for learners without inducing cognitive overload.

The capability to assess a moment-to-moment level of
working memory load to make immediate online adaptation
of the instructional material provided seems a good educa-
tional approach and may help students with Math Anxiety
to overcome their difficulties. A technological solution to
achieve this goal would be constructing an adapting learning
environment that focuses on continuously detecting different
cognitive states of the learner and then adapts the type of
learning content provided according to the learner’s current
cognitive state to facilitate learning. Such a technological tool
can be designed in the form of a Brain-Computer Interface
(BCI), a technology which directly links a human brain and
a technical system in which a pattern recognition system is
implemented to recognize specific patterns in brain signals that
are elicited by a particular cognitive state [6]. The detection
of the cognitive state of interest subsequently triggers the



adaptation of the system [7].
Different types of BCIs have been designed and they can

be categorized as active, when the user utilizes the BCI to
actively control a device, and passive when the BCI monitors
the neural activity of the end user and passively adapts the
environment according to the needs of the person. Regarding
the recording method, a BCI can be either invasive with
microelectrode arrays implanted inside the skull through a
surgical operation or non-invasive if brain signals are acquired
thanks to sensors placed on the scalp [8]. Finally, BCIs
can either be synchronous or asynchronous in the way they
operate. In a synchronous BCI the interaction between the
user and the system has to happen within a certain period of
time defined by the system. In an asynchronous BCI, the user
can interact with the application at any time by generating a
specific cognitive state.

BCI technology was originally intended to provide a com-
munication system for people unable to use functional neuro-
muscular channels (e.g., locked-in or paralyzed patients).
However, in recent years BCIs have extended their original
field of use to healthy people and the classical definition
has changed to include technological systems able to replace,
restore, enhance, supplement, or improve the communication
outputs of the end users [9]. Applications of BCIs in healthy
users are various and range from the initial control of devices
as a means to communicate to other applications such as
user state monitoring, training and education, gaming and
entertainment, cognitive improvement, and safety and security.
Such new uses usually explore the possibility to quantify, in
real-time (a so called ‘online BCI’), the actual cognitive state
of the user thanks to spontaneously generated brain signals
(passive BCIs, pBCI). This technology could be able to detect
specific brain states even before the user becomes consciously
aware of them and before they trigger behavioural (re)actions.

II. CONTRIBUTION

One of the open issues in the context of developing BCIs
as an adaptive learning environment is the fact that learning
is a complex phenomenon which cannot be explained only by
taking into consideration one cognitive or affective state at a
time. A BCI trained to recognize only one cognitive state can
interpret the actual state of the learner in an inappropriate way.
For example, by increasing the difficulty level of some learning
content when the Mental Workload (MWL) is classified as
‘low’ to avoid boredom for the student, where the ‘low’
workload may be caused by frustration [10]. If additional states
are monitored, for example fatigue, motivation or attention, a
more complete picture of the learner’s condition is obtained,
and the overall performance of the system can be improved.

Motivation and learner engagement are vital to learn new
content effectively. The Cognitive-Affective Theory of Learn-
ing with Media [11] has shown that affective features of a
lesson can increase learner engagement. In other words, cog-
nitive processing and learning can be influenced by situational
interest, positive emotions, frustration and confusion and while
learning occurs, these emotions can arise, disappear or change

[11]. A student can express interest at the beginning of an
exercise due to the novelty of the learning content but soon this
initial interest can turn into motivation to continue studying or
frustration if a sense of confusion arises due to discrepancies
in knowledge acquired and information provided.

Developing an affective adaptive tutoring system, which
combines information about both the emotional (collected via
facial expression, shifts in posture, galvanic skin response,
etc.) and cognitive state of the user (collected via electroen-
cephalography, EEG) would allow the system to respond
appropriately to the needs of the user. This can be done if
the adaptation of the learning content difficulty takes into
consideration the complex state of the learner.

Verkijika for example developed a BCI able to detect math
anxiety arising in children playing a mathematics educational
game and providing them visual feedback on how to control
it [12]. In their research, children reported lower anxiety
levels during the second experimental session compared to the
first one, indicating that the feedback given by the BCI was
effective in helping the children reduce their anxiety levels
[12]. Their study represents a good example of a BCI that
does not focus on modifying learning content according to
the learner’s state, but it focuses on making the user aware of
their emotions in order to autonomously reduce their anxiety
levels, substituting to a certain degree the emotional support
obtained in a social context.

In a social context, or by simply having a teacher looking
at the whole class, facial expressions, body movements and
other behavioural signals of discomfort would be picked up
and addressed. If this social context is taken away, the student
alone may not know how to properly cope with anxiety or
distress. The possibility to properly address the problems of a
student has been highlighted especially in recent years, due to
the pandemic, with many students and teachers using online
classes as the only way to continue their activities [13].

For the above reasons, it is of utmost relevance to adopt a
holistic approach and monitor different cognitive states. To get
a holistic overview, we conducted an experiment to investigate
which cognitive states, known from the literature and reflected
in the patterns of the EEG, occur during the solving of a
mathematical problem. Cognitive states of interest include:

1) MWL, which is defined as the load in Working Memory
(number of items to store there), number of tasks to
perform simultaneously or as a measure of amount of
cognitive resources engaged in a task. Working Memory
provides transient holding of information necessary for
a complex task and has a limited capacity: as soon
as the items to remember drain its resources and fill
its capacity, MWL increases as well. Most Working
Memory tasks recruit a network that spreads from the
prefrontal cortex (PFC) to the parietal areas [14], [15];
specifically, it has been shown that the PFC is used
for controlling attention, selecting strategies, to solve
a task and manipulating information stored in Working
Memory [14].



2) Math Anxiety, which is investigated by taking into
consideration beta β (14-28 Hz) and gamma γ (30-
59 Hz) oscillations in frontal and parietal areas: partici-
pants with high levels of Math Anxiety (HMA) exhibit a
greater β-band power than participants with Low Math
Anxiety (LMA) while anticipating the arithmetic prob-
lems and exhibit greater γ-band power activity while
solving the arithmetic problems compared to participants
with Low Math Anxiety [16].

3) Fatigue, which increases according to the time spent
solving a task and can be described as the unwillingness
to continue performing a specific cognitive task and it is
associated with increased power in frontal and parietal
Theta θ (5-7 Hz) activity [17].

4) Motivation or avoidance towards a task, which can
be monitored in the changes in hemispheric frontal
asymmetry: motivating events and tasks produce greater
magnitudes of EEG Alpha α and Beta β band power in
the Left Prefrontal cortex in response to affective and
motivational stimuli and during changes in motivation
related to a task [18].

We expect that monitoring multiple states and training a
classifier to recognize their simultaneous presence during a
learning experience will help to improve the adaptation and
correctness of the learning environment. So far, only one work
has been published on the topic, but it is not related to Math
Anxiety specifically [19]. We want to close this knowledge
gap.

To develop our task, we relied on the definition of ‘ed-
ucational video game’ proposed by Malone, which states
that games are intrinsically motivating when including clear
goals of progressively increasing complexity, when the system
provides clear feedback on the performance of users, and when
outcomes are uncertain enough to entertain curiosity [20]. This
led to the design of a series of puzzles in which a combination
of skills such as counting, spatial reasoning and working
memory were used to solve them. We presented these puzzles
in blocks of increasing difficulty (task condition) and the
participants had to solve them while electroencephalographic
signals (EEG), electrocardiogram (ECG), galvanic skin re-
sponse (GSR) and behavioral data such as number of clicks
and time taken to solve each puzzle were recorded.

In this paper, we focus on behavioural and EEG data and
report preliminary results of EEG patterns of cognitive states
that occur during puzzle solving.

III. MATERIALS AND METHODS

A. Participants and data recordings

Ten individuals, students of the University of Essex (6 fe-
males), consented to participate in this study. The study,
including the measurement protocol and consent procedure
were approved by the local ethics board (Approval-ETH2021-
2145). Participants were selected from a pool of 30 students
based on their responses to the Math Anxiety Scale [21],
which was used to identify five participants with High and

five participants with Low Math Anxiety (HMA and LMA
respectively) based on the number of questions in which they
responded with ’much’ and ’very much’.

Participants had normal or corrected to normal vision and
were seated approximately 0.7m from the computer screen
in an electromagnetically shielded chamber. Participants were
asked to use a computer mouse to complete the questionnaires
and solve the puzzles which were presented on the screen. To
reduce eye strain, the experiment was conducted in a dark
environment. EEG was recorded from 62 electrodes placed on
the scalp according to the international 10-20 system, band
pass filtered between 1 and 60 Hz (Notch at 50 Hz) and
digitized at a rate of 2000 Hz. Electrode positions included
channels Fp1, AF7, AF3, F1, F3, F5, F7, FT7, FC5, FC3, FC1,
C1, C3, C5, T7, TP7, CP5, CP3, P1, P3, P5 P7, P9, PO7, PO3,
O1, Iz, Oz, POz, Pz, CPz, Fpz, Fp2, AF8, AF4, AFz, Fz, F2,
F4, F6, F8, FT8, FC6, FC4, FC2, FCz, Cz, C2, C4, C6, T8,
TP8, CP6, CP4, CP2, P2, P4, P6, P8, P10, PO8, PO4, and O2.
EEG impedance was kept below 15 kOhm. Simultaneously
horizontal eye movements were recorded from two electrodes
that were placed lateral to the eyes, GSR was recorded by
placing two passive electrodes on the index and middle finger
of the non dominant hand of the participant using the Biosemi
GSR sensor; ECG was measured by placing one flat electrode
on each wrist. Signals were recorded using a Biosemi active
two system (BioSemi B.V., Amsterdam, Netherlands).

B. Experimental Paradigm

The experiment began with three questionnaires: the patient
health questionnaire [22], curiosity and exploration inventory,
and state anxiety questionnaire [23]. After completing the
questionnaires, a 2-minute resting-state EEG was recorded,
during which participants were asked to relax and fixate on the
screen. Then, the puzzle experiment began: three blocks of 20
puzzles each are presented in an order of increased difficulty.
After each block the NASA questionnaire [24] was presented
to record the perceived workload of the participant, followed
by 15 seconds of rest before the beginning of the next block of
puzzles. After the third block, the NASA, State Anxiety, and
Math Anxiety Scale were presented again and the experiment
ended.

The puzzles themselves consisted of a square grid with a
variable lateral size between 4 and 10 rows/columns. Par-
ticipants were tasked with clicking on the white cells to
color them green and bring the total number of green cells
in each row and column to the target number (an example
puzzle is shown in Fig.1); the difficulty of each puzzle was
defined by its lateral size. Puzzle sizes of 4 and 5 (difficulty
Easy), 6 and 7 (difficulty Medium), 9 and 10 (difficulty Hard)
were used. Triggers linked to specific experimental events
like start and end of each puzzle were synchronised with
the biosignal recordings via LabStreamingLayer protocol and
recorded using Lab Recorder software [25].



Fig. 1. Example of a 7x7 medium difficulty puzzle. The pairs of numbers
on the left side of the puzzle indicate the number of target squares and the
number of remaining squares to be filled in each row. The same information
is displayed above the puzzle for each column. The goal is to fill the squares
in green color in such a way as to bring the number of remaining squares to
be filled to zero.

C. Data Analysis

Data analysis was preformed using Matlab. The recordings
were down sampled to 256 Hz, band pass filtered from 1 to 60
Hz and line noise was removed with the Cleanline plugin from
EEGLAB Matlab toolbox [26]. EEG recordings were visually
inspected, noisy and bad segments of the data were removed
and the number of electrodes was reduce to 30 (Fp1, AF3,
F1, F3, F5, F7, FC3, C3, T7, P3, P7, O1, Oz, POz, Pz, Fpz,
Fp2, AF4, Fz, F2, F4, F6, F8, FC4, Cz, C4, T8, P4, P8, and
O2). The number of channels was reduced to the minimum
number of channels useful to capture the cognitive states of
interest, namely Mental Workload (MWL) (Fpz, F3, Fz, F4,
AF3, AF4, C4, Cz, C3, P3, Pz, P4, POz, O1, Oz, and O2),
Attention (F3, Fz, Cz, C3, C4, Pz), Fatigue (Fz, Pz, F3, F4,
F7, F8, Cz) and Math Anxiety (Fpz, Fp1, Fp2, AF4, AF3, Fz,
F3, F4, F7, F8, T7, T8, C3, Cz, C4, P7, P3, Pz, P4, P8, O1,
and O2).

Artifacts were removed using Independent Component
Analysis (ICA) and data sets were re-referenced to the com-
mon average reference (CAR) to reduce the effect of localized
noise. Participants were then divided in two groups according
to their level of Math Anxiety (HMA and LMA).
Each dataset was divided into 7 segments, representing the
main moments of the experiment:

1) Initial resting period: 120 seconds of rest collected at
the beginning of the experiment.

2) Data coming from the first block of 20 easy puzzles.
3) Post first block resting period (data collected while

participants had to solve the NASA questionnaire + 20
seconds of rest staring at a blank screen).

4) Data coming from the second block of 20 medium
difficulty puzzles.

5) Post second block resting period (data collected while
the participant had to solve the NASA questionnaire +
20 seconds of rest staring at a blank screen).

6) Data coming from the third block of 20 hard puzzles.
7) Post third block resting period (data collected while the

participant had to solve the NASA and MAS question-
naires).

Five different band-pass filters (frequency bands δ 2-4 Hz,
θ 5-7 Hz, α 8-12 Hz, β 14-28 Hz, γ 30-59 Hz) were designed
with the Matlab designfilt function to filter the data in specific
frequency bands. After filtering the data, the average band-
power for each frequency band over the respective segment
was calculated by squaring and averaging data coming from
all the 30 channels in the different segments independently.

IV. RESULTS

Wilcoxon signed-rank sum tests were performed in Matlab
to analyse the data.

1) Behavioural data: The number of mouse clicks per-
formed and time spent on task (TOT) were analysed. Sig-
nificant differences in the TOT spent to complete medium
(p = 0.004) and hard (p = 0.012) puzzles were found, showing
participants with High levels of Math Anxiety (HMA) to be
faster at solving the puzzles compared to participants with Low
levels of Math Anxiety (LMA) (Fig.2).

Fig. 2. Boxplot of time spent on the tasks for participants with High Math
Anxiety (HMA) vs participants with Low Math Anxiety (LMA) according to
puzzle difficulty (from left to right: easy, medium and hard puzzles)

2) EEG Pattern: Workload was indicated by an increase
in frontal θ bandpower (Fz) and a decrease in parietal α (Pz)
during the task condition compared to the resting condition
(p = 0.051). Fatigue is shown as an increase in frontal θ
bandpower (Fz) and posterior θ bandpower (Pz) during the
task condition (p = 0.057). Attention was indicated by an
increase in frontal δ bandpower (Fz) for increased attention
during the task blocks (p = 0.051) while drowsiness appears
as a decrease in central α bandpower (Cz, C3, C4, Pz) when
attention increases (Fig.3). Math anxiety was indicated by
an increase in frontal β bandpower (Fz, F3, F4) during the



Fig. 3. Average δ (top row) and α (bottom row) bandpower calculated over all participants for each of the seven segments (from left to right: Initial resting
period, easy puzzles, rest 1, medium puzzles, rest 2, hard puzzles, rest 3)

Fig. 4. Average β (top rows) and γ (bottom rows) bandpower in participants with HMA vs LMA for each of the seven segments (from left to right: Initial
resting period, easy puzzles, rest 1, medium puzzles, rest 2, hard puzzles, rest 3)

anticipation period (right before the puzzles are presented)
for participants with high levels of Math Anxiety and by a
bandpower increase in occipital γ (Oz, O1, O2) while solving
the task (p = 0.047), possibly related to threat perception, as
shown in Fig.4.

Frontal asymmetry was reflected in stronger activity in α
bandpower in the Right (AF4) vs Left (AF3) Prefrontal Cortex
for participants with high levels of Math Anxiety compared to
participants with low levels of Math Anxiety and this reflects
avoidance towards the task due to Math Anxiety, however the
differences found were not significant (p = 0.4).

V. CONCLUSIONS

We investigated what cognitive states occur when students
with and without Math Anxiety learn to solve a math prob-
lem presented in the form of a novel computer puzzle. We
presented these puzzles in blocks of increasing difficulty and
asked the participants to solve them while electrophysiological
and behavioral data were recorded.

Our behavioural results are in line with the expectations
expressed in the literature. We found that people with Math
Anxiety are faster than less anxious people at solving mathe-



matical problems. This is explained as an attempt to rush and
finish the math-related task as soon as possible to avoid discon-
fort, however, this does not necessarily causes a performance
decrease, especially if participants are not distracted or if their
Working Memory is not overloaded [27], [28]. The fact that
the performance does not change can also help explain why
we did not find significant differences in the number of clicks
performed between the two groups.

The EEG patterns we found are consistent with those
described in the literature, even when a novel task like ours is
used, which supports the validity of our experimental design.
As expected during a learning experience, different cognitive
states can be observed through the use of EEG, which is
a safe, portable and relatively cheap system, demonstrating
the possibility to use it in real life scenarios. Our results
suggest that the combination of workload, attention, fatigue
and changes in γ bandpower can be useful to identify both
meaningful cognitive states and identify participants with Math
Anxiety. This is crucial, because the system can be adapted
according to a specific type of learner, which can be recognised
by specific EEG characteristics.

These are only preliminary but already promising results
and further experiments need to be carried out to confirm the
validity of the results.
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