
IMPROVING VISUAL PLACE RECOGNITION IN

CHANGING ENVIRONMENTS

Bruno Ferrarini

A thesis submitted for the degree of

Doctor of Philosophy in Computer Science

School of Computer Science and Electronic Engineering

University of Essex

Improving Visual Place Recognition in Changing Environments © 2023 by Bruno
Ferrarini is licensed under Creative Commons Attribution (CC BY) 4.0 International. To

view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

July 2023

http://creativecommons.org/licenses/by/4.0/

Abstract

For many years, the research community has been highly interested in autonomous

robotics and its various applications, from healthcare to manufacturing, transportation

to construction, and more. An autonomous robot’s key challenge is the ability to determ-

ine its location. A fundamental research topic in localization is Visual Place Recognition

(VPR), a task of detecting a previously visited location through visual input alone. One

specific challenge in VPR is dealing with a place’s appearance variation across different

visits, which can occur due to viewpoint and environmental changes such as illumin-

ation, weather, and seasonal variations. While appearance changes already make VPR

challenging, a further difficulty is posed by the resource constraints of many robots em-

ployed in real-world applications that limit the usability of learning-based techniques,

which enable state-of-the-art performance but are computationally expensive.

This thesis aims to combine the need for accurate place recognition in changing

environments with low resource usage. The work presented here explores different

approaches, from local image feature descriptors to Binary Neural Networks (BNN),

to improve the computational and energy efficiency of VPR. The best BNN-based VPR

descriptor obtained runs up to one order of magnitude faster than many CNN-based and

hand-crafted approaches while maintaining comparable performance and expending a

small amount of energy to process an image. Specifically, the proposed BNN can process

an image 7 to 14 times faster than AlexNet, spending 13% of the power at most when

deployed on a low-end ARM platform. The results in this manuscript are presented us-

ing a new performance metric and an evaluation framework designed explicitly for VPR

applications aiming at the two-fold purpose of providing meaningful insights into VPR

performance and making results easily comparable across the chapters.

i

ii

Declaration

I hereby declare that except where specific reference is made to the work of others, the

contents of this dissertation are original and have not been submitted in whole or in part

for consideration for any other degree or qualification in this or any other university.

This thesis is my own work and contains nothing which is the outcome of work done in

collaboration with others except as specified in the text and Acknowledgements.

Bruno Ferrarini

July 2023

iii

iv

To my family.

v

vi

Acknowledgements

My deepest gratitude goes to my supervisors, Prof. Klaus McDonald-Maier and Prof.

Shoaib Ehsan, and my collaborator Prof. Michael Milford, who have provided me in-

valuable guidance and feedback throughout my research. Their expertise and support

have led to the successful completion of this thesis. I am grateful for the enlighten-

ing and productive conversations I have had with Prof. Shoaib Ehsan on Visual Place

Recognition (VPR), which have greatly helped me navigate this exciting field. I also ex-

tend my thanks to my colleagues and friends, Maria and Sania Waheed, Bruno Arcanjo,

and Mihnea-Alexandru Tomita, for the valuable time spent working together. Last but

not least, I want to express my appreciation to Guido Mondelli and Marcello Boiardi at

MyWay s.r.l. for allowing flexible working hours, which enabled me to complete this

research while working full-time.

vii

viii

Contents

1 Introduction 1

1.1 VPR Problem Statement . 3

1.2 Challenges and Open Problems . 4

1.2.1 Dynamic Place Appearance in Visual Place Recognition 4

1.2.2 Resource Utilization . 7

1.2.3 Performance Evaluation . 7

1.3 Thesis Contributions . 8

1.4 Thesis Structure . 10

1.5 List of Publications . 11

2 Literature Review 15

2.1 Visual Place Recognition . 16

2.1.1 Local Feature Representations . 17

2.1.2 Global Image Representations . 22

2.1.3 Place Classification . 27

2.1.4 Visual Place Recognition Evaluation 28

2.1.5 Benchmark Datasets . 32

ix

2.1.6 Runtime Benchmarking . 35

2.2 Efficient VPR: from Design Solutions to Binary Neural Networks 36

2.2.1 Design-Based Approaches . 36

2.2.2 Post-Training Processing . 37

2.2.3 Parameter Quantization and Binarization 38

2.2.4 Compute Engines for Binary Neural Networks 42

2.3 Summary . 43

3 A Generic Evaluation Framework for Visual Place Recognition 45

3.1 The Need for VPR Evaluation . 46

3.2 Precision-Recall Curves: an Introduction 47

3.3 Evaluation Framework . 51

3.3.1 Extended Precision . 52

3.3.2 Computing EP Scores . 53

3.3.3 VPR Performance Bounds and Overall Performance Measurement . 56

3.3.4 Identification of Statistically Significant Performance Differences . 57

3.4 Evaluation Framework Demonstration . 59

3.4.1 VPR Performance Analysis . 62

3.4.2 McNemar’s Test Interpretation . 64

3.4.3 Is AUC a suitable alternative to EP? 67

3.5 Summary . 68

4 Exploring Accuracy-Computation Trade-off of Local Image Descriptors for

Aerial Robotics 69

4.1 Background and VPR Challenges in Aerial Robotics 70

x

4.1.1 Local Feature Descriptors: an Overview 72

4.2 Experimental Setup . 73

4.2.1 Mapping . 74

4.2.2 Localization . 75

4.2.3 Evaluation Method . 76

4.2.4 Benchmark Datasets . 76

4.2.5 Training Data . 78

4.3 Experimental Results Discussion . 78

4.3.1 Accuracy and Computation Time 80

4.3.2 Considerations on Training Data 83

4.4 Can Local Feature Descriptors replace CNNs in VPR Applications? 85

4.5 Summary and Next Steps Toward Addressing Changing Environments . . 86

5 Binary Neural Networks for Efficient and Effective Visual Place Recognition

in Changing Environments 89

5.1 Addressing Changing Environments Efficiently 90

5.2 From CNNs to BNNs in Three Steps . 93

5.2.1 First Step: Binarization . 93

5.2.2 Second Step: Depth Reduction . 98

5.2.3 Third Step: Fully-Connected Stage Tuning 100

5.3 Binary Neural Networks for VPR . 100

5.3.1 CNN Baseline and BinaryNet . 100

5.3.2 FloppyNet and ShallowNet . 102

5.4 Experimental Setup . 104

xi

5.4.1 VPR Performance Evaluation . 104

5.4.2 Memory Allocation Efficiency . 105

5.4.3 Processing Time and Power Usage 105

5.4.4 Training Data . 106

5.4.5 Test Data . 107

5.5 Breaking Down BNNs: Analyzing Layer Performance 108

5.6 VPR Performance Evaluation . 110

5.6.1 Comparison with the baseline . 112

5.6.2 Comparison with CNNs . 114

5.6.3 Weight Quantization: Impact on Performance 115

5.6.4 Weight Quantization: Impact on Memory Efficiency 116

5.7 Binarization, Depth Reduction and FC-256 116

5.8 Computing and Energy Usage Benchmarks 118

5.8.1 Processing Time and Computation Speed-Up 118

5.8.2 Energy Usage . 120

5.9 Comparison with Handcrafted Descriptors 120

5.9.1 Handcrafted Descriptors Setup . 121

5.9.2 Results Discussion . 122

5.10 Summary and Further Considerations on Processing Time 122

6 Highly Efficient Binary Neural Networks for Visual Place Recognition 125

6.1 The First Layer Bottleneck Problem . 126

6.2 Unblocking the Latency Bottleneck . 127

6.2.1 Depthwise Separable Convolutions 128

xii

6.2.2 Half-Binary Depthwise Separable Convolutions 130

6.2.3 BNN Setup for HB-DS Benchmarking 131

6.3 Experimental Setup . 132

6.3.1 VPR Performance . 132

6.3.2 Processing Time and Energy Usage 133

6.3.3 Training Data . 134

6.3.4 Test Data . 134

6.4 Results Discussion . 135

6.4.1 Comparative Analysis . 135

6.4.2 Energy Usage . 138

6.4.3 Depth Multiplier as a Tuning Parameter 139

6.5 Summary and Further Applications for HB-DS 141

7 Conclusions and Future Directions 143

7.1 Summary of Contributions . 145

7.2 Future Directions . 147

7.3 Closing Remarks . 148

xiii

xiv

List of Figures

1.1 Localization based on Visual Place Recognition. Place images from [1]. . . 2

1.3 Viewpoint variations can result from a lateral shift (a), 3D motions in 3-

axis (b) , and 6-DOF movements (c). Images from [2, 3, 4]. 5

1.4 A place from SPED dataset [5] in various times. 6

1.5 Two examples of perceptual aliasing from [6, 7]. 6

2.1 A typical Visual Place Recognition pipeline based on image retrieval. Im-

ages from [1]. 16

2.2 Features extraction and pairwise descriptor matching. Images from [8]. . . 17

2.3 A Siamese network to train a local image descriptor. Image taken from [9]. 20

2.4 (a) Salient locations used by local descriptor-based representations; (b)

the block pattern of GIST [10], a global descriptor. Images taken from [11]. 22

2.5 LaNet CNN architecture from [12]. 23

2.6 Convolutional features in shifted images (left). Significant shifts cause

fails in element-wise comparison between feature maps (right). Images

from [5]. 25

2.7 A PR-Curve example highlighting two derived metrics used to evaluate

VPR performance: AUC and RP100. 28

xv

2.8 VPR dataset exemplary places. 32

2.9 Computation in a standard neural network (a), in BinaryConnect (b), and

in a Binary Neural Network (c). 39

2.10 Single Instruction, Multiple Data (SIMD) Within A Register (SWAR) 42

3.1 A binary contingency table. 48

3.2 Precision and Recall computed for two cut-offs of the query results: PP = 2

and PP = 6. 50

3.3 An example of comparison among three hypothetical VPR techniques. . . . 52

3.4 A sample of the datasets used for the experiment. The reference images

are in the top row, and the query images are in the bottom row. 59

3.5 Upper and lower performance bounds and SP100 for the assessed VPR

methods. 61

3.6 Pairwise comparisons between the VPR methods considered. A sign con-

vention is used to present the results: a positive value of Z indicates that

the first method of the pair outperforms the second one, whereas a negat-

ive Z score has the opposite meaning. 63

3.7 A comparison between three PR-Curve for netVLAD on an image in Corvin

dataset with their respective EP and AUC values. 66

3.8 McNemar’s test using EP (left) and AUC (right) to compare HybridNet and

AMOSNet. 67

4.1 Map images processing diagram. 74

4.2 Image retrieval diagram for a query image. 75

4.3 A place from each dataset as it appears in different loops. 76

xvi

4.4 Six images from VASE-JBL dataset. 78

4.5 EP bounds and SP100 for ORB, BRISK, SIFT, SURF and AKAZE. 79

4.6 The time required for localization in Lagout, Corvin and Old City datasets. 80

4.7 VPR performance versus total localization time (encoding and matching). 81

4.8 SP100 difference between Vk trained with environment-unrelated (Unknown)

and related (Known) data with Z-test validation. 82

4.9 SP100 comparison between CNN-based and local descriptor-based VPR meth-

ods. 84

4.10 Encoding on Corvin-30 measured for an Intel i7-7700K CPU and Nvidia

GTX-1080 GPU. 85

5.1 FloppyNet is a compact and efficient BNN derived from AlexNet to enable

VPR on edge devices and robots with severe hardware constraints. 91

5.2 The diagram shows the three transformation steps to obtain FloppyNet

and the related by-product: BinaryNet and ShallowNet. 93

5.3 Sign quantizer in forward and backward passes. 94

5.4 A typical convolutional block in a CNN (left) and BNN (right). 97

5.5 Binarization (a), depth reduction (b) and FC tuning (c, d) applied to

AlexNet. Depth reduction consists of removing conv3 and conv4 layers.

The three pooling layers are kept to maintain the exact shape of the pool5

feature map (d). 99

5.6 Average SP100 across all datasets for full-precision and binary fully-connected

stages at different layer sizes. 103

5.7 A corresponding image pair from each test dataset. 106

xvii

5.8 FloppyNet is compared against several CNNs and BNNs. 112

5.9 Some significant query results from GardenPoints (a), Nordland (b), and

RobotCar Cross-Seasons (c) datasets. 113

5.10 Pairwise Z@0.5 scores for FloppyNet (1-bit), FloppyNet-8 (8-bit) and FloppyNet-

32 (32-bit). Underlined values indicate a confidence interval ≥ 95%. . . . 115

5.11 SP100 relative to Baseline (dotted line) of several combinations of binariz-

ation, depth reduction, and FC-Tuning. 117

5.12 Processing time (a) and energy usage (b) for one image. The measure-

ments are obtained with 4 threads on a Raspberry PI4. 119

5.13 VPR performance of HOG, CoHOG and GIST compared to FloppyNet. . . . 121

5.14 Processing time of HOG, CoHOG and GIST compared to FloppyNet. 123

6.1 The first layer bottleneck problem in BNNs addressed by the HB-DS module.126

6.2 A standard convolution (a) compared to depthwise separable factorization

(b) and HB-DS module (c). 128

6.3 HB-DS module implementation (left) and its placement as a first stage in

FloppyNet (right). d denotes the depth multiplier, k the kernel size, s the

stride, ci the input channels and c0 the output channels. 130

6.4 Depthwise separable factorization with a depth multiplier of 2. 131

6.5 A matching pair from every test dataset. 134

6.6 VPR performance on different appearance changes. 136

6.7 Processing time (a) and energy usage (b) of the proposed BNN compared

to other VPR methods. 136

xviii

6.8 EP versus processing time for several depth multipliers. The circles’ area

represents the energy usage in mJ per processed image. 138

6.9 Processing time for several depth multipliers. 139

xix

xx

List of Tables

2.1 Well-established VPR benchmark datasets. 31

3.1 Benchmark Dataset. Appearance variations and ground truth tolerance. . . 60

3.2 Some Examples of Comparisons with |Z| < 1.96. 65

4.1 Appearance variations and ground truth of the benchmark datasets. 77

4.2 Correlation coefficients between training and map datasets. 83

5.1 The layer structure of Baseline and its binarized version, BinaryNet. The

table is split in two rows for better readability. 101

5.2 The structure of FloppyNet. The values of Model Size and Total MACs are

incremental. 102

5.3 Test datasets and ground truth tolerance. 107

5.4 SP100 [%] for every layer in Baseline (top) and BinaryNet (bottom). 109

5.5 Models’ performance and efficiency for Raspberry Pi 4 implementations. . 111

6.1 Test datasets and ground truth tolerance. 133

6.2 VPR measurements are given for the Combined Dataset. Ti and Ei are

measured on a Raspberry PI4. 137

xxi

6.3 Performance and efficiency for several implementation of the proposed

BNN. Ti and Ei are measured on a Raspberry Pi 4. 140

xxii

Abbreviations

ARM Advanced RISC Machines

AUC Area Under Curve

BNN Binary Neural Network

CNN Convolutional Neural Network

CUDA Compute Unified Device Architecture

DOF Degree of Freedom

EP Extended Precision

FN False Negative

FP False Positive

FPGA Field Programmable Gate Array

GPS Global Positioning System

GPU Graphical Processing Unit

HB-DS Half-Binary Depthwise Separable (module)

LCD Loop Closure Detection

MAC Multiply-Accumulate operations

PN Predicted Negative

PP Predicted Positive

xxiii

PR, P-R Precision-Recall

PR-Curve Precision-Recall Curve

RPI4 Raspberry Pi 4

TN True Negative

TP True Positive

UAV Unmanned aerial vehicle

VPR Visual Place Recognition

xxiv

Chapter 1

Introduction

The development of autonomous robots has been a major focus of the robotics com-

munity for many years, motivated by the potential to improve efficiency, reduce costs,

and enhance safety in various industries, including manufacturing, transportation, agri-

culture, and healthcare. A major challenge in robotics is enabling robots to move around

and navigate autonomously in the working space. This is critical for a wide range of

applications, such as self-driving cars, aerial surveillance, exploration missions, delivery

services, and cleaning robots. Given its significance, autonomous navigation has become

a highly researched area in the field of robotics over the past decades, attracting atten-

tion from both the research community and industry. For example, the 2023 International

Conference on Robotics and Automation (ICRA 2023) has several workshops dedicated to

autonomous navigation methods1. Meanwhile, the 2022 edition of Intelligent Robots and

Systems (IROS 2022) hosted the 13th Workshop on Planning, Perception, and Navigation

for Intelligent Vehicles2. On the industry front, there have been several salient develop-

1https://www.icra2023.org/programme/workshops-tutorials
2https://project.inria.fr/ppniv22/

1

2 Chapter 1. Introduction

Fig. 1.1. Localization based on Visual Place Recognition. Place images from [1].

ments in the field. Tesla launched its Full Self-Driving Autopilot beta program in the last

quarter of 20223, Amazon started a small-scale program to deliver goods with unmanned

aerial vehicles in mid-2022 in California4, and Waymo by Google5 powers taxi services

in Phoenix, Arizona and San Francisco, CA.

Self-navigating robots need to know their position to plan and control their move-

ment toward a goal. When GPS (Global Positioning System) is unavailable, or odometry

estimates drift due to accumulated errors over time, a robot can still determine its pos-

ition through Loop Closure Detection (LCD) [13]. LCD involves detecting when a robot

has returned to a previously visited location. There are various methods for perform-

ing LCD, each utilizing different types of sensory information and algorithms. Within

visual-based navigation, the core of LCD is Visual Place Recognition (VPR), consisting

of matching one or more frames from the robot’s onboard camera with a collection of

tagged images that depict different locations in the workspace, as exemplified in Fig. 1.1.

3https://www.tesla.com/en_eu/support/autopilot
4https://www.aboutamazon.com/news/transportation/amazon-prime-air-prepares-for-drone-

deliveries
5https://waymo.com/waymo-one/

2

1.1. VPR Problem Statement 3

Localization based on visual information has drawn the attention of the research com-

munity, becoming one of the most researched topics in recent years: a Google Scholar

search for "Visual Place Recognition" returns thousands of results for 2022 alone. One of

the reasons for this widespread interest is the abundance of rich environmental inform-

ation that can be obtained from cameras, which are now readily available on a variety

of robots, including those with strict payload limitations, such as small drones [14, 15].

Although extensively investigated, VPR remains a challenging task due to factors such

as the dynamic nature of the environment, the flexibility of a robot’s movements, and

the limited resources available on hardware platforms, especially those designed to be

cost-effective or to save battery life. The following section is dedicated to the main VPR

challenges, focusing mainly on those addressed by this thesis work.

1.1 VPR Problem Statement

As part of the localization process, VPR is a fundamental task to enable a robot to nav-

igate autonomously. Although VPR is a well-defined problem of deciding if a place has

already been visited [11], it is necessary to make some assumptions related to the do-

main of an application. In particular, it is important to define what a place is in that

domain. For example, if two images show two points of interest in Rome, are they show-

ing Rome city or two different places in Rome? Or, if a picture shows a close-up of the

Colosseum and another has it far in the background, are they showing the same location

or two parts of Rome that are too distant to be considered the same place? To avoid such

ambiguity, this thesis adopts a common approach in the literature that Garg and Fisher

have recently formalized [16]. Instead of basing VPR on an explicit definition of place,

3

4 Chapter 1. Introduction

(a) North-East view. (b) South-West view.

Fig. 1.2. Two images captured in opposite directions from the same geographical location. Im-
ages from Google Maps [18].

VPR is defined as comparing images of the same physical location with a sufficient degree

of field-of-view overlap to enable matching. This implies that capturing two images from

the same location but in opposite directions, as shown in Fig. 1.2, does not guarantee

the successful place matching. This approach does not reduce the generality of the VPR

formulation as a place can be represented by multiple images on the map to enable loop

closure from different directions [17].

1.2 Challenges and Open Problems

This section summarizes the most critical challenges in Visual Place Recognition ranging

from place appearance changes to the problem of efficient resource utilization, which is

crucial to enable VPR on edge devices and low-end hardware platforms.

1.2.1 Dynamic Place Appearance in Visual Place Recognition

The core problem of Visual Place Recognition is to match images showing the workplace’s

locations. Apart from those related to general image retrieval tasks, place matching has

4

1.2.1. Dynamic Place Appearance in Visual Place Recognition 5

(a) Lateral shift. (b) 3-axis. (c) 6-DOF.

Fig. 1.3. Viewpoint variations can result from a lateral shift (a), 3D motions in 3-axis (b) , and
6-DOF movements (c). Images from [2, 3, 4].

specific problems to be addressed to perform VPR effectively. A place can appear differ-

ently across successive traversals of the environment for several reasons. A robot might

re-enter a location from another direction, looking at the scene from a different point of

view, the environmental conditions may vary between traversals, or the scene itself may

mutate over time with new or missing elements. Appearance changes can be separated

into two broad categories: viewpoint and conditional changes, depending on the causes.

As illustrated in Fig. 1.3, changes in the viewpoint may result from a lateral shift, an

orientation change in the 3-axis of the camera, or a combination of movement in both

the 3-axis and spatial directions, resulting in a 6-DOF (Degree-Of-Freedom) viewpoint

change, which is typical of aerial platforms. Conditional appearance changes are due to

environmental causes. Fig. 1.4 highlights the influence of environmental factors on a

place’s appearance. The cyclical alternation between day and night and the use of ar-

5

6 Chapter 1. Introduction

(a) Snowy winter. (b) Snowy at night.

(c) Rainy weather. (d) Sunny in summer.

Fig. 1.4. A place from SPED dataset [5] in
various times.

Fig. 1.5. Two examples of perceptual aliasing
from [6, 7].

tificial lights cause variations in illumination. Additionally, dynamic elements entering

or leaving a scene, such as vehicles, can cause appearance changes by obstructing or

exposing certain parts. In the long term, fluctuations in weather and seasonal cycles may

also impact VPR, as well as modifications to the physical environment caused by either

natural events (e.g., tree growth) or human activities (e.g., new buildings).

As opposed to the problem of matching different images of the same place, perceptual

aliasing [11] is the problem of distinguishing between different sites looking similar.

Perceptual aliasing is more common in indoor environments with repetitive elements

such as doors, corridors, and furniture but also in natural settings such as grass and

fields. Fig. 1.5 presents examples of indoor and outdoor places that look similar.

The experiments in this thesis aim to provide general results and do not address

specific viewing conditions or environment types, except in Chapter 4, which mainly

considers 6-DOF viewpoint changes. Therefore, the benchmark data for the experiments

are selected among well-established VPR datasets to include several viewpoints and en-

6

1.2.2. Resource Utilization 7

vironmental changes.

1.2.2 Resource Utilization

The research community has spent considerable effort to achieve high VPR accuracy,

paying less attention to the resource-demanding to execute a technique. With the diffu-

sion of small robots supplied by batteries in long-term operations, the resource amount

demanded by a navigation system acquired importance [19, 20, 21]. Improving the

efficiency of VPR means reducing its computational complexity, memory footprint, and

energy usage at runtime, as well as shrinking the space required to store the VPR module

itself and the environmental knowledge (i.e., map) and the amount of data exchanged

between cooperating robots. One of the primary goals of this thesis is to reduce the com-

putational and energy costs of VPR in changing environments, dedicating two chapters

to this topic, the 5th and 6th.

1.2.3 Performance Evaluation

Decades of active research have led to the development of numerous techniques and

approaches to solve the VPR problem. Determining the most suitable state-of-the-art

method for a specific application is not trivial. Each work assesses its newly proposed

technique in its own application context and experimental setup making cross-paper

comparison unreliable [22]. This consideration raises the need for updated comparisons

based on uniform evaluation criteria as new VPR approaches are proposed. A second

problem identified by this thesis’s author relates to reducing VPR resource usage, which

is one of the targets of this research. Improving efficiency often results in reduced per-

7

8 Chapter 1. Introduction

formance, creating a need for an analysis methodology to identify the actual performance

difference between VPR methods to evaluate efficiency-performance trade-offs appropri-

ately. Chapter 3 addresses these challenges by proposing an evaluation framework and

a performance metric explicitly designed to assess VPR.

1.3 Thesis Contributions

The most significant contributions made during this research work are outlined below.

1. The first contribution of this thesis is an evaluation method designed explicitly for

VPR applications. It is based on a new performance metric, Extended Precision

(EP), computed from a Precision-Recall Curve to overcome the limitation of the

well-established RP100 in assessing the lower spectrum of VPR performance. This

is because RP100 can only be computed for those VPR techniques performing well

enough to reach Precision = 1. EP uses a Precision-Recall Curve’s features dif-

ferently than RP100 to be defined regardless of the VPR performance level. The

proposed evaluation method is developed around EP and proposes two kinds of

analysis. One assesses the VPR performance level and consistency across an oper-

ating environment. The second is a comparison methodology that identifies statist-

ically significant performance differences using a McNemar test variant [23]. This

test is used to confirm the reliability of a comparison outcome in determining the

best VPR technique.

2. The second significant contribution of this thesis revolves around solving the VPR

problem efficiently on the fronts of computation, power usage and memory foot-

print to enable VPR on low-end hardware platforms and small robots. The research

8

1.3. Thesis Contributions 9

started by considering the use of handcrafted local feature descriptors. The results

obtained showed that local feature descriptors are prone to conditional changes.

At the same time, the approaches based on Convolutional Neural Networks (CNN)

[24] perform better in such operating conditions but at the cost of heavier re-

source usage at runtime [4]. This evidence suggested searching for more efficient

learning-based approaches than CNN. Binary Neural Networks (BNN) [25] are in-

vestigated as a possible alternative to CNN. BNNs use 1-bit per parameter and

bit-wise arithmetics to achieve high computational efficiency and compact model

sizes. Typically, a BNN has a model size 90% smaller than a CNN with the same

structure and executes around an order of magnitude faster using only a fraction

of the energy consumption. This thesis first investigates the suitability of BNNs for

VPR. Then it proposes a compact BNN called FloppyNet, which runs seven times

faster than a standard AlexNet [26], reaching similar performance under condi-

tional changes.

3. The final contribution of this research addresses the computational bottleneck in

the first convolutional layer that generally affects BNNs, including the one proposed

in this thesis. BNNs work better if they take high-precision inputs instead 1-bit in-

puts. Consequently, the first convolution cannot use bit-wise arithmetic resulting in

one of the most computationally expensive layers of a BNN. The solution proposed

by the author is an in-place replacement for the first convolution that drastically re-

duces the number of non-binary computations while keeping the same performance

level. It was possible to halve the energy usage and processing times of FloppyNet

with no VPR performance reduction.

9

10 Chapter 1. Introduction

1.4 Thesis Structure

The reminder of this manuscript is organized into six chapters as follows.

Chapter 2 presents a literature review of the existing research on Visual Place Recog-

nition and Binary Neural Networks. This chapter is organized into a detailed survey on

image representation and matching, followed by a description of metrics and benchmark

datasets used to evaluate VPR. It concludes with a survey on BNNs and the compute

engines used for their deployment on embedded platforms.

Chapter 3 presents a new evaluation framework designed explicitly for VPR based

on a new metric called Extended Precision (EP). The proposed framework offers two

types of evaluations. The first is designed to assess the performance and consistency of

a VPR descriptor over an entire traversal of the working space. The second has the pur-

pose of identifying the performance differences between VPR methods. The comparison

approach is based on a McNemar’s test variant [23] to provide statistically significant

outcomes. In order to demonstrate the utility of the proposed framework, results for sev-

eral state-of-the-art VPR techniques are presented for various appearance changes using

five different benchmark datasets.

Chapter 4 investigates the local feature descriptors’ [27] suitability for VPR under

extreme viewpoints and environmental changes as a more efficient alternative to learned-

based descriptors, which achieve the highest VPR performance at the cost of a high

resource demand at runtime. Chapter 4 starts with analyzing the trade-off between VPR

accuracy and place matching time for several well-established local feature descriptors.

Then, results are presented to demonstrate that local features exhibit the same VPR

accuracy as CNN-based approaches on 6-DOF viewpoint changes while running faster

10

1.5. List of Publications 11

but are outperformed in dynamic environments by a significant margin.

Chapter 5 attempts to conjugate convolutional neural networks’ performance in chan-

ging environments with the resource limitations of low-end hardware platforms. The

author investigates the suitability of BNNs for addressing VPR in changing environments

and then proposes FloppyNet, a compact global image descriptor of the same kind. It

has lower but comparable performance to deeper and regular Convolutional Neural Net-

works while spending considerably less energy and time to process an image.

Chapter 6 addresses a computational bottleneck concerning the first convolution

of BNNs. A BNN needs full-precision inputs to avoid the noticeable performance drop

caused by binary inputs. Consequently, the first convolution is not entirely binary and res-

ults in one of the slower stages of a BNN. Especially in compact networks like FloppyNet,

the processing time spent on the first layer is a large share of the total. This chapter

proposes an in-place replacement module for the first convolutional layer to greatly re-

duce the number of floating-point operations computed in the first layer of a BNN. This

module, called HB-DS, is then used on FloppyNet to obtain a BNN twice as fast without

any accuracy loss.

Finally, Chapter 7 provides the author’s final remarks and suggests how to develop

further the research presented in this thesis.

1.5 List of Publications

Following publications were made during the course of this PhD:

1. B. Ferrarini, M. Milford, K. D. McDonald-Maier and S. Ehsan, "Highly-Efficient Bin-

ary Neural Networks for Visual Place Recognition," 2022 IEEE/RSJ International

11

12 Chapter 1. Introduction

Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 2022, pp.

5493-5500, doi: 10.1109/IROS47612.2022.9981978.

2. B. Ferrarini, M. J. Milford, K. D. McDonald-Maier and S. Ehsan, "Binary Neural

Networks for Memory-Efficient and Effective Visual Place Recognition in Changing

Environments," in IEEE Transactions on Robotics, vol. 38, no. 4, pp. 2617-2631,

Aug. 2022, doi: 10.1109/TRO.2022.3148908.

3. B. Ferrarini, M. Waheed, S. Waheed, S. Ehsan, M. J. Milford and K. D. McDonald-

Maier, "Exploring Performance Bounds of Visual Place Recognition Using Extended

Precision," in IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1688-1695,

April 2020, doi: 10.1109/LRA.2020.2969197.

4. B. Ferrarini, M. Waheed, S. Waheed, S. Ehsan, M. Milford and K. D. McDonald-

Maier, "Visual Place Recognition for Aerial Robotics: Exploring Accuracy Computa-

tion Trade-off for Local Image Descriptors," 2019 NASA/ESA Conference on Adapt-

ive Hardware and Systems (AHS), 2019, pp. 103-108, doi: 10.1109/AHS.2019.00011.

5. B. Ferrarini, S. Ehsan, A. Bartoli, A. Leonardis., K. D. McDonald-Maier K.D. (2019)

"Assessing Capsule Networks with Biased Data". In: Felsberg M., Forssén PE., Sin-

torn IM., Unger J. (eds) Image Analysis. SCIA 2019. Lecture Notes in Computer

Science, vol 11482. Springer, Cham. doi: 10.1007/978-3-030-20205-7_8.

6. M. A. Tomi̧tǎ, M. Zaffar, B. Ferrarini, M. Milford, K. Mcdonald-Maier and S. Ehsan,

"Sequence-Based Filtering for Visual Route-Based Navigation: Analysing the Bene-

fits, Trade-offs and Design Choices," in IEEE Access, 2022,

doi: 10.1109/ACCESS.2022.3196389.

12

1.5. List of Publications 13

7. B. Arcanjo, B. Ferrarini, M. Milford, K. D. McDonald-Maier and S. Ehsan, "An Effi-

cient and Scalable Collection of Fly-Inspired Voting Units for Visual Place Recogni-

tion in Changing Environments," in IEEE Robotics and Automation Letters, vol. 7,

no. 2, pp. 2527-2534, April 2022, doi: 10.1109/LRA.2022.3140827.

13

14 Chapter 1. Introduction

14

Chapter 2

Literature Review

This chapter presents a survey of the existing literature on the primary topics covered

by this thesis. The first one is Visual Place Recognition (VPR), a very active research

topic with countless publications in the literature. The most relevant methods in the

field are presented, breaking them down into two broad categories: local and global VPR

descriptors, which are further separated into handcrafted descriptors and deep-learning-

based techniques. The survey continues with the evaluation of VPR, covering the prin-

cipal metrics, methodologies, and datasets to frame one of the contributions of this work,

which concerns a new evaluation approach for VPR. The last part of this chapter focuses

on Binary Neural Networks (BNN), a class of neural networks extensively used in this

work to improve the computational and energy efficiency of VPR. This survey provides

an in-depth overview of BNNs, including design principles, training methodology, and

compute engines for binary arithmetic.

15

16 Chapter 2. Literature Review

RETRIEVED MAP IMAGES

Si
m
ila
ri
ty

#1

#2

#3

MAP IMAGES

|1.0|0.7|0.9|...|0.7|

|0.3|0.1|0.7|...|0.5|

|0.2|0.8|0.1|...|0.9|

|0.2|0.8|0.1|...|0.9|

MAP DESCRIPTORS

IMAGE

DESCRIPTOR

MATCHING

IMAGE

DESCRIPTOR

ENCODER

QUERY IMAGE

|0.2|0.8|0.1|...|0.9|

QUERY DESCRIPTOR

Fig. 2.1. A typical Visual Place Recognition pipeline based on image retrieval. Images from [1].

2.1 Visual Place Recognition

Visual Place Recognition (VPR) enables a robot to determine its location by searching

the place images in the workspace map for the closest match to the camera’s view. VPR

is commonly cast as an image retrieval task based on image matching [28, 29, 11],

as depicted in Fig. 2.1. The prior knowledge of an environment is represented by a

collection of tagged images, each corresponding to a single place. This manuscript refers

to this collection of place images as the reference dataset or map. The image a robot

captures with the onboard camera is used as a query to search the map for the most

similar images. The place shown in the best-matching image with the query is regarded

as the current robot’s location.

A place’s appearance typically varies depending on the time and perspective in which

it is captured. Therefore, images are not compared directly but are processed to com-

pute a descriptor, which is an image representation invariant to those changes. The

16

2.1.1. Local Feature Representations 17

(a) Local features. (b) Local descriptors. (c) Pairwise descriptor matching.

Fig. 2.2. Features extraction and pairwise descriptor matching. Images from [8].

query descriptor is compared against map descriptors to find the most similar images,

which are then returned as query results. Image representations are often separated

into handcrafted and deep-learning approaches to emphasize the changes in the field

after the introduction of CNNs [11, 28, 30]. However, the author of this thesis prefers

to draw attention to the type of image representation instead of the method used to

obtain it, as recent works have returned to handcrafted techniques for their higher com-

putational efficiency [4, 31]. In contrast, several learned approaches are inspired by

“traditional” algorithmic pipelines [32, 29, 33]. Therefore, this section presents a se-

lection of approaches to compute a descriptor suitable for VPR, dividing them into the

two broad categories of local feature image representations and global image repres-

entations, which are subsequently separated into several narrower categories, including,

among others, handcrafted and deep-learning approaches. This section also covers VPR

evaluation methodologies and benchmark datasets.

2.1.1 Local Feature Representations

Building an image representation based on local image features requires two steps. The

first analyzes an image to localize distinctive patterns such as edges and corners. The

second computes a representation of the neighborhood of those keypoints’ locations.

17

18 Chapter 2. Literature Review

Figs. 2.2a and 2.2b show an example of this process for SIFT [34]. The resulting over-

all image representation is a collection of local descriptors that can be either pairwise

compared to match images (Fig. 2.2c) or further processed to obtain more robust or

compact image representations [35, 36]. The sections below provide an overview of

several approaches, including handcrafted and deep learning-based ones.

Handcrafted Local feature Descriptors

As mentioned above, the first step to take to build an image representation is analyzing

an image to search for specific patterns: the local image features. For example, Harris-

Affine and Hessian-Laplace detectors search for corners [37], Edge-Based Region oper-

ates an edge-based region detection [38], and SIFT [34] detector stage identifies blob

regions from the Difference-of-Gaussian (DoG) function’s local response [39]. Then, a

patch around every detected feature is processed to compute a representation suitable

for matching (e.g., a vector or real numbers) using a local descriptor such as SURF [40]

and ORB[41]. Once the salient locations of an image are identified, a representation

of their neighborhood needs to be computed. Other than the detector stage mentioned

above, SIFT has a descriptor stage. It employs Histogram-of-Oriented-Gradients (HOG)

[42, 43] to compute a descriptor of keypoints’ neighborhoods. SIFT is used for VPR in

[44, 45]. SURF [40] uses Haar-wavelet [46] to obtain a relatively short descriptor of

64 elements. Because of its descriptor length, SURF is more computationally efficient

than SIFT, which produces a longer vector of 128 elements. SURF is used in a variety

of VPR approaches such as [47, 48]. While SIFT and SURF are robust to rotation and

scaling, BRIEF [49] is not invariant to any geometrical change but is very efficient and

deals reasonably well with dynamic environmental conditions, as shown by Churchill

18

2.1.1. Local Feature Representations 19

and Newman in their long-term navigation system [50]. BRIEF uses the intensity of

randomly sampled pixels to build local image descriptors. BRISK [51] features vector is

computed similarly to BRIEF using pixel intensity but along concentric circular patterns.

This sampling strategy allows the use of distant and close pixel pairs to assign the in-

tensity gradient with an orientation. BRISK is used in UAV1 localization for its efficiency

[4, 52]. ORB combines FAST detector [53] with a rotation-invariant evolution of BRISK.

As confirmed later in Section 4.3.1, ORB offers a good trade-off between matching ac-

curacy and computational efficiency. Mur-Artal et al. used it for ORB-SLAM [54, 55]

and Wu et al. to identify Regions-of-Interest (ROIs) to adapt the feature extraction to

illumination changes in indoor environments [56]. ORB also found application in space

exploration because its computational efficiency [57, 31]. AKAZE [58] has been em-

ployed in indoor localization based on landmark detection [59], exhibiting better place

recognition performance than SIFT. CoHOG [60] is a recent image descriptor proposed

as a training-less and computationally efficient alternative to CNN-based techniques to

address VPR. It uses image entropy to detect regions of interest that are subsequently as-

signed with a HOG descriptor. CoHOG is designed to achieve lateral viewpoint tolerance

by region matching.

Deep Learning Approaches

The main goals of a descriptor are invariance to appearance changes and distinctive-

ness to deal with perceptual aliasing. The fundamental idea of most of the proposed

approaches in the literature is training a CNN to enforce it to output the same descriptor

for different patches corresponding to the same image’s region and, conversely, different

1Unmanned Aerial Vehicles.

19

20 Chapter 2. Literature Review

Fig. 2.3. A Siamese network to train a local image descriptor. Image taken from [9].

descriptors for non-matching patches. This goal is obtained by training multiple CNN

instances while sharing their weights. The most relevant example of this approach is the

Siamese architecture [61], which can be extended to multiple branches [33]. [62] pro-

poses a two-branch CNN to extract the features from patch pairs that are subsequently

fed into a binary classifier that determines whether the patches match. Simo-Serra et al.

[9] use the Siamese network illustrated in Fig. 2.3 to train a model that produces a vec-

torized local descriptor. The shared weights between the two CNNs are updated in the

backward pass, enforcing D(x1) == D(x2) for matching patches and D(x1) ̸= D(x2) for

non-matching patches. The main advantage of training a patch descriptor on a distance-

based loss function is that it can directly replace standard handcrafted descriptors in

existing systems. Triplet Siamese Networks are employed in [63] to train a vectorized

descriptor as in [9]. The main advantage of a triplet network over a standard Siamese

network is that the loss function allows training distinctive descriptors without mining

hard samples through multiple optimization iterations of the training data, as needed

in [9]. Learned Invariant Feature Transform (LIFT) [33] consists of a detector and

descriptor stages trained end-to-end on SIFT features. End-to-end training improves

patch representation as the detection and descriptors tasks are optimized together as

20

2.1.1. Local Feature Representations 21

they were a single task to reach the local minimum of a single loss function. Like LIFT,

SuperPoints [32] is a complete detector-descriptor pipeline. It simultaneously detects

corners in an image and computes the corresponding local descriptors. SuperPoints con-

sists of an encoder followed by two decoders: one to find keypoints and the other to

compute the corresponding descriptors. Unlike LIFT and other methods mentioned thus

far, SuperPoints operates on the entire input image simultaneously. The primary advant-

age is a more effective feature extraction at different scales that is limited by the patch

size in patch-based methods.

Features Processing and Aggregation

Typically, an image representation includes hundreds to thousands of local descriptors,

depending on the image size and content [64]. Without further post-processing, image

matching requires pairwise comparisons between local descriptors (Fig. 2.2c). While

this approach guarantees an excellent tolerance to geometrical variation as keypoints are

tracked across images, on the other hand, it does not scale well to search large reference

datasets, as often needed by VPR applications. A more efficient approach for large-scale

image matching is comparing images indirectly through their statistics. Bag-of-Words

(BoW) [35, 36] quantizes the feature space in clusters using a codebook of words, a

set of centroids learned with a clustering algorithm (e.g., k-means [65]). All the local

descriptors are then assigned to the closest cluster to form a histogram of frequencies,

which is used as an image representation. BoW descriptors are compared through a

single normalized inner product operation (i.e., cosine similarity [66]). BoW is used

to aggregate convolutional features in several works [67, 48, 2, 68]. Vector of Locally

Aggregated Descriptor (VLAD) [69] is based on a similar idea of clustering the feature

21

22 Chapter 2. Literature Review

(a) (b)

Fig. 2.4. (a) Salient locations used by local descriptor-based representations; (b) the block pat-
tern of GIST [10], a global descriptor. Images taken from [11].

space employing a dictionary. However, instead of using frequencies to build a histogram,

it accumulates the differences between clusters and their assigned feature descriptors

to form a residue vector. The VLAD descriptor is considerably longer than a typical

BoW representation, but it is more distinctive [70]. Several VPR apparoaches employ

VLAD [71, 72, 31], including this thesis work (Chapter 4). Triangular embeddings with

democratic aggregation (T-Embedding) [73] exhibits good performance in place retrieval

[74]. Unlike VLAD, it only accumulates residues into the closest centroid to a local

descriptor to reduce false positives. As mentioned above, these image representations

are convenient for image retrieval from large datasets because they can be efficiently

compared with vectorial operands, whereas local descriptors require pair-wise matching.

Moreover, they inherit some of the invariance properties of the local descriptors they are

built from [75].

2.1.2 Global Image Representations

As opposed to local features-based techniques that target salient locations of an image,

global representation methods follow a pre-defined pattern or divide an image into pre-

defined blocks and process them regardless of their content, as exemplified in Fig. 2.4.

22

2.1.2. Global Image Representations 23

Fig. 2.5. LaNet CNN architecture from [12].

Handcrafted Approaches

Gist [10] is an example of a global image descriptor that is used for matching place

images in [76, 77, 78] and [79]. Gist extracts global features from an image using a set of

Gabor filters [80] at different orientations and frequencies. The results are then averaged

to obtain an image representation as a vector. Another global descriptor is Histogram-

of-Oriented Gradients (HOG) [42, 43]. It calculates the gradient of all image pixels and

uses the results to create a histogram, with each bar representing the gradient angles

and carrying the summation of gradient magnitudes. McManus et al. used HOG for VPR

in [81]. BRIEF-Gist is proposed to address the loop closure detection problem [82]. The

BRIEF-Gist algorithm downsamples an image to 60×60 pixels and then computes a BRIEF

descriptor around the image center. Handcrafted global descriptors are generally more

computationally efficient than local features-based approaches [28]. Therefore they are

used as a comparison baseline to demonstrate the computational efficiency of the VRP

approaches proposed in this work in Chapters 5 and 6.

23

24 Chapter 2. Literature Review

Deep Learning Approaches

Convolutional Neural Networks (CNN) are neural networks designed to exploit local

correlation and repetitive patterns in images. Since the pioneering work of Yann LeCun

et al. in 1998 [12] and the pivotal AlexNet in 2012 [26], this type of network has

grown in popularity for many vision tasks, including VPR. A typical CNN is shown in Fig.

2.5, where the shaded planes are the feature maps computed by CNN’s layers, and the

convolution and pooling kernels are represented with squares.

CNN-based methods achieve high performance in various environmental conditions

[21] and under viewpoint variations [83]. A pre-trained CNN for a different task can

be used off-the-shelf for generating an image descriptor in place of handcrafted image

descriptors. The earliest attempts [84, 85, 86] to build an effective descriptor for place

recognition used fully-connected features from a CNN pre-trained on ImageNet [87], a

generic dataset for image classification. However, better image-matching performance

is obtainable if the fully-connected layers are fine-tuned specifically for image matching

using a triplet architecture, as shown in [88]. A fully-connected representation is akin

to a global image descriptor embedding the whole information of an image. Conversely,

a convolutional layer produces a feature tensor of H ×W × C, where every vector of C

elements in the H ×W maps describes a region in the input image. Such a tensor can be

vectorized and used as a whole image descriptor for image matching, working reasonably

well even if computed by a CNN originally trained for classification on generic datasets.

Hou et al. [89] showed that the features extracted from conv3 layer of AlexNet are robust

to conditional variations, while those from pool5 work better for viewpoint changes. Bai

et al. [90] used those layers’ features to improve the matching performance of SeqSLAM

[91] under viewpoint changes. AMOSNet and HybridNet [5] are variants of AlexNet

24

2.1.2. Global Image Representations 25

Fig. 2.6. Convolutional features in shifted images (left). Significant shifts cause fails in element-
wise comparison between feature maps (right). Images from [5].

trained on Specific PlacEs Dataset (SPED) [5] in order to compute more specific image

representations for VPR. PlaceNet [92] is based on the same idea but uses VGG-16 [93],

which is trained on a large dataset, called Places365, organized in 365 place categories

(classes). CALC [94] is a lightweight CNN proposed for efficiently addressing the loop

closure detection problem. The peculiarity of CALC is that it is trained in an unsupervised

manner using an autoencoder to recreate a HOG descriptor from geometrically distorted

place images. NetVLAD [71] was published in 2016, but it still can be considered among

the best-performing global descriptors for place recognition even nowadays. It consists of

two stages, trained end-to-end. The first is a VGG-16 network that extracts the features

from an image, followed by an aggregation layer implementing a VLAD-like embedding

[69]. The aggregation has more trainable parameters than standard VLAD providing

more flexibility and suitability to work with convolutional features.

Convolutional Features Pooling and Embedding

As mentioned above, a convolution produces a tensor of H ×W × C elements where a

1 × 1 × C vector describes a rectangular region in the input image. An element in the

image that produces a response peak in the feature map appears in different locations

of shifted images. Hence, comparing two vectorized convolutional representations res-

ults in mismatches between shifted images beyond a CNN’s tolerance, as exemplified in

25

26 Chapter 2. Literature Review

Fig. 2.6, and under viewpoint changes in general. This problem is addressed by pro-

cessing convolutional features with a pooling or embedding stage to build a more robust

image representation to viewpoint changes. This approach appears similar to local fea-

tures extraction in the two steps of identifying regions of interest and then computing

the corresponding descriptors. However, there is a significant difference: the regions of

interest are identified in a convolutional layer’s output and not in the input image, al-

lowing VPR to take advantage of the representative power of learned features in coping

with appearance changes [95, 90].

Regional Maximum Activations of Convolutions (R-MAC) [96] uses a pooling scheme

directly on one of the deeper convolutional feature maps. Regions of increasing size are

identified to include the entire feature map following a similar pattern as spatial pyramid

pooling [97]. Each region is max-pooled to obtain a region-specific descriptor. The res-

ulting vectors are combined and L2-normalized to form the whole image representation.

Cross-Region-Bow [2] identifies regions of interest (ROIs) in the feature map of a specific

convolutional layer (e.g., conv5). An ROI is the neighborhood of a local maximum sim-

ilar to those shown in Fig. 2.6. The features underlying those ROIs in the preceding layer

(e.g., conv4) are pooled to form an ROI local descriptor. Then, an image representation

is computed from those ROI descriptors using BoW. RegionVLAD [72] follows the same

idea as Cross-Region-Bow. The only differences are the pre-trained network, PlaceNet

[92] instead of VGG-M [93], and the post-processing phase using VLAD instead of BoW.

Hustler et al. proposed a region-based descriptor for place recognition aiming at a robust

viewpoint and scale invariance based on NetVLAD. Patch-NetVLAD [98] first extracts a

set of matching candidate image regions using NetVLAD, then computes a new patch-

level representation to perform matching. To this end, the Patch-NetVLAD pipeline is

26

2.1.3. Place Classification 27

similar to a traditional local feature representation but entirely based on deep learning.

2.1.3 Place Classification

As mentioned above, the most common formulation of the VPR is an image retrieval

problem. The main advantage of this approach is that there are no constraints on the

number of locations on the map. Also, training or setting up the VPR module for a

specific environment is no longer necessary if a technique has enough generalization

skills. However, when an application domain has a fixed number of places, approaching

VPR as a classification task might be convenient. Due to the relative simplicity of the

application domain, the network does not need a large number of parameters, and the

data required for training is a few compared to typical VPR datasets such as Places365

[92] or Pittsbourg250K [3], which include hundreds of thousands of images.

FlyNet [99] is a recent VPR technique working as a classifier on place sequences. It

uses a module inspired by the olfactory neural system of the drosophila melanogaster to

obtain a compact binary image representation fed into a single layer of neurons serving

as a place classifier. Flynet is tested on various setups with 1000 places that have under-

gone conditional changes exhibiting reasonably good performance that can be further

improved to compete with larger and deeper models when extended with a CANN stage

[100]. Like FlyNet, Drosonet [101] is a drosophila-inspired network, which is quant-

ized to 8-bit to improve memory efficiency. Exploiting the low memory requirement of

Drosonet, the authors merged multiple units using a voting system to deal with extreme

conditional changes. Hussaini et al. [102] proposed a place classifier based on Spik-

ing Neural Networks (SNNs) [103], a neural network type carrying a single bit over a

sequence of spikes to encode information to emulate the synaptic transmission of bio-

27

28 Chapter 2. Literature Review

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

PR-Curve

AUC ideal

RP100

Fig. 2.7. A PR-Curve example highlighting two derived metrics used to evaluate VPR perform-
ance: AUC and RP100.

logical neural systems. The classifier proposed in [102] is expected to run efficiently

on neuromorphic hardware [104], which has an architecture designed to emulate the

information propagation model of biological neural systems used by SNNs.

2.1.4 Visual Place Recognition Evaluation

Because of the many techniques proposed in the literature, measuring VPR performance

has become a relevant task for the robotics community in recent years [105, 106, 28].

This section presents several metrics and tools used to evaluate VPR and motivates the

new one proposed later in Chapter 3.

Fig. 2.7 shows a Precision-Recall Curve (PR-Curve). PR-Curves are suitable for unbal-

anced data [107, 108], which is the case of VPR, where the positive matches for a query

in the reference dataset are a few compared to the negative matches. Hence, PR-Curves

are often used to evaluate VPR [11]. A curve is plotted from a set of Precision-Recall

28

2.1.4. Visual Place Recognition Evaluation 29

pairs at different cut-offs of the similarity matching threshold [109] or varying a para-

meter that affects the skill of a VPR technique [91]. Precision and Recall are computed

as:

Precision =
True Positives

True Positives + False Positives
, (2.1)

Recall =
True Positives

True Positives + False Negatives
, (2.2)

where True-Positives (TP) are the places that a VPR matched correctly, False-Positives

(FP) are those erroneously matched, and False-Negatives (FN) are real positive matching

places discarded by the VPR technique.

From a PR-Curve can be derived several performance measurements. Area-Under-

Curve (AUC) is the area underlying a PR-Curve [107], which is often used as a per-

formance metric for VPR [4, 72, 94, 101]. AUC is a suitable criterion for applications

requiring high Precision and Recall. A higher AUC value indicates better performance,

with an AUC of 1 representing the best. Average Precision (AP) is suitable when Recall

is less critical than Precision in retrieval tasks. Indeed, AP is computed similarly to AUC

but considers only the Precision values corresponding to a TP in the retrieved sequence

of images:

AP =
1

NT

NR∑
i=1

P (i)r(i). (2.3)

NR is the number of points in the curve, which are highlighted by vertical lines in Fig. 2.7.

P (i) is the precision value at i, which is counted depending on the relevance function,

r(i), whose value is 1 in correspondence with a TP, 0 otherwise. NT indicates the number

of true matches in the dataset. AP varies from 0 to the maximum value of 1, which

indicates the highest performance level. The mean of the Average Precision (mAP) on

29

30 Chapter 2. Literature Review

multiple query images is a standard metric to indicate the overall VPR performance on

a dataset [74, 73, 69]. If an application is particularly susceptible to False-Positives

such as loop closure detection, a suitable metric is the highest recall at 100% Precision

[90, 110, 85], denoted as RP100 in Fig. 2.7. F1 is the harmonic mean of Precision and

Recall. Its maximum along the PR-Curve is used as an evaluation criterion [22, 111]:

F1Max = max
τ

(
2PτRτ

Pτ +Rτ

)
, (2.4)

where τ is the variable parameter to plot the curve. F1Max is also helpful in optimizing

the Precision-Recall trade-off as a function of τ [112].

Recall@k (also termed RecallRate@k) measures how many relevant images are re-

turned in the top-k results against how many relevant images exist in the entire dataset.

It is considered a reliable metric to evaluate place retrieval [29, 3].

Recall@k =
TPk

NT

=
TPk

TPk + FNk

, (2.5)

where NT is the number of true matches in the dataset, TPk is the count of TPs in the top-k

retrieved images, and FNk are the real positives discarded. Recall@k is suitable when the

correct retrieved images do not have to be necessarily those with the highest similarity

but need only be within the top-k. This is the case of a navigation system using a post-

processing step to filter False-Positives and re-ranking the retrieved images to improve

localization [96]. The highest possible value for this metric is 1, which occurs when

FNk = 0. A second metric that is computed from the top-k is Precision@k (also termed

PrecisionRate@k). It concerns the relevant images withing the k considered retrieved

30

2.1.4. Visual Place Recognition Evaluation 31

TABLE 2.1: WELL-ESTABLISHED VPR BENCHMARK DATASETS.

Dataset
Appearance Variation

EnvironmentViewpoint Conditional

GardenPoints Lateral Shift Night-Day Mixed
Old City 6-DOF None Urban
Lagout 6-DOF None Synthetic Urban
Corvin 6-DOF None Synthetic Urban

SPED-Test None
Night-Day Urban

Weather / Seasonal
Natural

Dynamic Elements
RobotCar

Lateral Shift
Illumination

UrbanCross-Seasons Weather

Nordland None Seasonal Synthetic Urban
Berlin Lateral Shift Illumination

UrbanDatasets 6-DOF Dynamic Elements

Campus Loop Lateral Shift Seasonal Mixed
Living Room Lateral Shift Illumination Indoor

17 Places Lateral Shift Illumination Indoor
Essex 3IN1 Lateral Shift None Mixed

Pittsburgh250K 6-DOF Illumination Urban
Alderley

Lateral Shift
Illumination

UrbanDay and Night Weather

images:

Precision@k =
TPk

k
. (2.6)

Precision@k is employed in retrieval [113]. Jointly with Recall@k, it can be used to

plot a PR-Curve for a single query image by varying k. This plotting method is used

in Chapter 3, which presents a VPR evaluation method based on Extended Precision

(EP), a new evaluation metric proposed as a replacement for RP100, which is not defined

if Precision is below 1 for all Recall values. On the contrary, EP can be computed for

every PR-Curve, enabling the measurement of the lower performance spectrum of a VPR

technique.

31

32 Chapter 2. Literature Review

Fig. 2.8. VPR dataset exemplary places.

2.1.5 Benchmark Datasets

VPR benchmark data incorporate challenges a robot typically encounters in real-world

applications. A dataset should include at least two loops of the same environment to

show each place in different viewing conditions to test a VPR method to detect known

places regardless of their appearance. One loop is used as a reference, while the other is

for testing, simulating the current view frame of a robot’s camera. Table 2.1 presents a

selection of VPR benchmark datasets publicly available to the research community, while

Fig. 2.8 shows some exemplar images. The remainder of this section describes those

benchmark datasets.

The GardenPoints dataset [8] includes three loops recorded walking through the

Queensland University of Technology, Australia. Two loops are captured during the day

on the opposite side of the walking path and have a lateral shift viewpoint. The third

one is captured on the right side at night to assess tolerance to illumination changes.

Lagout and Corvin are synthetic datasets having multiple loops captured at different

height angles to obtain several magnitudes of 6-DOF viewpoint variations. Lagout has

32

2.1.5. Benchmark Datasets 33

three loops at 0°, 30°, and 45° while Corvin has only two loops recorded at 30° and 45°.

They were introduced in [4] to simulate unmanned aerial vehicle navigation along with

the Old City dataset, which consists of two long loops recorded in Zurich, Switzerland.

The Specific Places Dataset (SPED) [5] consists of images of various places in the

world obtained from CCVT cameras over extended recordings. This dataset is suitable

to simulate long-term robot runs as it includes weather, day-night, and seasonal changes

other than dynamic elements such as cars and pedestrians. SPED dataset was introduced

to train CNNs for VPR. The images excluded from the training process were organized to

create the SPED-Test by the same author [114] to serve as a benchmark dataset.

The Cross-Seasons dataset [1] is a subset of the Oxford RobotCar dataset [115]. It

consists of two sequences of sunny and dusk images recorded onboard a car driving in

an urban environment. This dataset has illumination variations, mild lateral viewpoint

shifts, and dynamic elements such as pedestrians, cars, and shadows.

Nordland [116] has four traversals captured along a rail track in Norway in every

season. The video frames have synchronized to build frame correspondences for every

place. This dataset does not have any viewpoint change. It is suitable to assess VPR under

extreme appearance changes (e.g., winter vs. summer loops) and perceptual aliasing

(e.g., spring vs. summer loops).

Berlin is a collection of three urban datasets [2]. It has been built using the image-

sharing platform Mapillary2 to create challenging viewpoint variations between cluttered

images by dynamic elements such as vehicles and people.

Campus Loop [94] has two sequences recorded inside a campus during the summer

and winter. Besides the changes yielded by seasons, it presents a lateral shift between

2https://www.mapillary.com

33

34 Chapter 2. Literature Review

images. Campus Loop is a small-scale dataset with only 100 outdoor and indoor places.

The 17-Places dataset [7] includes several indoor scenes, such as hallways, bedrooms,

and labs. Another indoor dataset is Living Room [117]. It consists of high-resolution

images captured from a home service robot on an exploration task. The peculiarity of

this dataset is the close-to-ground perceptive of the onboard camera rather than the

usual first-person viewpoint. 17-Places and Living room datasets exhibit viewpoint and

illumination changes.

Essex 3IN1 [6] is a mixed dataset of indoor, outdoor, and natural scenes from the

University of Essex Campus, UK. Similarly to Living Room datasets, it is obtained by

simulating a robot exploring an environment rather than recording a video through a

smooth or linear pathway. Such a building approach resulted in confusing images char-

acterized by close-ups of cluttered images with a few disincentive elements suitable for

image matching.

Pittsburgh [3] is a large dataset of 250K images generated from Google Street View3

panoramas of Pittsburgh, Pennsylvania. It includes 24 perspective images for each place

captured in 12 pitches and two yews directions. It is suitable to build image pairs at

various 6-DOF variation intensities.

Alderley Day and Night [91] has two driving sequences in an urban environment.

One is captured in the daytime, while the other is during the night in rainy weather. This

dataset poses a severe challenge for VPR because it combines lateral shifts with extreme

conditional changes.

3https://www.google.com/streetview/

34

2.1.6. Runtime Benchmarking 35

2.1.6 Runtime Benchmarking

Runtime benchmarks of BNNs and CNNs are relevant to the results presented in later

Chapters 5 and 6. This section provides an overview of the existing criteria to assess

deep neural models.

The dominant evaluation metrics are inference time (or inference latency), power

consumption, and memory usage. TANGO [118] employs those metrics to assess CNN

models deployed on several hardware platforms, including NVIDIA GPUs for workstation

and mobile usage and an FPGA4 platform. The importance of energy usage is emphas-

ized by Palit et al. [119], who presents EVA-DNN, a model to estimate the energy usage

of deep neural networks. Results are presented for several well-established networks to

validate the proposed model. DNNTune [120] uses inference time and energy consump-

tion to tune both CNNs and quantized networks for several application setups. Howard

et al. [121] proposed a class of efficient networks for mobile applications using classific-

ation accuracy to parameters as a tuning criterion to train models for various scenarios.

Bianco et al. [122] employed the ratio between accuracy and the number of paramet-

ers to measure the efficiency of a model in using memory to accomplish its task. This

thesis develops this idea around binary networks. BNNs’ memory footprint is usually

evaluated only relatively to full-precision counterparts disjointly from their performance

[123, 124]. Chapter 5 extends the accuracy-parameter trade-off analysis by Bianco to

binary networks proposing a metric to assess the memory allocation efficiency of BNNs.

4Field-Programmable Gate Array

35

36 Chapter 2. Literature Review

2.2 Efficient VPR: from Design Solutions to Binary

Neural Networks

The increasing utilization of visual-based applications on small robots is pressing toward

increasing the efficiency of deep neural networks. This problem is also relevant for VPR

as it is often carried out onboard mobile robots where the computational power is often

limited for practical reasons such as battery saving or payload limitations (e.g., UAV)

[4, 52]. As discussed above and shown later in Chapter 4, CNNs effectively address

VPR in dynamic environments. However, they include many parameters (i.e., weights)

that result in large model sizes and heavy computational efforts. There are several ap-

proaches for reducing the resource requirements of CNNs. Some address the network

architecture to decrease the number of parameters and operations required to complete

an inference; others compress models post-training by pruning redundant connections

or by quantizing a model up to the extreme of binarization, 1 bit per parameter. Binary

Neural Networks (BNNs) are a class of compact and efficient deep neural networks that

reached maturity a few years ago and are now supported by several machine learning

frameworks. This section presents a selection of methodologies to improve the efficiency

of neural networks with a focus on BNNs.

2.2.1 Design-Based Approaches

Various solutions have been proposed to make neural networks more efficient while aim-

ing at the minimum impacts on performance. One immediate solution is reducing the

number of parameters using shallow networks. A shallow network uses only one hidden

layer and can virtually approximate any function [125, 126]. However, in practice, shal-

36

2.2.2. Post-Training Processing 37

low networks need more computation than deep neural networks to achieve comparable

performance in complex visual tasks [127]. Dauphin et al. [128] trained a shallow net-

work on SIFT features to cope with the ImageNet challenge [129], reporting difficulties

in training as the number of parameters increased. Another option is to rethink a deep

network’s architecture. SqueezeNet [130] uses 1× 1 convolutional kernels instead of the

more expensive 3×3 commonly used in CNNs [93, 131]. A further approach is the depth-

wise separable factorization [132, 133] to split a convolution into two more lightweight

stages: a depthwise convolution and a pointwise convolution, which uses efficient 1× 1

kernels. Depthwise separable factorization is discussed more deeply later in Chapter 6,

which shows how to combine it with binarization to improve the computational efficiency

of BNNs.

2.2.2 Post-Training Processing

A trained model can be made more compact and computationally efficient by targeting

redundant and non-informative parameters. Weight decay [134] was one of the earliest

attempts at network pruning proposed back in 1989. Optimal Brain Damage [135] and

Optimal Brain Surgeon [136] decrease the number of connections using the Hessian of

the loss function. Han et al., [137] showed how to reduce the number of parameters

by one order of magnitude in several state-of-the-art networks by redundant pruning

weights. [138] targets hidden neuron activations that are replaced with a more effi-

cient approximation function. The idea of approximating operations on parameters with

lighter functions is also exploited in [139]. A matrix decomposition is applied to weight

tensors to find an optimal and lightweight approximation to speed up the inference.

Combining pruning with weight quantization and data compression enables significant

37

38 Chapter 2. Literature Review

model size reductions. Han et al. [140] proposed a pipeline to combine these three tech-

niques to achieve a model size compression rate of 49× and a computational speed-up

of 4× for large networks such as VGG-16 [93] without any significant accuracy loss.

2.2.3 Parameter Quantization and Binarization

All the techniques above have in common a relatively complex process that is only some-

times straightforward to implement. In the author’s opinion, it has been an obstacle

to their diffusion and implementation in standard software frameworks and libraries.

In contrast, parameter quantization appears simpler to apply to a pre-trained model.

Nowadays, several machine learning frameworks, such as Pytorch5 [141] and Tensor-

flow6 [142], offer a standard procedure to quantize a model post-training. The purpose

of quantization is to reduce the number of bits representing weights and activations7.

Quantization can be pushed to binarization, 1-bit precision, to enable maximum com-

pression and computational speed. A full-precision network uses 32/64-bit weights,

floating-point multiplications, and summations to compute an output. A quantized net-

work uses fewer bits and works with fixed point calculation, which is expected to be

more computationally efficient if properly implemented and supported by the hardware.

It is worth mentioning that modern GPUs and CPUs are highly optimized for floating-

point operations, so the multiply-accumulate operations (MACs) necessary for neural

networks are computed in a single instruction. The same support is not available for

fixed-point and bitwise operations that require multiple instructions to compute a MAC

[143, 144]. This topic is fundamental for exploiting the full potential of quantized and

5https://pytorch.org/docs/stable/quantization.html
6https://www.tensorflow.org/lite/guide
7Activations are the output of the previous layers that are taken as inputs by a neuron.

38

2.2.3. Parameter Quantization and Binarization 39

0.3

0.2

-0.2

X1

X2

X3

W1

W2

W3

0.15

-0.28

-0.14

-0.27

0.5

-1.4

0.7

SUM

Full-Precision NN

Operations: sum, multiply

Smaller model size
Improved Computational efficiency

(a)

0.3

0.2

-0.2

X1

X2

X3

W1

W2

W3

0.3

-0.2

-0.2

-0.1

1

-1

1

SUM

Operations: sum, sign

BinaryConnect
(Binary weights)

Smaller model size
Improved computational efficiency

(b)

1

1

-1

X1
W1

W2

W3

1

-1

-1

-1

1

-1

1

XNOR
PopCount

X2

X3

Operations: XNOR, PopCount

Binary Neural Network
(Binary weights and activations)

Smaller model size
BEST computational efficiency

(c)

Fig. 2.9. Computation in a standard neural network (a), in BinaryConnect (b), and in a Binary
Neural Network (c).

binarized networks. It will be more discussed later in Section 2.2.4 and Chapter 5.

Quantization can be applied after or during the training phase. While post-training

quantization with 8 or more bits works reasonably well in practical cases [145], bin-

arization dramatically affects a model’s performance [146]. In contrast, Binary-aware

training enables low-precision models with acceptable classification accuracy [147]. Al-

though training binary models from scratch was attempted decades ago [148], only re-

cently have gradient-based techniques become applicable. Courbariaux et al. trained a

binary-weight network through back-propagation, BinaryConnect [149], using Straight-

Through-Estimator (STE) [150]. The key idea of STE is to keep real-valued weights

in memory, binarize them only in the forward pass to compute neurons’ activation,

and update them during back-propagation as in a standard neural network. However,

BinaryConnect retains full-precision neurons’ activations. This eliminates the need for

floating-point multiplications in convolutions, but summations (accumulation) cannot

be avoided. Later the same authors applied STE to train a fully binary network [25].

39

40 Chapter 2. Literature Review

With both weights and activations binarized, convolutions can use bit-wise arithmetic

to boost the computation speed-up by one order of magnitude [151]. Fig. 2.9 com-

pares a neuron computation in a standard network, BinaryConnect, and a Binary Neural

Network. The main perk of BinaryConnect is the model size reduction compared to a full-

precision network: 1 bit per weight instead of 32/64 bits. The computational speed is

also improved as the faster sign operation can replace multiplication if the binary weights

are encoded as {1,−1}. BNNs achieve an even higher speed by replacing multiplications

and summations with XNOR and Popcount on multiple operands into a single register

[25]. BNNs implementation and computation are extensively described later in Chapter

5, which presents a binary network optimized for VPR.

Afterward, several additions to the field were proposed to improve BNNs. In XNOR-

Net [123], the convolutional blocks are rearranged to increase classification accuracy.

Batch-Normalization (BatchNorm) [152], a fundamental layer for BNNs [153, 154], is

usually placed between the activation function and the successive convolution. XNOR-

Net’s authors observed that binarized feature maps do not retain any information on the

activation’s magnitude, causing the pooling layer not to be able to reliably select the most

significant features to feed the successive layer of the network. Based on this observation,

XNOR-Net is designed with BatchNorm and binary activation preceding convolution so

that pooling occurs before binarization. DoReFa-Net [155] is a variable precision net-

work that exploits bitwise operations to efficiently compute the dot product between a

layer’s weights and the inputs to speed up training. DoReFa-Net is trainable as a bin-

ary or at different quantization levels. The work presented in [156] points out that the

commonly used norm-based regularizers for CNNs, such as L2, are unsuitable for binary

networks as they tend to keep the weight values low, resulting in many zeroes once they

40

2.2.3. Parameter Quantization and Binarization 41

are binarized. Hence, the authors proposed a weight regularizer specific to BNNs, which

considers the encoding of the weights to avoid pushing their value flat to 0. [156] also

improves the compactness of BNNs by using a learned scale layer to help the binary-wise

training of the fully connected layers, which are often kept in full-precision to improve

the accuracy in classification tasks [155]. Accurate-Binary-Convolutional-Net (ABC-Net)

[157] trains multiple sets of binary weights using different bases that are combined to ap-

proximate full-precision weights and activations using coefficients that are also learned.

While ABC-Net significantly narrows the performance gap with full-precision networks,

it has a more complex architecture than regular BNNs, potentially resulting in slightly

lower computational and memory efficiency. Before this thesis, BNNs were used only for

different tasks than VPR. This work aims to contribute to the field by proposing a class of

highly compact binary networks to solve the VPR problem effectively in changing envir-

onments. The implementation details and the results obtained are given in later Chapter

5.

Finally, although the research presented in this manuscript focuses on BNNs, several

significant works proposing quantized networks are worth mentioning. Ternary net-

works [158, 159] use three values to encode weights: {−1, 0, 1}. They are considered

a suitable alternative to BNNs when higher accuracy is necessary. Although they exhibit

a significant memory reduction and simpler arithmetic than regular CNNs, ternary net-

works require 2 bits to store parameters without outperforming state-of-the-art BNNs by

a wide margin [147]. Esser et al. [160] proposed learning the quantization thresholds to

shorten the accuracy gap with full-precision classifiers on ImageNet [87]. The proposed

learning approach applies to 2, 3, 4, and 8-bit quantized networks but not to binary ones.

This approach is further developed by Bhalgat et al. [161], achieving higher accuracy on

41

42 Chapter 2. Literature Review

BNN: xnor,popcount SIMD-SWAR

Fig. 2.10. Single Instruction, Multiple Data (SIMD) Within A Register (SWAR)

ImageNet.

2.2.4 Compute Engines for Binary Neural Networks

Binarization reduces a model’s size dramatically and enables efficient convolution com-

putation. However, BNNs can only express their full potential with an inference en-

gine suitable to compute bitwise operations. Hardware architectures implement binary

primitives, such as XNOR and pop-count, differently. Therefore, inference libraries and

compute engines typically target one or a few hardware platforms to guarantee that the

deployed models can run efficiently. This section presents a selection of the most relevant

libraries and tools for deploying BNNs.

Courbariaux et al. [25] released a CUDA8 [162, 143] kernel-based that speeds up

convolutions by seven times using SIMD (single instruction, multiple data) [163] within

a register (SWAR) [151] technique (Fig. 2.10). DaBNN [164] is a stand-alone library

to deploy BNNs on ARM platforms. Binary convolutions are computed by combining

im2col (Image to Column) transformation and GEMM (GEneral Matrix Multiplication).

DaBNN uses ad hoc implementation written in ARM assembly that enables 8−10× speed-

8Compute Unified Device Architecture

42

2.3. Summary 43

up compared to a full-precision implementation. BMXNet [165] extends MXNet [166],

providing a complete ecosystem to train and deploy BNNs. Like DaBNN, it computes

binary convolutions by combining im2col with GEMM. BMXNet utilizes standard C++

to implement binary operations reaching a 13× speed-up compared to floating-point

convolutions written with the CBLAS library [167]. Riptide [168] is another end-to-end

framework to train and deploy BNNs, focusing on integrating binary convolutions with

those layers that cannot be binarized, such as BatchNorm [152] and activation functions

[169]. Models are trained with Tensorflow [170] and compiled for deployment with

TVM [171]. A binary model compiled with Riptide is 4× to 12× faster than its full-

precision counterpart. Likewise, Larq Compute Engine (LCE) [172] aims to integrate

efficiently binary convolutions with a model’s full-precision components. LCE is part of

the Larq project [173] to train and deploy BNNs. It uses a binary kernel highly optimized

for ARM platforms to speed-up convolution by 8.5 to 18.5 times. The Larq framework is

used in this thesis work to train all the binary models and to perform benchmarks on

real hardware. Finally, FINN [174] is an experimental tool targeting FPGAs compatible

with PYNQ [175]. FINN does not include a training framework but can compile PyTorch

[141] models optimized with Bravitas [176].

2.3 Summary

The literature survey presented in this chapter provides an overview of the areas concern-

ing the research presented in this thesis. It is organized into two main parts. Section 2.1

covers the main research domain of VPR, describing several approaches to image match-

ing and VPR evaluation methodology. The second part is centred around the problem of

43

44 Chapter 2. Literature Review

solving the VPR problem efficiently.

The VPR survey introduces local features (Section 2.1.1) and CNN-based descriptors

(Section 2.1.2). Those two kinds of approaches are compared in addressing VPR under

6-DOF viewpoint and conditional changes in Chapter 4. Relevant VPR performance eval-

uation metrics are detailed in Section 2.1.4 to provide a background for the new metric

and methodology to assess VPR performance described in the next chapter. The resource

utilization at runtime is covered in Section 2.1.6 to provide the necessary background to

support the memory allocation metric presented in Chapter 5. As stated in Section 1.3,

one of the most significant contributions of this thesis aims to improve VPR efficiency to

enable it on low-end hardware platforms. Therefore, the second part of the survey (Sec-

tion 2.2) describes the principal approaches to address the efficiency problem in neural

networks, focusing on Binary Neural Networks (BNNs), which are extensively used in

this research. Specifically, Chapters 5 and 6 present lightweight BNNs trained to address

VPR in changing environments whose runtime requirements are an order of magnitude

smaller than regular CNNs. The last section of this survey, Section 2.2.4, is dedicated

to BNNs deployment on embedded platforms to provide the necessary background to

interpret the analysis of the computational and energy usage of the proposed BNNs for

VPR applications.

44

Chapter 3

A Generic Evaluation Framework for

Visual Place Recognition
1

Chapter 1 highlighted the importance of having a standard methodology to assess and

compare different VPR techniques so that it is possible establishing the most suitable one

for a given application or identify the actual performance difference between two dif-

ferent approaches. The evaluation framework presented in this chapter is built around

Extended Precision (EP), a new performance metric, and has the two-fold goal of ad-

dressing the problem of evaluating VPR reliably and providing a uniform way to present

the results across the entire manuscript. In summary, the proposed framework consists

of several steps. In the preliminary one, the framework assigns each place of an envir-

onment with an EP score. Then, these scores are further elaborated in two successive

stages. The first is an assessment over an entire traversal of the working space finding

the maximum and minimum guarantee performance level to determine the consistency

1This work is published in IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1688-1695, April
2020, and presented at ICRA-2020 in Paris, France, with tile of: “Exploring Performance Bounds of Visual
Place Recognition Using Extended Precision”. DOI: 10.1109/LRA.2020.2969197.

45

46 Chapter 3. A Generic Evaluation Framework for VPR

of a VPR technique in a working environment. The second identifies statistically rel-

evant performance differences between VPR methods. The utilization of this evaluation

methodology is demonstrated by presenting results for several state-of-the-art techniques

operating under various imaging conditions from five well-established benchmark data-

sets.

3.1 The Need for VPR Evaluation

Chapter 1 presents VPR as a fundamental but highly challenging task within autonomous

robotics. It has been subject to significant advancements in recent times regarding ex-

isting algorithms and new approaches [177, 178, 16, 11]. With the significant addition

of VPR techniques, an inquiry that rises in importance is the evaluation of performance

differences between these methods. Indeed, each approach is usually assessed by its ap-

plication contexts and experimental setup, making cross-paper comparison difficult [22].

Moreover, these assessments are mostly based on the sole PR-Curves or PR-Curve-derived

metrics to express the overall performance of a technique without providing further ana-

lysis and insight into VPR performance [4, 90, 74, 179, 180]. Ehsan et al. [23] present

a performance comparison made for evaluating the limitations of image feature detect-

ors utilizing repeatability measures [181]. Nevertheless, it highlights the importance of

in-depth analysis and statistically reliable comparisons between VPR techniques.

This chapter presents a new performance metric denoted as Extended Precision (EP)

and an evaluation framework that aims to tackle the potentially overlooked features in

previous VPR performance comparisons. EP is obtained by combining several features

of a PR-Curve into a scalar value, which is used within the evaluation framework to

46

3.2. Precision-Recall Curves: an Introduction 47

measure VPR performance and carry out statistical tests. The evaluation framework has

a preliminary step consisting of a place-by-place VPR technique assessment where an

EP score is assigned to each query image of the current traversal. Then, these scores

are further elaborated in two successive steps. The first explores the upper and lower

performance bounds of VPR techniques across an environment to assess the accuracy

and consistency of the image matching across the entire traversal. The second identifies

statistically relevant performance differences between VPR methods utilizing a variant of

McNemar’s test [23]. The proposed framework is demonstrated through the evaluation

of several VPR techniques across different datasets, each presenting different types of

environmental changes.

The reminder of this chapter is organized as follows. Section 3.2 provides an in-

troduction to PR-Curves. Section 3.3 introduces Extended Precision and the evaluation

framework. The experimental results are presented and discussed in Section 3.4. Finally,

a summary of this chapter is given in Section 3.5.

3.2 Precision-Recall Curves: an Introduction

The evaluation framework presented here utilizes PR-Curves (Precision-Recall Curves)

[108] in the preliminary step of assigning each query image with an EP score. This

section introduces this important tool to evaluate VPR before describing the methodology

proposed in this chapter.

A visual place recognition module operates on highly skewed data where the positive

matches for a query image are rare compared to negative matches. PR-Curves are prefer-

able with imbalanced data [107, 108], so they are frequently used to evaluate VPR [11].

47

48 Chapter 3. A Generic Evaluation Framework for VPR

Fig. 3.1. A binary contingency table.

VPR is a dichotomous binary matching problem where a query image (e.g. a robot’s cam-

era frame) is compared with reference images showing the places of the map. Let be N

the number of those images. A VPR system regards every reference image as a positive

or negative match to the query separating N into two subsets of Predicted Positives (PP)

and Predicted Negatives (PN) matches. However, those predictions might be inaccurate.

When compared with Real Positives (RP) and Real Negatives (RN) correspondences in

the ground truth of the query, they generate four mutually exclusive cases that can be

organized in a binary contingency table, as shown in Fig. 3.1. Those cases are:

• True Positives (TP): Real Positives are predicted as positives;

• False Positives (FP): Real Negatives are erroneously predicted as positives;

• True Negatives (TN): Real Negatives are predicted as negatives;

• False Negatives (FN): Real Positives are erroneously predicted as negatives.

A binary contingency table comprehensively describes the results of image matching. The

four cases mentioned above are related to PP, PN, RP and RN. PP is the set of reference

images the VPR system believes to be correct correspondences to the query. As indicated

in the first row in Fig. 3.1, the PP set includes both TP and FP. Following the same

reasoning, PN is the sum of FN and TN. The columns of a contingency table are related

to the ground truth, namely to real positive and negative matches to the query. An RP

48

3.2. Precision-Recall Curves: an Introduction 49

can be either a TP, a real positive match correctly predicted by the VPR module, or an

FN, a real positive match erroneously classified as a non-matching image. Therefore, RP

is given by the sum of TP and FN. Similarly, RN = FP + TN. A perfect VPR technique

correctly labels all the N reference images, obtaining FN = FP = 0, which means that

PP = RP and PN = RN.

Precision (P) and Recall (R) are computed from the binary contingency table. Pre-

cision is the ratio between the correct matches and the total of the Predicted Positive

matches. Recall is the ratio between the correct matches and the total of Real Positive

matches. Formally:

P =
TP

PP
=

TP

TP + FP
, (3.1)

R =
TP

RP
=

TP

TP + FN
. (3.2)

Precision and Recall are often in tension: improving one worsens the other. Privileging

one of those two metrics depends on the application context. For example, an FN might

have disastrous consequences for medical images and document retrieval for diagnostic

purposes. Hence, several FPs might be tolerated to retrieve as many relevant results

as possible, aiming at the highest Recall [108]. On the contrary, for VPR and LCD in

general, Precision is more critical than Recall, as a single FP might cause the localization

system fails [90]. A PR-Curve shows the relationship between Precision and Recall,

helping to find the best trade-off for an application and evaluating the VPR performance.

A perfectly skilled VPR technique always correctly matches places resulting in a constant

PR-Curve having Precision equal to 1 for all Recall values. The P-R pairs necessary to plot

a PR-Curve are obtained in several ways, depending on the application or characteristics

of the VPR technique to assess. Some examples are varying an algorithm’s parameters

49

50 Chapter 3. A Generic Evaluation Framework for VPR

Fig. 3.2. Precision and Recall computed for two cut-offs of the query results: PP = 2 and PP = 6.

[91], the score threshold to call a positive match [28], or the cut-off number of the top

retrieved images by similarity2 with the query [109]. The latter is the approach used in

the proposed evaluation framework, as it makes it possible to plot a PR-Curve for every

query image. In detail, let q be a query image to perform VPR (e.g., robot’s camera

frame). The image base to search for know places is the map, IM , including N images.

Each place is associated with one or more images, that is, the number of real positives

matches (RP) in IM for the query image. For q, the VPR technique returns a cut-off of

the top PP images from IM by similarity to the query. The number of retrieved images

classified as positive matches, PP, is used a variable parameter from 1 to RP. This process

allows the construction of multiple binary contingency tables (Fig. 3.1) and the related

P-R pairs to plot a PR-Curve, with each PP value representing a point on the curve. Fig.

3.2 show an example of this process for two cut-offs: 2 and 6 images. For PP = 2, P is at

the maximum but only two out of five RPs are retrieved for the query image. Increasing

PP to 6, a third Real Positive is included increasing R from 0.4 to 0.6. However, some FPs

are also added, reducing P from 1.0 to 0.5. It is relevant noting that if the top-1 image

2The meaning of similarity between images is covered in Section 3.3.3. It concerns the nature of a VPR
technique and the comparison method between image representations.

50

3.3. Evaluation Framework 51

(the one retrieved for PP = 1) is a false positive, P cannot reach 1 for any recall value. As

previously noted, the main advantage of this approach is that a PR-Curve is computed for

each query image with the two-fold purpose of enabling place-by-place assessment and

further characterization of a VPR method’s performance across the entire environment,

as proposed in Sections 3.3.3 and 3.3.4.

3.3 Evaluation Framework

The proposed evaluation framework consists of a preliminary phase of assessing a VPR

technique in every query image of the current traversal. The resulting data is further

processed in two successive analysis steps. One determines the upper and lower per-

formance bounds of a VPR method allowing for determining the performance consist-

ency across an operating environment. The second phase is designed to compare VPR

methods. Comments [182] suggest that many evaluation approaches emphasize beating

the latest benchmark numbers without considering whether the improvement of the vis-

ion system over the others is statistically significant. This consideration can be extended

to VPR evaluation, where most methods have confined themselves to some particular

test conditions to demonstrate their superiority over other competing techniques. Driven

by these motivations, the second phase of the evaluation framework uses a variant of

McNemar’s test [23] to determine whether the performance differences are statistically

significant or occurred by chance because of random factors. The proposed evaluation

framework uses the new EP metric, which is motivated and detailed first, as in the below

section.

51

52 Chapter 3. A Generic Evaluation Framework for VPR

0

0,2

0,4

0,6

0,8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P
re
ci
si
o
n

Recall

VPR1 VPR2 VPR3

Rp100 = 0.2

PR0 = PR0 = 1.0

Rp100 = N.A.PR0 = 0.8

Rp100 = 0.6

EP = 0.8 AUC = 0.75
EP = 0.6 AUC = 0.41
EP = 0.4 AUC = 0.58

Fig. 3.3. An example of comparison among three hypothetical VPR techniques.

3.3.1 Extended Precision

As noted in Section 2.1.4, AUC [107] is often used to evaluate VPR [4, 72, 94, 101]. It

expresses VPR performance with a value between 0 and 1. However, AUC does not retain

any information regarding the features of the original PR-Curve, including whether Pre-

cision reaches or not 1 at any Recall value. RP100 [90] is also an important performance

metric; it corresponds to the Recall value until Precision keeps the value of 1, which is

the highest Recall value that can be reached without any FP (Section 3.2). As a single FP

may cause severe failures for many robotic applications [90, 183], RP100 is considered

a good performance metric and is widely employed for VPR evaluation [90, 110, 85].

However, RP100 cannot determine the lower performance bounds of a VRP method in

every case, as it cannot be computed for those PR-Curves that never reach P = 1. To

circumvent this problem, the author introduces Extended Precision:

EP =
PR0 +RP100

2
, (3.3)

52

3.3.2. Computing EP Scores 53

where PR0 denotes the precision at the minimum Recall value (R0) and the factor ‘2’ in

the denominator is to have EP ∈ [0, 1]. When PR0 < 1, RP100 is set to 0, and EP depends

only on the Precision at minimum Recall (R0), while for PR0 = 1, EP is greater than 0.5

and assumes the same meaning as RP100.Fig. 3.3 shows three examples of PR-Curves

to illustrate the use of EP and highlight the differences with AUC. VPR1 and VPR2 are

similar curves having PR0 = 1 and differing only in RP100, which is larger for VPR1. In

this case, both EP and AUC identify VPR1 as the best. VPR3 represents a different case.

It has PR0 < 1 and RP100 is not defined, indicating false positives in the retrieved images

(Section 3.2). When VPR3 is compared against VPR2 using EP, the latter is identified

as the best, scoring 0.6 against 0.4. Conversely, accordingly to the AUC metric, VPR3

outperforms VPR2. This difference arises from the strongest penalization given by EP to

false positives compared to AUC. As noted in Section 3.2, if the top-1 retrieved image is a

false positive, PR0 cannot reach 1, capping EP to 0.5 . Such a penalization is not present

in AUC, which can reach relatively large values regardless of false positives in the top

ranking of retrieved mages. The differences between EP and AUC are further discussed

in Section 3.4.3 when utilized within the proposed evaluation framework.

3.3.2 Computing EP Scores

The preliminary phase of collecting EP scores across the working space is detailed in this

section. The process requires two sets of images: a reference dataset (IM) representing

the previously visited places and a query dataset (IQ) representing the current traversal

of the environment. Algorithm 1 shows the procedure of computing an EP score set (Ev)

for a VPR technique (v) on a benchmark dataset (IM ,IQ). The inner loop (lines from

5 to 9) computes the similarity scores between image descriptors. The framework does

53

54 Chapter 3. A Generic Evaluation Framework for VPR

Algorithm 1 EP scores computation for a VPR technique.
Input: v # VPR method to evaluate
Input: IM # reference dataset
Input: IQ # query dataset image
Input: GT # Ground Truth for q
Output: Ev # The set of EP scores for v

1: Ev := []
2: for ∀qj ∈ IQ do
3: Dqj ← v(qj) # query image descriptor
4: Sqj := [] # similarity scores set
5: for ∀ri ∈ IM do
6: Dri ← v(ri) # reference image descriptor
7: sji ← similarity(Dqj , Dri) # e.g., cosine similarity, Eq. 3.4
8: Sqj ← append(sri)
9: end for

10: ÎM ← sort_descending(Sqj ,IM) # sort IM by similarity
11: PR← COMPUTE_PR_CURVE(ÎM , GT)
12: EP j ← compute_EP(PR) # Extended Precision, Eq. 3.3
13: Ev ← append(EP j)
14: end for
15: return Ev

16: function COMPUTE_PR_CURVE(ÎM , GT)
17: PR := [] # the PR-Curve’s points
18: RP ← |GT | # Number or Real Positives for q
19: for i ∈ 1 : RP do
20: PP ← get_top(ÎM , i) # top i ref. images by similarity
21: TP ,FP ,FN ← conf_matrix(PP , GT)
22: P ← precision(TP , FP) # Precision, Eq. 3.1
23: R← recall(TP , FN) # Recall, Eq. 3.2
24: PR← append([P,R]))
25: end for
26: return PR
27: end function

54

3.3.2. Computing EP Scores 55

not have any requirements about similarity, except it must be sortable to build the image

raking required by the PR-Curve construction method detailed in Section 3.2. A well-

established similarity score is the cosine product between image descriptors [184, 2],

and it will be used throughout this chapter’s experiments unless specified differently.

The cosine similarity is computed as follows:

sji =
Dqj Dri

||Dqj || ||Dri||
, (3.4)

where the vectors Dqj and Dri are the image descriptors computed by v for the query

and reference image, respectively. Similarity scores are computed between qj and all

ri ∈ IM . The resulting set of values is used to sort the map images, IM , by similarity with

the query in decreasing order to form the set ÎM (line 10). Then, ÎM is used jointly with

the ground truth (GT) information to compute the PR-Curve for qj (line 11) . The loop is

repeated for all qj ∈ IQ so that Ev includes a score for all query images:

Ev = {EP 1, EP 2, EP n}. (3.5)

Ev has a performance measurements for every place of the environment enabling further

analysis to characterize or summarize a VPR method performance.

55

56 Chapter 3. A Generic Evaluation Framework for VPR

3.3.3 VPR Performance Bounds and Overall Performance

Measurement

The upper and lower performance bound for v on the dataset IQ correspond to the

highest and lowest EP values in Ev, respectively:

EPMax = max(Ev) , (3.6)

EPmin = min(Ev) . (3.7)

EPmin is indicative of then minimum performance level of v in the operating environment

[185].

A single FP might severely impact robotic applications, especially when VPR is used

directly for loop-close detection [90] or the localization module relies on a single image

to work. To this end, the share of place successfully recognized with a single image

retrieved is a relevant measurement to provide along with performance bounds. Per Eq.

3.3 and PR-Curve building process, EP ≥ 0.5 indicates that the top-1 retrieved image is

a TP. Then, the share of places successfully recognized with a single image retrieved is

as follows:

SP100 =
|{qj ∈ IQ|EP ≥ 0.5}|

|IQ|
. (3.8)

This evaluation framework uses SP100 as a global performance metric on a dataset.

56

3.3.4. Identification of Statistically Significant Performance Differences 57

3.3.4 Identification of Statistically Significant Performance

Differences

While the previous routine is designed to assess the performance level and consistency of

a VPR system, this one is focused on comparing different VPR techniques. In particular,

this step determines if the performance differences between VPR techniques are statist-

ically significant or due to random data artifacts. Following the approach described in

[23], the proposed evaluation method interprets the process of testing VPR against a

sequence of query images as a series of success/failure trails on the same dataset. Under

this assumption, the resulting distribution follows a binomial model, and the compar-

ison between the two algorithms (v and w) can be addressed using the McNemar test

[186, 187] with continuity correction [188]:

X2 =
(|Nsf −Nfs| − 1)2

Nsf +Nfs

, (3.9)

where Nsf denotes the number of trials where the algorithm v succeeded, and w failed;

Nfs denotes the number of trials where v failed and w succeeded. X2 is distributed,

to a good approximation, as chi-squared with one degree of freedom, χ2
1. Under the

assumption of Nsf + Nfs ≥ 10, McNemar’s test distribution results from the squared

samples of a normal distribution [189]. Therefore, Eq. 3.9 can be rewritten as:

Z =
|Nsf −Nfs| − 1√

Nsf +Nfs

, (3.10)

where the confidence interval associated with Z can be determined using tables [190]. In

particular, 95% significance level corresponds to Z = 1.96 in a two-tails table. Therefore,

57

58 Chapter 3. A Generic Evaluation Framework for VPR

if the Z value is larger than 1.96, one can say the comparison result occurred by chance

as a consequence of random factors or artifacts in data only one in twenty (p = 0.05).

McNemar’s test cannot be used to compare more than two VPR methods simultaneously,

so a series of independent pairwise tests are necessary to compare multiple methods.

McNemar’s test requires determining when a VPR method fails or succeeds. In the

proposed framework, success occurs when EP is greater than a threshold t; otherwise, it

is a failure. EP is characterized by two intervals: 0 to 0.5, where the value depends only

on PR0, and 0.5 to 1, where EP mimics the behavior of RP100. This characteristic of EP

allows for comparing VPR methods from different perspectives using multiple thresholds.

For thresholds below 0.5, the outcome depends only on PR0. Therefore, the VPR method

retrieving the lower number of FPs before the first TP is best. Conversely, with thresholds

from 0.5 and above, successes and failures are determined by RP100, namely by the length

of the TP sequence before the first FP occurrence in the retrieved images.

Let v and w be two methods to compare. First, the EP scores for both of them are

computed as described above in Section 3.3.2. Then a threshold set T is defined:

T = {t1, t2, . . . , tp}, ∀i = 1, 2, . . . , p (3.11)

For a pair of VPR methods to compare, a set of Z scores is computed using Eq. 3.10 for

all ti ∈ T .

Zvw = {Z1, Z2, . . . , Zp} (3.12)

where Zi denotes the value of Z obtained with the ith threshold in T . Although there is

no specific selection criterion for T , a good practice is to choose the threshold values to

capture the entire spectrum of variations of the performance metric [23]. A good setup

58

3.4. Evaluation Framework Demonstration 59

Fig. 3.4. A sample of the datasets used for the experiment. The reference images are in the top
row, and the query images are in the bottom row.

is with nine evenly spaced thresholds between 0.1 and 0.9, as suggested in Section 3.4.

3.4 Evaluation Framework Demonstration

The author demonstrates the use of the proposed evaluation framework by compar-

ing several state-of-the-art VPR techniques: AMOSNet [5], HybridNet [5], R-MAC [96],

NetVLAD [71], and Cross-Region-Bow [2]. The experiments were conducted using the

VPR methods with the default configuration as shared by their authors. A trained model

on SPED dataset [5] is available for AMOSNet and HybridNet at [191]. The second-last

fully-connected layer of the network computes the image descriptors. R-MAC imple-

mentation is available at [192]. For a fair comparison, the geometric verification module

has been deactivated for the tests. The MATLAB source of NetVLAD is available from

[193]. The results presented in this section are obtained using the VGG-16 [93] model

trained with the Pittsburgh 250K dataset [194] using a dictionary of 64 words. Cross-

Region-Bow is also available as a MATLAB implementation [195]. For the experiments,

the VGG-16 model pre-trained on the ImageNet dataset [87] has been utilized with a

59

60 Chapter 3. A Generic Evaluation Framework for VPR

TABLE 3.1: BENCHMARK DATASET. APPEARANCE VARIATIONS AND GROUND TRUTH TOLERANCE.

Dataset
Appearance Variation Reference Query Ground

Viewpoint Condition Images Images Truth

Berlin moderate
Dynamic Elements 154 66 25m by GPSHalen. Strasse lateral shift

Lagout 0-15 Mild 6-DOF None 330 324 by authors

Corvin 0-45 Wide 6-DOF None 1179 1298 by authors

GardenPoints Mild to moderate
Night-Day 200 200 ±2 frames(Day-Night Right) lateral shift

Norland
None Seasons 1622 1622 ±5 frames

(Summer-Winter)

BoW dictionary of 10K words. is a region-based approach that does not produce a global

image descriptor suitable for being used with cosine similarity (Eq. 3.4). Thus, the

experiments use its built-in similarity score instead.

In real-world applications, the look of a place captured by a robot’s camera varies

between different traversals due to environmental changes or because the robot enters

a place from another direction. VPR methods are assessed under different appearance

variations to provide comprehensive results using the five datasets shown in Fig. 3.4

and summarized in Table 3.1. Berlin Halensee Strasse [2] includes two traversals of an

urban environment. This dataset exhibits mild to moderate viewpoint variations and

includes dynamic elements such as cars and pedestrians. The ground truth is obtained

using GPS coordinates to build place-level correspondence using a maximum distance of

25 meters as a criterion. The image set berlin-halenseestrasse-1 is used as a reference

and berlin-halenseestrasse-2 as a query traversal. Lagout and Corvin [4] are synthetic

datasets consisting of several flights around buildings. Lagout loops at 0◦ and 15◦ are

used as reference and query datasets to test VPR techniques under moderate viewpoint

changes. Similarly, Corvin’s loops captured at ground level and 45◦ are used to assess

60

3.4. Evaluation Framework Demonstration 61

Fig. 3.5. Upper and lower performance bounds and SP100 for the assessed VPR methods.

VPR methods under significant 6-DOF viewpoint changes. The ground truth data for

Lagout and Corvin are made available by their authors [196]. GardensPoints Dataset

[8] consists of three traversals of the Queensland University of Technology (QUT). Two

occurred during the daylight by walking on the two opposite sides of the walking path

and the third during the night on the right side. The results are presented for illumination

changes. Thus the right-day and right-night traversals are used as reference and query

datasets, respectively. The footages are synchronized, so the ground truth is obtained

by frame correspondences. For the test, a match will be considered correct if the query

and the retrieved images are within a 5-frame range, which is considered a reasonable

tolerance [110]. Hence, a map image must fall between i − 2 and i + 2 to have a

TP, where i is the query image index. Nordland Dataset [116] is built from footages

61

62 Chapter 3. A Generic Evaluation Framework for VPR

for all four seasons along a railroad in Norway. It shows extreme seasonal changes,

especially between summer and winter journeys, which are used as reference and query

datasets to obtain the results presented here. Similarly to GardenPoints, the videos are

synchronized, but the train speed is considerably faster than a human walk. Therefore,

the ground-truth uses a larger tolerance of 11 frames, as suggested in [110].

3.4.1 VPR Performance Analysis

Fig. 3.5 presents the bounds and SP100 for the assessed VPR methods. Green bars indicate

the upper-performance bounds EPMax, while the lower-performance bounds EPmin, are

represented with red bars. The values of SP100 are indicated in yellow and are read on

the right-side y-axis.

Regarding EPMax, the considered VPR methods exhibit similar performance on Ber-

lin, GardenPoints, and Lagout with EP values equal to or close to 1. Thus, all the VPR

techniques reach an excellent performance peak with dynamic objects and illumination

but moderate under wide 6-DOF viewpoint changes. The prominent viewpoint variations

of Corvin pose a complex challenge. None of the tested methods can reach EP = 1. In

every Corvin’s location, the assessed methods can only recover some of the Real Positives

for a query image with at least one or more FPs in the result set. Nordland is also challen-

ging as the experiments used the summer and winter traversals that exhibit prominent

variations in appearance.

SP100 indicates the place fraction where a VPR technique successfully retrieves a TP

in the top-1. From the perspective of SP100, the differences between VPR methods are

more significant than looking at their bounds. NetVLAD is the best approach in the urban

environment of Berlin-Halensee. It is not surprising as the NetVLAD model is optimized

62

3.4.1. VPR Performance Analysis 63

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (m)

(n) (o) (p) (q)

(r) (s) (t) (u)

Fig. 3.6. Pairwise comparisons between the VPR methods considered. A sign convention is used
to present the results: a positive value of Z indicates that the first method of the pair outperforms
the second one, whereas a negative Z score has the opposite meaning.

for urban scenes. Cross-Region-Bow is the most reliable VPR method for illumination

and seasonal changes. It scores the highest SP100 of 0.88 and 0.53 on GardenPoints and

Nordland, respectively. Considering that Cross-Region-Bow uses a pre-trained network

on ImageNet which is not prominent in any specific image transformation, its good per-

formance is likely due region-based pooling stage. Corvin is confirmed to be the most

challenging dataset. The only technique that can hit at least SP100 = 0.5 is R-MAC result-

63

64 Chapter 3. A Generic Evaluation Framework for VPR

ing in the most effective VPR method on this dataset.

The lowest performance bound is close to zero in most of the tested scenarios. Some

places are extremely challenging for most of the tested techniques. The only exceptions

are R-MAC, NetVLAD, and Cross-Region-Bow, whose lower bounds are constantly above

0.5 on Lagout. As EPmin ≥ 0.5 requires PR0 = 1, one can conclude that the top-1 match

retrieved by these three VPR methods is a TP in every Logout’s location.

3.4.2 McNemar’s Test Interpretation

The considered VPR methods are pairwise compared as described in Section 3.3.4 to

confirm if the performance differences highlighted by the previous analysis are reliable

and statistically significant. Fig. 3.6 shows the Z scores for every possible VPR method

pair. A color code is used to represent the Z values for all combinations of threshold and

dataset. Under the assumption of Nsf + Nfs ≥ 10, Z is always positive. Hence, a sign

convention is used to indicate which VPR method obtains better performance. A positive

Z score means that the first technique of the pair is better than the second, that is, Nsf >

Nfs. A negative value of Z indicates that the second VPR method of the pair outperforms

the first one (Nsf < Nfs). Z is set to 0 when Nsf = Nfs or Nsf +Nfs < 10. Is it relevant

mentioning that |Z| is indicative of the performance gap between two VPR methods as it

is computed from |Nsf − Nfs|. However, it expresses a relative measure without giving

any indication of the absolute VPR performance level that has to be assessed using the

three metrics introduced in Section 3.3.3. The threshold set T used for the experiments

includes 9 values (p = 9) equally spaced between 0.1 to 0.9. It enables a comparison

along the entire spectrum of EP.

NetVLAD and Cross-Region-Bow outperform the other approaches on Berlin-Helensee,

64

3.4.2. McNemar’s Test Interpretation 65

TABLE 3.2: SOME EXAMPLES OF COMPARISONS WITH |Z| < 1.96.

NetVALD Vs Cross-Region-Bow |Z|@0.5 Confidence

GardenPoints 1.20 77.0%
HybridNet vs AmosNet |Z|@0.5 Confidence

Berlin-Helenstrasse 0.25 19.8%
Corvin-45 1.50 86.6%
GardenPoints 1.10 72.9%

GradenPoints, and Nordland datasets, as confirmed by their large positive Z values (Figs.

3.6b to 3.6d and Figs. 3.6f to 3.6h). They have similar performance on Lagout, while

NetVLAD is generally better than Cross-Region-Bow on Corvin and Berlin-Halenstrasse at

every threshold and worse on Nordland up to 0.5 (Fig. 3.6a). HybridNet outperforms or

achieves comparable performance as AMOSNet in most test scenarios (Fig. 3.6u). These

results are coherent with the performance analysis by their authors [5]. On Corvin, R-

MAC presents large positive Z values for thresholds between 0.1 and 0.5 against every

other VPR technique (third row in Fig. 3.6). At larger thresholds, Z decreases and be-

comes negative against NetVLAD starting from 0.7 (Fig. 3.6i). Thus, R-MAC outperforms

the other approaches when the evaluation is carried out by observing low EP values,

which PR0 mostly influences. As the threshold increases, the number of successes is

determined by the contribution of RP100. In such an evaluation perspective, R-MAC is

outperformed by NetVLAD, which demonstrates to be capable of retrieving longer se-

quences of TPs on Corvin. McNemar’s test results confirms and supports the bounds

analysis for Corvin presented in the previous section: R-MAC has the best SP100 while

NetVLAD reaches higher EPMax (Fig. 3.5).

A particularly relevant threshold value is 0.5, which is used to compute SP100 (Eq.

3.8). Hence, the corresponding Z score might confirm or not the statistical significance

65

66 Chapter 3. A Generic Evaluation Framework for VPR

Fig. 3.7. A comparison between three PR-Curve for netVLAD on an image in Corvin dataset with
their respective EP and AUC values.

of the SP100 scores presented in Fig. 3.5. As detailed above, a |Z| value larger than

1.96 confirms that a comparison outcome is reliable with a confidence interval of 95%.

It is not the case for the comparisons reported in Table 3.2, which shows some of tests

scoring a small Z value and the corresponding confidence intervals. A small |Z| means

that the two methods scored similar successes and failures on a dataset (Eq. 3.4.2).

An insufficiently large |Z| yields the rejection of the hypothesis, which is a method is

superior to the other. In this thesis, two methods with similar SP100 and |Z| < 1.96 are

considered having comparable VPR performance.

66

3.4.3. Is AUC a suitable alternative to EP? 67

(a) Extended Precision (EP). (b) Area Under Curve (AUC).

Fig. 3.8. McNemar’s test using EP (left) and AUC (right) to compare HybridNet and AMOSNet.

3.4.3 Is AUC a suitable alternative to EP?

AUC can be used as an alternative to EP to measure VPR performance. However, the

author considers AUC less appropriate than Extended Precision for use in the proposed

evaluation framework. The most important reason is that AUC does not penalize top-

ranked FPs in the query results. Indeed, AUC might be significantly incremented by long

sequences of TPs regardless of their position in the retrieved image ranking. As opposed

to this, the PR0 component of Extended Precision penalizes top-ranked false positives

capping EP below the value of 0.5. In other words, a large AUC does not guarantee that

the top retrieved images are correct matches. For example, the blue curve in Fig. 3.7

has AUC = 0.38 and EP = 0.51. The green curve has a larger AUC (0.77) and a smaller

EP (0.25). As explained in Section 3.3.3, PR0 = 1 guarantee that the top-1 result is a

TP, which is important for VPR and LCD in general. Therefore the blue curve should be

considered better than the green one regardless of the smaller AUC.

Finally, AUC is more difficult to interpret than EP . Except for 0 and 1, the value

of AUC is not related to any specific condition or PR-Curve feature. For this reason,

McNemar’s test based on AUC is harder to understand. Fig 3.8 shows the test results for

a pair of VPR methods using EP and AUC. The high negative score of HybridNet against

67

68 Chapter 3. A Generic Evaluation Framework for VPR

AMOSNet at 0.5 on Corvin means that HybridNet’s AUC cannot reach the threshold as

often as AMOSNet. However, a clear interpretation of this outcome is hard to give as

there is not any particular key value associated with AUC. Conversely, the positive Z

value at 0.5 for the EP-based test indicates that the top-1 retrieved image by HybridNet

on Corvin is more often a TP than for AMOSNet.

3.5 Summary

The evaluation method proposed in this chapter is based on a new performance metric,

Extended Precision (EP), to measure the VPR performance. The evaluation process con-

sists of three steps. Firstly an EP score is assigned to every environment’s place. Then,

the subsequent analysis assesses the VPR performance consistency across the environ-

ment and compares VPR methods, ensuring the outcome is statistically significant. EP

summarizes a PR-Curve by combining two of its most relevant features, PR0 and RP100,

into a scalar measurement of VPR performance. EP addresses several shortcomings of

AUC, which would produce less significant and unintelligible results if used within the

proposed analysis method.

The remainder of this thesis utilizes the metrics and methodologies proposed in this

chapter to ensure that the results can be easily compared across the entire manuscript. To

this end, Section 3.4 provided a demonstration that serves two purposes: firstly, it shows

how to utilize the evaluation frameworks effectively, and secondly, it offers valuable case

studies on state-of-the-art VPR techniques that can be used as a reference in the following

chapters.

68

Chapter 4

Exploring Accuracy-Computation

Trade-off of Local Image Descriptors for

Aerial Robotics
1

As noted in Section 1.2, accuracy is undoubtedly fundamental for VPR-based applica-

tions. However, low resource usage is also relevant when a robot cannot rely on power-

ful hardware or need to save battery life. This chapter presents the first attempt of this

thesis to address VPR efficiently using Unmanned Aerial Vehicle (UAVs) as an application

context. UAVs are a category of mobile robots particularly susceptible to the problem of

performing VPR efficiently. While UAVs face one of the most challenging VPR condi-

tions, 6-DOF viewpoint changes, they are affected by payload restrictions limiting the

battery weight and, consequently, the hardware computational power. For this reason,

1This chapter extends that paper published and presented at NASA/ESA Conference on Adaptive
Hardware and Systems (AHS), Colchester, UK, 2019, pp. 103-108, with tile of: “Visual Place Recogni-
tion for Aerial Robotics: Exploring Accuracy-Computation Trade-off for Local Image Descriptors”. DOI:
10.1109/AHS.2019.00011.

69

70 Chapter 4. Accuracy-Computation Trade-off of Local Image Descriptors

computation-intensive VPR methods, such as those based on CNNs, are unsuitable for

UAVs. A viable approach is using local image descriptors, as these can be computed

relatively efficiently without needing any special hardware, such as a GPU. However,

the choice of a local feature descriptor is not trivial and calls for a detailed investig-

ation, as there is a trade-off between VPR accuracy and computational effort. In this

chapter, the author examines several state-of-the-art local feature descriptors’ perform-

ance and computational efficiency for VPR applications utilizing standard aerial and ap-

pearance change datasets. The results presented in this chapter show that a trade-off

between accuracy and computational effort is inevitable. Also, experiments confirm that

local feature descriptors are substantially more efficient than CNN-based techniques but

lack accuracy when coping with environmental changes. Therefore, while local feature

descriptors are good candidates for resource-constrained hardware, they have a limited

range of applicability in dynamic environments compared to CNN-based methods.

4.1 Background and VPR Challenges in Aerial Robotics

UAVs have been receiving great attention recently as they have a wide variety of indus-

trial applications, such as aerial imaging, communication, and surveying [4, 197, 198].

As part of autonomous navigation, place recognition is critical for UAV localization [199].

UAVs can often rely on GPS to track their position. However, there are several situations

where GPS is unavailable or degraded, such as underground operations [200], space

exploration [57], and close-ground flying next to tall buildings [201]. Tracking the

position with internal sensors enables localization in GPS denied environment. How-

ever, the estimation tends to drift over time because of accumulated errors requiring

70

4.1. Background and VPR Challenges in Aerial Robotics 71

re-localization at a certain point [201]. VPR is one the most suitable way to address loop

closure detection onboard a UAV. This is motivated by the availability, cost, size, and

weight of modern cameras, which make them suitable for small-payload aerial vehicles.

However, VPR is particularly challenging for small UAVs due to the extreme viewpoint

changes they experience and the limited computational power onboard [4]. Some state-

of-the-art VPR methods are only robust to small viewpoint changes [91, 202], or their

computation-intensive nature makes their use prohibitive for UAVs [21]. Some recent

works [31, 57, 52, 4] proposed VPR pipelines based on local image features as they can

be extracted efficiently on resource-constrained hardware. As noted in [52], the choice

of the local feature descriptor implies a trade-off between the computation efficiency and

the accuracy of the visual place recognition module. This consideration calls for a de-

tailed investigation into the accuracy-computation trade-off for local feature descriptors

specifically for VPR applications.

The study presented in this chapter explores the accuracy-computation trade-off of

several state-of-the-art local feature descriptors in the challenging operating scenario of

UAVs using standard ground-aerial image datasets exhibiting mild to extreme 6-DOF

viewpoint changes. VPR performance is assessed using the framework presented in

Chapter 3, and the image processing time is taken as a computational complexity meas-

ure. Results are presented for several well-established local descriptors in VPR applica-

tions: SIFT [34], SURF [40], BRISK [51], AKAZE [58], and ORB [41]. The experiments

also confirm that local feature descriptors perform similarly to CNN-based techniques in

dealing with 6-DOF viewpoint changes while running considerably faster. However, they

are outperformed under conditional changes, in particular those induced by illumination

[8] and seasonal [116] variations.

71

72 Chapter 4. Accuracy-Computation Trade-off of Local Image Descriptors

The reminder of this chapter is organized into the following sections. Section 4.2

describes the method and criteria used for performance evaluation. The experimental

results are discussed in Section 4.3. Conclusions and next research steps are given in

Section 4.5.

4.1.1 Local Feature Descriptors: an Overview

This section introduces the local feature descriptors used for the experiments conducted

in this chapter, expanding the overview provided in Section 2.1.1.

SIFT [34] detector assigns a keypoint with a location, scale, and orientation. The

descriptor algorithm takes an oriented window around the feature location of the 16×16

neighborhood in a scale pyramid, which is divided into 16 sub-block of 4×4 size. To form

the feature descriptor, an 8-bin HOG [42, 43] is created for each sub-block for 128 values.

The resulting image representation has a feature descriptor per detected feature. SIFT

descriptor is invariant to both scale and rotation and is agnostic to the feature detection

method to localize keypoints.

SURF [40] assigns the orientation to a local feature by analyzing the Haar-wavelet re-

sponse in a circular area around its location. The radius is 6× scale to render SURF scale-

invariant. The orientation is the direction where the wavelet response is the strongest.

The descriptor is computed for an oriented square area of 20 × scale. The square region

is divided into 4 × 4 squares. The Haar-wavelet response is computed along horizontal

(x) and vertical (y) directions in a 5 × 5 grid. Every sub-region is then described by a

vector including four elements: the algebraic sum and the sum of the module of wavelet

response along x and y axis. The result is a vector of 64 elements to describe a feature,

one half then SIFT.

72

4.2. Experimental Setup 73

BRISK [51] is a local binary descriptor. While the features vector is computed simil-

arly to BRIEF [49] using pixel intensity, the sampling strategy differs. BRISK uses con-

centric circular patterns instead of random sampling. This approach allows selecting

distant to close pixel pairs that are used to assign an orientation to the descriptor. The

process consists in computing the gradient between pairs at multiple sampling pattern

orientations. The primary orientation of BRISK corresponds to the direction where the

sum of the gradients is maximum.

ORB [41] includes a feature detector stage that is a scale-invariant version of FAST

[53], a stand-alone corner detector. The descriptor stage uses BRISK with a rotation

matrix based on the keypoint’s orientation to achieve rotation invariance.

AKAZE [58] evolves from KAZE [203]. As its predecessor, AKAZE comes with a de-

tector based on the determinant of the Hessian Matrix [37] and achieves scale invariance

by searching a nonlinear scale-space constructed by the Fast Explicit Diffusion (FED) al-

gorithm [203]. The descriptor follows the same idea as BRIEF but works on the average

intensity of areas instead of single pixels for better robustness to appearance changes.

Finally, rotation invariance is obtained by finding the dominant orientation in a circular

neighborhood around each detected feature.

4.2 Experimental Setup

The proposed approach evaluates local image feature descriptors addressing VPR as an

image retrieval task, as done in the previous chapter. Local image feature descriptors

are used to build a map from images of previously visited places. During the localization

phase, the map is searched to retrieve the reference images that match a query image

73

74 Chapter 4. Accuracy-Computation Trade-off of Local Image Descriptors

Local Features
Extraction

Training Dataset

K-MEANS

Reference Dataset

Local Features
Extraction

Environment
map

Visual
Dictionary

VLAD
descriptor

Step1:Visual Dictionary Training

Step 2: Mapping

Same
Algorithms

USES

Fig. 4.1. Map images processing diagram.

(i.e., a frame captured by the onboard camera). Localization succeeds if the query frame

is correctly matched with a reference image in the map. The VPR algorithm and the

evaluation criteria used to assess local image feature descriptors are detailed below.

4.2.1 Mapping

A map represents the knowledge of a robot about the environment. The map is built

offline from a set of images showing environment locations denoted as reference dataset,

IM , as illustrated by the diagram in Fig. 4.1. For each image in IM , the set of local image

feature descriptors is extracted by the assessed local descriptor (e.g., SIFT) and combined

into a global image descriptor using VLAD [69, 70]. The resulting VLAD descriptors are

finally organized in a ball-tree structure [204] to make the localization faster. VLAD

requires a visual dictionary, Vk, which is computed using k-means clustering [65] on

74

4.2.2. Localization 75

Query Image

Local Features
Extraction

VLAD
descriptor

Best matches among
Reference Images

Visual
Dictionary

Compare

Environment
map

USES

Fig. 4.2. Image retrieval diagram for a query image.

the features extracted from a training dataset, IR, using the same assessed local image

descriptor.

4.2.2 Localization

The image retrieval process is illustrated in Figure 4.2. A VLAD descriptor is computed for

the query image and compared with the VLAD descriptors in the map using cosine (Eq.

3.4). As described in Section 3.3, the reference images are ranked for their similarity

with the input image, and the resulting sequence is returned for the query image. A

higher rank means a higher similarity between a reference image and the query image.

If the localization succeeds, the image ranked at the top shows the same place as the

query image.

75

76 Chapter 4. Accuracy-Computation Trade-off of Local Image Descriptors

Fig. 4.3. A place from each dataset as it appears in different loops.

4.2.3 Evaluation Method

VPR performance is evaluated using EP bounds (Eqs. 3.6 and 3.7) and SP100 (Eq. 3.8).

The metrics for computational efficiency are the required time to process an image to

build a VLAD descriptor (encoding time) and the matching time.

4.2.4 Benchmark Datasets

The 6-DOF benchmark datasets are Lagout, Old City, and Corvin [4]. GardenPoints [8]

and Norland [116] are used for testing conditional changes. These datasets are intro-

duced in Section 2.1.5. Here are provided additional details pertinent to the experiments,

76

4.2.4. Benchmark Datasets 77

TABLE 4.1: APPEARANCE VARIATIONS AND GROUND TRUTH OF THE BENCHMARK DATASETS.

Dataset
Appearance Variation Reference Query Ground
Viewpoint Condition Images Images Truth

Lagout 0-15 Mild 6-DOF None 330 324 by authors

Lagout 0-30 Moderate 6-DOF None 330 397 by authors

Lagout 0-45 Wide 6-DOF None 330 395 by authors

Corvin 0-30 Moderate 6-DOF None 1179 1440 by authors

Corvin 0-45 Wide 6-DOF None 1179 1298 by authors

Old City Extreme 6-DOF None 5408 5641∗ by authors
GardenPoints Mild to moderate

Night-Day 200 200 ±2 frames(Day-Night Right) lateral shift

Norland
None Seasons 1622 1622 ±5 frames(Summer-Winter)

(*) ONLY A SUBSET OF 200 IMAGES IS USED FOR OLD CITY TO KEEP THE EXPERIMENTS WITHIN A REASONABLE DURATION.

such as the indication of which loops are used and how many images they include.

Lagout is a synthetic dataset consisting of four aerial footages captured at different

angles: 0◦, 15◦, 30◦, and 45◦. Corvin is similar to Lagout and includes three aerial loops

around the Corvin castle at 0◦, 30◦, and 45◦. Old City consists of two long loops captured

in an urban environment. Fig. 4.3 provides samples of those datasets. The reference

dataset used for mapping is the loop at 0◦ for Lagout and Corvin and Old City-1 for Old

City. The ground truth is provided by their authors [196]. GardenPoints (right-night to

right-day) [8] and Norland (winter to summer) [116] datasets are used to compare local

image feature descriptors with CNN-based descriptors under conditional changes. The

characteristics of these datasets are summarized in Table 4.1, including the number of

images, which influences the retrieval time. Please note that only a subset of 200 random

images is used for Old City to keep the experiments within a reasonable duration. This

exact Old City query subset is also employed for the other experiments presented in this

77

78 Chapter 4. Accuracy-Computation Trade-off of Local Image Descriptors

Fig. 4.4. Six images from VASE-JBL dataset.

thesis unless otherwise specified.

4.2.5 Training Data

The training data are chosen to obtain a generic visual dictionary (Vk) that works reas-

onably well for every benchmark dataset. Further analysis and insights into training data

selection are provided in Section 4.4. The results presented in the next section are ob-

tained with Vk trained on VASE-JBL [205], a dataset including 539 images showing a

wide variety of outdoor and indoor scenes captured in real-world environments [206].

VASE-JBL samples are provided in Fig. 4.4.

4.3 Experimental Results Discussion

The descriptors included in the tests are SIFT [34], SURF [40], BRISK [51], AKAZE [207]

and ORB [41]. Each descriptor has been used with its native local feature detector stage.

The VPR pipelines used for the tests has been implemented on top of the source code

available at [208]. The local descriptors implementations are from OpenCV (3.4.2.17)

78

4.3. Experimental Results Discussion 79

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B
R
IS
K

SU
R
F

SI
FT

A
K
A
ZE

O
R
B

B
R
IS
K

SU
R
F

SI
FT

A
K
A
ZE

O
R
B

B
R
IS
K

SU
R
F

SI
FT

A
K
A
ZE

O
R
B

Lagout-15 Lagout-30 Lagout-45

SP
1
0
0

EP

EP_max SP100 EP_min

(a) Results for all Lagout loops.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B
R

IS
K

SU
R

F

SI
FT

A
K

A
ZE

O
R

B

B
R

IS
K

SU
R

F

SI
FT

A
K

A
ZE

O
R

B

B
R

IS
K

SU
R

F

SI
FT

A
K

A
ZE

O
R

B

Corvin-30 Corvin-45 Old City

SP
1

0
0

EP

EP_max SP100 EP_min

(b) Results for Corvin and Old City datasets.

Fig. 4.5. EP bounds and SP100 for ORB, BRISK, SIFT, SURF and AKAZE.

79

80 Chapter 4. Accuracy-Computation Trade-off of Local Image Descriptors

0
200
400
600
800

1000
1200
1400
1600
1800
2000

O
R

B

B
R

IS
K

A
K

A
ZE

SU
R

F

SI
FT

O
R

B

B
R

IS
K

A
K

A
ZE

SU
R

F

SI
FT

O
R

B

B
R

IS
K

A
K

A
ZE

SU
R

F

SI
FT

Lagout Corvin Old-City

Lo
ca

liz
a�

o
n

 T
im

e
[m

s]

Encoding Matching

Fig. 4.6. The time required for localization in Lagout, Corvin and Old City datasets.

[209] and are used with the default parameters suggested by their respective authors.

The size of the visual dictionary, Vk, has a significant impact on VPR performance. A

grid search yielded 2048 words for SURF and SIFT, 1024 for BRISK and AKAZE, and 256

words for ORB.

4.3.1 Accuracy and Computation Time

Figs. 4.5a and 4.5b show the EP bounds and SP100 for the considered local image

descriptors. VPR exhibits the highest performance when using SURF features in Lagout.

SIFT has a wider lower bound than SURF on Corvin-30 and Old City and slightly higher

SP100 on Corvin-45. However, VPR performance is only one of the evaluation criteria be-

ing considered in this study. The complete picture includes the data from Fig. 4.6 show-

ing the localization time of each descriptor measured for a single thread execution on an

Intel i7-7700K CPU. The encoding time is similar for SURF, SIFT, and AKAZE. BRISK is

the slowest, which is quite unexpected as ORB, the fastest, uses a similar algorithm to

80

4.3.1. Accuracy and Computation Time 81

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400

SP
1

0
0

Localiza�on Time [ms]

ORB SIFT SURF AKAZE BRISK

(a) Lagout-30

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400

SP
1

0
0

Localiza�on Time [ms]

ORB SIFT SURF AKAZE BRISK

(b) Lagout-45

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500

SP
1

0
0

Localiza�on Time [ms]

ORB SIFT SURF AKAZE BRISK

(c) Corvin-45

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000

SP
1

0
0

Localiza�on Time [ms]

ORB SIFT SURF AKAZE BRISK

(d) Old City

Fig. 4.7. VPR performance versus total localization time (encoding and matching).

compute the descriptor. This discrepancy is likely due to BRISK implementation flaws or

sub-optimal settings of its detector stage. Overall, the localization takes longer for Old

City because of its map’s higher number of images. There are 5408 images to search

in Old City-1 while only 1179 and 330 images in Corvin-00 and Lagout-00, respectively.

SIFT and SURF yield the best VPR performance. However, the latter is considerably more

81

82 Chapter 4. Accuracy-Computation Trade-off of Local Image Descriptors

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

Lagout-30 Lagout-45 Corvin-30 Corvin-45 Old City

Validated

Unvalidated

Δ
SP

1
0

0
UNKNOWN TO KNOWN WITH Z VALIDATION

BRISK SURF SIFT AKAZE ORB

Fig. 4.8. SP100 difference between Vk trained with environment-unrelated (Unknown) and re-
lated (Known) data with Z-test validation.

efficient and, therefore, a better choice. In particular, this gap is vast when the localiz-

ation occurs in Old City, where SURF is about 800ms faster than SIFT. The significant

difference in matching time is mainly due to the SIFT descriptor, which is twice as long

as SURF’s (Section 4.1.1). Fig. 4.7 offers an overview of VPR performance to localiza-

tion time trade-off, suggesting further considerations about ORB. Although SURF-based

VPR can be considered a good trade-off, it still requires about 1 second to complete the

localization in Old City using a workstation CPU. For UAVs, whose computation power is

generally lower, ORB can be a better option. Indeed, although ORB enables less accurate

VPR than SIFT and SURF, it can complete localization about 10 times faster.

82

4.3.2. Considerations on Training Data 83

TABLE 4.2: CORRELATION COEFFICIENTS BETWEEN TRAINING AND MAP DATASETS.

Training
Dataset

Map
Dataset ORB BRISK SIFT SURF AKAZE

Lagout-15 Lagout-00 0.151 0.216 0.308 0.223 0.215
Lagout-30 Lagout-00 0.154 0.221 0.312 0.217 0.218
Lagout-45 Lagout-00 0.153 0.220 0.313 0.216 0.216
VASE-JBL Lagout-00 0.148 0.220 0.310 0.222 0.215
Corvin-30 Corvin-00 0.153 0.216 0.313 0.220 0.210
Corvin-45 Corvin-00 0.149 0.219 0.310 0.218 0.213
VASE-JBL Corvin-00 0.155 0.219 0.312 0.219 0.214
Old City-2 Old City-1 0.152 0.222 0.310 0.22 0.214
VASE-JBL Old City-1 0.152 0.222 0.307 0.222 0.216

4.3.2 Considerations on Training Data

The results presented above are for a scenario where the VPR module is agnostic to the

operating environment. In particular, the images used to train the visual dictionary were

from VASE-JBL, which is unrelated to Lagout, Corvin, and Old City datasets. This section

examines the use of environment-related data to train the visual dictionary for VLAD

to provide the VPR system with some prior knowledge of the operating environment.

More precisely, the dictionary to operate in an environment is obtained from the map:

Vk is trained on Lagout-00 for Lagout, Corvin-00 for Corvin, and Old City-1 for Old City.

Fig. 4.8 shows SP100 difference between using environment-unrelated (Unknown) data

and map images (Known) to train Vk. The markers above the bars indicate McNemar’s

test result for the unknown and known pairs (Section 3.4.2). Green circles indicate a

confidence interval equal to or above 95%, allowing ∆SP100 to determine the best training

approach, unknown or known. Red diamonds are for narrower confidence intervals

indicating that the two approaches are regarded as having comparable performance. For

83

84 Chapter 4. Accuracy-Computation Trade-off of Local Image Descriptors

0

20

40

60

80

100

Corvin-30 Lagout-45 Old City Garden Pt. Nordland

SP
1

0
0

 [
%

]

netVLAD RMAC BRISK SURF SIFT AKAZE ORB

Fig. 4.9. SP100 comparison between CNN-based and local descriptor-based VPR methods.

example, SURF-based VPR has higher performance on Lagout-45 when trained on VASE-

JBL (∆SP100 = 0.43). This gap is statistically significant, as indicated by the green circle

mark above the corresponding bar. Conversely, SIFT on Corvin-45 has ∆SP100 = 0.04

with |Z| = 0.12, which is below the threshold of 1.96. Then, SIFT-unknown and SIFT-

known are regarded as comparable, accordingly to the considerations made in Section

3.4.2.

Training Vk on the map images generally results in worse VPR performance than using

VASE-JBL. Although the loops appear to be correlated when looking at the images as a

whole, the same does not happen for the corresponding feature sets. Table 4.2 shows

the correlation coefficients from every pair of training and mapping datasets used for the

experiments. The difference between the correlation coefficients of VASE-JBL and the

other training datasets is negligible, explaining why there is no improvement by using

prior knowledge for local features-based VPR. From these results, the author concludes

that the feature space partitioning determined by the training data to build the visual

dictionary is the dominant factor influencing the VPR performance.

84

4.4. Can Local Feature Descriptors replace CNNs in VPR Applications? 85

24.7

84.1

135.1

137.7

278.9

50.1

1857

136

2129

0 500 1000 1500 2000 2500

ORB

AKAZE

SIFT

SURF

BRISK

RMAC-GPU

RMAC-CPU

netVLAD-GPU

netVLAD-CPU

Encoding Time [ms]

CPU

GPU

Fig. 4.10. Encoding on Corvin-30 measured for an Intel i7-7700K CPU and Nvidia GTX-1080
GPU.

4.4 Can Local Feature Descriptors replace CNNs in VPR

Applications?

Figs. 4.9 and 4.10 show SP100 and the encoding time for local feature descriptors com-

pared to CNN-based methods. The comparison includes the CPU and GPU encoding

time for RMAC [96] and NetVLAD [71]. While the GPU encoding time of RMAC and

NetVLAD are comparable to local descriptors, on a CPU they are considerably slower.

Moreover, local descriptors are competitive with CNNs under mild to extreme 6-DOF

viewpoint variations, as shown in Fig. 4.9. On the other hand, CNN-based methods are

better on conditional changes outperforming by a significant margin local descriptors on

GardenPoints and Nordland. Therefore, local feature descriptors may not meet accuracy

requirements in changing environments.

85

86 Chapter 4. Accuracy-Computation Trade-off of Local Image Descriptors

4.5 Summary and Next Steps Toward Addressing

Changing Environments

This chapter proposes a comparison of several state-of-the-art local feature descriptors

for VPR under mild to extreme viewpoint changes in small UAVs using ground-aerial im-

age datasets. VPR accuracy is crucial for loop-closure-based localization, but it is not the

only property to be considered for mobile robotics based on resource-constraint hard-

ware. As UAVs are very agile vehicles, they need to re-localize quickly, but, at the same

time, they are equipped with resource-constraint hardware to meet payload limitations

and extend battery life. Driven by this consideration, the evaluation of local feature

descriptors is based on the VPR performance and localization time to determine the

descriptor with the best trade-off for the potential use with low-end hardware. The res-

ults show that SURF and SIFT descriptors reach the highest VPR performance at the cost

of a long localization time. ORB can be a better option for UAVs as it allows much faster

localization while keeping a reasonable accuracy with most of the datasets considered

for the experiments.

In Section 4.4, local feature descriptors have been compared with CNN-based meth-

ods exhibiting higher efficiency but lower performance under conditional change. The

results indicate that local descriptors are the best option to operate in the absence of

conditional changes. Conversely, dynamic environments require the invariance provided

by learned image descriptors. This consideration raises the need for a learning-based

approach suitable for running smoothly on low-end hardware without needing a GPU

to deal with conditional changes. The next chapter investigates this problem and pro-

poses the use of Binary Neural Networks [25] as a more efficient alternative to CNNs for

86

4.5. Summary and Next Steps Toward Addressing Changing Environments 87

changing environments.

87

88 Chapter 4. Accuracy-Computation Trade-off of Local Image Descriptors

88

Chapter 5

Binary Neural Networks for Efficient

and Effective Visual Place Recognition

in Changing Environments
1

The previous chapter showed how conventional hand-crafted methods based on local fea-

tures fail under extreme environmental appearance changes. Conversely, those based on

Convolutional Neural Networks (CNNs) achieve significantly better performance but res-

ult in heavy runtime processes and model sizes that demand a large amount of memory.

This chapter focuses on reducing the runtime requirements of the convolutions to render

image processing more efficient and suitable for resource-constraint hardware to op-

erate in changing environments. This chapter discusses two contributions introduced

in Section 1.3. The first contribution confirms the effectiveness of Binary Neural Net-

works (BNNs) in addressing VPR in dynamic environments with conditional changes.

1This work is published in IEEE Transactions on Robotics, vol. 38, no. 4, pp. 2617-2631, Aug. 2022,
and presented at IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto,
Japan, 2022. DOI: 10.1109/TRO.2022.3148908.

89

90 Chapter 5. BNNs for Efficient and Effective VPR in Changing Environments

The second and foremost contribution is a multi-step approach that reduces the preci-

sion of Convolutional Neural Network (CNN) parameters, reduces network depth, and

uses fewer neurons in the classifier stage to train a new class of highly compact models.

These models significantly reduce the memory requirements and computational effort

while maintaining good VPR performance coping with conditional changes. To the au-

thor’s knowledge, this is the first attempt at using Binary Neural Networks to solve the

visual place recognition problem effectively under changing conditions and with signific-

antly reduced resource requirements. The proposed binary neural network, FloppyNet,

achieves comparable VPR performance when considered against its full-precision and

deeper counterparts with up to a 99% smaller model size and increasing the inference

speed by seven times.

5.1 Addressing Changing Environments Efficiently

The importance of VPR for autonomous navigation has been remarked on multiple times

in the previous chapters. The VPR module enables a robot to re-localize when the posi-

tion tracking fails or drifts due to accumulated errors. However, changes in appearance

due to seasons, weather, and illumination render VPR challenging for mobile robots.

Section 4.4 demonstrated that conventional hand-crafted techniques for VPR fail under

extreme environmental changes. At the same time, those based on deep CNNs achieve

higher performance but require considerably longer processing times. Considering that

VPR is executed onboard mobile robots usually equipped with resource-constrained hard-

ware, such demanding techniques may be inapplicable [4, 52]. Increasing the efficiency

of VPR by saving memory and reducing the computational effort to run a model without

90

5.1. Addressing Changing Environments Efficiently 91

Model Efficiency

AlexNet 1bit FloppyNet
Binariza�on Depth and

FC tuning

Hardware Capabili�es

3%
1%

Model Size Inference Speed-up

x1

x6.1

x7.2

Energy Usage

100%

26%
13%

Fig. 5.1. FloppyNet is a compact and efficient BNN derived from AlexNet to enable VPR on edge
devices and robots with severe hardware constraints.

sacrificing performance is paramount for a resource-constrained robot. Higher efficiency

enables VPR on cheap hardware and frees resources for additional functionalities to im-

prove a robot’s navigation system. However, reducing resource demand while keeping

VPR performance at a reasonable level is difficult. To tackle this challenge, the author

proposes the multi-step approach summarized in Fig. 5.1 that combines Binary Neural

Networks [25, 151] and depth reduction to obtain very compact models that drastic-

ally decrease the memory requirements and improve computational efficiency. The sub-

sequent VPR performance loss is mostly countered by training the model using a classifier

stage with a reduced number of full-precision neurons.

BNNs are a class of networks characterized by a single-bit precision for both weights

91

92 Chapter 5. BNNs for Efficient and Effective VPR in Changing Environments

and activations instead of the 32 or 64 bits used by conventional deep neural networks.

So far, BNNs have been employed and highly optimized for classification tasks only,

where they exhibit lower yet comparable accuracy to their full-precision counterparts

[147, 153]. However, classification and VPR are different problems, as highlighted in

Section 2.1. The first aims to find the best fit among categories, while VPR consists of

matching different images of the same scene. The work presented in this thesis proposes

a generic BNN network architecture specifically trained on place images to solve the VPR

problem effectively under environmental changes and with significantly reduced memory

requirements and computational effort. The best network obtained2, called FloppyNet,

achieves close VPR performance to its full-precision and deeper counterpart, AlexNet

[26], while using 99% less memory and running seven times faster. With a model size of

154 Kilobytes, FloppyNet can be stored on an old 5
1
4 -inch floppy disk!

The reminder of the chapter in organized as follows. Section 5.2 describes the pro-

posed multistep approach while introducing training and design principles of BNNs. Sec-

tion 5.3 presents FloppyNet. The evaluation criteria are detailed in Section 5.4 along

with the benchmark data used to obtain the results. The successive five sections are for

presenting experimental results. Section 5.5 offers a comprehensive analysis of binary

layers demonstrating the suitability of BNNs for VPR. Sections 5.6 and 5.7 discuss the

VPR performance of the proposed BNN. Section 5.8 presents computation and energy

benchmarks, and Section 5.9 compares FloppyNet with hand-crafted image descriptors

on a low-end hardware platform. Finally, Section 5.10 draws conclusions and indicates

how to develop further the research presented here.

2https://github.com/bferrarini/FloppyNet_TRO

92

5.2. From CNNs to BNNs in Three Steps 93

Full-Precision
CNN Binarization

Depth
Reduction

FC tuning

BinaryNet ShallowNet FloppyNet

Memory and Computational
Efficiency

VPR
Performance

Fig. 5.2. The diagram shows the three transformation steps to obtain FloppyNet and the related
by-product: BinaryNet and ShallowNet.

5.2 From CNNs to BNNs in Three Steps

This section describes the steps to turn a CNN into a compact yet effective feature ex-

tractor for VPR while introducing BNN training and design principles. Fig. 5.2 shows the

proposed approach and the by-product of each step. Binarization reduces the model size

and speeds up convolutions by enabling bitwise arithmetic. Depth reduction decreases

the number of layers for further model size reduction and faster computation. The sub-

sequent performance loss due to binarization and layer removal is countered chiefly by

training the network with an appropriately sized fully-connected stage consisting of full-

precision neurons.

5.2.1 First Step: Binarization

This study assumes that full-precision neural networks use 32-bit parameters and de-

scribes how binarization improves memory usage and computational speed compared to

such networks. It should be noted that the methods described here are also applicable to

64-bit networks without any loss of generality.

The main advantages of binarization are the tiny model sizes to deploy and the high

93

94 Chapter 5. BNNs for Efficient and Effective VPR in Changing Environments

Fig. 5.3. Sign quantizer in forward and backward passes.

computational efficiency that the concatenation of multiple parameters into 32-bit vari-

ables enable. Indeed, a 32-bit weight requires four bytes, while a single bit is needed for a

binary one. Hence, by concatenating 32 binary weights into a floating-point variable, the

resulting model size is about 97% smaller than its full-precision counterpart. Moreover,

bitwise operations between weights and activations are computed in parallel with 32

binary operands resulting in a significant speed-up in convolutions. However, optimizing

a binary model with a reasonable performance gap from its full-precision counterpart

requires applying specific techniques and some network structure adjustments. This sec-

tion has the two-fold purpose of describing the implementation and design criteria the

author has taken and giving a gentle introduction to BNNs.

Training and Binary Function

As discussed in Section 2.2.3, post-training binarization is unsuitable for obtaining reas-

onably accurate BNNs. However, training BNNs with backpropagation is not directly

applicable as it requires sufficient precision to allow gradient accumulation to work

[151]. Courbariaux et al. solved this problem [25] with Straight Through Estimator

(STE) [150]. The fundamental idea of STE is that the quantization function is applied in

94

5.2.1. First Step: Binarization 95

the forward pass but skipped during backpropagation. STE keeps a set of full-precision

weights denoted as proxies (WF), which are binarized (WB) on the forward pass to make

a prediction and compute a loss. Any function can be used as a binarization function.

Courbariaux et al. used sign function:

WB = sign(WF) , (5.1)

In the backpropagation phase, WF is updated accordingly to the loss gradient as in a

regular network:
∂Loss

∂WF

=
∂Loss

∂WB

. (5.2)

Activations are binarized similarly to the weights but do not need proxies as they are

recomputed entirely in every forward pass. Fig. 5.3 shows the plots for the binarization

function. In the forward pass, it behaves as the sign function performing binarization. In

the backward pass, the function returns a clipped identity of the gradient. Clipping the

gradient when activations exceed 1.0 improves a binary model’s accuracy:

∂Loss

∂aF
=

∂Loss

∂aB
, if |aF | ≤ 1

0 otherwise,
(5.3)

where aF is the full-precision input to the activation function and aB is the correponding

binarized output. The binary models presented in this work use sign as a quantizer for

both weights and activations and are trained with Larq [173]. Larq is a framework built

on Keras [210] that fully supports the training of BNNs with STE.

95

96 Chapter 5. BNNs for Efficient and Effective VPR in Changing Environments

Encoding Values

Binary encoding of weights and activations reduces dot products to a series of bitwise op-

erations. In particular, representing logical 0 and 1 with −1 and 1 renders convolutions

and matrix multiplications a series of XNOR and pop-count operations [25]. However,

a dedicated compute engine or specific hardware is required to exploit the efficiency of

binary arithmetic [25, 151]. A conventional compute engine for full-precision networks

stores binary weights into 32-bit registers. As a result, multiply-accumulate computa-

tions (MAC) in BNNs require the same time and resources as in a full-precision network

because binary operands are stored in floating-point variables. Compute engines for

BNNs use the Single Instruction, Multiple Data (SIMD) within a register (SWAR) method

[151, 25], which concatenates 32 binary operands into a 32-bit register and evaluates

them simultaneously using bitwise operations. Typically, a binary MAC is implemented

as follows:

a1 += popcount(xnor(a32o , w32
1)) , (5.4)

where a32o and w32
1 are sets of 32 input activations and weights. Although operand con-

catenation enables the computation of multiple binary MACs in parallel, 32× speed-up is

unrealistic. This limitation depends on several factors, including instruction scheduling,

CPU pipeline stalls, and the hardware architecture above anything else. General-purpose

CPUs and GPUs have specialized instructions for computing a floating-point MAC in

a single clock cycle. Conversely, for binary operations, no such support exists [172].

Hence, a binary MAC results from multiple instructions on many hardware platforms,

such as Nvidia GPUs [143] and ARM processors [144]. Therefore, if we let cb represents

the number of clock cycles to compute a binary MAC for a given hardware platform, the

96

5.2.1. First Step: Binarization 97

B
at

ch
N

or
m

B
in

ar
y

A
ct

iv
.

C
on

vo
lu

tio
n

P
oo

l

C
on

vo
lu

tio
n

B
at

ch
N

or
m

A
ct

iv
at

io
n

P
oo

l

CNN BNN

Fig. 5.4. A typical convolutional block in a CNN (left) and BNN (right).

obtainable speed-up is capped at 32/cb.

Batch Normalization

Batch Normalization (BatchNorm) [152] uses mini-batch statistics during training to

adjust and scale activations. The central role of BatchNorm in full-precision networks is

to speed up the training. In BNNs, BatchNorm is essential as it improves performance and

helps training convergence [153, 154, 147]. It is worth mentioning that the parameters

of BatchNorm layers cannot be binarized; however, they are few compared with the

number of weights and contribute little to a model’s size (Section 5.3.1).

Layer Order

As illustrated in Fig. 5.4, a convolutional block in a CNN consists of convolution, Batch-

Norm, activation, and pooling. BNNs achieve better performance if the order of the layers

is as follows: BatchNorm, binary activation, convolution, and pooling [123]. This layer

arrangement has a two-fold purpose. First, it allows for pooling from real values before

binarization. Otherwise, the result would be a tensor dense in ’ones’ which is proven to

negatively affect the accuracy of a BNN [153]. Second, BatchNorm can replace bias as it

works as a threshold for the subsequent layer [154, 147]. As bias parameters cannot be

binarized, not using them reduces the memory and the number of full-precision MACs in

97

98 Chapter 5. BNNs for Efficient and Effective VPR in Changing Environments

binary networks. The BNNs proposed in this thesis use only BatchNorm without biases,

and convolutional blocks are as in Fig. 5.4.

First Layer Input

Full-precision inputs are recommended to improve a binary model’s accuracy [151]. The

model size is unaffected since the weights are binary. However, there is an impact on

computational speed, which is generally acceptable when the convolution filters are few

compared to deeper layers. Accordingly with this consideration, the binary networks

presented in this work have the first convolutional layer directly connected to the input

image with no binary activation and BatchNorm placed in the middle.

Padding

Convolutions are often padded with zeros in full-precision networks. This standard prac-

tice cannot be applied to BNNs that require padded values within the encoding set to en-

able bitwise operations. Zero-padding would expand the {−1, 1} encoding to {−1, 0, 1},

rendering convolutions incompatible with bitwise operations. Therefore, all the BNNs

presented here use one-padding accordingly with the weights and activation encoding

employed.

5.2.2 Second Step: Depth Reduction

The primary motivation for depth reduction is to decrease the number of a model’s para-

meters. Networks for classification are deep and can have dozens of convolutional levels

[211]. However, VPR is a different task, and the author empirically demonstrate in Sec-

tion 5.7 that achieving good performance in changing environments with fewer layers

98

5.2.2. Second Step: Depth Reduction 99

Feature maps

In
pu

t

bi
n-

co
nv

-1
m

ax
 p

oo
l-

1

bi
n-

co
nv

-2
m

ax
 p

oo
l-

2

bi
n-

co
nv

-3

bi
n-

co
nv

-4

m
ax

 p
oo

l-
5

bi
n-

co
nv

-5

F
C

-S
TA

G
E

(227,3)
(55,96)

(27,256)
(13,384) (13,384) (6,256)

1xN

(13,256)

(a) Binary AlexNet (BinaryNet).

Feature maps

In
pu

t

bi
n-

co
nv

-1
m

ax
 p

oo
l-1

bi
n-

co
nv

-2
m

ax
 p

oo
l-2

m
ax

 p
oo

l-5

F
C

-S
TA

G
E

bi
n-

co
nv

-5

(227,3)
(55,96)

(27,256)
(6,256)

1xN

(13,256)

(b) Binary AlexNet after depth reduc-
tion (ShallowNet).

BinaryCNN
StageIn

pu
t

B
in

 F
C

-4
09

6

B
in

 F
C

-4
09

6

B
in

 O
ut

 L
ay

er

(c) Not tuned FC stage.

BinaryCNN
StageIn

pu
t

32
-b

it
 F

C
-2

56

32
-b

it
 F

C
-2

56

32
-b

it
 O

ut
 L

ay
er

(d) Tuned FC stage.
In
pu
t

bi
n-
co
nv
1

po
ol
1

bi
n-
co
nv
2

po
ol
2

po
ol
5

bi
n-
co
nv
5

Image
Features
(6,256)

(e) Binary Feature extractor.

Fig. 5.5. Binarization (a), depth reduction (b) and FC tuning (c, d) applied to AlexNet. Depth
reduction consists of removing conv3 and conv4 layers. The three pooling layers are kept to
maintain the exact shape of the pool5 feature map (d).

is possible. Not only the model size but also the computational efficiency of a network

benefits from depth reduction. For example, the best model is obtained by removing the

two intermediate convolutional layers from an AlexNet-like CNN, as shown in Figs. 5.5a

and 5.5b. This operation decreases by 66% the amount of the weight, yielding signific-

ant model size and MACs reduction (Section 5.3.2). The network resulting from depth

reduction is denoted by ShallowNet (Figs. 5.2 and 5.5b).

99

100 Chapter 5. BNNs for Efficient and Effective VPR in Changing Environments

5.2.3 Third Step: Fully-Connected Stage Tuning

BNNs are highly optimized for classification. The fully-connected (FC) stage of classifiers

is often populated with many neurons. AlexNet [26] and VGG-16 [212], for example,

include 4096 units in each layer. When it comes to training a model for VPR, the hyper-

parameters of the FC layers should be revised. For example, the top-performing binary

model obtained used 256 32-bit neurons per FC layer during the training phase (Fig.

5.5d). Binary weights are a source of gradient noise [151] that renders the training

more complex and longer to complete [213]. A 32-bit FC reduces the number of binary

weights that need to be learned, making the training more stable. Smoother training

has a lower chance of overshooting a loss function’s minimum, facilitating a model’s

optimization. It is relevant mentioning that FC stage tuning is applicable only when VPR

is carried out with convolutional features (Fig. 5.5e). This is the case of the proposed

FloppyNet, which uses pool5 features for VPR, as detailed in Section 5.3.2.

5.3 Binary Neural Networks for VPR

This sections details the BNNs employed in the experiments and defines the comparison

baseline to evaluate the BNN resulting from the proposed approach describes in Section

5.2.

5.3.1 CNN Baseline and BinaryNet

The starting CNN is based on the AlexNet archetype [26], which is one of the most

used network types for VPR [2, 96, 71, 72]. AlexNet-type networks’ structure consists

100

5.3.1. CNN Baseline and BinaryNet 101

TABLE 5.1: THE LAYER STRUCTURE OF BASELINE AND ITS BINARIZED VERSION, BINARYNET. THE

TABLE IS SPLIT IN TWO ROWS FOR BETTER READABILITY.

Layers from conv1 to conv3

conv1 pool1 conv2 pool2 conv3

Layer Setup C(11,4,96) P(2,2) C(5,1,256) P(2,2) C(3,1,384)
Features Size 290400 69984 186624 43264 64896
Parameters (M) 0.03 0.04 0.65 0.65 1.54
Model Size (KiB) 136.5 137.3 2538 2540 5998
Total MACs (M) 105.42 105.42 553.31 553.31 702.83

Binarizable Par. (M) 0.03 0.03 0.65 0.65 1.53
Non-Binarizable Par. 0 0 192 192 704
Binary Model Size (KiB) 4.25 4.25 80 80 190
Binary Model Size (% of Baseline) 3.12 3.1 3.15 3.15 3.17

Layers from conv4 to fc7

conv4 conv5 pool5 fc6 fc7

Layer Setup C(3,1,384) C(3,1,256) P(2,2) FC(4096) FC(4096)
Features Size 64896 43264 9216 4096 4096
Parameters (M) 2.86 3.75 3.75 41.5 58.29
Model Size (KiB) 11186 14646 14648 162120 227704
Total MACs (M) 927.11 1076.63 1076.63 1114.38 1131.16

Binarizable Par. (M) 2.86 3.75 3.75 41.49 58.27
Non-Binarizable Par. 1472 2240 2240 2752 10944
Binary Model Size (KiB) 355 466 466 5076 7156
Binary Model Size (% of Baseline) 3.17 3.18 3.18 3.13 3.14

of several convolutional blocks (CB) alternated with pool layers followed by a fully-

connected (FC) stage with one or more hidden layers.

The baseline CNN, denoted by Baseline in this chapter, is the same as a stand-

ard AlexNet [26] except for the use of BatchNorm and pool layers with a 2 × 2 non-

overlapping kernel for higher accuracy [26]. Baseline is shown in Fig. 5.5a. It has five

convolutional blocks followed by a fully-connected stage with two hidden layers, includ-

ing 4096 neurons each. The detailed structure is described in Table 5.1 using the follow-

ing notation. C(k, s, h) indicates a convolutional block with kernel size k, stride s and h

channels (filters). A similar notation is used for max pooling: P (k, s). Fully-connected

101

102 Chapter 5. BNNs for Efficient and Effective VPR in Changing Environments

TABLE 5.2: THE STRUCTURE OF FLOPPYNET. THE VALUES OF MODEL SIZE AND TOTAL MACS ARE

INCREMENTAL.

FloppyNet and ShallowNet Features Extractors

conv1 pool1 conv2 pool2 conv5 pool5

Layer Setup C(11,4,96) P(2,2) C(5,1,256) P(2,2) C(3,1,256) P(2,2)
1-bit parameters (M) 0.03 0.03 0.65 0.65 1.24 1.24
32-bits parameters (M) 0 0 192 192 704 704
Model Size (KiB) 4.25 4.25 80 80 154 154
Total MACs (M) 105.42 105.42 553.31 553.31 652.99 652.99

Param. % (BinaryNet) 100 100 100 100 33.1 33.1
Size Rate % (BinaryNet) 100 100 100 100 33.05 33.05
Size Rate % (Baseline) 3.12 3.1 3.15 3.15 1.05 1.05
MAC Rate % (BinaryNet) 100 100 100 100 60.7 60.7

layers are indicated with FC(n), where n is the number of neurons. The model sizes

and MACs reported in Table 5.1 are cumulative per network layer. For example, if the

baseline is cut to use fc6 features, the corresponding size of the model is 158.32 MiB and

the MACs are 1.1 billion.

BinaryNet is the binary version of the baseline CNN. The bottom rows of Table 5.1

show the number of binarizable parameters and the corresponding model sizes. The

remaining 32-bit parameters are due to BatchNorm. However, their contribution to the

binary model size is negligible, around 0.6%. BinaryNet sizes vary from the 3.12% of

Baseline at conv1, which is not preceded by a BatchNorm layer, to 3.18% at pool5.

5.3.2 FloppyNet and ShallowNet

FloppyNet consists of three binary convolutional blocks and three pool layers, as shown

in Fig. 5.5e and detailed in Table 5.2. Binarization, jointly with depth reduction applied

to Baseline, resulted in a compact model of 154 KiB. The layers removed in the depth

reduction step are conv3 and conv4. The output layer of FloppyNet is denoted as pool5

102

5.3.2. FloppyNet and ShallowNet 103

59

61

63

65

67

69

71

4096 2048 1024 512 256 128

A
ve

ra
ge

 S
P

1
0

0

Layer size

Full-Precision FC Binary FC

Fig. 5.6. Average SP100 across all datasets for full-precision and binary fully-connected stages at
different layer sizes.

by convention. The author kept the same name as in the Baseline network since they

have the same structure and provide feature vectors with the same shape and element

number: 6× 6× 256 = 9216 elements given an color input image of 227× 227 pixels. The

use of the last pooling stage for FloppyNet is motivated in Section 5.5, where the VPR

skill resulting from binarization is analyzed layer by layer.

The primary motivation for FloppyNet is to reduce the model size and shorten the

inference latency as much as possible while keeping a reasonable VPR accuracy. With two

fewer convolutional layers, FloppyNet uses 33% of the memory of BinaryNet at the pool5

layer, computing 39% fewer MACs (Table 5.2). Binarization and depth reduction steps

cause a performance loss that is mainly compensated by tuning the FC stage properly for

the training. The best FloppyNet model was obtained with 256 full-precision neurons in

both fc6 and fc7. Fig. 5.6 shows the VPR performance of the proposed model for various

FC sizes. The performance peak corresponds to 256 full-precision neurons. This training

approach’s effectiveness is demonstrated in Section 5.6.1, where FloppyNet is compared

103

104 Chapter 5. BNNs for Efficient and Effective VPR in Changing Environments

against its twin ShallowNet, which is, conversely, trained without tuning the FC stage.

Finally, it is relevant highlighting that FloppyNet’s structure remains similar to the

CNN from which it is originated (Fig. 5.5). Specifically, it is a general-purpose network

such as its ancestor AlexNet but trained on a specific dataset to address VPR effectively.

5.4 Experimental Setup

This section details the experimental setup (including evaluation criteria, training, and

test datasets) used to assess the VPR performance of the binary neural networks presen-

ted in Section 5.3.

5.4.1 VPR Performance Evaluation

Visual place recognition is cast as a retrieval task (Chapter 3). Reference images showing

already visited locations are searched to find the best match with the robot camera’s

current view, namely the query image. VPR is considered successful when a query image

is paired with one of the correct reference images. The image descriptors used to match

images are obtained by L2-normalization of a network’s layer output:

D =
X̂l

||X̂l||2
, (5.5)

where X̂l is the output of the lth layer. Descriptors are compared using Euclidean dis-

tance; the shorter the distance, the higher the similarity between two images.

d = ||D1 −D2||2 , (5.6)

104

5.4.2. Memory Allocation Efficiency 105

where D1 and D2 are the image descriptors to be compared. The reference image with

the shortest distance from the query is regarded as the current location.

Following the approach described in Chapter 3, VPR is evaluated on a whole dataset

with SP100 index (Eq. 3.8) along with Z-test validation (Eq. 3.10) as needed.

5.4.2 Memory Allocation Efficiency

VPR performance is also evaluated in relation to memory requirements. Memory effi-

ciency is defined as the ratio of the model size to SP100:

ηm =
Msize

SP100

. (5.7)

ηm measures the memory cost per SP100 point, expressing the trade-off between memory

usage and VPR performance. The lower ηm, the more efficiently the model uses memory,

Msize. Memory efficiency is proposed to generalize the trade-off analysis between accur-

acy and parameter density [122] to low-precision networks whose memory footprint also

depends on weight quantization. Hence, the use of model size instead of the number of

weights in Eq. 5.7. Moreover, ηm can be applied to networks having the same structure

but different weight precision to determine the relationship between VPR performance

and quantization, providing additional information to characterize a low-precision net-

work or choose the optimal quantization for an application.

5.4.3 Processing Time and Power Usage

The processing time per image, Ti, and power usage, Pw, are used to determine the

computational and energy efficiency of deployed models. Ti is the time required to

105

106 Chapter 5. BNNs for Efficient and Effective VPR in Changing Environments

Fig. 5.7. A corresponding image pair from each test dataset.

process an image. For a neural network, it corresponds to the inference latency. The time

intervals to load an image and consume the output are excluded from the measurement

so that Ti reflects the actual computational effort for an image representation. Pw is

measured directly on the hardware platform. It is used to determine the inference energy

cost:

Ei =

∫
Ti

Pw(t)dt . (5.8)

5.4.4 Training Data

The dataset used to train all the models is Places365 [92, 214]. It is a place-themed

dataset consisting of 1,803,460 images divided into 365 categories with between 3068

and 5000 images in each category. The validation set used for the experiments includes

100 images per location class.

106

5.4.5. Test Data 107

TABLE 5.3: TEST DATASETS AND GROUND TRUTH TOLERANCE.

Dataset
Appearance Variation Reference Query Ground

Viewpoint Condition Images Images Truth

GardenPoints Mild to moderate
Night-Day 200 200 ±2 frames(Day-Night Right) lateral shift

Norland
None Seasons 1622 1622∗ ±5 frames(Summer-Winter)

Old City Extreme 6-DOF None 5408 5641∗ by authors

RobotCar Mild Illumination
206 202∗ ±5 framesCross-Seasons lateral shift Dynamic Elements

(*) A RANDOM SUBSET OF 200 IMAGES IS USED FOR THE EXPERIMENTS.

5.4.5 Test Data

On long-term runs, the working space undergoes changes that alter the appearance of

places a robot visits at different times or from different directions. In order to provide

comprehensive results, experiments use four datasets to include several types of appear-

ance variations. All datasets have two subsets that correspond to different traversals of

the environment, of which Fig. 5.7 shows some examples. The reference dataset (IM)

represents the previous knowledge of the environment, and the query dataset (IQ) rep-

resents the current traversal. The datasets include a different number of query images.

To compute fair average performance indicators such as the average SP100, 200 query

images are randomly sampled from each of them for a total of 800 images. The test

datasets were previously presented in Section 2.1.5. For the reader’s convenience, their

characteristics are summarized below and in Table 5.3.

GardenPoints [8] includes three loops of the Queensland University of Technology

(QUT). The experiments employed Right-Day and Right-Night to test VPR under illu-

mination changes and mild lateral shifts. Ground truth is built by frame correspondences

107

108 Chapter 5. BNNs for Efficient and Effective VPR in Changing Environments

with a tolerance of ±2 frames [110].

Nordland [116] includes a set of four traversals captured along a rail track in Norway

in every season. The experiments employed Summer and Winter journeys as reference

and query datasets, respectively. The ground truth is built with a tolerance of ±5 frames

[110].

Old City [4] is a urban dataset with two traversals showing the same location from

different perspectives to generate 6-DOF viewpoint variations. The ground truth data is

available from the authors [196].

RobotCar Cross-Seasons [1] is a subset of the Oxford RobotCar dataset [115] con-

sisting of two sequences of 206 sunny query images and 202 dusk reference images

recorded on board a car driving in an urban environment. This dataset includes illumin-

ation changes, mild lateral viewpoint shifts, and dynamic elements such as pedestrians,

cars, and shadows. Ground truth is built by frame correspondences with a tolerance of

±5 frames.

5.5 Breaking Down BNNs: Analyzing Layer Performance

The first question to answer when a convolutional network is employed as a feature ex-

tractor is: “which layer is the most suitable to build a distinctive image descriptor? This

section provides a VPR performance assessment of the features from every layer in both

Baseline network and its binary counterpart, BinaryNet. CNNs can learn features at

different levels of abstraction. Convolutional features retain some spatial information.

However, as the depth increases, pool layers induce the loss of such spatial information

in favor of translation invariance. In fully-connected layers, the activation of a neuron

108

5.5. Breaking Down BNNs: Analyzing Layer Performance 109

TABLE 5.4: SP100 [%] FOR EVERY LAYER IN BASELINE (TOP) AND BINARYNET (BOTTOM).

Baseline Image Features

conv1 pool1 conv2 pool2 conv3 conv4 conv5 pool5 fc6 fc7

Garden Point 14.5 29 56.5 62.5 67 79.5 66 84 73 56.5
RobotCar 80.1 89.3 87.4 90.3 91.3 92.2 82 93.2 90.8 74.3
Nordland 69 75.5 86.5 91 91 95 54 85 40 29
Old City 7 11 7 9 11 18 13 33 39 37

Average 42.7 51.2 59.4 63.2 65.1 71.2 53.8 73.8 60.7 49.2

BinaryNet Image Features

conv1 pool1 conv2 pool2 conv3 conv4 conv5 pool5 fc6 fc7

Garden Point 3 11.5 43 51.5 75.5 74.5 76 79.5 66.5 39.5
RobotCar 61.2 73.3 81.4 81.9 82.4 82.4 83 83 84 63.6
Nordland 53 60 71.5 71 77.5 77 72 71.5 38.5 14
Old City 9 10.5 11.5 15 16 15 20.5 23 49 44.5

Average 31.6 38.8 51.9 54.9 62.9 62.2 62.9 64.3 59.5 40.4

depends on every neuron in the previous level. Hence, the spatial information vanishes

while improving the invariance to viewpoint changes and translation [89]. As BNNs’ fea-

tures have yet to be investigated for use in VPR applications, a second question needs an

answer: “how does binarization impact the features and their VPR matching performance?”

The answers to these questions are given in Table 5.4, which shows SP100 for every

layer of Baseline and BinaryNet. In Baseline, fully-connected layers and deeper con-

volutions handle viewpoint changes better than the initial layers. Fc6 and fc7 obtain

the highest performance under the extreme viewpoint changes that characterize Old

City. Pool5 is the best on GardenPoints, which includes mild viewpoint shifts other than

day-light variations. On the other hand, shallower layers deal better with conditional

changes. The best layer for the seasonal variation of Nordland is conv4 with SP100 = 95%.

These results partially confirm the findings of a previous study on AlexNet [89], which

indicates conv3 as the best layer to deal with conditional changes while pool5 and, in

109

110 Chapter 5. BNNs for Efficient and Effective VPR in Changing Environments

some cases, fc6 as the best choice to deal with viewpoint changes. Moving to BinaryNet,

it is straightforward to notice how binarization negatively affects VPR performance, but

the characteristics of the layers are more or less unchanged. Table 5.4 shows that pool5

achieves the highest performance on the same dataset as for Baseline. Similarly, fully-

connected layers outperform the others on Old city.

The average SP100 reported at the bottom of Table 5.4 is computed across all the

datasets as they formed a single environment to simulate a workspace exhibiting various

appearance changes. From this perspective, pool5 is the layer that guarantees the best

performance across the four datasets. The average SP100 is 73.8% for Baseline and 64.3%

for its binary counterpart. The author considers the gap acceptable (9.5%), especially

considering that BinaryNet requires only 3.18% of the memory of Baseline at pool5 (Table

5.1). The main goal of addressing conditional changes and results obtained from the

layer analysis, suggested the use of pool5 as an output layer for FloppyNet (Section

5.3.2).

5.6 VPR Performance Evaluation

FloppyNet is compared against several other networks. These include Baseline, Bin-

aryNet and ShallowNet from Section 5.3.1, HybridNet [5], VGG-16 [212], CALC [94],

and a 8-bit implementation of FloppyNet. ShallowNet is like FloppyNet but trained with

regular fully-connected layers of 4096 binary neurons, as described in Section 5.2.2.

HybridNet is a version of AlexNet [26] with an additional convolutional block trained

on ImageNet [87] and tuned on SPED [5]. To avoid training data influencing the res-

ults, the author trained an HybridNet model by replacing ImageNet with Places365, the

110

5.6. VPR Performance Evaluation 111

TABLE 5.5: MODELS’ PERFORMANCE AND EFFICIENCY FOR RASPBERRY PI 4 IMPLEMENTATIONS.

Network bits
SP100 Params Size ηm MACs Ti FPS

Pw Ei

(avg) [M] [KiB] [KiB] [M] [ms] [w] [mj]

HybridNet 32 75.4 5.07 16957 224.89 1098 M 137.8 7.26 2.616 360.5
Baseline 32 73.8 3.75 14648 198.48 1077 M 132.4 7.55 2.616 346.4
VGG-16 32 77.9 14.7 57487 737.96 15.3 B 992.1 0.45 2.616 2595
BinaryNet 1 64.3 3.75 466 7.25 1077 M 21.6 46.3 2.536 54.8
ShallowNet 1 62.9 1.24 154 2.45 653 M 18.2 54.95 2.536 46.2
FloppyNet 1 68.7 1.24 154 2.24 653 M 18.2 54.95 2.536 46.2
FloppyNet-8 8 71.4 1.24 1213 16.99 653 M 33.2 30.12 2.876 95.5
FloppyNet-32 32 72.9 1.24 4843 66.43 653 M 76.1 13.14 2.616 199.1
CALC 32 40.5 0.137 537 13.26 186 M 45.1 22.17 2.616 118.0

dataset used to train the other networks considered for the experiments. The results for

HybridNet are obtained with the deepest convolutional layer available. VGG-16 [93] is

a very deep network if compared to FloppyNet since it includes 13 convolutional blocks.

It is relevant to include VGG-16 in the comparison because several multi-staged VPR

methods widely use it as a feature extractor. Some examples are R-MAC [96], Cross-

Region-Bow [2] and NetVLAD [71]. The VGG-16 model has been trained from scratch

using Places365, and the features used for the tests are from the very last pool layer.

CALC [94] is a lightweight CNN designed to address VPR with low resource require-

ments. CALC includes about 137K parameters: a small fraction of 3.75M of Baseline and

1.24M of FloppyNet (Table 5.5). The results are given for the model trained on Place365

shared by the authors. The 8-bit version of FloppyNet is included in the comparison to

show that BNNs also scale well to 8-bit quantization, demonstrating the potential applic-

ability of binarization as a more efficient yet effective approach for VPR .

111

112 Chapter 5. BNNs for Efficient and Effective VPR in Changing Environments

0

10

20

30

40

50

60

70

80

90

100

GardenPoints RobotCar Nordland Old City

SP
1

0
0

 [
%

]

Baseline BinaryNet ShallowNet FloppyNet

(a) Baseline, BinaryNet and ShallowNet.

0

10

20

30

40

50

60

70

80

90

100

GardenPoints RobotCar Nordland Old City

SP
1

0
0

 [
%

]

CALC HyridNet VGG-16 Baseline FloppyNet

(b) Several full-precision networks.

0

10

20

30

40

50

60

70

80

90

100

GardenPoints RobotCar Nordland Old City

SP
1

0
0

 [
%

]

Baseline FloppyNet-32bit Floppy-8bit FloppyNet

(c) Binary to 8-bit and full-precision.

Fig. 5.8. FloppyNet is compared against several CNNs and BNNs.

5.6.1 Comparison with the baseline

FloppyNet aims to achieve similar performance as the starting Baseline network with

higher efficiency. Fig. 5.8a shows comparative results between FloppyNet, Baseline

and the intermediate design steps: BinaryNet and ShallowNet. Binarization and depth

reduction negatively impact the VPR performance. BinaryNet and ShallowNet score the

lowest SP100 on every dataset, exhibiting a substantial gap from Baseline. FloppyNet

outperforms BinaryNet and ShallowNet on every dataset confirming that tuning the fully-

112

5.6.1. Comparison with the baseline 113

(a) GardenPoints (b) Nordland

(c) RobotCar Cross-Seasons

Fig. 5.9. Some significant query results from GardenPoints (a), Nordland (b), and RobotCar
Cross-Seasons (c) datasets.

connected stage during the training (Section 5.2.3) mitigates the performance loss due

to binarization and depth reduction.

Baseline generally has better performance than FloppyNet. However, the difference

is slight on GardenPoints, Nordland, and Robotocar due to a few places with some par-

ticular characteristics. The most difficult locations to recognize for FloppyNet are those

presenting substantial viewpoint variations. An analysis on GardenPoints mismatches

113

114 Chapter 5. BNNs for Efficient and Effective VPR in Changing Environments

confirms such a FloppyNet’s weakness. The SP100 gap on GardenPoints is due mainly to

lateral shift, which is generally mild but in a few locations, where FloppyNet fails while

Baseline succeeds (Fig. 5.9a). This FloppyNet’s shortcoming is also reflected by the

SP100 gap of 8.5% from Baseline on Old City, which is where the performance difference

is the largest. FloppyNet scores almost the same SP100 as Baseline on Nordland, 84%

vs 85%. The mismatches are mainly between locations showing tunnel entrances. Fig.

5.9b shows two examples of mismatch. FloppyNet retrieves the same reference image

on two different queries including a tunnel. FloppyNet scores a good SP100 on RobotCar

as well. The SP100 difference with Baseline is caused by a series of wrong matches in the

two locations shown in Fig. 5.9c. The high illumination contrast and the occlusions due

to dynamic elements, such as cars and shadows, are possibly the cause of FloppyNet’s

failures.

5.6.2 Comparison with CNNs

Full-precision and deeper networks obtain better VPR performance than the proposed

binary network (Fig. 5.8b). Substantial gaps are exhibited on Garden Points and Old City

by VGG-16 and HybridNet, respectively. On the other hand, those two networks are far

larger than FloppyNet even without considering the weights’ precision. Table 5.5 shows

additional data on the average VPR performance across the four datasets. FloppyNet

scores an average SP100 of 68.7% using 1.24M binary parameters and computing 653M

MACs. The highest average SP100 is achieved by VGG-16, 77.9%. However, VGG-16

includes 14.7M weights and computes 15.3B floating-point MACs resulting in two orders

of magnitude longer inference latency. The small number of parameters penalizes CALC,

which FloppyNet outperforms by a large margin on every dataset. Moreover, its low

114

5.6.3. Weight Quantization: Impact on Performance 115

1-bit vs 8-bit 1-bit vs 32-bit 8-bit vs 32-bit

GardenPoints -2.6 -0.23 2.1

Nordland -0.5 -2.2 -1.4

Old City -1.3 -1.5 0.71

RobotCar -2 -3 -1.7

Fig. 5.10. Pairwise Z@0.5 scores for FloppyNet (1-bit), FloppyNet-8 (8-bit) and FloppyNet-32
(32-bit). Underlined values indicate a confidence interval ≥ 95%.

VPR performance is not compensated by a sufficient computational efficiency as CALC

is about two times slower than FloppyNet, as shown in Table 5.5 and discussed later in

Section 5.8.

5.6.3 Weight Quantization: Impact on Performance

Fig. 5.8c presents a comparison between FloppyNet model against its 8-bit and full-

precision versions to examine the impact of weight quantization on place recognition

capabilities. Increasing the quantization bits has a positive effect on VPR performance.

FloppyNet-8bit slightly outperforms FloppyNet in every test scenario and nearly closes

the gap with Baseline except on Old-City. Indeed, the reduced depth affects VPR perform-

ance on significant viewpoint changes, accordingly to the finding of the layers analysis

in Section 5.5. The larger performance gap occurs for GardenPoints, 6%. These perform-

ance differences are validated by the Z scores shown in Fig. 5.10. Indeed, FloppyNet is

comparable to the 8-bit version on Nordland and Old-City while inferior on GardenPoints

and Robocar. On Old-City FloppyNet is also comparable to the 32-bit model with a |Z|

value of 1.5. As subsequently discussed in Sections 5.6.4 and 5.8, this slightly lower per-

formance of FloppyNet is largely compensated by its higher memory and computational

115

116 Chapter 5. BNNs for Efficient and Effective VPR in Changing Environments

efficiency compared to the 8-bit and 32-bit versions. Finally, increasing a model’s preci-

sion from 8 to 32 bits does not significantly improve the VPR capabilities of the proposed

network. As shown in Fig. 5.8c, 8-bit and 32-bit models score similar SP100 on every

dataset and the Z scores confirm their close performance level except on GardenPoints,

where the 8-bit model is the best.

5.6.4 Weight Quantization: Impact on Memory Efficiency

Table 5.5 shows the memory efficiency for all the compared networks. SP100 is the aver-

age score on the four datasets. Binary networks have smaller ηm values compared to any

full-precision network. FloppyNet requires 2.24KiB per SP100 point, while CALC, the most

memory-efficient CNN, requires 13.26KiB. ShallowNet has the same size as FloppyNet

but has a lower SP100, hence it uses memory less efficiently: ηm = 2.45KiB. FloppyNet-

8bit performs better on average than the 1-bit model by 2.7% but requires about eight

times the memory. The considerably higher ηm of 16.99KiB reflects a trend indicating

that an increase in the model size does not correspond to a proportional increase in the

VPR performance.

5.7 Binarization, Depth Reduction and FC-256

Fig. 5.11 shows SP100 relatively to Baseline resulting from using binarization (Bin),

depth reduction (Depth), and FC stage tuning (FC256) separately and their relevant

combinations. The features used to obtain the results are from the pool5 layer.

Depth reduction (Depth) yields a full-precision network with better performance on

Nordland and RobotCar. Depth reduction makes the output layer of a model retaining

116

5.7. Binarization, Depth Reduction and FC-256 117

0.0

0.2

0.4

0.6

0.8

1.0

1.2

GardenPoints RobotCar NordLand Old City Average

SP
1

0
0

 r
el

a�
ve

 t
o

 t
h

e
b

as
el

in
e

Bin Depth FC256 Bin+Dep Bin+Dep+FC256 FloppyNet

Fig. 5.11. SP100 relative to Baseline (dotted line) of several combinations of binarization, depth
reduction, and FC-Tuning.

more spatial information compared to Baseline. Shallower layers are more suitable to

deal with conditional changes (Table 5.4). Hence, the better performance on Nordland

and Robotcar datasets that present significant conditional changes while none or mild

viewpoint variations. Training a full-precision model with 256 neurons in the FC stage

(FC256) helps VPR significantly to tackle extreme 6-DOF viewpoint variations. FC256

model achieves 22% higher SP100 on Old City than the original model trained with 4096

neurons in the FC stage. In classifiers, the FC stage is usually sized as large as possible to

maximize accuracy while avoiding overfitting. Conversely, the empirical evidence shows

that VPR benefits from a smaller FC stage. These results suggest that the FC stage has

different roles in classification and VPR tasks.

Depth reduction does not help SP100 scores of the binarized models. The values of

SP100 for binary (bin) and shallow binary networks (bin+dep) are very close to each

other on every test dataset (Nordland in particular), which is rather unexpected consid-

117

118 Chapter 5. BNNs for Efficient and Effective VPR in Changing Environments

ering the full-precision case (Depth). The red bars in Fig. 5.11 represent FloppyNet,

which implements all the steps of the proposed approach. The addition of FC stage

tuning counters the SP100 loss due to binarization and depth reduction in every tested

scenario (except GardenPoints) supporting the effectiveness of the proposed training

method.

5.8 Computing and Energy Usage Benchmarks

The framework used to deploy binary models is Larq Compute Engine (LCE) [172]. LCE

consists of a model compiler and a kernel to compute binary convolutions within the

TensorFlow Lite runtime environment (TFlite) [145, 142]. LCE has been a natural choice

as it is part of the Larq ecosystem [173] used to train the binary models presented in

this work. The 8-bit and full-precision implementations use the built-in TFlite compute

kernel.

Processing time indicates a deployed model’s time to complete an inference, namely

to compute an image representation. Energy usage is determined from the power usage

of a deployed model using Eq. 5.8. The platform employed for the experiments is a

Raspberry PI4 (RPI4) that sits on an ARMv8 Cortex-A72 running at 1.5 GHz [215]. The

operating system is Ubuntu 20.04 Linux, 64-bit.

5.8.1 Processing Time and Computation Speed-Up

Fig. 5.12a compares the inference latency of Baseline and two FloppyNet implementa-

tions: 1-bit and 8-bit. The values reported in the figure are an average of 100 runs using

four threads, namely employing all the cores available in the RPI4’s CPU. FloppyNet has

118

5.8.1. Processing Time and Computation Speed-Up 119

18.2

33.2

132.4

0 25 50 75 100 125 150

FloppyNet

FloppyNet-8

Baseline

Time [ms]

(a) Processing time.

46.2

95.5

346.4

0 50 100 150 200 250 300 350 400

FloppyNet

FloppyNet-8

Baseline

Energy [mJ]

(b) Energy usage.

Fig. 5.12. Processing time (a) and energy usage (b) for one image. The measurements are
obtained with 4 threads on a Raspberry PI4.

a latency of 18.2ms, which is about seven times shorter than Baseline’s (132.4ms).

Table 5.5 shows the processing time for all the tested models. FloppyNet is consider-

ably faster than any other full precision CNN including CALC, which computes only 186M

MACs, 28.5% of FloppyNet’s MACs. However, it takes a considerably longer processing

time than the proposed network, 45.1ms against 18.2ms, while achieving considerably

lower VPR performance (Fig. 5.8b). BinaryNet’s latency enables an analysis of the speed-

up contributions provided by binarization and depth reduction. BinaryNet has the same

structure as Baseline except for the binary weights and executes in 21.6ms, resulting in

six times faster than its full-precision counterpart. Depth reduction removes two convolu-

tions from BinaryNet, shortening the execution by a further 16% to the 18.2ms measured

for FloppyNet. Finally, latency measures demonstrate that binarization also scales well to

8-bit quantization. FloppyNet-8bit completes an inference in 33.2ms, resulting in almost

twice slower as FloppyNet.

119

120 Chapter 5. BNNs for Efficient and Effective VPR in Changing Environments

5.8.2 Energy Usage

The power usage of a deployed model is measured with an ampere meter connected to

the USB-C power port of the RPI4. The energy spent per image, Ei, depends on the

power absorbed by the RPI4, Pw, and processing time, Ti (Eq. 5.8). Pw is stable during

an inference depending only on a model’s weights precision because of the computa-

tional kernel used: LCE for binary models and TFlite for 8-bit and full-precision models.

Hence, Eq. 5.8 becomes Ei = PwTi, where Pw is the constant power usage measured

during image processing. Pw is 2.54W , 2.62W and 2.88W for binary, 32-bit and 8-

bit models. As Ti varies in a broader range than Pw, Ei depends mainly on a model’s

processing time (Fig. 5.12). The rightmost columns of Table 5.5 show the power absorp-

tion and energy usage for every deployed model. BNNs consume less energy than any

other considered network. In particular, FloppyNet spends 46.2mJ per image, which is

considerably more energy-efficient than the 8-bit implementation and Baseline usage of

95.5mJ and 346.4mJ , respectively.

5.9 Comparison with Handcrafted Descriptors

This section compares FloppyNet with several handcrafted image descriptors relevant for

VPR applications [28]. They include HOG [43], GIST [10] and CoHOG [60]. The results

show that the proposed BNN has significantly better VPR capabilities while having com-

parable or higher computational efficiency than the considered handcrafted descriptors.

120

5.9.1. Handcrafted Descriptors Setup 121

0

10

20

30

40

50

60

70

80

90

100

GardenPoints RobotCar Nordland Old City Average

SP
1

0
0

 [
%

]

FloppyNet HOG CoHOG GIST

Fig. 5.13. VPR performance of HOG, CoHOG and GIST compared to FloppyNet.

5.9.1 Handcrafted Descriptors Setup

The platform employed for measuring the processing time is a Raspberry PI4 (RPI4), as

in the previous section. The handcrafted descriptors setting used for the experiments are

as follows. For HOG [43] is used the OpenCV 4.5.0 implementation with a cell size of

16 × 16 and block size of 32 × 32, as suggested in [28]. The input image size is set to

256×256 pixels, which is similar to FloppyNet’s input size of 227×227 pixels. CoHOG [60]

is tested using the code shared by the authors with their recommended settings [216]:

cell size of 16 × 16, 8 bins and entropy threshold of 0.4. The image size is 256 × 256

pixels. Gist [10] is available in the C library Lear’s GIST through the pyleargist python

wrapper [217]. Gist is used with the parameters indicated by the authors [218]: 4 blocks

and 8 orientations per scale. The image size is set to 128 × 128 pixels to keep the Gist’s

latency comparable with the other methods. Indeed, using 256 × 256 images extends

121

122 Chapter 5. BNNs for Efficient and Effective VPR in Changing Environments

Gist’s processing time by roughly four times.

5.9.2 Results Discussion

Figs. 5.13 and 5.14 shows the comparison results. FloppyNet achieves substantially bet-

ter VPR performance on every dataset scoring an average SP100 of 68.7%. Gist achieves

the highest VPR performance among the handcrafted descriptors but results in the slow-

est one taking 105ms to process an image.

The proposed BNN is the fastest technique when running using all the four RPI4’s

cores. However, Gist and HOG implementations cannot run on multiple threads. Hence,

the inference latency for FloppyNet running on a single thread is reported in Fig. 5.14

for a fair comparison. Only HOG executes faster than the proposed network taking

20.4ms to process an image instead of the 39.1ms required by FloppyNet (1-thread).

On the other hand, HOG exhibits a wide VPR performance gap on every dataset. HOG

scores an average SP100 of 39.4%, whereas FloppyNet achieves SP100 = 68.7%. The au-

thor concludes that the shorter latency of HOG does not compensate for the poor VPR

performance it achieves compared to the proposed binary network.

5.10 Summary and Further Considerations on

Processing Time

This chapter presented FloppyNet, a compact binary network to address VPR. FloppyNet

achieves slightly lower or comparable VPR performance to deeper and full-precision net-

works in changing environments having a drastically smaller model size and substantial

122

5.10. Summary and Further Considerations on Processing Time 123

18.2

20.4

39.1

87.4

105.5

0.0 20.0 40.0 60.0 80.0 100.0 120.0

FloppyNet
4-Threads

HOG

FloppyNet
1-Thread

CoHOG

GIST

Processing �me [ms]

1-Thread

4-Threads

Fig. 5.14. Processing time of HOG, CoHOG and GIST compared to FloppyNet.

computational speed-up. Such a lightweight network offers several opportunities for em-

bedded systems and edge computing in general. FloppyNet may be employed to enable

VPR on very cheap hardware or replace standard CNNs to free up resources to alloc-

ate for additional functionalities to improve a robot’s navigation system or increase the

frame rate on low-cost embedded applications. For example, NetVLAD is a two-stage

image descriptor that uses VGG-16 to extract image features that are subsequently post-

processed to compute a robust image representation. VGG-16 is a large network that

requires a relatively long time to extract image features. If a BNN such as FloppyNet

is used instead, NetVLAD’s memory requirements and computational efficiency would

improve dramatically. This example suggests that a natural extension of this work in-

vestigates the applicability of BNNs in multi-stage descriptors that use a CNN as a fea-

ture extractor. This research hypothesis is further discussed later in Chapter 7 with other

possible research developments.

123

124 Chapter 5. BNNs for Efficient and Effective VPR in Changing Environments

A second developing direction for this research arises from the processing time meas-

urements discussed in Section 5.8.1. Binarization alone improves the speed by six times,

taking the processing time from 134.4ms of Baseline to 21.6ms of BinaryNet. Depth

reduction removes almost 40% of the MACs from BinaryNet, but the execution time

decreases only by 16%. Hence, a large share of the remaining computational effort oc-

curs elsewhere in the network. The next chapter investigates this problem extensively,

identifying the first convolutional layer as the slowest stage of FloppyNet and providing

a solution to shorten its processing time significantly.

124

Chapter 6

Highly Efficient Binary Neural

Networks for Visual Place Recognition
1

Chapter 5 demonstrates how BNNs can be employed successfully as a more efficient

alternative to CNNs to address VPR in changing environments. FloppyNet is seven times

faster than AlexNet and twice as fast as CALC, a tiny network designed for efficient

loop closure detection. However, FloppyNet’s processing time and energy usage can be

improved significantly by addressing the first convolutional layer, which is not completely

binarized for better performance. In particular, the first layer is the slowest network

stage, requiring a large share of the entire computational effort to process an image.

This chapter shows how to combine depthwise separable factorization and binarization

to design an in-place replacement for the first convolutional layer of a BNN to improve

computational and energy efficiency. The best model presented here performs similarly

to FloppyNet, requiring 50% of the processing time and energy usage.

1This work was published and presented at IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Kyoto, Japan, 2022, pp. 5493-5500. DOI: 10.1109/IROS47612.2022.9981978.

125

126 Chapter 6. Highly-Efficient BNNs for VPR

Fig. 6.1. The first layer bottleneck problem in BNNs addressed by the HB-DS module.

6.1 The First Layer Bottleneck Problem

Mobile robots need to track their position within the workspace to operate autonomously.

As part of the navigation system, place recognition is fundamental in the localization pro-

cess. Considering that mobile robots often sit on resource-constraint hardware and are

battery-powered, computational and energy efficiency are not less important than VPR

accuracy. In Chapter 5, BNNs [25] are proposed as a more efficient yet effective altern-

ative to CNNs for enabling VPR in resource-constraint contexts. The key idea of BNNs

is using a single bit to encode weights and activations, allowing compact model sizes

and bitwise operations to achieve high computational efficiency, as described in Section

5.2.1. Although a BNN can be one order of magnitude faster than a CNN, there is a sub-

stantial margin for improvement. For better performance, the first layer of BNNs takes

high-precision inputs [151]. Hence, the first convolution is incompatible with bitwise

operations resulting in the most inefficient stage of a BNN, as exemplified in Fig. 6.1.

126

6.2. Unblocking the Latency Bottleneck 127

Such a bottleneck problem is particularly relevant for VPR as many techniques use a rel-

atively small number of convolutions [94, 90, 2, 96]. Therefore, the first layer computes

a significant part of the total operations to process an image that cannot be binarized

without impacting the VPR performance. For example, FloppyNet has only three convo-

lutions and spends about 84% of the entire processing time on the first one, which has

binary weights but takes high-precision inputs.

This chapter addresses the bottleneck of the first convolutional layer in BNNs by pro-

posing the Half-Binary Depthwise Separable (HB-DS) module. HB-DS combines depth-

wise separable factorization [132, 133] with binarization to enhance the computational

efficiency of a BNN without affecting the VPR performance. The HB-DS module is then

used to design a BNN that can be tuned to train models to several performance-efficiency

trade-offs to meet various application requirements. The best model trained2 achieves

the same VPR accuracy as FloppyNet requiring 50% of the time and energy.

6.2 Unblocking the Latency Bottleneck

The first convolutional layer is crucial for a BNN’s performance A common practice in

BNN design is using high-precision inputs because binarization negatively affects per-

formance [151]. Consequently, the first convolutional layer is incompatible with bit-wise

operations resulting in the slowest stage of a BNN, as demonstrated in Section 6.4.3.

This section presents Half-Binary Depthwise Separable module (HB-DS) to address

the first layer bottleneck problem. It is a configurable module that can replace the first

convolution in a BNN without significantly adjusting the existing network architecture.

2https://github.com/bferrarini/Half-Binary-Depthwise-Separable-Module

127

128 Chapter 6. Highly-Efficient BNNs for VPR

feature map

convolu�on:

(a) Convolution.

feature map

depthwise: + pointwise:

(b) Depthwise separable factorization.

feature map

depthwise: + pointwise:

(c) HB-DS module.

Fig. 6.2. A standard convolution (a) compared to depthwise separable factorization (b) and HB-
DS module (c).

6.2.1 Depthwise Separable Convolutions

The proposed approach uses depthwise separable factorization to split a convolution into

two separate layers: a depthwise convolution and a pointwise convolution [132, 133].

The depthwise convolution operates on the input channels individually, resulting in an

output feature map with the same number of channels as the input. The pointwise layer

consists of a 1 × 1 convolution that builds a new map from the depthwise layer’s fea-

tures. Fig. 6.2 illustrates the idea underlying depthwise separable decomposition. This

factorization has the purpose of reducing the computational complexity of the original

convolution. The term complexity is used here as a synonym for the number of multiply-

accumulate operations (MACs) computed by a convolution. Hence, having fewer MACs

means lower computational complexity. Let us assume a convolutional layer takes an

128

6.2.1. Depthwise Separable Convolutions 129

input tensor Tin = hi × wi × ci and uses a kernel, k × k, to output a feature map

Tout = ho × wo × co. The computational cost is:

Cconv = (k2 · ci) · ho · wo · co , (6.1)

where (k2 · ci) is the cost for a single element in Tout. A depthwise convolution convolves

the input channels individually, creating a feature map having the same depth, ci, as the

input tensor. Fig. 6.2b shows an example of a depthwise convolution processing a three-

channel tensor (e.g., a color image). The computational cost of a depthwise convolution

is as follows:

Cdepth = k2 · ci · ho · wo . (6.2)

The subsequent pointwise stage is a standard convolution with k = 1:

Cpoint = ci · ho · wo · co . (6.3)

The total computational cost of a depthwise separable convolution is:

Csep = Cdepth + Cpoint = ci · ho · wo · (k2 + co) . (6.4)

Compared to a standard convolution, the depthwise separable factorization reduces the

complexity by:
Cconv

Csep

=
k2co

k2 + co
. (6.5)

The larger the kernel, more effective is the depthwise separable factorization.

129

130 Chapter 6. Highly-Efficient BNNs for VPR

Depthwise-Conv2D

kernel〈k, s, ci × d〉
bias<3 x d>

Binary-Conv2D

kernel〈1, 1, ci x d, co〉

BatchNormalization

HB-DS Module
kernel〈11, 4, 3 × d〉

bias<3 x d>

MaxPooling2D

Binary-Conv2D

kernel〈5, 2, 96, 256〉

BatchNormalization

MaxPooling2D

BatchNormalization

Binary-Conv2D

kernel〈3, 1, 256, 256〉

MaxPooling2D

output
6 x 6 x 256

Fig. 6.3. HB-DS module implementation (left) and its placement as a first stage in FloppyNet
(right). d denotes the depth multiplier, k the kernel size, s the stride, ci the input channels and
c0 the output channels.

6.2.2 Half-Binary Depthwise Separable Convolutions

The Half-Binary Depthwise Separable module (HB-DS) proposed here consists of a depth-

wise separable factorization whose pointwise convolution is binarized. (Fig. 6.2c). As a

result, the depthwise layer takes full precision inputs preventing performance loss, while

the subsequent pointwise convolution is binary for high computational speed. The share

of binary MACs in HB-DS is:
Cpoint

Csep

=
co

k2 + co
. (6.6)

Conversely, the full precision MAC are those in the depthwise convolution:

Cdepth

Csep

=
k2

k2 + co
. (6.7)

If co > k2 the effect of binarization is dominant on factorization. Conversely, the complex-

ity reduction is primarily due to factorization. The implementation of the HB-DS module

130

6.2.3. BNN Setup for HB-DS Benchmarking 131

feature map

Fig. 6.4. Depthwise separable factorization with a depth multiplier of 2.

is illustrated in Fig. 6.3 (left). A batch normalization layer [152] is placed before the

binary convolution to improve a model’s accuracy and training convergence [153].

HB-DS includes a depth multiplier, d, to make it tunable for different scenarios. The

depth multiplier is number of kernels the depthwise convolution uses on the input to

create a ticker, and then, more information-rich feature map of d · ci channels. Fig.

6.4 shows an example for d = 2. The application of a depth multiplier increases the

computational complexity of the deptwise convolution by d times. Therefore, Eq. 6.5 is

rewritten as follows:
Cconv

Csep

=
k2co

d k2 + co
. (6.8)

On the other hand, the VPR performance of a BNN improves as d increases. Section

6.4.3 demonstrates the use of d as a tuning parameter to obtain various trade-offs while

keeping HB-DS faster than an ordinary convolutional layer.

6.2.3 BNN Setup for HB-DS Benchmarking

The network used for the experiment is a version of FloppyNet enhanced with HB-DS,

as illustrated in Fig. 6.3. The HB-DS module uses the same hyperparameters as the

original FloppyNet’s convolution: a 11 × 11 kernel, stride of 4 and 96 output channels.

131

132 Chapter 6. Highly-Efficient BNNs for VPR

The rest of the network is as in the original design to highlight the impact of HB-DS on

VPR performance and efficiency.

6.3 Experimental Setup

The proposed network is trained with several depth multipliers, d. The resulting models

are assessed on VPR under various appearance changes. A model’s efficiency is evaluated

using processing time and energy usage as criteria.

6.3.1 VPR Performance

VPR is cast as a retrieval problem, as in the previous chapters. A query image repres-

enting the current robot’s camera view is compared to the reference images showing

the previously visited locations. The image descriptor for a model is obtained from the

vectorized output of a convolutional or pooling layer by L2-normalization:

D =
X̂l

||X̂l||2
, (6.9)

where X̂l is the output of the lth layer. The similarity between the two images is determ-

ined using cosine:

s =
D1D2

||D1|| ||D2||
. (6.10)

The reference image scoring the highest similarity with the query is regarded as the cur-

rent location. VPR performance is measured on a dataset using several criteria, including

SP100 (Eq. 3.8), average EP (Eq. 3.3) and AUC.

132

6.3.2. Processing Time and Energy Usage 133

TABLE 6.1: TEST DATASETS AND GROUND TRUTH TOLERANCE.

Dataset
Appearance Variation Reference Query Ground

Viewpoint Condition Images Images Truth

GardenPoints Mild to moderate
Night-Day 200 200 ±2 frames(Day-Night Right) lateral shift

SPED Test None
Night-Day;

1000 200 ±5 framesSeasons;
Dynamic Elements

RobotCar Mild Illumination
206 202 ±5 frames

Cross-Seasons lateral shift Dynamic Elements

Norland
None Seasons 1622 1622 ±5 frames

(Summer-Winter)
Old City Extreme 6-DOF None 5408 5641∗ by authors

Combined All above 8436 1000 Mixed

(*) ONLY A SUBSET OF 200 IMAGES IS USED FOR OLD CITY TO KEEP THE EXPERIMENTS WITHIN A REASONABLE DURATION.

6.3.2 Processing Time and Energy Usage

The processing time, Ti, and power usage, Pw, are evaluated following the same criteria

as is in Section 5.4.3. They are acquired from deployed models and VPR algorithms

running on a test hardware platform. Ti is the time required to elaborate an input image.

The image loading and preprocessing (e.g. reshaping) are excluded so that Ti reflects

the actual computational complexity of a network or an algorithm.

The energy per image processed, Ei, indicates the energy spent to compute a single

image representation. It is determined from the power usage with Eq. 5.8, which is

rewritten below, knowing that the Raspberry Pi4 used for the experiments absorbs a

stable amount of power during an inference (Section 5.8.2):

Ei = Ti Pw . (6.11)

133

134 Chapter 6. Highly-Efficient BNNs for VPR

GardenPts. SPED RobotCar Nordland OldCity

Fig. 6.5. A matching pair from every test dataset.

6.3.3 Training Data

All the binary models are trained from scratch using Place365 [92] within the Larq frame-

work [219]. Places365 is a place-themed dataset consisting of 1,803,460 images divided

into 365 classes, including between 3068 and 5000 samples. The validation set includes

100 images per category.

6.3.4 Test Data

VPR assessment is carried out under various image variations that a robot encounters

over extended runs using five datasets, each containing one or more appearance changes.

They include: GardenPoints [8], 200 places randomly sampled from SPED [5], the Cross-

Season sequence from RobotCar [1], Nordlands [116] and Old City [4]. Table 6.1 sum-

marizes each dataset’s characteristics and ground truth criteria. All of them include a

reference set representing the knowledge of the environment and a query set represent-

ing the current view of a robot’s camera. Fig. 6.5 shows some examples of matching

pairs. Combined is a sixth dataset included to simulate a large complex environment.

The reference set is the union of the other five datasets; the query set includes 200 ran-

domly sampled images from each one for a total of 1000 queries. The combined dataset

is intended to provide more realistic global performance measures than averaging the

134

6.4. Results Discussion 135

results from five datasets tested individually.

6.4 Results Discussion

This section presents the results for the BNN described in Section 6.2.3, discussing both

the VPR performance and efficiency. The experiments include several models of the

proposed BNN trained with different depth multipliers, d. By convention, HBX-FN de-

notes the use of HB-DS with d = X. The computational time and energy usage are

measured from models deployed on a Raspberry Pi4 (RPI4) [215] using Larq-Compute-

Engine (LCE) [172]. In the first part of this section, HB12-FN is compared to other VPR

techniques. The author selected HB12-FN as the best-balanced model between computa-

tion and performance. However, the experiments involved multiple models trained with

different d values. The second part of this section discusses the depth multiplier as a

tuning parameter presenting the results for various values of d.

6.4.1 Comparative Analysis

The VPR networks and methods included in the comparison are FloppyNet (Chapter 5),

VGG-16 [93], CALC [94], CoHOG [60] and HOG [43]. The CNNs and setting of the

hand-crafted techniques are the same used in Section 5.9. The VGG-16 model used

for the experiment is optimized on Place365. The results for CALC are obtained with

the model trained on Place365 shared by the authors. For CoHOG, the experiments

employed the source code and the parameters shared by the authors for an image size of

256× 256 pixels [216]. Finally, HOG is used for 256× 256 pixel images with a cell size of

16× 16 and a block size of 32× 32, as suggested in [28].

135

136 Chapter 6. Highly-Efficient BNNs for VPR

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

GardenPt. SPED RobotCar Nordland Old City Combined

EP

VGG-16 CALC CoHOG HOG FloppyNet HB12-FN

Fig. 6.6. VPR performance on different appearance changes.

0

10

20

30

40

50

C
A

LC

H
O

G

Fl
o

p
p

yN
et

H
B

1
2

-F
N

H
B

1
2

-F
N

-1
T

Ti
m

e
[m

s]

Processing Time

1 Thread

4 Threads

(a)

0

25

50

75

100

125

150

C
A

LC

H
O

G

Fl
o

p
p

yN
et

H
B

1
2

-F
N

H
B

1
2

-F
N

-1
T

En
er

gy
 [

m
J]

Energy Usage

1 Thread

4 Threads

(b)

Fig. 6.7. Processing time (a) and energy usage (b) of the proposed BNN compared to other VPR
methods.

136

6.4.1. Comparative Analysis 137

TABLE 6.2: VPR MEASUREMENTS ARE GIVEN FOR THE COMBINED DATASET. Ti AND Ei ARE MEAS-
URED ON A RASPBERRY PI4.

VPR Type
Ti Ei VPR (on Combined)

[ms] [mJ] avg. EP avg. AUC SP100[%]

VGG-16 CNN 995.7 2608.7 0.676 0.679 80.5
CALC CNN 45.8 120 0.306 0.323 37.1
CoHOG Trainless 87.4 210.6 0.349 0.37 42.5
HOG Trainless 20.4 20.6 0.318 0.335 38.6
FloppyNet BNN 18.2 46.2 0.554 0.568 67.3
HB12-FN BNN 9.1 23.1 0.553 0.566 67.2
HB12-FN-1T BNN 27.4 27.7 0.553 0.566 67.2

Fig. 6.6 shows the EP score for all the considered VPR methods. HB12-FN and

FloppyNet perform equally well on the Combined dataset3, while on GardenPoints and

Nordland, the latter achieves slightly higher performance. HB12-FN outperforms by a

substantial margin the other lightweight techniques: HOG, CALC, and CoHOG. VGG-16

captures the highest EP score in every environmental condition and on the Combined

dataset, as also confirmed by the SP100 and AUC reported in Table 6.2. These results are

not surprising considering the VGG-16’s large size and depth. However, VGG-16 requires

about 1s to compute an image descriptor, resulting in two orders of magnitude slower

than any considered BNN. The complete set of Ti is reported in Table 6.2 while Fig. 6.7a

compares a selection of the most efficient techniques: the BNNs, CALC, and HOG. HB12-

FN is the fastest one taking 9.1ms to process an image, 50% of FloppyNet’s inference

time. Considering these two BNNs have similar VPR performance, HB-DS significantly

speeds up the original FloppyNet’s computation. The HOG implementation used for the

experiments (OpenCV 4.5.0) can run only on a single thread. For a fair comparison,

Fig. 6.7a shows the processing time of the proposed model for 1-thread execution (1T)

using yellow bars. HOG takes about 7ms less than HB12-FN-1T to compute a descriptor.

3The corresponding |Z|@0.5 is lower than 1.96.

137

138 Chapter 6. Highly-Efficient BNNs for VPR

14.2

16.3

20.8

23.1
27.7 38.6

46.2

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0 2 4 6 8 10 12 14 16 18 20 22

EP
-

C
o

m
b

in
ed

 D
at

as
et

Processing Time [ms]

HB1-FN HB4-FN HB8-FN HB12-FN

HB24-FN HB48-FN FloppyNet

Fig. 6.8. EP versus processing time for several depth multipliers. The circles’ area represents the
energy usage in mJ per processed image.

However, their VPR performance is very different. While HOG scores EP = 0.318, HB12-

FN achieves 0.553. Such a performance gap corresponds to 28.6% less place correctly

recognized in the Combined dataset (SP100 column in Table 6.2). The author evaluate

this gap is too wide to consider HOG as a good alternative to the proposed BNN.

6.4.2 Energy Usage

The energy usage, Ei, is reported in Table 6.2 and Fig. 6.7b. Ei is determined using Eq.

6.11 from the average power usage measured directly from a RPI4 on 100 consecutive

runs. RPI4 has an approximately continuous power usage during runtime. Thus, Ei

is mainly influenced by the number of active CPU cores and interference time. To this

end, the processing time reduction due to HB-DS contributes to energy saving, which

138

6.4.3. Depth Multiplier as a Tuning Parameter 139

11.4

7.7

5.7

4.3

3.0

2.4

15.1

0 2 4 6 8 10 12 14 16 18 20

HB48-FN

HB24-FN

HB12-FN

HB8-FN

HB4-FN

HB1-FN

FloppyNet

Processing Time [ms]

First layer

Other layers

Fig. 6.9. Processing time for several depth multipliers.

is essential for battery-supplied robotic platforms. The positive effect of HB-DS is well

depicted by the energy difference between FloppyNet and HB12-FN as they differ only

in the first stage. HOG is the most energy-efficient technique. However, as motivated

above, HOG has too low VPR performance to be considered instead of HB12-FN.

6.4.3 Depth Multiplier as a Tuning Parameter

The HB-DS design enables the performance tuning of a BNN by acting only on the depth

multiplier, d, without changing any other network parameter. Fig. 6.8 plots the EP score

on the Combined dataset versus the processing time for several depth multipliers. The

circles’ diameter represents the energy usage in mJ per processed image. HB12-FN, the

model selected for the comparison presented above, reaches the same VPR performance

as FloppyNet, spending one-half of the processing time and energy. Nevertheless, the

VPR performance can be further improved by increasing d. For example, HB24-FN and

139

140 Chapter 6. Highly-Efficient BNNs for VPR

TABLE 6.3: PERFORMANCE AND EFFICIENCY FOR SEVERAL IMPLEMENTATION OF THE PROPOSED

BNN. Ti AND Ei ARE MEASURED ON A RASPBERRY PI 4.

BNN

First Stage
Ti [ms]

Ei [mJ]

VPR
Structure

d
Params MAC [M] (Combined Dataset)

(k,s,co,d) 32 bit 1 bit 32bit 1bit First Total EP AUC SP100[%]

HB1-FN HD-BS(11,4,96,1) 1 366 288 1.1 0.87 2.4 5.6 14.2 0.442 0.458 53.2
HB4-FN HD-BS(11,4,96,4) 4 1464 1152 4.4 3.5 3.0 6.4 16.3 0.487 0.511 57.5
HB8-FN HD-BS(11,4,96,8) 8 2928 2304 8.8 7.0 4.3 7.7 19.6 0.554 0.566 67.8
HB12-FN HD-BS(11,4,96,12) 12 4392 3456 13.2 10.5 5.7 9.1 23.1 0.553 0.566 67.2
HB24-FN HD-BS(11,4,96,24) 24 8784 6912 26.4 20.9 7.7 10.9 27.7 0.569 0.587 68.1
HB48-FN HD-BS(11,4,96,48) 48 17568 13824 52.7 41.8 11.4 15.2 38.6 0.575 0.591 69.0
FloppyNet C(11,4,96) N/A 34848 0 105.4 0 15.1 18.2 46.2 0.554 0.568 67.3

HB48-FN outperform HB12-FN by a small margin at the cost of longer processing time

and energy usage. If the target application has enough resources, HB24-FN and HB48-

FN might be good options. On the opposite side, lower d values can find application

in reducing a BNN’s complexity to fit extremely resource constraint hardware or saving

energy to extend battery life. For example, the EP loss from HB12-FN to HB1-FN is 0.11,

which corresponds to −14% correctly matched places in the Combined dataset (SP100 in

Table 6.3). While HB12-FN is possibly the best option in many scenarios, HB1-FN might

be preferred when energy saving is a strict requirement as it spends less energy than

HB12-FN to process an image: 14.2 mJ against 23.1 mJ . It is worth mentioning that

HB1-FN, which holds the worst VPR performance among binary models, outperforms

HOG, CALC, and CoHOG while achieving higher computational efficiency (Tables 6.2

and 6.3). Finally, Fig. 6.9 shows Ti for several depth multipliers. The blue bars represent

the time spent on the first layer, which depends on d. The gray bars are for the other

layers. FloppyNet uses a regular non-binary convolution as a first stage. The time spent

on the first convolution is 84% of the entire processing time. The networks using HB-DS

have a more fair distribution of the latency between the first and the other layers proving

that the proposed approach mitigates the bottleneck problem of BNNs.

140

6.5. Summary and Further Applications for HB-DS 141

6.5 Summary and Further Applications for HB-DS

BNNs are an efficient class of deep neural networks using binary arithmetic to speed up

convolutions. The slowest stage in a BNN is the first convolutional layer, non-binary for

higher accuracy. This chapter proposed an enhanced version of FloppyNet requiring one-

half of the resources of the original version. Such a significant efficiency boost is obtained

using the newly proposed HB-DS, which significantly reduces the number of non-binary

operations in BNNs. Another feature of HB-DS is enabling performance tuning of a BNN

by acting only on a single parameter to train binary models suitable for different deploy

scenarios. An extension of this work is investigating HB-DS for BNN designed and optim-

ized for different tasks than image matching and different network architectures (e.g.,

ResNet [131]) and hyperparameters. Also, Eqs. 6.7 and 6.6 suggest further research: the

kernel size and the number of output channels greatly influence the number and distri-

bution of non-binary operations in HB-DS. Future experiments will investigate different

kernel sizes and depths to provide new insights into the HB-DS module’s capabilities.

141

142 Chapter 6. Highly-Efficient BNNs for VPR

142

Chapter 7

Conclusions and Future Directions

Visual Place Recognition is a well-established and relevant topic for both academia and

industry, with a vast literature dedicated to this subject. As highlighted in this thesis,

dealing with appearance changes can make VPR difficult, but the challenge is even harder

when faced with limited runtime resources. This is a common scenario in the real world,

given the widespread use of tiny robots for autonomous navigation and the need to

complete long-term operations, which can be susceptible to dynamic viewing conditions.

This thesis primarily addresses the problem of improving the efficiency of VPR by

exploring different approaches to build distinctive image representations while keeping

the computational effort as low as possible. The first approach investigated in this ma-

nuscript employs local features computed by lightweight, handcrafted algorithms. While

they exhibit satisfying performance in matching images captured from a different per-

spective, they fail under environmental changes such as those due to illumination and

seasonality. Conversely, deep learning-based techniques achieve better accuracy under

those changes but at a considerably higher computational cost. As a result of this obser-

143

144 Chapter 7. Conclusions and Future Directions

vation, the main contribution of this thesis is an efficient image feature extractor based

on Binary Neural Networks. The best model trained achieves competitive performance

to standard Convolutional Neural Networks under conditional changes while requiring

only a fraction of the computational effort. However, the proposed binary network is

quite weak against viewpoint changes because it relies only on convolutional features to

build an image representation. In the author’s opinion, this is the most relevant problem

left open by this thesis. Hence, the work presented here should be extended to multi-

staged VPR techniques to improve viewpoint invariance. An example is NetVLAD, which

achieves good performance on both viewpoint and conditional changes using a VLAD-

like stage to process convolutional features. One of the author’s aims for his post-doc

research is to investigate this direction, providing BNNs with a post-processing stage to

achieve both viewpoint and conditional invariance.

All the contributions presented in this manuscript are peer-reviewed and published

in international conferences and journals after being through a series of revisions. Com-

pared to the published papers, the chapters in this manuscript have a few changes and

additions to provide more comprehensive insights into the problems investigated by the

author and make this thesis self-contained as much as possible. Chapter 3 extends the

corresponding paper providing some theoretical background on PR-Curves and details

on how they plotted that could not be included in the published version to keep the

manuscript length within the page limit. The results presented in Chapter 4 have been

reworked using the framework introduced in Chapter 3, while the conclusions drawn

are unchanged. This chapter’s content is also enriched with a new comparison between

local image descriptors and CNN-based techniques to demonstrate the higher efficiency

of the former and the better VPR performance under conditional changes of the latter.

144

7.1. Summary of Contributions 145

Chapters 5 and 6 differ only in layout, text, and figure enhancements from their pub-

lished versions.

7.1 Summary of Contributions

This thesis presents the author’s research performed in visual place recognition to achieve

the PhD requirements The significant contributions presented in this thesis are summar-

ized below.

• Chapter 3 addresses the problem of VPR evaluation by proposing a framework spe-

cifically designed for this domain. It is based on a new metric, Extended Precision

(EP), designed to extend the well-established RP100 to measure low-level perform-

ance, which cannot be captured otherwise. An evaluation framework is then built

around EP, which offers two types of analysis. The first evaluates the overall per-

formance of VPR on a whole dataset and its consistency showing the maximum

and minimum guarantee EP score. The second compares VPR techniques using

the McNemar’s test to confirms whether the performance difference between VPR

techniques is statistically reliable within a confidence interval. The utilization of the

proposed framework is demonstrated by comparing five VPR methods on various

appearance changes.

• Convolutional Neural Networks (CNN) enable state-of-the-art VPR performance

but are computationally intensive and, therefore, unsuitable for resource-constraint

platforms. This chapter investigates the local feature descriptor suitability in the

challenging context of flying drones characterized by 6-DOG viewpoint changes

145

146 Chapter 7. Conclusions and Future Directions

and severe hardware limitations. The experiments are conducted for several local

feature descriptors ranging from the well-established SIFT to the recent AKAZE, in-

cluding the computationally efficient ORB. The results demonstrated that local fea-

ture descriptors have comparable performance to the state-of-the-art CNN-based

methods for this application and considerably faster processing. However, local

features are susceptible to conditional changes and are outperformed by learned

VPR techniques.

• Binary Neural Networks (BNN) are investigated to handle conditional changes

within a resource budget. Chapter 5 first demonstrates that BNNs can be used for

VPR and then proposes a transformation pipeline to turn a CNN into a BNN optim-

ized for VPR applications. This pipeline is applied to AlexNet to obtain FloppyNet,

a compact BNN with three layers and a model size of just 154 KiB. Deployed on a

Raspberry Pi4, FloppyNet runs seven times faster than AlexNet, using about 13%

of the energy per processed image.

• The analysis of FloppyNet’s layers showed that most of the processing time is

spent on the first convolution, which is not fully binary for better VPR perform-

ance. Chapter 6 proposes an in-place replacement for the first convolutional layer,

HB-DS, to address such a computational bottleneck. HB-DS combines depthwise

factorization and binarization to reduce as much as possible the number of non-

binary operations. This module is then used on FloppyNet to obtain a BNN twice

as fast without any accuracy loss.

146

7.2. Future Directions 147

7.2 Future Directions

This section suggests possible developments of the research presented in this thesis and

discusses other gaps the author identified during his investigation over the doctorate

years.

• Chapter 3 proposed an evaluation framework to provide a reliable performance

comparison between VPR techniques. It uses McNemar’s test to compare VPR

methods on a dataset with two possible outcomes. The performance difference

is certified within a specific confidence interval if |Z| is above a threshold. Other-

wise, the two techniques are regarded as comparable. Such a test is designed to

assess VPR techniques on a dataset. However, it could be used to create a bench-

mark dataset that reliably identifies performance differences without returning a

low-value of |Z|. Testing data has been a concern for data scientists for a long time

[182]. The framework proposed in Chapter 3 could be adapted to tune, build or

assess a VPR benchmark dataset. This idea consists in selecting a training set of

VPR methods representative of various approaches and testing them on a dataset.

This dataset is then enriched with new places or pruned over multiple iterations

until the comparative results pass McNemar’s test. The expected result is a highly

discriminative dataset to test any VPR technique within the proposed evaluation

framework.

• Chapter 5 proposed a BNN as an efficient global feature extractor for VPR using

convolutional features. State-of-the-art methods often use at least a second stage

to perform region matching (CrossRegion-Bow), geometrical verification (R-MAC),

or to obtain a highly distinctive global image descriptor (NetVLAD). FloppyNet fails

147

148 Chapter 7. Conclusions and Future Directions

under extreme viewpoint variation because it uses convolutional features alone

without a post-processing or pooling stage. An extension of this thesis will in-

vestigate the employment of a lightweight BNN in multi-stage VPR approaches to

achieve higher viewpoint invariance. The authors consider this open problem a

priority to complete the research started with his PhD to address VPR efficiently

and effectively under any appearance changes.

• The HB-DS module proposed in Chapter 6 is tested for VPR only with a stand-

ard VGG-type architecture considering a series of convolutional and pooling lay-

ers. HB-DS can likely improve the efficiency of any network type (e.g., ResNet

[131]). As the use of a non-binary first convolution is a common practice [147],

it is worth investigating the use of HB-DS with different network architectures and

vision applications other than VPR, such as object detection, image segmentation,

and classification.

7.3 Closing Remarks

Despite the hard work and advancements made by the research community in

Visual Place Recognition, there is still a need for further improvements. This thesis

aims to contribute to this progress by exploring ways to extend the use of greedy

computational approaches to low-end hardware platforms. While this research rep-

resents only a small step toward future advancements, the author hopes that the

findings presented here can encourage others to build upon this work and improve

Visual Place Recognition.

148

Bibliography

[1] M. M. Larsson, E. Stenborg, L. Hammarstrand, M. Pollefeys, T. Sattler, and F. Kahl,

“A cross-season correspondence dataset for robust semantic segmentation,” in

2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

IEEE, 2019, pp. 9524–9534.

[2] Z. Chen, F. Maffra, I. Sa, and M. Chli, “Only look once, mining distinctive land-

marks from convnet for visual place recognition,” in 2017 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 9–16.

[3] A. Torii, J. Sivic, T. Pajdla, and M. Okutomi, “Visual place recognition with repet-

itive structures,” in 2013 IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2013, pp. 883–890.

[4] F. Maffra, L. Teixeira, Z. Chen, and M. Chli, “Real-time wide-baseline place recog-

nition using depth completion,” IEEE Robotics and Automation Letters, 2019.

[5] Z. Chen, A. Jacobson, N. Sünderhauf, B. Upcroft, L. Liu, C. Shen, I. Reid, and

M. Milford, “Deep learning features at scale for visual place recognition,” in 2017

IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017,

pp. 3223–3230.

149

150 BIBLIOGRAPHY

[6] M. Zaffar, S. Ehsan, M. Milford, and K. D. McDonald-Maier, “Memorable maps:

A framework for re-defining places in visual place recognition,” IEEE Transactions

on Intelligent Transportation Systems, pp. 1–15, 2020.

[7] R. Sahdev and J. K. Tsotsos, “Indoor place recognition system for localization of

mobile robots,” in 2016 13th Conference on Computer and Robot Vision (CRV),

2016, pp. 53–60.

[8] N. Sünderhauf, S. Shirazi, F. Dayoub, B. Upcroft, and M. Milford, “On the perform-

ance of convnet features for place recognition,” in 2015 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2015, pp. 4297–4304.

[9] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and F. Moreno-Noguer, “Dis-

criminative learning of deep convolutional feature point descriptors,” in Proceed-

ings of the IEEE International Conference on Computer Vision, 2015, pp. 118–126.

[10] A. Oliva and A. Torralba, “Building the gist of a scene: The role of global image

features in recognition,” Progress in brain research, vol. 155, pp. 23–36, 2006.

[11] S. Lowry, N. Sünderhauf, P. Newman, J. J. Leonard, D. Cox, P. Corke, and

M. J. Milford, “Visual place recognition: A survey,” IEEE Transactions on Robot-

ics, vol. 32, no. 1, pp. 1–19, 2015.

[12] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied

to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,

1998.

150

BIBLIOGRAPHY 151

[13] M. Labbé and F. Michaud, “Appearance-based loop closure detection for online

large-scale and long-term operation,” IEEE Transactions on Robotics, vol. 29, no. 3,

pp. 734–745, 2013.

[14] “Parrot web page,” https://www.parrot.com/us/drones/anafi-ai, accessed: 2022-

01-30.

[15] “DJI Online Store,” https://store.dji.com/shop/dji-mini?from=store_homepage,

accessed: 2022-01-30.

[16] S. Garg, T. Fischer, and M. Milford, “Where Is Your Place, Visual Place

Recognition?” in Proceedings of the Thirtieth International Joint Conference

on Artificial Intelligence. Montreal, Canada: International Joint Conferences

on Artificial Intelligence Organization, Aug. 2021, pp. 4416–4425. [Online].

Available: https://www.ijcai.org/proceedings/2021/603

[17] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti

vision benchmark suite,” in Conference on Computer Vision and Pattern Recognition

(CVPR), 2012.

[18] “Google Maps Rome Images,” https://www.google.com/maps/@41.

8897454,12.4910251,3a,75y,80.19h,97.07t/data=!3m6!1e1!3m4!

1sONC7Y-S9VYlHiPENkSeVrg!2e0!7i13312!8i6656, accessed: 2023-03-09.

[19] K. Liu and H. Ou, “A light-weight lidar-inertial slam system with high efficiency

and loop closure detection capacity,” in 2022 International conference on advanced

robotics and mechatronics (ICARM). IEEE, 2022, pp. 284–289.

151

152 BIBLIOGRAPHY

[20] M. Waheed, M. Milford, K. McDonald-Maier, and S. Ehsan, “Switchhit: A probab-

ilistic, complementarity-based switching system for improved visual place recog-

nition in changing environments,” in 2022 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2022, pp. 7833–7840.

[21] M. Zaffar, A. Khaliq, S. Ehsan, M. Milford, and K. McDonald-Maier, “Levelling the

playing field: A comprehensive comparison of visual place recognition approaches

under changing conditions,” in IEEE ICRA Workshop on Dataset Generation and

Benchmarking of SLAM Algorithms for Robotics and VR/AR. IEEE, 2019.

[22] S. Schubert and P. Neubert, “What makes visual place recognition easy

or hard?” Jun. 2021, arXiv:2106.12671 [cs]. [Online]. Available: http:

//arxiv.org/abs/2106.12671

[23] S. Ehsan, A. Clark, A. Leonardis, A. Khaliq, M. Fasli, K. McDonald-Maier et al., “A

generic framework for assessing the performance bounds of image feature detect-

ors,” Remote Sensing, vol. 8, no. 11, p. 928, 2016.

[24] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.

521, no. 7553, pp. 436–444, May 2015. [Online]. Available: http:

//www.nature.com/articles/nature14539

[25] M. Courbariaux and Y. Bengio, “Binarynet: Training deep neural networks with

weights and activations constrained to +1 or -1,” CoRR, vol. abs/1602.02830,

2016. [Online]. Available: http://arxiv.org/abs/1602.02830

152

BIBLIOGRAPHY 153

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

Convolutional Neural Networks,” in Advances in neural information processing sys-

tems, 2012, pp. 1097–1105.

[27] C. Leng, H. Zhang, B. Li, G. Cai, Z. Pei, and L. He, “Local feature descriptor for

image matching: A survey,” IEEE Access, vol. 7, pp. 6424–6434, 2019.

[28] M. Zaffar, S. Garg, M. Milford, J. Kooij, D. Flynn, K. McDonald-Maier, and S. Eh-

san, “Vpr-bench: An open-source visual place recognition evaluation framework

with quantifiable viewpoint and appearance change,” International Journal of

Computer Vision, pp. 1–39, 2021.

[29] R. Arandjelović, P. Gronat, A. Torii, T. Pajdla, and J. Sivic, “Netvlad: Cnn ar-

chitecture for weakly supervised place recognition,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 40, no. 6, pp. 1437–1451, 2018.

[30] Z. Zeng, J. Zhang, X. Wang, Y. Chen, and C. Zhu, “Place recognition: An overview

of vision perspective,” Applied Sciences, vol. 8, no. 11, 2018. [Online]. Available:

https://www.mdpi.com/2076-3417/8/11/2257

[31] V. Polizzi, R. Hewitt, J. Hidalgo-Carrió, J. Delaune, and D. Scaramuzza, “Data-

Efficient Collaborative Decentralized Thermal-Inertial Odometry,” IEEE Robotics

and Automation Letters, vol. 7, no. 4, pp. 10 681–10 688, Oct. 2022, conference

Name: IEEE Robotics and Automation Letters.

[32] D. DeTone, T. Malisiewicz, and A. Rabinovich, “Superpoint: Self-supervised in-

terest point detection and description,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) Workshops, June 2018.

153

154 BIBLIOGRAPHY

[33] K. M. Yi, E. Trulls, V. Lepetit, and P. Fua, “Lift: Learned invariant feature trans-

form,” arXiv preprint arXiv:1603.09114, 2016.

[34] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Interna-

tional journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[35] J. Sivic and A. Zisserman, “Video google: A text retrieval approach to object

matching in videos,” in null. IEEE, 2003, p. 1470.

[36] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object retrieval with

large vocabularies and fast spatial matching,” in 2007 IEEE Conference on Com-

puter Vision and Pattern Recognition. IEEE, 2007, pp. 1–8.

[37] K. Mikolajczyk and K. Mikolajczyk, “Scale & affine invariant interest point de-

tectors,” International Journal of Computer Vision, vol. 60, no. 1, pp. 63–86, oct

2004.

[38] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide-baseline stereo from

maximally stable extremal regions,” Image and vision computing, vol. 22, no. 10,

pp. 761–767, 2004.

[39] H. Winnemöller, J. E. Kyprianidis, and S. C. Olsen, “XDoG: An eXtended

difference-of-Gaussians compendium including advanced image stylization,”

Computers & Graphics, vol. 36, no. 6, pp. 740–753, Oct. 2012. [Online].

Available: https://linkinghub.elsevier.com/retrieve/pii/S009784931200043X

[40] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features

(SURF),” Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346–359,

2008.

154

BIBLIOGRAPHY 155

[41] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient alternative

to sift or surf,” in Computer Vision (ICCV), 2011 IEEE international conference on.

IEEE, 2011, pp. 2564–2571.

[42] W. T. Freeman and M. Roth, “Orientation histograms for hand gesture recogni-

tion,” in International workshop on automatic face and gesture recognition, vol. 12,

1995, pp. 296–301.

[43] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in

2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR’05), vol. 1, 2005, pp. 886–893 vol. 1.

[44] E. Stumm, C. Mei, and S. Lacroix, “Probabilistic place recognition with covisib-

ility maps,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and

Systems. IEEE, 2013, pp. 4158–4163.

[45] W. Zhang and J. Kosecka, “Image based localization in urban environments,” in

Third international symposium on 3D data processing, visualization, and transmis-

sion (3DPVT’06). IEEE, 2006, pp. 33–40.

[46] A. Haar, Zur theorie der orthogonalen funktionensysteme. Georg-August-

Universitat, Gottingen., 1909.

[47] A. C. Murillo, J. J. Guerrero, and C. Sagues, “Surf features for efficient robot

localization with omnidirectional images,” in Proceedings 2007 IEEE International

Conference on Robotics and Automation. IEEE, 2007, pp. 3901–3907.

155

156 BIBLIOGRAPHY

[48] M. Cummins and P. Newman, “Appearance-only slam at large scale with fab-map

2.0,” The International Journal of Robotics Research, vol. 30, no. 9, pp. 1100–1123,

2011.

[49] D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C.

Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan,

D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, M. Calonder, V. Lepetit,

C. Strecha, and P. Fua, “BRIEF: Binary Robust Independent Elementary Features,”

in Computer Vision – ECCV 2010, K. Daniilidis, P. Maragos, and N. Paragios,

Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, vol. 6314, pp.

778–792, series Title: Lecture Notes in Computer Science. [Online]. Available:

http://link.springer.com/10.1007/978-3-642-15561-1_56

[50] W. Churchill and P. Newman, “Experience-based navigation for long-term

localisation,” The International Journal of Robotics Research, vol. 32, no. 14,

pp. 1645–1661, Dec. 2013, publisher: SAGE Publications Ltd STM. [Online].

Available: https://doi.org/10.1177/0278364913499193

[51] S. Leutenegger, M. Chli, and R. Siegwart, “Brisk: Binary robust invariant scalable

keypoints,” in 2011 IEEE international conference on computer vision (ICCV). Ieee,

2011, pp. 2548–2555.

[52] F. Maffra, Z. Chen, and M. Chli, “Viewpoint-tolerant place recognition combining

2d and 3d information for uav navigation,” in 2018 IEEE International Conference

on Robotics and Automation (ICRA). IEEE, 2018, pp. 2542–2549.

156

BIBLIOGRAPHY 157

[53] E. Rosten and T. Drummond, “Machine Learning for High-Speed Corner

Detection,” in Computer Vision – ECCV 2006, A. Leonardis, H. Bischof, and

A. Pinz, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, vol.

3951, pp. 430–443, series Title: Lecture Notes in Computer Science. [Online].

Available: http://link.springer.com/10.1007/11744023_34

[54] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “ORB-SLAM: A Versatile and

Accurate Monocular SLAM System,” IEEE Transactions on Robotics, vol. 31, no. 5,

pp. 1147–1163, Oct. 2015, conference Name: IEEE Transactions on Robotics.

[55] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An Open-Source SLAM System for

Monocular, Stereo, and RGB-D Cameras,” IEEE Transactions on Robotics, vol. 33,

no. 5, pp. 1255–1262, Oct. 2017, conference Name: IEEE Transactions on Robot-

ics.

[56] X. Wu, C. Sun, L. Chen, T. Zou, W. Yang, and H. Xiao, “Adaptive

ORB feature detection with a variable extraction radius in RoI for complex

illumination scenes,” Robotics and Autonomous Systems, vol. 157, p. 104248,

Nov. 2022. [Online]. Available: https://www.sciencedirect.com/science/article/

pii/S0921889022001439

[57] A. Dietsche, L. Ott, R. Siegwart, and R. Brockers, “Visual Loop Closure

Detection for a Future Mars Science Helicopter,” IEEE Robotics and Automation

Letters, vol. 7, no. 4, pp. 12 014–12 021, Oct. 2022. [Online]. Available:

https://ieeexplore.ieee.org/document/9894657/

157

158 BIBLIOGRAPHY

[58] P. F. Alcantarilla and T. Solutions, “Fast explicit diffusion for accelerated features

in nonlinear scale spaces,” IEEE Trans. Patt. Anal. Mach. Intell, vol. 34, no. 7, pp.

1281–1298, 2011.

[59] H. Madokoro, K. Sato, and N. Shimoi, “Indoor Scene and Position Recognition

Based on Visual Landmarks Obtained from Visual Saliency without Human

Effect,” Robotics, vol. 8, no. 1, p. 3, Jan. 2019. [Online]. Available:

http://www.mdpi.com/2218-6581/8/1/3

[60] M. Zaffar, S. Ehsan, M. Milford, and K. McDonald-Maier, “Cohog: A light-weight,

compute-efficient, and training-free visual place recognition technique for chan-

ging environments,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1835–

1842, 2020.

[61] J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. LeCun, C. Moore, E. Säckinger, and

R. Shah, “Signature verification using a “siamese” time delay neural network,” In-

ternational Journal of Pattern Recognition and Artificial Intelligence, vol. 7, no. 04,

pp. 669–688, 1993.

[62] S. Zagoruyko and N. Komodakis, “Learning to compare image patches via Con-

volutional Neural Networks,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2015, pp. 4353–4361.

[63] B. Kumar, G. Carneiro, I. Reid et al., “Learning local image descriptors with deep

siamese and triplet convolutional networks by minimising global loss functions,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2016, pp. 5385–5394.

158

BIBLIOGRAPHY 159

[64] S. Ehsan, A. Clark, and K. McDonald-Maier, “Rapid online analysis of local feature

detectors and their complementarity,” Sensors, vol. 13, no. 8, pp. 10 876–10 907,

2013.

[65] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means clustering al-

gorithm,” Journal of the Royal Statistical Society. Series C (Applied Statistics),

vol. 28, no. 1, pp. 100–108, 1979.

[66] F. Rahutomo, T. Kitasuka, and M. Aritsugi, “Semantic cosine similarity,” in The 7th

international student conference on advanced science and technology ICAST, vol. 4,

no. 1, 2012, p. 1.

[67] M. Cummins and P. Newman, “Appearance-only slam at large scale with fab-map

2.0,” The International Journal of Robotics Research, vol. 30, no. 9, pp. 1100–1123,

2011.

[68] C. Cadena and J. Neira, “A learning algorithm for place recognition,” in The ICRA

Workshop on Long-term Autonomy, 2011.

[69] H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local descriptors into a

compact image representation,” in CVPR 2010-23rd IEEE Conference on Computer

Vision & Pattern Recognition. IEEE Computer Society, 2010, pp. 3304–3311.

[70] R. Arandjelovic and A. Zisserman, “All about vlad,” in Proceedings of the IEEE

conference on Computer Vision and Pattern Recognition, 2013, pp. 1578–1585.

[71] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic, “Netvlad: CNN architec-

ture for weakly supervised place recognition,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2016, pp. 5297–5307.

159

160 BIBLIOGRAPHY

[72] A. Khaliq, S. Ehsan, Z. Chen, M. Milford, and K. McDonald-Maier, “A holistic visual

place recognition approach using lightweight cnns for significant viewpoint and

appearance changes,” IEEE Transactions on Robotics, pp. 1–9, 2019.

[73] H. Jegou and A. Zisserman, “Triangulation Embedding and Democratic

Aggregation for Image Search,” in 2014 IEEE Conference on Computer Vision and

Pattern Recognition. Columbus, OH, USA: IEEE, Jun. 2014, pp. 3310–3317.

[Online]. Available: https://ieeexplore.ieee.org/document/6909819

[74] Z. Gao, J. Xue, W. Zhou, S. Pang, and Q. Tian, “Democratic Diffusion

Aggregation for Image Retrieval,” IEEE Transactions on Multimedia, vol. 18,

no. 8, pp. 1661–1674, Aug. 2016. [Online]. Available: http://ieeexplore.ieee.

org/document/7469838/

[75] H. Jégou and O. Chum, “Negative evidences and co-occurences in image retrieval:

The benefit of pca and whitening,” in European conference on computer vision.

Springer, 2012, pp. 774–787.

[76] N. Sünderhauf and P. Protzel, “Brief-gist-closing the loop by simple means,” in

2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,

2011, pp. 1234–1241.

[77] A. C. Murillo and J. Kosecka, “Experiments in place recognition using gist panor-

amas,” in 2009 IEEE 12th International Conference on Computer Vision Workshops,

ICCV Workshops. IEEE, 2009, pp. 2196–2203.

[78] G. Singh and J. Kosecka, “Visual loop closing using gist descriptors in manhattan

world,” in ICRA Omnidirectional Vision Workshop, 2010, pp. 44–48.

160

BIBLIOGRAPHY 161

[79] Y. Liu and H. Zhang, “Visual loop closure detection with a compact image

descriptor,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and

Systems, Oct. 2012, pp. 1051–1056, iSSN: 2153-0866.

[80] D. Gabor, “Theory of communication. part 1: The analysis of information,” Journal

of the Institution of Electrical Engineers-part III: radio and communication engineer-

ing, vol. 93, no. 26, pp. 429–441, 1946.

[81] C. McManus, B. Upcroft, and P. Newmann, “Scene signatures: Localised and

point-less features for localisation,” in Proceedings of Robotics: Science and Sys-

tems, Berkeley, USA, July 2014.

[82] N. Sunderhauf and P. Protzel, “BRIEF-Gist - closing the loop by simple means,”

in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

San Francisco, CA: IEEE, Sep. 2011, pp. 1234–1241. [Online]. Available:

http://ieeexplore.ieee.org/document/6094921/

[83] M. Zaffar, A. Khaliq, S. Ehsan, M. Milford, K. Alexis, and K. D. McDonald-

Maier, “Are state-of-the-art visual place recognition techniques any good for

aerial robotics?” CoRR, vol. abs/1904.07967, 2019. [Online]. Available:

http://arxiv.org/abs/1904.07967

[84] Y. Gong, L. Wang, R. Guo, and S. Lazebnik, “Multi-scale orderless pooling of

deep convolutional activation features,” in European conference on computer vis-

ion. Springer, 2014, pp. 392–407.

[85] Z. Chen, O. Lam, A. Jacobson, and M. Milford, “Convolutional Neural Network-

based Place Recognition,” 2014.

161

162 BIBLIOGRAPHY

[86] A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitsky, “Neural Codes for Image

Retrieval,” in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla, B. Schiele,

and T. Tuytelaars, Eds. Cham: Springer International Publishing, 2014, vol.

8689, pp. 584–599, series Title: Lecture Notes in Computer Science. [Online].

Available: http://link.springer.com/10.1007/978-3-319-10590-1_38

[87] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale

hierarchical image database,” in 2009 IEEE Conference on Computer Vision and

Pattern Recognition, 2009, pp. 248–255.

[88] M. Lopez-Antequera, R. Gomez-Ojeda, N. Petkov, and J. Gonzalez-Jimenez,

“Appearance-invariant place recognition by discriminatively training a con-

volutional neural network,” Pattern Recognition Letters, vol. 92, pp. 89–95,

Jun. 2017. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/

S0167865517301381

[89] Y. Hou, H. Zhang, and S. Zhou, “Convolutional neural network-based image rep-

resentation for visual loop closure detection,” in 2015 IEEE International Confer-

ence on Information and Automation, 2015, pp. 2238–2245.

[90] D. Bai, C. Wang, B. Zhang, X. Yi, and X. Yang, “Sequence searching with cnn fea-

tures for robust and fast visual place recognition,” Computers & Graphics, vol. 70,

pp. 270–280, 2018.

[91] M. J. Milford and G. F. Wyeth, “Seqslam: Visual route-based navigation for sunny

summer days and stormy winter nights,” in 2012 IEEE International Conference on

Robotics and Automation. IEEE, 2012, pp. 1643–1649.

162

BIBLIOGRAPHY 163

[92] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, “Places: A 10 million

image database for scene recognition,” IEEE transactions on pattern analysis and

machine intelligence, vol. 40, no. 6, pp. 1452–1464, 2017.

[93] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” in International Conference on Learning Representations, 2015.

[94] N. Merrill and G. Huang, “Lightweight unsupervised deep loop closure,” in Pro-

ceedings of Robotics: Science and Systems, Pittsburgh, Pennsylvania, June 2018.

[95] B. Dongdong, W. Chaoqun, B. Zhang, Y. Xiaodong, Y. Xuejun et al., “CNN feature

boosted seqslam for real-time loop closure detection,” Chinese Journal of Electron-

ics, vol. 27, no. 3, pp. 488–499, 2018.

[96] G. Tolias, R. Sicre, and H. Jégou, “Particular Object Retrieval With Integral

Max-Pooling of CNN Activations,” in ICLR 2016, ser. International Conference on

Learning Representations, San Juan, Puerto Rico, May 2016, pp. 1–12. [Online].

Available: https://hal.inria.fr/hal-01842218

[97] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convo-

lutional networks for visual recognition,” in European Conference on Computer

Vision. Springer, 2014, pp. 346–361.

[98] S. Hausler, S. Garg, M. Xu, M. Milford, and T. Fischer, “Patch-NetVLAD:

Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition,” in

2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

Nashville, TN, USA: IEEE, Jun. 2021, pp. 14 136–14 147. [Online]. Available:

https://ieeexplore.ieee.org/document/9577552/

163

164 BIBLIOGRAPHY

[99] M. Chancán, L. Hernandez-Nunez, A. Narendra, A. B. Barron, and M. Milford,

“A hybrid compact neural architecture for visual place recognition,” IEEE Robotics

and Automation Letters, vol. 5, no. 2, pp. 993–1000, 2020.

[100] B. L. McNaughton, F. P. Battaglia, O. Jensen, E. I. Moser, and M.-B. Moser, “Path in-

tegration and the neural basis of the’cognitive map’,” Nature Reviews Neuroscience,

vol. 7, no. 8, pp. 663–678, 2006.

[101] B. Arcanjo, B. Ferrarini, M. Milford, K. D. McDonald-Maier, and S. Ehsan, “An

efficient and scalable collection of fly-inspired voting units for visual place recog-

nition in changing environments,” IEEE Robotics and Automation Letters, vol. 7,

no. 2, pp. 2527–2534, 2022.

[102] S. Hussaini, M. Milford, and T. Fischer, “Spiking neural networks for visual place

recognition via weighted neuronal assignments,” IEEE Robotics and Automation

Letters, vol. 7, no. 2, pp. 4094–4101, 2022.

[103] W. Maass, “Networks of spiking neurons: The third generation of neural

network models,” Neural Networks, vol. 10, no. 9, pp. 1659–1671,

1997. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0893608097000117

[104] E. P. Frady, G. Orchard, D. Florey, N. Imam, R. Liu, J. Mishra, J. Tse, A. Wild,

F. T. Sommer, and M. Davies, “Neuromorphic nearest neighbor search using in-

tel’s pohoiki springs,” in Proceedings of the neuro-inspired computational elements

workshop, 2020, pp. 1–10.

164

BIBLIOGRAPHY 165

[105] G. Berton, R. Mereu, G. Trivigno, C. Masone, G. Csurka, T. Sattler, and B. Cap-

uto, “Deep visual geo-localization benchmark,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), June 2022, pp.

5396–5407.

[106] M. Waheed, M. Milford, K. McDonald-Maier, and S. Ehsan, “Improving visual

place recognition performance by maximising complementarity,” IEEE Robotics

and Automation Letters, vol. 6, no. 3, pp. 5976–5983, 2021.

[107] J. Davis and M. Goadrich, “The relationship between precision-recall and roc

curves,” in Proceedings of the 23rd international conference on Machine learning.

ACM, 2006, pp. 233–240.

[108] D. M. Powers, “Evaluation: from precision, recall and f-measure to roc, informed-

ness, markedness and correlation,” Journal of Machine Learning Technologies,

vol. 2, no. 1, pp. 37–63, 2011.

[109] J. Smith, “Image retrieval evaluation,” in Proceedings. IEEE Workshop on Content-

Based Access of Image and Video Libraries (Cat. No.98EX173), 1998, pp. 112–113.

[110] S. Lowry and M. J. Milford, “Supervised and unsupervised linear learning tech-

niques for visual place recognition in changing environments,” IEEE Transactions

on Robotics, vol. 32, no. 3, pp. 600–613, 2016.

[111] K. Vidanapathirana, P. Moghadam, B. Harwood, M. Zhao, S. Sridharan, and

C. Fookes, “Locus: Lidar-based place recognition using spatiotemporal higher-

order pooling,” in 2021 IEEE International Conference on Robotics and Automation

(ICRA), 2021, pp. 5075–5081.

165

166 BIBLIOGRAPHY

[112] Z. C. Lipton, C. Elkan, and B. Naryanaswamy, “Optimal thresholding of classifiers

to maximize f1 measure,” in Machine Learning and Knowledge Discovery in Data-

bases: European Conference, ECML PKDD 2014, Nancy, France, September 15-19,

2014. Proceedings, Part II 14. Springer, 2014, pp. 225–239.

[113] J. Wan, D. Wang, S. C. H. Hoi, P. Wu, J. Zhu, Y. Zhang, and J. Li, “Deep learning

for content-based image retrieval: A comprehensive study,” in Proceedings of the

22nd ACM international conference on Multimedia, 2014, pp. 157–166.

[114] Z. Chen, L. Liu, I. Sa, Z. Ge, and M. Chli, “Learning context flexible attention

model for long-term visual place recognition,” IEEE Robotics and Automation Let-

ters, vol. 3, no. 4, pp. 4015–4022, 2018.

[115] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 Year, 1000km:

The Oxford RobotCar Dataset,” The International Journal of Robotics Research

(IJRR), vol. 36, no. 1, pp. 3–15, 2017. [Online]. Available: http:

//dx.doi.org/10.1177/0278364916679498

[116] S. Skrede, “Nordlandsbanen: minute by minute, season by season

https://nrkbeta.no/2013/01/15/nordlandsbanen-minute-by-minute-season-

by-season/,” accessed: 2021-11-06.

[117] J. Mount and M. Milford, “2d visual place recognition for domestic service ro-

bots at night,” in 2016 IEEE International Conference on Robotics and Automation

(ICRA), 2016, pp. 4822–4829.

[118] A. Karki, C. Palangotu Keshava, S. Mysore Shivakumar, J. Skow, G. Madhukesh-

war Hegde, and H. Jeon, “Tango: A deep neural network benchmark suite for

166

BIBLIOGRAPHY 167

various accelerators,” in 2019 IEEE International Symposium on Performance Ana-

lysis of Systems and Software (ISPASS), 2019, pp. 137–138.

[119] I. Palit, Q. Lou, R. Perricone, M. Niemier, and X. S. Hu, “A uniform modeling

methodology for benchmarking dnn accelerators,” in 2019 IEEE/ACM Interna-

tional Conference on Computer-Aided Design (ICCAD), 2019, pp. 1–7.

[120] C. Xia, J. Zhao, H. Cui, X. Feng, and J. Xue, “Dnntune: Automatic benchmarking

dnn models for mobile-cloud computing,” ACM Transactions on Architecture and

Code Optimization (TACO), vol. 16, no. 4, pp. 1–26, 2019.

[121] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,

M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks

for mobile vision applications,” CoRR, vol. abs/1704.04861, 2017. [Online].

Available: http://arxiv.org/abs/1704.04861

[122] S. Bianco, R. Cadene, L. Celona, and P. Napoletano, “Benchmark analysis of rep-

resentative deep neural network architectures,” IEEE Access, vol. 6, pp. 64 270–

64 277, 2018.

[123] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet clas-

sification using binary convolutional neural networks,” in European conference on

computer vision. Springer, 2016, pp. 525–542.

[124] J. Bethge, H. Yang, M. Bornstein, and C. Meinel, “Back to simplicity: How to

train accurate bnns from scratch?” CoRR, vol. abs/1906.08637, 2019. [Online].

Available: http://arxiv.org/abs/1906.08637

167

168 BIBLIOGRAPHY

[125] H. N. Mhaskar and T. Poggio, “Deep vs. shallow networks: An approximation

theory perspective,” Analysis and Applications, no. 06, pp. 829–848, 2016.

[126] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”

Mathematics of Control, Signals and Systems, vol. 2, no. 4, pp. 303–314, Dec.

1989. [Online]. Available: https://doi.org/10.1007/BF02551274

[127] J. Ba and R. Caruana, “Do deep nets really need to be deep?” Advances in neural

information processing systems, vol. 27, 2014.

[128] Y. N. Dauphin and Y. Bengio, “Big Neural Networks Waste Capacity,” Mar. 2013,

arXiv:1301.3583 [cs]. [Online]. Available: http://arxiv.org/abs/1301.3583

[129] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large

Scale Visual Recognition Challenge,” International Journal of Computer Vision

(IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[130] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,

“Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <0.5mb

model size,” arXiv:1602.07360, 2016.

[131] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-

tion,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2016, pp. 770–778.

[132] L. Sifre and P. S. Mallat, “Rigid-motion scattering for image classification author,”

English. Supervisor: Prof. Stéphane Mallat. Ph. D. Thesis. Ecole Polytechnique, 2014.

168

BIBLIOGRAPHY 169

[133] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,

M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks

for mobile vision applications,” CoRR, vol. abs/1704.04861, 2017. [Online].

Available: http://arxiv.org/abs/1704.04861

[134] S. Hanson and L. Pratt, “Comparing biases for minimal network construction with

back-propagation,” Advances in neural information processing systems, vol. 1, 1988.

[135] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in Advances in

neural information processing systems, 1990, pp. 598–605.

[136] B. Hassibi and D. G. Stork, “Second order derivatives for network pruning: op-

timal brain surgeon,” in Proceedings of the 5th International Conference on Neural

Information Processing Systems, 1992, pp. 164–171.

[137] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and connections

for efficient neural networks,” in Proceedings of the 28th International Conference

on Neural Information Processing Systems-Volume 1, 2015, pp. 1135–1143.

[138] H. Van Nguyen, K. Zhou, and R. Vemulapalli, “Cross-Domain Synthesis

of Medical Images Using Efficient Location-Sensitive Deep Network,” in

Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015,

N. Navab, J. Hornegger, W. M. Wells, and A. Frangi, Eds. Cham:

Springer International Publishing, 2015, vol. 9349, pp. 677–684, series

Title: Lecture Notes in Computer Science. [Online]. Available: http:

//link.springer.com/10.1007/978-3-319-24553-9_83

169

170 BIBLIOGRAPHY

[139] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploiting

Linear Structure Within Convolutional Networks for Efficient Evaluation,” in

Advances in Neural Information Processing Systems, vol. 27. Curran Associates,

Inc., 2014. [Online]. Available: https://proceedings.neurips.cc/paper/2014/

hash/2afe4567e1bf64d32a5527244d104cea-Abstract.html

[140] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing Deep Neural

Networks with Pruning, Trained Quantization and Huffman Coding,” Feb. 2016,

arXiv:1510.00149 [cs]. [Online]. Available: http://arxiv.org/abs/1510.00149

[141] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,

M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,

“Pytorch: An imperative style, high-performance deep learning library,” in

Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle,

A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates,

Inc., 2019, pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[142] R. David, J. Duke, A. Jain, V. J. Reddi, N. Jeffries, J. Li, N. Kreeger, I. Nappier,

M. Natraj, S. Regev, R. Rhodes, T. Wang, and P. Warden, “Tensorflow lite micro:

Embedded machine learning on tinyml systems,” CoRR, vol. abs/2010.08678,

2020. [Online]. Available: https://arxiv.org/abs/2010.08678

[143] “CUDA Toolkit Documentation,” https://docs.nvidia.com/cuda/

cuda-c-programming-guide/index.html#arithmetic-instructions, accessed:

2020-07-26.

170

BIBLIOGRAPHY 171

[144] “Arm Cortex-A76 Software Optimization Guide,” https://developer.arm.com/

documentation/swog307215/a, accessed: 2021-03-03.

[145] “Tensorflow Lite,” https://www.tensorflow.org/lite, accessed: 2021-03-05.

[146] M. Courbariaux, Y. Bengio, and J.-P. David, “Training deep neural networks with

low precision multiplications,” arXiv e-prints, pp. arXiv–1412, 2014.

[147] T. Simons and D.-J. Lee, “A review of binarized neural networks,” Electronics,

vol. 8, no. 6, p. 661, 2019.

[148] D. Saad and E. Marom, “Training feed forward nets with binary weights via a

modified chir algorithm,” Complex Systems, vol. 4, no. 5, 1990.

[149] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training deep neural

networks with binary weights during propagations,” Advances in neural informa-

tion processing systems, vol. 28, 2015.

[150] Y. Bengio, N. Léonard, and A. C. Courville, “Estimating or propagating

gradients through stochastic neurons for conditional computation,” CoRR, vol.

abs/1308.3432, 2013. [Online]. Available: http://arxiv.org/abs/1308.3432

[151] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Quantized

neural networks: Training neural networks with low precision weights and activ-

ations,” The Journal of Machine Learning Research, vol. 18, no. 1, pp. 6869–6898,

2017.

171

172 BIBLIOGRAPHY

[152] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift,” in International Conference on Machine

Learning, 2015, pp. 448–456.

[153] M. Alizadeh, J. Fernández-Marqués, N. D. Lane, and Y. Gal, “An empirical study

of binary neural networks’ optimisation,” in International Conference on Learning

Representations, 2019. [Online]. Available: https://openreview.net/forum?id=

rJfUCoR5KX

[154] E. Sari, M. Belbahri, and V. P. Nia, “A study on binary neural networks

initialization,” CoRR, vol. abs/1909.09139, 2019. [Online]. Available: http:

//arxiv.org/abs/1909.09139

[155] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net: Training low

bitwidth convolutional neural networks with low bitwidth gradients,” CoRR, vol.

abs/1606.06160, 2016. [Online]. Available: http://arxiv.org/abs/1606.06160

[156] W. Tang, G. Hua, and L. Wang, “How to train a compact binary neural network

with high accuracy?” in Thirty-First AAAI conference on artificial intelligence, 2017.

[157] X. Lin, C. Zhao, and W. Pan, “Towards accurate binary convolutional neural net-

work,” Advances in neural information processing systems, vol. 30, 2017.

[158] F. Li and B. Liu, “Ternary weight networks,” CoRR, vol. abs/1605.04711, 2016.

[Online]. Available: http://arxiv.org/abs/1605.04711

[159] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantization,” CoRR, vol.

abs/1612.01064, 2016. [Online]. Available: http://arxiv.org/abs/1612.01064

172

BIBLIOGRAPHY 173

[160] S. K. Esser, J. L. McKinstry, D. Bablani, R. Appuswamy, and D. S. Modha,

“LEARNED STEP SIZE QUANTIZATION,” 2020.

[161] Y. Bhalgat, J. Lee, M. Nagel, T. Blankevoort, and N. Kwak, “LSQ+: Improving

low-bit quantization through learnable offsets and better initialization,” in 2020

IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops

(CVPRW). Seattle, WA, USA: IEEE, Jun. 2020, pp. 2978–2985. [Online].

Available: https://ieeexplore.ieee.org/document/9151058/

[162] “CUDA,” https://developer.nvidia.com/cuda-zone, accessed: 2020-07-26.

[163] M. Flynn, “Very high-speed computing systems,” Proceedings of the IEEE, vol. 54,

no. 12, pp. 1901–1909, 1966.

[164] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once for all: Train one network

and specialize it for efficient deployment,” in International Conference on Learning

Representations, 2020. [Online]. Available: https://arxiv.org/pdf/1908.09791.pdf

[165] B. Zhuang, C. Shen, M. Tan, L. Liu, and I. Reid, “Structured binary neural networks

for accurate image classification and semantic segmentation,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 413–

422.

[166] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang,

and Z. Zhang, “Mxnet: A flexible and efficient machine learning library for

heterogeneous distributed systems,” CoRR, vol. abs/1512.01274, 2015. [Online].

Available: http://arxiv.org/abs/1512.01274

173

174 BIBLIOGRAPHY

[167] R. C. Whaley and A. Petitet, “Minimizing development and maintenance costs in

supporting persistently optimized blas,” Software: Practice and Experience, vol. 35,

no. 2, pp. 101–121, 2005.

[168] J. Fromm, M. Cowan, M. Philipose, L. Ceze, and S. Patel, “Riptide: Fast

end-to-end binarized neural networks,” in Proceedings of Machine Learning and

Systems, I. Dhillon, D. Papailiopoulos, and V. Sze, Eds., vol. 2, 2020, pp.

379–389. [Online]. Available: https://proceedings.mlsys.org/paper/2020/file/

2a79ea27c279e471f4d180b08d62b00a-Paper.pdf

[169] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation functions:

Comparison of trends in practice and research for deep learning,” arXiv preprint

arXiv:1811.03378, 2018.

[170] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,

G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,

D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,

B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,

F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and

X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous

systems,” 2015, software available from tensorflow.org. [Online]. Available:

https://www.tensorflow.org/

[171] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan, L. Wang,

Y. Hu, L. Ceze et al., “{TVM}: An automated end-to-end optimizing compiler for

174

BIBLIOGRAPHY 175

deep learning,” in 13th {USENIX} Symposium on Operating Systems Design and

Implementation ({OSDI} 18), 2018, pp. 578–594.

[172] T. Bannink, A. Hillier, L. Geiger, T. de Bruin, L. Overweel, J. Neeven, and K. Hel-

wegen, “Larq compute engine: Design, benchmark, and deploy state-of-the-art

binarized neural networks,” 2020.

[173] L. Geiger and P. Team, “Larq: An open-source library for training binarized neural

networks,” Journal of Open Source Software, vol. 5, no. 45, p. 1746, Jan. 2020.

[Online]. Available: https://doi.org/10.21105/joss.01746

[174] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre, and

K. Vissers, “Finn: A framework for fast, scalable binarized neural network infer-

ence,” in Proceedings of the 2017 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, 2017, pp. 65–74.

[175] “PYNQ,” http://www.pynq.io/, accessed: 2021-04-26.

[176] A. Pappalardo, “Xilinx/brevitas,” https://doi.org/10.5281/zenodo.3333552.

[177] K. A. Tsintotas, L. Bampis, and A. Gasteratos, “The Revisiting Problem in Simul-

taneous Localization and Mapping: A Survey on Visual Loop Closure Detection,”

IEEE Transactions on Intelligent Transportation Systems, pp. 1–25, 2022, confer-

ence Name: IEEE Transactions on Intelligent Transportation Systems.

[178] C. Masone and B. Caputo, “A Survey on Deep Visual Place Recognition,” IEEE

Access, vol. 9, pp. 19 516–19 547, 2021, conference Name: IEEE Access.

175

176 BIBLIOGRAPHY

[179] R. Arroyo, P. F. Alcantarilla, L. M. Bergasa, and E. Romera, “Towards life-long

visual localization using an efficient matching of binary sequences from images,”

in 2015 IEEE international conference on robotics and automation (ICRA). IEEE,

2015, pp. 6328–6335.

[180] N. V. Shirahatti and K. Barnard, “Evaluating image retrieval,” in 2005 IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition (CVPR’05),

vol. 1. IEEE, 2005, pp. 955–961.

[181] S. Ehsan, N. Kanwal, A. F. Clark, and K. D. McDonald-Maier, “Improved repeatab-

ility measures for evaluating performance of feature detectors,” Electronics letters,

vol. 46, no. 14, pp. 998–1000, 2010.

[182] A. Torralba and A. A. Efros, “Unbiased look at dataset bias,” in CVPR 2011, 2011,

pp. 1521–1528.

[183] M. Magnusson, H. Andreasson, A. Nuchter, and A. J. Lilienthal, “Appearance-based

loop detection from 3d laser data using the normal distributions transform,” in

2009 IEEE International Conference on Robotics and Automation. IEEE, 2009, pp.

23–28.

[184] M. Zaffar, S. Garg, M. Milford, J. Kooij, D. Flynn, K. McDonald-Maier, and

S. Ehsan, “Vpr-bench: An open-source visual place recognition evaluation

framework with quantifiable viewpoint and appearance change,” International

Journal of Computer Vision, vol. 129, no. 7, pp. 2136–2174, Jul 2021. [Online].

Available: https://doi.org/10.1007/s11263-021-01469-5

176

BIBLIOGRAPHY 177

[185] S. Ehsan, A. F. Clark, B. Ferrarini, N. U. Rehman, and K. D. McDonald-Maier,

“Assessing the performance bounds of local feature detectors: Taking inspiration

from electronics design practices,” in 2015 International Conference on Systems,

Signals and Image Processing (IWSSIP), 2015, pp. 166–169.

[186] Q. McNemar, “Note on the sampling error of the difference between correlated

proportions or percentages,” Psychometrika, vol. 12, no. 2, pp. 153–157, 1947.

[187] J. L. Fleiss, B. Levin, and M. C. Paik, Statistical methods for rates and proportions.

John Wiley & Sons, 2013.

[188] A. L. Edwards, “Note on the “correction for continuity” in testing the significance

of the difference between correlated proportions,” Psychometrika, vol. 13, no. 3,

pp. 185–187, 1948.

[189] A. Agresti, An introduction to categorical data analysis, third edition ed., ser. Wiley

series in probability and statistics. Hoboken, NJ: John Wiley & Sons, 2019.

[190] “Standard Normal Distribution Tables,” https://getcalc.com/

statistics-normal-distribution-table.htm, accessed: 2023-03-09.

[191] Z. Chen, A. Jacobson, N. Sünderhauf, B. Upcroft, L. Liu, C. Shen, I. Reid,

and M. Milford, “Amosnet and hybridnet implementation,” https://github.com/

scutzetao/DLfeature_PlaceRecog_icra2017, 2017, accessed: 2019-09-04.

[192] G. Tolias, R. Sicre, and H. Jégou, “R-mac implementation,” https://github.com/

gtolias/rmac, 2016, accessed: 2019-09-04.

177

178 BIBLIOGRAPHY

[193] R. Arandjelovic, P. Gronat, A. Torii, T. Pajdla, and J. Sivic, “netvlad implementa-

tion,” https://github.com/Relja/netvlad, 2016, accessed: 2019-09-04.

[194] A. Torii, J. Sivic, T. Pajdla, and M. Okutomi, “Visual place recognition with repet-

itive structures,” in CVPR, 2013.

[195] Z. Chen, F. Maffra, I. Sa, and M. Chli, “Cross-region-bow implementation,” https:

//github.com/scutzetao/IROS2017_OnlyLookOnce, 2016, accessed: 2019-09-04.

[196] “V4RL Wide-baseline Place Recognition Dataset,” https://github.com/

VIS4ROB-lab/place_recognition_dataset_ral2019, accessed: 2019-04-04.

[197] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Efficient deployment of mul-

tiple unmanned aerial vehicles for optimal wireless coverage,” IEEE Communica-

tions Letters, vol. 20, no. 8, pp. 1647–1650, 2016.

[198] T. Villa, F. Gonzalez, B. Miljievic, Z. Ristovski, and L. Morawska, “An overview

of small unmanned aerial vehicles for air quality measurements: Present applica-

tions and future prospectives,” Sensors, vol. 16, no. 7, p. 1072, 2016.

[199] J. Li, Y. Bi, M. Lan, H. Qin, M. Shan, F. Lin, and B. M. Chen, “Real-time simultan-

eous localization and mapping for uav: a survey,” in Proc. of International micro

air vehicle competition and conference, 2016, pp. 237–242.

[200] S. Khattak, C. Papachristos, and K. Alexis, “Keyframe-based direct thermal-inertial

odometry,” in 2019 International Conference on Robotics and Automation (ICRA).

IEEE, 2019, pp. 3563–3569.

178

BIBLIOGRAPHY 179

[201] D. O. Wheeler, D. P. Koch, J. S. Jackson, T. W. McLain, and R. W. Beard, “Relative

navigation: A keyframe-based approach for observable gps-degraded navigation,”

IEEE Control Systems Magazine, vol. 38, no. 4, pp. 30–48, 2018.

[202] N. Sünderhauf, P. Neubert, and P. Protzel, “Are we there yet? challenging seqslam

on a 3000 km journey across all four seasons,” in Proc. of Workshop on Long-

Term Autonomy, IEEE International Conference on Robotics and Automation (ICRA),

2013, p. 2013.

[203] P. F. Alcantarilla, A. Bartoli, and A. J. Davison, “Kaze features,” in European Con-

ference on Computer Vision. Springer, 2012, pp. 214–227.

[204] S. M. Omohundro, Five balltree construction algorithms. International Computer

Science Institute Berkeley, 1989.

[205] S. Ehsan, A. Clark, B. Ferrarini, and K. McDonald-Maier, “Jpeg, blur and

uniform light changes image database,” http://vase.essex.ac.uk/datasets/index.

html, 2012, accessed: 2022-10-15.

[206] B. Ferrarini, S. Ehsan, A. Leonardis, N. U. Rehman, and K. D. McDonald-Maier,

“Performance characterization of image feature detectors in relation to the scene

content utilizing a large image database,” IEEE Access, vol. 6, pp. 8564–8573,

2018.

[207] P. F. Alcantarilla, J. Nuevo, and A. Bartoli, “Fast explicit diffusion for accelerated

features in nonlinear scale spaces,” in British Machine Vision Conf. (BMVC), 2013.

[208] J. Guevara Diaz, “PyVLAD,” https://github.com/mxbi/PyVLAD, accessed: 2019-

04-04.

179

180 BIBLIOGRAPHY

[209] Itseez, “Open source computer vision library,” https://github.com/itseez/opencv,

2015.

[210] F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.

[211] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the recent archi-

tectures of deep convolutional neural networks,” Artificial Intelligence Review, pp.

1–62, 2020.

[212] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[213] M. Toneva, A. Sordoni, R. T. des Combes, A. Trischler, Y. Bengio, and

G. J. Gordon, “An empirical study of example forgetting during deep neural

network learning,” in International Conference on Learning Representations, 2019.

[Online]. Available: https://openreview.net/forum?id=BJlxm30cKm

[214] “Places365 DevKit,” https://github.com/zhoubolei/places_devkit, accessed:

2020-07-26.

[215] “Raspberry Pi 4 Tech Specs,” https://www.raspberrypi.org/products/

raspberry-pi-4-model-b/specifications/, accessed: 2021-03-06.

[216] “CoHOG source code,” https://github.com/MubarizZaffar/VPR-Bench/tree/

main/VPR_Techniques/CoHOG_Python, accessed: 2021-11-06.

[217] “pyleargist,” https://pypi.org/project/pyleargist/, accessed: 2021-11-06.

[218] “GIST MATLAB implementation,” http://people.csail.mit.edu/torralba/code/

spatialenvelope/, accessed: 2021-11-06.

180

BIBLIOGRAPHY 181

[219] L. Geiger and P. Team, “Larq: An open-source library for training binarized neural

networks,” Journal of Open Source Software, vol. 5, no. 45, p. 1746, 2020.

181

