
Deep learning for trading and hedging in financial

markets

Zheng Gong

A thesis submitted for the degree of

Doctor of Philosophy

at the

School of Computer Science and Electronic Engineering

University of Essex

August 2023

Abstract

Deep learning has achieved remarkable results in many areas, from image classification,

language translation to question answering. Deep neural network models have proved to be

good at processing large amounts of data and capturing complex relationships embedded in

the data. In this thesis, we use deep learning methods to solve trading and hedging problems

in the financial markets. We show that our solutions, which consist of various deep neural

network models, could achieve better accuracies and efficiencies than many conventional

mathematical-based methods.

We use Technical Analysis Neural Network (TANN) to process high-frequency tick data

from the foreign exchange market. Various technical indicators are calculated from the mar-

ket data and fed into the neural network model. The model generates a classification label,

which indicates the future movement direction of the FX rate in the short term. Our solution

can surpass many well-known machine learning algorithms on classification accuracies.

Deep Hedging models the relationship between the underlying asset and the prices of

option contracts. We upgrade the pipeline by removing the restriction on trading frequency.

With different levels of risk tolerances, the modified deep hedging model can propose vari-

ous hedging solutions. These solutions form the Efficient Hedging Frontier (EHF), where

their associated risk levels and returns are directly observable. We also show that com-

i

bining a Deep Hedging model with a prediction algorithm ultimately increases the hedging

performances.

Implied volatility is the critical parameter for evaluating many financial derivatives. We

propose a novel PCA Variational Auto-Enocder model to encode three independent features

of implied volatility surfaces from the European stock markets. This novel encoding brings

various benefits to generating and extrapolating implied volatility surfaces. It also enables the

transformation of implied volatility surfaces from a stock index to a single stock, significantly

improving the efficiency of derivatives pricing.

ii

Acknowledgements

Words cannot express my gratitude to my supervisors, Dr John O’Hara and Professor Car-

mine Ventre, for their invaluable support and knowledge throughout my PhD study and re-

search. They guided me in this exciting direction for research and career, and I could not

have imagined having better advisors for this journey.

I am grateful to Renzo Tiranti, Wojciech Frys and Yingbo Bai, who provided professional

comments and suggestions during the research, particularly for their support in connecting

the research work with real-life business impacts.

Also thanks my thesis examiners: Prof. Rahul Savani and Dr. Panagiotis Kanellopoulos,

for their professional comments and suggestions, which helped me improve my thesis con-

siderably.

Last but not least, I would like to thank my wife for her endless love, support and company

through this long journey. Especially when the COVID restrictions caused inconveniences in

our ordinary life, her patience and understanding are truly precious.

iii

iv

Contents

1 Introduction 1

1.1 Overview . 2

1.2 Research Objectives . 4

1.3 Research Methodologies . 5

1.4 Thesis Structure . 8

1.5 Publications . 10

2 Literature Review 12

2.1 Introduction . 12

2.2 Financial Concepts and Theories . 14

2.2.1 High-frequency FX spot rate forecasting 14

2.2.2 Efficient Market Hypothesis and Technical Analysis 18

2.2.3 Futures, Option, and Hedging . 20

2.2.4 Geometric Brownian Motion . 21

2.2.5 Black-Scholes-Merton . 24

2.2.6 Stochastic Volatility Model . 28

2.2.7 Fractional Brownian Motion and rough Bergomi model 29

v

2.2.8 Efficient Frontier . 31

2.2.9 Implied Volatility Surface . 33

2.3 Deep Learning Models . 34

2.3.1 Fully Connected Layers . 35

2.3.2 Convolution Layers . 41

2.3.3 Recurrent Layers . 46

2.3.4 Auto-Encoder . 49

2.3.5 Universal Approximation Theory . 52

2.3.6 Reinforcement Learning . 55

2.3.7 Deep Hedging . 57

2.4 Other Machine Learning Methods . 60

3 Technical Analysis Neural Network 62

3.1 Introduction . 63

3.2 Data . 68

3.3 Model . 74

3.4 Experimental Results . 77

3.4.1 Baseline Results . 77

3.4.2 Dynamic Thresholds . 81

3.4.3 Larger Training Window . 85

3.4.4 Universal Model . 85

3.5 Conclusions . 87

4 Efficient Hedging Frontier 90

4.1 Introduction . 91

vi

4.2 An illustration of Default Deep Hedging . 95

4.3 Deep Hedging with a Price Change Threshold 97

4.4 Deep Hedging with a Classifier . 98

4.5 Experimental Setting and Results . 99

4.5.1 Heston Simulation with Various Trading Costs 101

4.5.2 Heston Simulation with Random Forest Classifier 104

4.5.3 Heston Simulations with Different Market Conditions 105

4.5.4 Rough Bergomi Simulation with Different Hurst Parameters 106

4.6 Updating the Neural Network . 107

4.7 Conclusions . 109

5 A New Encoding for Implied Volatility Surfaces 110

5.1 Introduction . 111

5.2 PCA Variational Auto-Encoder . 113

5.3 Dataset and Evaluation Criteria . 115

5.4 Encoding Implied Volatility Surface . 118

5.4.1 Training the PCA Variational Auto-encoder 118

5.4.2 Encoded Latent Space . 120

5.5 Generating Synthetic Surface . 122

5.5.1 Scenario-Based Generation . 122

5.5.2 Implied Volatility Extrapolation . 124

5.5.3 Stock Specific Generation . 125

5.6 Conclusion . 128

vii

6 Conclusion 130

6.1 Summary . 130

6.2 Contribution . 134

6.3 Future work . 136

viii

List of Figures

2.1 An illustration of Limit Order Book . 16

2.2 An Illustration of Geometric Brownian Motion 22

2.3 Distribution of Daily Stock Returns From 28 US Stocks in 2018 24

2.4 Volatility Smile and Implied Volatility Surface 32

2.5 An Artificial Neuron . 35

2.6 Activation Functions . 36

2.7 Fully Connected Neuron Network . 38

2.8 Convolution on an image matrix . 42

2.9 Convolution operation in flattening view . 43

2.10 A Simple Recurrent Layer . 46

2.11 An Auto-encoder Neural Network . 49

2.12 A Variational Auto-encoder Neural Network 51

2.13 A Reinforcement Learning System . 56

3.1 Labelling Process . 66

3.2 Overall Structure of TANN . 72

3.3 Moving windows training and testing . 77

3.4 Comparison of Universal TANN and Currency-Specific TANNs 88

ix

4.1 The Original and Amended Deep Hedging . 92

4.2 The Heston EHFs for different trading costs (λ = 0.5) 101

4.3 The Heston EHFs with Random Forest forecast (λ = 0.5) 104

4.4 The Heston EHFs under different market conditions (λ = 0.5) 105

4.5 The rBergomi EHFs for different trading costs and H (λ = 0.5) 106

4.6 Deep Hedging using Gated Recurrent Network 108

4.7 The Heston EHFs with GRU neural network (λ = 0.5) 108

5.1 Training of Different Variational Auto-Encoders 117

5.2 Encoded Latent Space for STOXX50 . 118

5.3 Generated Synthetic Surfaces . 121

5.4 Z1 of single stocks and STOXX50 . 127

5.5 Z1 of MUVGn.DE and STOXX50 . 127

x

List of Tables

3.1 Minute Data for EURUSD . 66

3.2 Statistics of Time Intervals Between Consecutive Tick Points (Seconds) . . . 67

3.3 Values of α for each FX pair (×10−4) . 71

3.4 Matrix for Bid Channel . 73

3.5 Average classification accuracy from 2014-01-01 to 2018-12-31 with k = 15 . 78

3.6 Average classification accuracy from 2014-01-01 to 2018-12-31 with k = 10 . 79

3.7 Average classification accuracy from 2014-01-01 to 2018-12-31 with k = 5 . . 80

3.8 Classification accuracy differences between fixed and dynamic threshold set-

tings with k = 15 . 82

3.9 Classification accuracy differences between fixed and dynamic threshold set-

tings with k = 10 . 83

3.10 Classification accuracy differences between fixed and dynamic threshold set-

tings with k = 5 . 84

3.11 Comparing different training window sizes . 86

4.1 An illustration of the Default Deep Hedging 96

4.2 Trading frequency reduction as α increases 98

4.3 Heston parameters used in our experiments 100

xi

4.4 Improved Deep Hedging with Random Forest 103

4.5 Improvement through RF classifier (λ = 0.5, α ∈ [0, 0.1]) 103

4.6 Comparing neural network architectures (λ = 0.5, α ∈ [0, 0.1]) 107

5.1 Evaluation Thresholds for Implied Volatility Surfaces 116

5.2 Volatility Surface Extrapolation with Classic VAE Model 123

5.3 Volatility Surface Extrapolation with PCA VAE Model 123

5.4 Predict Stock Volatility Surface Using STOXX50 128

xii

Chapter 1

Introduction

This chapter is the overall introduction to this research thesis on deep learning for trading

and hedging in financial markets, which consists of several aspects and models. The pur-

pose of this chapter is to briefly answer a couple of fundamental questions of (i) why we

are interested in these research directions, (ii) what questions we are trying to answer and

(iii) how to utilize different methodologies to obtain expected results. Section 1.1 outlines a

broad picture of the evolving dynamic regarding deep learning and the interests raised by

the financial academia and industry. Section 1.2 specifically discusses what we expect to

discover from the combinations of deep learning and financial theories. Section 1.3 intro-

duces this research project’s methodologies and provides a detailed discussion on how to

achieve the research objectives. Section 1.4 and Section 1.5 present the thesis structure

and published thesis results, respectively.

1

2 CHAPTER 1. INTRODUCTION

1.1 Overview

Within the past decade, we have seen a lot of promising methods developed in the area

of computer vision and natural language processing. Many have profound impacts on the

lives of ordinary people, from facial recognition [1], machine translation [2] to till-less grocery

stores. A few new industries have also emerged and are making robust progress, and self-

driving vehicles would be a typical example [3]. In addition, during the Covid-19 pandemic,

new solutions were developed to assist in diagnosing this disease, which is an important

and timely breakthrough in medical science [4]. These new technologies have undoubtedly

changed how we process and react to various information. The improvements are primarily

reflected in the accuracies and efficiencies of the data processing procedure.

We want to emphasize that Deep Learning (DL) or Deep Neural Networks (DNN) is just

a way to process numerical information (i.e. matrix and vector). DL is involved in all the

applications mentioned above, but it is not a magic tool that can output anything we request.

The developer or user of a DL model must first thoroughly understand the context around

a problem, focusing on what information could be embedded in the dataset, and then try to

tailor the DL model structure and the model training process to extract information from the

data. Although there is no comprehensive theory to explain why neural networks are capable

in many scenarios, the research community tends to believe that Universal Approximation

Theory plays a crucial role here. Therefore, we think it is necessary to briefly discuss it in

Section 2.3.5. These would contribute to the explainability of the methodologies proposed in

this thesis.

Since we have seen many impressive developments reshape the horizon for computer

vision and other fields, it is natural to consider its feasibility for deep learning to solve financial

1.1. OVERVIEW 3

problems. When this research project started in 2019, there were already some efforts of

applying DL to financial time series prediction problems [5][6][7], portfolio optimization [8][9],

credit risk evaluation [10][11], and many other specific tasks. Some papers discussed the

rationale for selecting deep neural network models for solving their problems, and others did

not. We suggest my reasons from the perspective of trading and hedging financial assets.

First, trading and hedging financial assets usually end up with decisions or strategies

generated from analyzing a large amount of numerical data, which is undoubtedly the strength

of neural network models. Given their complexities and flexibilities, neural network models

are the best candidates to identify appropriate features from the dataset targeted explicitly

for the required loss function. It also can learn the features from one domain of knowledge

and apply them to another relevant domain, which could be two different foreign exchange

rates or stock prices from different shares in the context of the financial market.

Second, as mentioned in previous paragraphs, neural network models can approxim-

ate non-linear relationships. One fundamental aspect of financial modelling is to identify

relationships; such relationships could be a temporal relationship between historical prices

and future prices (forecasting), prices of the underlying asset and its derivatives (hedging)

and volatility of particular stock prices and the volatility of stock index price (benchmarking),

etc. These relationships are usually dynamic and complex, and neural network models are

more appropriate solutions to capture these relationships than pure mathematical equations.

Once the neural networks model these relationships, we could get a more in-depth under-

standing of the evolvement in the financial market. We could also input extra information into

the system and use the discovered relationships to evaluate financial products or generate

comprehensive asset management strategies.

Third, from the business point of view. Financial institutions are not like manufactur-

4 CHAPTER 1. INTRODUCTION

ers, and their products are not physically comparable. The mathematical algorirthms behind

these products are the key factors to distinguish them. However, we already have many

products, services, hedging and trading strategies sharing similar characteristics in the mar-

ket due to the limitations of the mathematical methods we have. Deep learning models could

provide new solutions to many numerical problems in the financial industry and develop dif-

ferent products and services, which could have substantial business impacts and benefits.

1.2 Research Objectives

There are solid reasons to consider deep neural network models when solving problems

related to trading and heading in the financial markets. We have seen many research works

published in recent years. However, they are far from practical applications. There are two

fundamental limitations in those works. First, many models are developed and tested using a

small amount of data, which means the dataset was collected from a relatively short period

of time, or a limited amount of financial instruments. These papers report superior model

performances for the typical dataset, but we know the financial market is constantly evolving.

For example, during March and April 2020, stock prices experienced high levels of turbulence

because the COVID-19 pandemic was starting, and market participants were not confident

about the future. In this scenario, how the model would respond to the market would be a

vital issue for everyone. Second, the majority of the models did not consider a model user’s

knowledge and expectation for the market. A financial market participant should have an

intelligent system that suggests different solutions based on various market prospects, and

this is because of the typical characteristics of the financial sector. We need to know what

drives the model’s output, as well as the financial and business implications of the model.

1.3. RESEARCH METHODOLOGIES 5

More importantly, the regulators want us to explain how a model meets its purpose.

The limitations discussed above set out a baseline for the questions to be answered by

this research thesis. To be precise and applicable, the research objectives are set as follows:

1. To experiment with the neural network’s ability to process large amounts of noisy high-

frequency financial time series data, which covers a long period of time and many

financial instruments.

2. To combine the neural network based pipeline with other machine learning classifi-

ers to achieve higher hedging profits and lower hedging risks for vanilla stock option

contracts.

3. To obtain meaningful and interpretable encoding of volatility surfaces with an auto-

encoder neural network model and improve the interpretability of synthetic surface

generation process.

4. To discover the relationship between the volatility surface of a single stock and a stock

index so that a prediction model could be built to generate volatility surfaces of illiquid

stock.

1.3 Research Methodologies

To achieve the research objectives listed in Chapter 1.2, we perform three studies to validate

these objectives. For each study, we create a new model or upgrade a state-of-art algorithm

to solve a specific financial market trading or hedging problem. In this chapter, we briefly

state the considerations behind the design of these studies and how their outcomes answer

the research questions. More detailed and concrete discussions will be presented in the

6 CHAPTER 1. INTRODUCTION

relevant chapter for each study.

We want to know if a solution exists for neural networks to process highly noisy financial

time series datasets. Although there are already many literatures about forecasting stock

prices and foreign exchange rates, most of them are only considering regular sampled time

series (daily, weekly, etc.) [12][13][14]. However, the high-frequency tick data has totally dif-

ferent characteristics, and these characteristics present a lot more challenging for extracting

useful information from high-frequency data. We propose a new solution called Technical

Analysis Neural Network (TANN), which combines technical indicators with convolutional

and recurrent neural layers to extract predictive information from high-frequency FX ticks,

and discovered that TANN outperforms several conventional machine learning methods re-

garding prediction accuracy. This study suggests a new direction for high-frequency FX

trading and testifies to the universality of neural network models.

Human knowledge and preferences are essential and critical to most trading and hedging

tasks, significantly different from other computer science tasks, such as image classification

and machine translation, where human guidances or preferences are usually unnecessary.

We need intelligent algorithms to assist an experienced investor in making decisions so that

the outcome can reflect regulators’ requirements and investors’ preferences, which could

also contribute to the interpretability of a system and make the method one step closer to

real business scenarios. We discover a way to input an investor’s risk preference into the

popular deep hedging algorithm and generate the Efficient Hedging Frontier (EHF). The

EHF provides efficient and straightforward messages to a system user about the trade-off

between mean (return) and standard deviation (risk) of expected hedging profit so that they

can choose the optimal strategy based on individual circumstances. We also include the

output of another machine learning algorithm (i.e. random forest) to the neural network

1.3. RESEARCH METHODOLOGIES 7

based deep hedging pipeline, which serves as another source of information and can be

replaced by human knowledge if necessary. This way, the EHF could be shifted upwards,

indicating an improvement in hedging profit at all risk levels. This study experiments to

combine various information at the input level of a neural network based pipeline and tailor

the outputs to the specific risk preference and predictions from an investor’s point of view.

The deep hedging method is upgraded and more applicable to real markets.

For the third study, we want to further manipulate the neural network at the intermedia

layers instead of just the input level. Therefore, the model’s strength of flexibility could be

better utilised to fit a more challenging problem, and we can develop a deeper understand-

ing of the mechanism of neural networks when applied to the area of trading and hedging.

Auto-encoder is the best category of the neural network model to illustrate the fundamental

principle of universal approximation. The input information of an auto-encoder is embedded

into a latent vector and then reconstructed by two separate neural networks called encoder

and decoder. These two networks are doing similar jobs of dimensionality transferring but

in precisely opposite directions. Existing literature uses variation auto-encoder to model im-

plied volatility surface with satisfactory reconstruction performances[15]. We upgrade this

model by adding the covariance measurement to the loss function so that the latent factors

are independent of each other, which is inspired by the PCA autoencoder model from the

computer vision field [16]. The updated auto-encoder model can generate synthetic volatility

surfaces from three latent numbers, which define the overall volatility level, the term struc-

ture and the skewness separately. We also take a further step to analyse the relationship

between the volatility surfaces of a particular stock and its market benchmark (stock index)

on the latent encodings so that we can use a simple regression model to predict the lat-

ent encoding of a volatility surface for a stock and then provide the predicted encoding to

8 CHAPTER 1. INTRODUCTION

the decoder neural network to infer the predicted volatility surface. This study shows that

the intermedia output of a neural network could be manipulated outside the neural network

pipeline and combined with extra information to create an advantageous system to evaluate

and trade financial derivatives in the real market.

1.4 Thesis Structure

The thesis structure is based on previous chapters’ research objectives and methodologies.

Chapter 2 outlines many aspects to which this research project relates and presents

some critical past pieces of literature. This literature review chapter could explain many fun-

damental concepts and discuss the state-of-art models in financial time series prediction,

financial derivative hedging and stock volatility surface parameterisation so that they can

be contrasted and compared with the proposed approaches of the research thesis. Chapter

2.3.5 also briefly discusses the Universal Approximation Theory, which explains the he mech-

anism of neural networks and what factors to consider when we want to use neural network

models to solve a specific problem.

Chapter 3 presents the study for processing high-frequency foreign exchange (FX) rates

using the technical indicators and convolutional neural network models, and the Technical

Analysis Neural Network (TANN) model is purposed to classify future FX price movements.

The high-frequency FX tick data is usually considered highly noisy and difficult to be pro-

cessed. However, the TANN pipeline has overcome many conventional machine learning

methods, including K-nearest neighbour, Random Forest and Support Vector Classifier on

classification accuracies. It is also discovered that investors’ risk preferences will influence a

model’s classification performance, as the label balance depends on it.

1.4. THESIS STRUCTURE 9

Chapter 4 is the second study in which an investor’s risk tolerance plays a more critical

role. The deep hedging [17] algorithm opens a new area in which a neural network model

could be used to find the optimal hedging strategy for a financial derivative. One obvious

drawback of the default deep hedging model is that the underlining asset is traded on a daily

basis, which generates a lot of unnecessary trading costs. We try to include an investor’s

risk tolerance and limit the trading activities to only significant daily price changes of the

underlying asset. In this way, the average trading loss is reduced at the end of the derivative

contract, but the uncertainty increases. Therefore, the model could generate the efficient

hedging frontier (EHF) to clearly outline the balance between risk and return (loss) when

trading with the deep hedging model. It could assist a trader in making more reasonable

trading decisions. We also found that a prediction agent (such as a random forest model)

could be used first to predict the movement of future underlying prices so that the EHFs

could be shifted upwards.

Chapter 5 is the third study that considers a deeper combination of external information

or instructions with a neural network model to solve more challenging problems. Variational

auto-encoder has already been used to model stock implied volatility surface, which is a key

parameter to figure out the prices of stock options and many other financial derivatives [15].

However, the existing implementation lacks interpretations for the latent dimensions, and

from the financial regulation’s point of view, this is not a reliable method. Our work is inspired

by the PCA autoencoder model, which uses covariance measures to constrain the training of

auto-encoder neural network model, and make the latent vectors independent of each other

[16]. In this way, the general volatility level, the term structure and the volatility skew of a

single volatility surface are independently controlled by three different numbers. The model

is particularly useful for generating synthetic volatility surfaces in different market scenarios

10 CHAPTER 1. INTRODUCTION

and supporting the stress testing of trading and hedging strategies. We also discovered

the relationships of volatility surfaces between a single stock and a stock index at the latent

dimension. We use linear regression models to formulate these relationships so that the

implied volatility surface of an illiquid stock can be inferred from its stock prices and the

implied volatility surface of a liquid stock. This is a significant contribution to methods of

financial derivative pricing and hedging.

The thesis is concluded with Chapter 6. It summarises the three studies and highlights

their contributions. It also re-emphasises the research questions and their solutions. Further

research directions are also discussed in this chapter.

Algorithms and models developed in the thesis are all implemented in Python 3. The

source code for Chapter 3 is available at https://github.com/zgong123/TANN, and the source

code for Chapter 4 is available at https://github.com/zgong123/EHF. The source code for

Chapter 5 cannot be shared publicly as it is a joint research work with UBS AG.

1.5 Publications

Some of the original work done in this thesis has been published in the following peer-

reviewed paper:

1. Zheng Gong, Carmine Ventre, and John O’Hara. Classifying high-frequency FX rate

movements with technical indicators and inception model. In Proceedings of the First

ACM International Conference on AI in Finance, pp. 1-8. 2020.

2. Zheng Gong, Carmine Ventre, and John O’Hara. The efficient hedging frontier with

deep neural networks. In Proceedings of the Second ACM International Conference

on AI in Finance, pp. 1-8. 2021.

1.5. PUBLICATIONS 11

3. Zheng Gong, Wojciech Frys, Renzo Tiranti, Carmine Ventre, John O’Hara, and Yingbo

Bai. A new encoding of implied volatility surfaces for their synthetic generation. Work-

shop on Synthetic Data for AI in Finance, the 3rd ACM International Conference on AI

in Finance, 2022.

4. Zheng Gong, Wojciech Frys, Renzo Tiranti, Carmine Ventre, John O’Hara, and Yingbo

Bai. A new encoding of implied volatility surfaces for their synthetic generation. In

Proceedings of the Fourth ACM International Conference on AI in Finance, pp. 1-9.

2023. Under review.

Chapter 2

Literature Review

This chapter introduces a couple of financial mathematical theories for trading and, in par-

ticular, hedging of financial assets. We want to specifically discuss the limitations and

weaknesses of these conventional methods when applied in real-life financial markets. This

chapter introduces neural network models, from the fundamental computing unit to the high-

level model structure. We explain why a neural network is a good candidate for solving

trading and hedging problems in financial markets and essential issues to consider when

using neural network models.

2.1 Introduction

The fascination of solving trading and hedging problems is not only the potential to make

profits from the market but, more importantly, the technics used to dig into a large amount of

numerical data and extract in-depth information. We believe the purpose of information ex-

traction (or so-called ’data-mining’) is to develop a general understanding of how the different

aspects (e.g. financial derivative and its underlying asset) related to each other in the system

12

2.1. INTRODUCTION 13

based on the data which describes them and use mathematical equations or programmable

computer models to represent these relationships. Once we capture these relationships, we

could create new aspects (e.g. new product design, trading strategy generation) or validate

existing methodologies (e.g. stress-testing). The ultimate objective is to solve problems,

increase efficiency in the financial market, and benefit every community member.

In this chapter, we will discuss three broad areas of research: financial theories, neural

network models, and other machine learning methods. This thesis focuses on using various

neural network models to interpret relationships in the financial market. Therefore, sufficient

explanations of financial concepts and classical financial methods must be provided before

introducing neural network models.

From Section 2.2, a reader can understand the nature of the problems and identify the

relationships we want to model by the various neural network models. It also introduces

many widely appreciated financial modelling methods, such as the Black-Scholes-Merton

model and stochastic volatility models. Finally, we want to explain the limitations of those

conventional methods so that we can emphasize the advantages of our proposed neural

network based models.

Section 2.3 presents a thorough discussion of different neural network structures. Our

discussions start from a single computing unit (neuron), to the three formats (fully connec-

ted, convolution and recurrent) which neurons could be connected to a stand as a computing

layer for modelling different types of information, to the high-level arrangement of layers to

perform dimensionality reduction (auto-encoder model) and hedging strategy optimization

(deep hedging). We introduce the reinforcement learning method in this section, which has

prevailed in many practical areas. We also discuss the universal approximation theory and

the issues to consider when using neural network models to capture the relationships, espe-

14 CHAPTER 2. LITERATURE REVIEW

cially for financial time series data.

In Chapter 2.4, we also need to discuss some conventional machine learning methods,

such as random forest and linear regression. One reason is that we need to compare neural

network-based algorithms with conventional approaches to emphasize the superiority of our

proposed method. The second reason is that we want to indicate that financial problems are

sometimes very complicated, and neural network-based algorithms have the advantage of

working together with conventional methods to achieve the best performances and flexibility.

2.2 Financial Concepts and Theories

To solve a problem or update its existing solution, we first need to understand the problem

with its context and concepts. This section considers the most popular theories for modelling

financial assets and developing hedging methods. We want to show the basic concepts of

the conventional methods, particularly their limitations, so we know what problems are being

solved with the proposed methods in this thesis.

2.2.1 High-frequency FX spot rate forecasting

Generally speaking, there are three major financial markets: the foreign exchange (FX) mar-

ket, the stock market and the bond market. The latter two are usually domiciliary in a specific

country or region where the market makers are stock exchanges. All the investors submit

their orders to a single exchange. The exchange matches the orders from the buy and sell

sides and executes the transactions. Local financial regulators and the exchanges have ab-

solute control over market operations. Therefore, the trading rules and regulations could

vary from one location to another. For example, it is only allowed to have a maximum 10%

2.2. FINANCIAL CONCEPTS AND THEORIES 15

daily increase or decrease for a stock’s close price in the Chinese stock market. But such

regulation does not exist in the UK [18].

The FX market is different. It has the exchange-based derivative market, and quote-

based spot and forwards markets. The quote-based market is a decentrelised market There

is no single market maker. At the top of the market is the interbank market, in which each

bank provides prices that they commit to buy or sell currencies from their peers in the market.

It, therefore, has relatively weaker and unified regulations around the globe. Government

agents, such as central banks and financial regulators, could only influence the FX spot

rate by selling or buying currencies in the market just as other market participants, so their

controls are much weaker in this market. The FX spot market has specific features such as

around-the-clock trading, massive traded volume, and diversity of participants compared to

the other two markets mentioned above. According to the Triennial Central Bank Survey, the

daily average turnover of the over-the-counter (OTC) foreign exchange market is $7.5 trillion

per day in April 2022, and about $2.1 trillion is trading in FX spot [19]. The FX market is one

of the most influential markets for global economic growth and stability, and it has stimulated

the interests of many investors, policymakers, and academics [20].

On the other hand, the execution mechanism is also significantly different between the

exchange-based stock market and the quote-based FX spot market.

Most stock exchanges worldwide facilitate trades using an order-drive method, where all

the orders of buyers and sellers are displayed and sorted on the two sides of the Limit Order

Book (LOB) [21]. On the LOB, there are several levels of orders on each side. For the bid

side, level 1 is the highest price a buyer commits to buy, and similarly, the lowest selling

price is on the first level of the ask side. A sample of LOB is illustrated in Figure 2.1. A

stock exchange usually has an advanced system to automatically match and execute orders

16 CHAPTER 2. LITERATURE REVIEW

Figure 2.1: An illustration of Limit Order Book

from level 1 to a higher level. If an order is not completed, it stays on the LOB until matched

or cancelled. This market microstructure of LOB has the potential to provide short-term

information for future prices movement directions because the thickness of orders on both

sides of LOB indicates the market anticipation for the underlying stock, and it also influences

a trader’s trading aggressiveness [22].

For the global FX spot market, it is operating with the quote-driven mechanism instead. In

this market, prices are determined from bid and ask quotes made by market makers, which

are the major banks mentioned above. The market makers are forced to meet their bid and

ask quotes, so order executions are guaranteed, and therefore, a quote-driven market is

more liquid than an order-driven market due to the efficient order matching mechanism but

lacks transparency, because there is no single insuitation to keep all the records of trading.

From the analyst’s point of view, the lack of transparency increases the difficulties in anti-

cipating future price movements. If taking a snapshot of the market at a particular instance,

we only observe two values of bid and ask prices, and they do not include any information

2.2. FINANCIAL CONCEPTS AND THEORIES 17

to influence future prices. While for the order-drive stock market, there is a whole LOB with

deeper levels of order at different prices. When the orders at level 1 have been executed,

those at level 2 will move to level 1 and wait to be executed in the future. Therefore, it can be

considered as the potential drivers of price movements are observable at an early instance,

and this typical market mechanism contributes to predictabilities.

One possible way to have more predictabilities in the quote-driven FX market is to in-

crease the frequency of market observations, which is to access high-frequency tick prices.

Conventionally, most datasets and studies published on the FX market are based on low-

frequency, regularly spaced data points, i.e. daily or hourly. There are emerging concerns

from academia and industry on analysing the market at a different scale. The high-frequency

tick prices are collected at much smaller and more irregular intervals than the usually access-

ible price information. Some people believe that financial time series has recurrent graphic

patterns which can be identified, and before the pattern appears, there are ’latent signals’

generated in the market [23]. Many studies try identifying the signals through high-frequency

tick prices in the FX market. For example, Alam et al. used intraday high-frequency prices to

model the volatility linkage between the oil and foreign exchange market [24]. High-frequency

trading is considered an evolution of trading methodology. High-frequency traders implement

sophisticated technical analysis methods combined with powerful computational resources

to seize the fleeting opportunities in the market [25].

High-frequency FX prices are expensive to obtain, and the data volume is usually in-

tensive. Until recent years when big data methodologies have significantly improved, people

started to consider exploring high-frequency FX ticks prices. A pure mathematical analysis

from Martens and Zein suggests using high-frequency intraday squared returns to predict

realised volatility is better than implied volatility. Their experiments covered stock, FX and

18 CHAPTER 2. LITERATURE REVIEW

commodities markets [26]. A couple of studies also focus on predicting high-frequency FX

data with neural network models. Kablan and Ng created an adaptive neuro-fuzzy inference

system for financial trading, which learns to predict the movements of intraday tick data at

a five-minute time horizon [27]. Their model was very similar to a simple neural network

with four hidden layers, but the activation function (they called the membership function) and

model calibrate process are different to the modern neural network models. Choudhry et al.

examined the use of market microstructure variables to classify the short-term returns of log

prices on inter-dealer spot markets for three FX pairs; their work is based on a multilayer

feed-forward neural network with sigmoid activation function, which is a much-advanced

model structure [28]. Villa and Stella also implemented a continuous time Bayesian net-

work classifier for a similar task, taking only bid and ask prices as inputs. They concluded

the continuous time classifier could surpass a dynamic Bayesian network [29].

2.2.2 Efficient Market Hypothesis and Technical Analysis

The efficient market hypothesis (EMH) is fundamental for analysing and forecasting financial

time series. The security market was believed to be highly efficient, where all known inform-

ation about an individual stock and the stock market as a whole is reflected in the current

stock prices. Any new information spreads quickly and is incorporated into the prices of

stock without delay [30]. Therefore, the stock price is a random walk process, where tomor-

row’s price change will only be influenced by tomorrow’s information, and it is independent

of today’s price. The arrival of information is random, so studying the historical stock prices

(i.e. technical analysis) will not produce any better predictions than a purely random guess.

This is the weak form of efficient market hypothesis [31].

There is also a semi-strong form of the efficient market hypothesis. In addition to the

2.2. FINANCIAL CONCEPTS AND THEORIES 19

weak form, it also disputes the effectiveness of fundamental analysis, which is to research

a company’s financial statement and macroeconomic factors to determine a stock’s intrinsic

value. Therefore, it is believed that a manually selected portfolio of stocks is neither gener-

ating a higher return than a randomly selected alternative, which means stocks are neither

overvalued, nor undervalued in the market [32]. However, people could utilise private inform-

ation to generate profit from trading [33].

The last one is the strong form of the efficient market hypothesis, where none of the

technical and fundamental analyses could produce higher profits than the market average.

People who subscribe to this theory believe that all public and private information is reflected

in market prices. However, in a much-cited paper, Finnerty concluded that people with inside

information could find profitable opportunities in their own companies’ stocks [34], which

indicated the strong form of the efficient market hypothesis might not be applicable in reality.

Technical analysis is the method to study historical prices of financial assets [35]. Al-

though for all three forms of market efficient hypothesis, technical analysis is considered

not helpful for predicting future prices. Academics and investment professionals are still in-

tensely interested in using and developing models based on technical indicators. Lo and

MacKinlay implemented a simple volatility-based specification test on weekly stock returns

in the UK market. In this well-cited paper, they showed that historical prices could be use-

ful for forecasting future returns and thus rejected the EMH [36]. More recently, Sadeghi

et al. proposed an ensemble support vector machine to classify the market signals using

daily prices from the FX market, and their method utilised five technical indicators [37]. Ni

and Yin proposed a hybrid system combining regressive neural networks and support vector

machine (SVM) for modelling and predicting daily FX prices [38]. Their approach unities four

technical indicators and a genetic algorithm for integrating the trading rules. They confirmed

20 CHAPTER 2. LITERATURE REVIEW

that the performances of this hybrid system are better than those of other global models,

such as GARCH. From an industrial perspective, Farimani combined technical indicators

with market emotional distribution of news as features, and using recurrent neural networks

to predict prices in the FX and Cryptocurrency market [39].

2.2.3 Futures, Option, and Hedging

Financial derivatives are financial contracts that are ’derived’ from their underlying finan-

cial assets such as stock, bonds, currencies, funds and commodities. Futures, also called

futures contracts, are agreements between obligate parties to buy or sell an asset at a pre-

determined future date and price. The buyer must purchase or the seller must sell the

underlying asset at the set price, regardless of the current market price at the expiration date

[40]. Futures are one of the fundamental types of financial derivatives.

Options are another basic building blocks of financial derivatives [41]. There are two

types of stock options: call option and put option. A vanilla call option is the contract in

which the holder has the right but not the obligation to buy the underlying stock for a pre-

determined price K (strike price) at a pre-determined date T (expiration date) [42]. For a

vanilla put option, the holder has the right but not the obligation to sell the underlying stock.

For the research project to be discussed in Chapter 4, we will focus on European call options,

wherein the buyer can only execute it at expiration. The opposite category is American call

options, wherein buyers can exercise their rights anytime before expiration. There are also

Bermuda options, which combine European and American styles. Bermuda options can

be exercised only at several pre-determined dates before expiration. It is obviously more

sophisticated to model American or Bermuda stock options than a European one.

In financial terms, hedging means making transactions to mitigate the risks of other fin-

2.2. FINANCIAL CONCEPTS AND THEORIES 21

ancial exposures. For example, a UK manufacturer sells its products to the US and receives

US dollar payments in one month. There is a risk that the US dollar (USD) will reduce its

value again to the British pound (GBP) during one month. Therefore, the manufacturer would

like to hedge its risk of receiving less GBP than expected by entering a currency derivative

contract with a bank. The manufacturer will pay the bank in USD, and the bank will pay

GBP back to the manufacturer with a fixed exchange rate. Of course, the manufacturer will

need to pay a certain amount of upfront premium. This type of financial derivative is called a

currency swap contract.

We are focusing on a European-style stock call option in this thesis and hedging the

option contract from the seller’s perspective. The buyer of the option has the right to buy

the underlying stock at the expiration date. Therefore, as the seller, we must hold a certain

amount of the underlying stock during the contract period to prepare for the buyer’s execu-

tion. The optimal holding amount of the underlying stock is directly influenced by the buyer’s

likelihood of executing their right. It is radically determined by the difference between the

current stock price St and the strike prices K of the option contract.

In the following sections, we will introduce the mathematical framework widely adap-

ted by academics and industries to model stock price processes and calculate the hedging

strategies for European-style stock options.

2.2.4 Geometric Brownian Motion

Brownian motion was first described by Scottish biologist Robert Brown in 1828 [43]. Robert

published a pamphlet about his observations that various pollen particles have similar ran-

dom oscillatory motions in water under a microscope [44]. From modern chemistry, we now

understand that these phenomena of pollen particles are caused by their constant collision

22 CHAPTER 2. LITERATURE REVIEW

Figure 2.2: An Illustration of Geometric Brownian Motion

with other fast-moving molecules.

In mathematics, we use the Wiener process to describe Brownian motion. A Wiener

process is a stochastic process {Bt}t≥0, which satisfying the following conditions:

1. B0 = 0.

2. {Bt} is continuous in t.

3. for all 0 < t1 < t2, the increment Bt2 −Bt1 follows a normal distribution N(0, t2 − t1).

4. for all 0 < t1 < t2 < t3... < tn, the random variables

Bt2 −Bt1 , Bt3 −Bt2 , Bt4 −Bt3 , ..., Btn −Btn−1

are independent to each other

Once we have a Wiener Process (Brownian Motion) and an initial value S0. We want to

formulate the distance between the future asset price St and the starting asset price S0 as

a Wiener process with a linear trend. The process {St} became Brownian Motion with drift,

which states as:

2.2. FINANCIAL CONCEPTS AND THEORIES 23

St − S0 = µt+ σBt (2.1)

And its stochastic differential equation (SDE) is:

dSt = µdt+ σdBt (2.2)

Where µ is the drift parameter indicates a long-term trend of this process, and σ is the

scale parameter that controls how my randomness contributes to the process.

The problem with the drifted Brownian Motion process is that randomness Wt is directly

embedded in the price process St. Therefore, there are possibilities that St became negative

if randomness Bt is a significantly negative number. However, for financial asset prices, we

can’t have negative prices. Therefore, we make some modifications and define the Geomet-

ric Brownian Motion (GBM) with SDE:

dSt = µStdt+ σStdBt (2.3)

By using the initial value of S0, we could integrate the equation using ito’s lemma [45],

and obtain:

ln
St

S0
= (µ− σ2

2
)t+ σBt (2.4)

GBM is alternatively modelling the logarithm of asset price growth as a drifted Brownian

Motion instead of the prices. This is because the growth rate (µ− σ2

2)t+ σBt can go up and

down, but the values of asset St can no longer be negative. Therefore, Geometric Brownian

Motion is also called log-normal growth process [46].

An illustration of GMB is shown in Figure 2.2, where the path is simulated with parameters

S0 = 100, µ = 0.01, and σ = 4.

24 CHAPTER 2. LITERATURE REVIEW

Figure 2.3: Distribution of Daily Stock Returns From 28 US Stocks in 2018

Now we have a proper mathematical model to represent the price movements of a finan-

cial asset (i.e. stock). We will then discuss how to derive the prices and trading strategies of

a financial derivative (i.e. European option) based on this asset.

2.2.5 Black-Scholes-Merton

In the early 1970s, Black and Scholes [47], and independently, Merton [48] initiated the

classic parametric framework for option valuation and hedging, which we refer to as the

Black-Scholes-Merton model. It first assumes that stock prices are following the Geometric

2.2. FINANCIAL CONCEPTS AND THEORIES 25

Brownian Motion (GBM) process discussed in the previous section:

dSt = µStdt+ σStdBt, (2.5)

where St represents a stock’s price at the time t, µ is the drift, Bt is a Brownian motion

contributing uncertainty, and σ controls volatility.

We also have a European call option contract derived from this stock St with an option

value of Ct(St, t). We think the option value is influenced by t, which is the time point when

calculating the option value.. As t approaches the expiration date T of the option, its value

would decrease. Another influencing factor is the current stock price St. For example, if St is

much smaller than the strike price K, then the option buyer is unlikely to exercise the option,

so the option price Ct(St, t) would be close to zero. By using Itô’s lemma [45] on Ct and

substituting Equation 2.5, we obtain:

dCt =

(
µSt

∂Ct

∂St
+

∂Ct

∂t
+

1

2
σ2S2

t

∂2Ct

∂S2
t

)
dt+ σSt

∂Ct

∂St
dBt. (2.6)

We want to replicate the value of Ct(St, t) with a self-financing portfolio P . This portfolio

consists of only two assets, which are yt amounts of the underlying stock and xt of cash.

We consider cash a risk-free asset and accumulates at the risk-free rate r. Therefore, we

calculate the value for the portfolio as follows:

Pt = xte
rt + ytSt. (2.7)

We could calculate its total derivative and substitute Equation 2.5 into the equation. We

have:

dPt = (rxte
rt + ytµSt)dt+ σytStdBt. (2.8)

We could notice that dPt has a similar formula with dCt, where they are both the sum of

a proportion of dt and a proportion of σStdBt. More importantly, we want the portfolio P to

26 CHAPTER 2. LITERATURE REVIEW

perfectly replicate the option Ct, which means any changes in t and Bt have the same effects

on both portfolio Pt and option contract Ct. Therefore, we can equate terms in Equation 2.6

and Equation 2.8 to obtain:

yt =
∂Ct

∂St
(2.9)

xt =

∂Ct
∂t + 1

2σ
2S2

t
∂2Ct

∂S2
t

rert
. (2.10)

According to Equation 2.9 and Equation 2.10, investors could continuously adjust their port-

folio P , which is made up of yt amount of underlying stock and xt amount of cash, to always

perfectly hedge the risk from the liability with the stock option Ct. In this way, they will always

achieve zero profit or losses at the option’s maturity. Equation 2.9 effectively calculates the

partial derivative of Ct with respect to St, which is usually called the delta hedging strategy.

We could further substitute Equation 2.9 and Equation 2.10 back into Equation 2.7 and

make Pt = Ct to obtain the famous Black-Scholes-Merton partial differential equation.

∂Ct

∂t
+ rSt

∂Ct

∂St
+

1

2
σ2S2

t

∂2Ct

∂S2
t

− rCt = 0. (2.11)

So far, we have introduced the hedging strategy if we sell a European call option, and we

also need to know how much we will charge for signing the option contract at t = 0. The

Black-Scholes-Merton equation could be solved to get an analytical solution to Ct(St, t). We

first need to set a couple of boundary conditions on Ct(St, t), assuming the strike price for

the option is K, the option expires when t = T and risk-free interest rate of r:

1. CT (ST , T) = max(ST −K, 0).

2. Ct(0, t) = 0 for all t.

By solving the Black-Scholes-Merton PDE with these conditions, we have a formula for

2.2. FINANCIAL CONCEPTS AND THEORIES 27

pricing the European call option [40]:

Ct(St, t) = StN(d1)−Ke−r(T−t)N(d1 − σ
√
T − t). (2.12)

where

d1 =
ln(St

K) + (r + 1
2σ

2)(T − t)

σ
√
T − t

. (2.13)

In Equation 2.12, the function N(d1) is the cumulative distribution function of standard

normal distribution, which states as:

N(d1) =

∫ d1

−∞

1√
2π

e−
x2

2 dx. (2.14)

This is the complete Black-Scholes-Merton framework for calculating option price and

hedging an option contract.

Black-Scholes-Merton (BSM) is considered a benchmark in every literature and is widely

applied in the industry. The model provides beautiful closed-form solutions, as stated above.

Investors could manage their hedging positions by calculating “Greek Letters”. For example,

we have seen delta hedging in Equation 2.9, which is basically how the option price reacts

to the change in stock price. There are also other Greek Letters measuring the relationship

between an option’s price and different quantities [49].

Despite its popularity, the BSM model is built on idealised assumptions that are not ap-

plicable in real-life scenarios. First, the underlying price is modelled as a GBM process with

constant volatility σ. Therefore, it cannot model the fat tails of observed probability density,

which means extreme high/low stock returns are observed much more frequently than as-

sumed [50]. The distribution of actual stock returns is shown in figure 2.3. We calculate the

daily percentage return of 28 list stocks in the US market during 2018 and plot the distribution

of around 7000 numbers. We also plot a normal distribution using the mean of 0 and stand-

ard deviation of 0.0158, the realised mean and standard deviation calculated from these

28 CHAPTER 2. LITERATURE REVIEW

observations. We could see from the figure that extreme returns, which are higher (lower)

than 0.05 (-0.05), appeared much more often than the normal distribution. This gives rise to

underestimated risks and is one of the causes of the financial crisis in 2008 [51]. Second, it

assumes there are no trading costs and trading limitations for every participant in the market.

Third, traders should continuously re-balance their positions to achieve zero profits (losses)

at the contract’s maturity, which is financially and practically infeasible. Therefore, when the

option expires, there is always a loss for the option issuer (seller). The actual option premium

is based on the theoretical price and the discounted values of the expected losses.

2.2.6 Stochastic Volatility Model

From the above sections, we know that Geometric Brownian Motion (GBM) is one of the

simplest models to simulate the price processes of financial assets. However, as stated in

Equation 2.5, the fundamental drawback of GBM is the constant volatility value. Therefore,

even though GBM works perfectly with the Black-Scholes-Merton (BSM) framework, which

gives beautiful mathematical solutions to option prices and hedging strategies, we cannot

rely only on them to trade in the real world.

We could use stochastic volatility models to simulate the underlying prices to take one

step closer to reality. As its name indicates, there is a stochastic element in the volatility of

the underlying price process. Heston model is the most classic stochastic volatility model

[52]:

dSt = µStdt+
√
vtStdB

1
t .

dvt = κ(θ − vt)dt+ σ
√
vtdB

2
t .

(2.15)

In the above stochastic differential equations, B1
t and B2

t are two one-dimensional Brownian

motions, with correlation in [−1, 1]. vt controls the volatility of St, a mean-reverting stochastic

2.2. FINANCIAL CONCEPTS AND THEORIES 29

process instead of a constant. In the stock market, we usually observe a high volatility period

after a significant change in stock price. This phenomenon is modelled by a high correlation

between B1
t and B2

t and the mean-reverting property of St. The parameter σ is called the

volatility of the volatility, which means how much the volatility σ is swinging around its the-

oretical mean vt. If the value of σ is high, the volatility vt is likely to have extremely values

because the stochastic process B2
t is making more contributions.

2.2.7 Fractional Brownian Motion and rough Bergomi model

Fractional Brownian Motion (fBm) is another type of stochastic process which recently raised

lots of interest in physics [53], and energy price modelling [54]. The most significant char-

acteristic of fBm is that the increments at every step are not independent. Therefore, the

values of this random process at every step have the following covariance function:

E[BH
t BH

s] =
1

2
(|t|2H + |s|2H − |t− s|2H). (2.16)

Where H is called the Hurst parameter, which controls the level of covariance, it can be

noticed from Equation 2.16, when H = 1
2 , the fBm process becomes a classic Brownian

motion which covariance between different steps are zero.

Gatheral et al. [55] were the first to bring the ideal of Fractional Brownian Motion into the

financial context. They calculated spot price volatilities for four different assets (DAX futures

contracts, Bund futures contracts, S&P index and NASDAQ index). They discovered that

the difference in log volatility at a fixed step size has a linear relationship with the step size.

Therefore, they conclude that the log-volatility process of these assets may be modelled us-

ing fBm, and they also estimated their Hurst parameters H, where the values were between

0.06 and 0.2.

30 CHAPTER 2. LITERATURE REVIEW

Bayer et al. [56] extended this idea from discrete steps to continuous time. They found

it is the non-Markovian version Bergomi model and therefore named it the rough Bergomi

(rBergomi) model. They tested that the rBergomi model could fit the implied volatility surface

of SPX very well. The rBergomi model is formulated as follows:

St = S0 exp

{∫ t

0

√
VudWs −

1

2

∫ t

0
Vudu

}
.

Vt = V0 exp

{
ηYt −

η2

2
t2H

}
.

Yt =
√
2H

∫ t

0
(t− u)H− 1

2dWu.

Wu = ρB1
u +

√
1− ρ2B2

u.

(2.17)

In the above equations, St is the asset price at time t, and Vt represents its spot variance.

Wu is equivalent to a combination of two independent Brownian motions B1
u and B2

u with

correlation parameter ρ. According to [57], Yt is a Volterra process and a fractional Brownian

Motion. It can be noticed that the rBergomi is similar to the stochastic volatility process

discussed in Section 2.2.6, but the spot volatility process Vt is modelled using fBm. H is

the Hurst parameter, and H = 0.5 indicates no correlation between the increments of the

process. H < 0.5 when the correlation is negative and H > 0.5 is positive.

For our subproject to be discussed in Chapter 4, We simulated the underlying stock prices

with GBM, Heston and rBergomi processes. We experimented with various parameters to

present different market scenarios. We want to compare the hedging performances of our

proposed neural network mechanism under different simulations, as well as compare it with

the benchmark BSM method.

2.2. FINANCIAL CONCEPTS AND THEORIES 31

2.2.8 Efficient Frontier

The efficient frontier is an essential concept from portfolio theory, and the theory was derived

by Markowitz in 1952 [58]. It proposed that by combining stocks into a portfolio, the expected

variance of returns would reduce but not change the expected return. Markowitz’s paper was

the first to provide a mathematical formulation of diversification of investment [59]. The most

influential concept that Markowitz delivered in his paper was that we should consider one

asset’s contribution to the risk of a whole portfolio instead of looking at it in isolation. This is

the basis of modern financial economics.

Based on Markowitz’s work, Merton created the concept of efficient portfolio frontier in

1972 [60]. He provided an analytical formulation and proved that with a fixed set of risk

assets, with different combinations of these assets, the relationship between the portfolio’s

expected variance and the portfolio’s expected return is a parabola. Thus, investors could

balance their positions by varying the portfolio composition to achieve their desired return or

level of risk.

We borrow this idea of Efficient Frontier and apply it to the neural network model of

deep hedging. We modify the standard deep hedging pipeline so investors can select their

desired hedging frequencies instead of the fixed daily hedging. If hedging is performed less

frequently, the contract results in fewer hedging losses but increases final values’ volatility

(uncertainty). We could plot the relationship between the mean for the termination losses

and volatility for the termination losses on a plane and notice it is a parabola. We call it the

Efficient Hedging Frontier (EHF). More detailed discussions will be shown in chapter 4.

32 CHAPTER 2. LITERATURE REVIEW

(a) The Volatility Smile

(b) A Synthetic Impied Volatility Surface

Figure 2.4: Volatility Smile and Implied Volatility Surface

2.2. FINANCIAL CONCEPTS AND THEORIES 33

2.2.9 Implied Volatility Surface

We discussed the Black-Scholes-Merton method for calculating the price of stock options in

Section 2.2.5. To simplify the model, we write the price of an option contract as a function of

various pricing parameters:

Ct(St, t) = BSM(t, T, St,K, r, σ) (2.18)

From Equation 2.18, we know that there are seven parameters to work out the option

price. Among these parameters, some values are directly observable from the open market

(r, St), some are specified in descriptions of the individual option contract (T , t, K), and

there is only one parameter that is playing a crucial role in differentiating our price of the

option product to our competitors. Put another way, every participant in the option market

needs to forecast, from their knowledge and experience, the future volatility of the underlying

asset’s price. This is represented as the σ parameter in the option pricing formula and

therefore reflected in the option contract’s price. If this prediction is closer to the truly realised

volatility from the market, the option insurer would have better hedging of the option contract.

Otherwise, they may lose money for the over/under-estimated stock price volatility.

The σ parameter discussed above is equivalently the implied volatility. As mentioned in

[61], the formal calculation of implied volatility is that, for a particular trading day t, read the

market prices of various option contracts with different combinations of time to expiration

τ = T − t and moneyness m = K
St

. Then, put the observed market price into Equation 2.18

together with other observable parameters, and find the best value of σ, which satisfies the

pricing formula. Because we know that, even for the same trading day, different τ and m

combinations have different option prices. Therefore we come up with different values of

σ(τ,m), which is a function of time to expiration τ and moneyness m. This also emphasises

34 CHAPTER 2. LITERATURE REVIEW

that constant volatility assumptions in GBM and BSM methods are invalid in the real market.

We could get a surface if we plot implied volatility σ(τ,m) against a grid of different values

of time to expiration τ and moneyness m. There are typical features of an implied volatility

surface. First, if we slice the volatility surface by fixing the time to expiration τ value, we could

get a curve showing the relationship between moneyness m and implied volatility σ(m). We

will notice that when m increases from zero to one, the σ(m) value decreases. when the

value of m is increasing away from one, the σ(m) value raises again. It may not always

be the case for the minimum of σ to be around m = 1, but the shape of a smile face is

similar for all assets and all dates. This observation is widely referred to as the volatility

smile. We generate a synthetic implied volatility surface and demonstrate its volatility smile

in Figure 2.4a. If we consider a call option, the right section of a volatility smile where

m < 1, we consider option contracts are ’in-the-money’ contracts because the option contract

has positive intrinsic value [62]. The opposite contracts, where m < 1, are ’out-of-the-

money’. Suppose the ’at-the-money’ contracts have higher implied volatility than the ’out-of-

the-money’ contracts. We consider that the implied volatility has a skewness, which means it

is not symmetrical. The volatility smile and skewness are the most important characteristics

of implied volatility surfaces. Figure 2.4b shows a sample of generated synthetic volatility

surface.

2.3 Deep Learning Models

Deep Neural networks have been a popular topic across many academic areas and indus-

tries. In Section 1.1, we have mentioned several recent advanced applications of neural

networks, and they utilised different neural network model structures to fit their purposes

2.3. DEEP LEARNING MODELS 35

Figure 2.5: An Artificial Neuron

of various kinds. In this section, we will first explain the low-level building block of neural

networks — a neuron, and introduce the fully connected neural network as the first network

structure. Then we will continue to other high-level arrangements of neurons, which are fitted

for different purposes, such as convolutional neural network, recurrent neural network and

auto-encoder. After that, we try to explain why nested computing units (a neuron network)

can perform various tasks through the universal approximation theory. Finally, we introduce

an important neural network application for trading and hedging, which is the Deep Hedging

model.

2.3.1 Fully Connected Layers

A neural network contains many single computing units called artificial neurons or neurons.

It was designed to emulate a human neuron in many ways [63], and for a single neuron, it

only performs simple non-linear computation defined by its activation function. We show a

simple illustration in Figure 2.5.

We can see from the figure that a neuron takes some input values and outputs a single

value. The mathematical formulation is:

y = f(
k∑

i=1

wi ∗ xi + b) (2.19)

36 CHAPTER 2. LITERATURE REVIEW

Figure 2.6: Activation Functions

In the above equation, k represents the number of input values to a single neuron, and

wi is the weight associated with the i-th input. We can see that input values are linearly

combined and then given to the activation function f . The b is a bias term added to the linear

combination.

The activation function does not need to be very complicated. But it has to satisfy two

requirements [64]. First, it has to be a non-linear function. This is obvious, as nested lin-

ear functions are still linear functions, which could not perform non-linear transformations.

2.3. DEEP LEARNING MODELS 37

Second, the action function should be differentiable for any input value because we use

backpropagation [65] methods to update the parameters (weights) in the neural network,

and we need to calculate the derivative of the activation function. The most commonly used

activation function nowadays is the sigmoid function, the hyperbolic tangent (tanh) function,

the rectified linear unit (ReLu) function and the Leaky Relu function. They are shown in

Figure 2.6.

From our experiments on various projects with neural networks, we found the selection of

activation function is not the most important for a neural network model. The only consider-

ation of the activation function is the range of output. For some tasks of financial prediction,

the output value is not bounded between 0 and 1, for example, the volatility of stock prices.

Therefore, it would not be appropriate to select the sigmoid function as the final output ac-

tivation, as any value larger than one will never be obtained from the network. Apart from

the range of output, the selection of activation function mainly influences the efficiency of

model training. For computer vision related tasks, it is believed that the ReLu function and

its variants help the neural network converge faster during model training than the sigmoid

function [66].

The number of neurons, and particularly how they are connected to each other, is more

critical when designing the neural network for a specified purpose. For example, we could

combine many neurons in one layer to take the same input values with different weights and

connect many layers to construct a fully connected neuron network (also called a multi-layer

perceptron neural network). A sample is illustrated in Figure 2.7. We define a fully connected

neural network structure by its number of layers and the number of neurons at each layer.

With various sizes of neurons and layers, the neural network model has the flexibility for

modelling datasets with different sizes and features. For example, in 1989, Yann LeCun

38 CHAPTER 2. LITERATURE REVIEW

Figure 2.7: Fully Connected Neuron Network

used a fully connected neural network to recognise handwritten digits of postcodes provided

by the US postal service. The dataset consists of 9298 segmented numerical digits [67]. The

dataset was considered extensive when the paper was published, and this is the first time a

neural network model is applied to a real-life application.

The functionality or ability of a neural network model is effectively controlled by its loss

function during training. The loss function provides a direction for the neural network to be

optimised (trained) to. Because neural network models are too flexible, this ’direction’ defines

the functionality of a neural network model. The selection of the loss function should fit the

data’s nature and the model’s purpose. Different loss functions lead to very different models,

even for the same dataset and model structure. For example, Zhao et al. [68] compared a

couple of other loss functions in several areas of computer vision and concluded that loss

function influences not only model performances but also training efficiencies. Deep Hedging

is defined as a particular loss function to evaluate the value-at-risk (VaR) of option contracts.

The VaR is a typical risk measurement widely used by financial institutions and regulations

2.3. DEEP LEARNING MODELS 39

[17]. For our research subproject of implied volatility surfaces to be discussed in Chapter

5, we also try different formations of loss functions to enforce various characteristics on the

generated synthetic surfaces. The most common loss function used in neural networks is

mean square error (MSE) and mean absolute error (MAE). These two functions compare the

neural network output with the expected output (truth) and calculate their differences. The

formulae are:

LMAE =

∫ N

i=0
|yi − ŷi| (2.20)

LMSE =

∫ N

i=0
(yi − ŷi)

2 (2.21)

In the above equations, we assume there are N data points in the dataset, and LMSE is

more sensitive to the difference between the model output and the truth. When the difference

yi−ŷi is a value that is less than one (e.g. daily stock return), then the square function makes

the loss value smaller, where sometimes it is difficult for a neural network to decide how to

adjust its weights. In this case, LMAE is a better candidate.

After defining the loss function, the weight and bias terms in the network should be op-

timised to generate the minimum loss value with the training data and validation data if

validation data exists. The progress is called model training or model optimisation. This is a

two-step process. The first step is calculating the derivative of the model output’s loss value

with respect to the model parameters (weights and bias). This is called backpropagation,

and it implements the chain rule of calculus to calculate derivatives [69]. The second step

is to modify the parameters in the neural network according to the calculated derivatives to

reduce loss value. This iterative process runs until the local minimum is found or the re-

40 CHAPTER 2. LITERATURE REVIEW

quired value of the loss is reached. This is usually referred to as gradient descent. Most of

the time, we use stochastic gradient descent (SGD) to optimise the parameters of a neural

network model, and it uses estimated gradients instead of actual gradients. The estimated

gradients are calculated from a random batch of input data, beause calculating the gradients

from the whole input dataset could cost lots of time and computer memory. There are many

SGD methods available in the popular python package of Pytorch and Tensorflow, such as

Adam and resilient backpropagation (Rprop) [70][71]. Both Adam and Rprop are adaptive

stochastic gradient descent methods, which means their learning rate is variable during the

optimization process, and this will be discussed in the next paragraph.

The selection of an optimiser would not determine what a neural network model is cap-

able of. Still, it determines whether or not the model finds the best parameters to exert its

abilities. Sometimes, for a particular combination of dataset and model, several optimisers

could reduce the training loss, but the real issue is that one could achieve a training loss

that is small enough to enable the trained model to perform its designed functionality. We

could easily observe the model being trained (i.e. training loss reducing), but not particu-

larly useful (i.e. training loss small enough). There is another essential hyperparameter to

consider, called the learning rate. It controls how much to change the model parameters in

response to the derivative of loss during model training. It can also be considered the ’step

size’ when searching for an optimal point on the surface of all possible parameter values.

If the ’step size’ is too large, the searching process may miss the optimal point easily and

never find a local minimum of training loss. If the ’step size’ is too small, the algorithm may

stick to a local minimum, which is not sufficient for the model to be useful. Therefore, the

selection of the learning rate is more important than the choice of the optimiser. In practice,

some people would like to reduce the learning rate during model training to guide the model

2.3. DEEP LEARNING MODELS 41

to the lowest possible training loss value. The Adam and Rprop optimisers mentioned above

are designed to adaptively change the learning rate during model training in order to find the

best parameter space. The Adam method uses the second-order derivative to normalise the

learning rate when updating parameters. Rprop keeps the moving average of the squared

gradients and divides the learning rate by the square root of the moving average [72] [73].

2.3.2 Convolution Layers

In the previous section, we introduced the fully connected neural network, which is the most

classic structure for arranging the computational graph of neurons. This section introduces

convolutional neural network structure, typically favoured for computer vision models.

In mathematics, convolution operation measures the amount of overlap for one function

g as it shifts over another function f . The measurement usually takes the sum or integrates

[74]. For instance, the mathematical expression of convolution over the range [0, t] is:

[f ∗ g](t) =
∫ t

0
f(τ)g(t− τ)dτ (2.22)

Where f is the input function and g is the kernel function. Before the neural networks

came out to the public, convolution was widely adapted in signal decomposition [75], radio

communications [76] and many other areas.

When we take the concept of convolution into a neural network, the input function be-

comes the input matrix to be processed by the neural network, and the kernel function be-

comes a kernel matrix formed from a neural network layer. For example, when processing

an image with 3*3 pixels, if the kernel size is 2*2 and shifts 1 unit to the right every time, the

output would be a 2*2 matrix. This is illustrated in Figure 2.8

In Figure 2.8, the output is a 4*4 matrix where each element is computed as a sum of

42 CHAPTER 2. LITERATURE REVIEW

Figure 2.8: Convolution on an image matrix

the products of every pair of values between the input matrix and the kernel matrix. The

mathematical expression is:

y(i, j) =
∑
m

∑
n

x(i+m, j + n)κ(m,n) (2.23)

In the above formula, y is the output matrix for this convolution operation (also called the

feature map), x is the input matrix, and κ is the kernel matrix. The range of m and n depends

on the size of the kernel, and the kernel size is usually smaller than the size of the input.

We could look at convolution operation from another perspective. If we flatten all the input

and kernel neurons, we treat them as long vectors. For example, a 3*3 matrix would become

a vector of 9 numbers. We could compare one convolution layer with one fully connected

layer, shown in Figure 2.9. We could observe two differences. First, there are fewer connec-

tions between the input and output neurons than fully connected ones. This indicates image

processing. A convolution layer could detect small areas in an input image matrix (instead of

processing the whole image together) and usually identify meaningful and visible patterns.

This is referred to as sparse connectivity. It also vastly reduces the memory requirement for

the model because of fewer parameters, which increases statistical efficiency during model

2.3. DEEP LEARNING MODELS 43

Figure 2.9: Convolution operation in flattening view

training. The second difference is called parameter sharing. In a fully connected setting, one

weight value is associated with one single input neuron and used only once. For a convolu-

tion layer, the connection between input and output neurons in Figure 2.9 is the convolution

kernel, which is shared between different input neurons as it slides over the input matrix. So

that repeated patterns in the input matrix could be captured, which is more suitable for image

processing problems.

The rise and success of modern deep learning are arguably due to the use of Convo-

lutional Neural Networks (CNNs) for computer vision tasks. If a neural network model with

most of its layers are convolution layers, we call it a CNN. As discussed above, convolution

layers are used as the feature extraction elements in an end-to-end learning system. The

epoch-making work is the AlexNet model published in 2012 [77]. The model consisted of

five convolution layers and three fully connected layers to classify images into 1000 different

classes. Their work utilised a huge benchmark dataset of ImageNet, which contains over

1.2 million labelled high-resolution images. It also inspired many following works to use GPU

44 CHAPTER 2. LITERATURE REVIEW

(Graphics Processing Unit) to accelerate the training of neural network models, which is now

standard practice. After that, CNN-based models have successfully pushed the boundaries

in many computer vision applications, such as object detection [78], image and video super-

resolution [79], and anomaly detection in videos [80]. In recent years, CNN-based neural

network models have also improved many other scientific research fields, which depended

on the success of image classification models. For example, skin cancer diagnosis [81], pig

face identification for precise breeding [82], and chemical process fault diagnosis [83].

There have been many studies adopting CNN for financial time series analysis. In the

stock market, Ghoshal et al. analysed more than 20 famous standard chartist pictograms in

the stock market using statistical analysis and the CNN model, where the chartist pictograms

are visual patterns in the stock price candlestick graphs, and many people believe these pat-

terns would indicate typical future behaviour (increase or decrease) of stock prices. Their

work concluded that there is little evidence of the prediction power of standard chartist pic-

tograms [84]. Sezer et al. took a classical CNN model from the computer vision domain and

applied it to classify daily price positions of Dow 30 stocks and 9 Exchange Traded Funds

(ETFs). Their method encodes financial time series information into image-like matrices by

calculating 15 different technical indicators at various window sizes [5]. In this way, critical

features in the historical prices could stand out from many noisy signals. Temporal relation-

ships are also preserved as calculations are performed at various window sizes. Sood et al.

proposed a novel method to visually tranfer market charts into matrices of price distributions,

and use convolutional neural networks to scan them and perform prediction of fututre price

charts [85]. There are also other studies focused on prediction of market price movement

[86][87][88][89], and making direct trading decisions in the stock market [90][91][92].

In the foreign exchange market. Ni et al. proposed a combination of convolutional neural

2.3. DEEP LEARNING MODELS 45

network and recurrent neural network to forcast daily foreign exchange rate of nine currency

pairs during ten year’s time [93]. Their method is a regression method, which outputs the

daily close prices of the foreign currency, and they only compared with various neural network

configurations but not any other model types. Rassetiadi and Suharjito used stock index

valus and prices of commodities to assist the prediction of foreign exchange rates, they

conluded that the value of FTSE and natural gas is the best combination to improve the

prediction of EURUSD rates [94]. There are other literatures on prediction of FX rate with

convolutional neural networks [95][96], as well as on news sentiment analysis in the FX

market [97][98].

For other areas in the financial industry, convolutional neural networks also have many

application potentials. They can be helpful to improve the efficiency and accuracy of fraud

detection [99][100][101], improve the management of counterparty risk [102], and optimise

portfolio allocation [103][104].

There is a particular structure of a convolutional neural network called the inception

model. It was first introduced by Szegedy et al. in 2015 [105]. It has shown outstanding effi-

ciency in improving model performance with relatively low computational costs. In a standard

convolution structure, most convolution kernels, except those at the first layer, are applied

to an abstract representation of the input image processed by previous layers. By incorpor-

ating inception modules, convolution kernels with various sizes are simultaneously used on

the same input so that local interactions in different regions and scales can be captured and

stacked together. Regarding financial time series analysis, the concept of inception is similar

to taking simple moving averages at different window sizes.

46 CHAPTER 2. LITERATURE REVIEW

Figure 2.10: A Simple Recurrent Layer

2.3.3 Recurrent Layers

Recurrent neuron is another category to define how neuron are arranged in the network.

Many people prefer to use the terms ’Convolution Neural Network’ and ’Recurrent Neuron

Network’. However, we think they are not really appropriate names, neuron networks are

rarely composed with only convolution or recurrent layers, they are usually combined with

fully connected layers. So, we just call them convolution layers and recurrent layers (or

neurons).

The concept of designing neuron network layer in a recursive manner was first proposed

by Elman in 1990 [106]. He tried to use a network system to represent information that has

temporal relationship in embedded. In Figure 2.10, we show how a classic recurrent layer is

structured. We could see from the figure, that input information is a time series of X0, X1,

X2 until Xt. Every X value is given to a computing neuron, where it has two outputs. One

output is given to h, which is called context neurons, to save the output for this time stamp.

2.3. DEEP LEARNING MODELS 47

And other output is given to the computing neuron at the next time stamp. In this way, a

simple connection between two consecutive time stamps are established. When processing

information for time t, information related to t − 1 is also considered. Note, the indicator t

is not necessary to represent time, it could represent any type of order. For example, the

sequence of words in a sentence. If we choose to output all values of h, then this layer is

generating a vector as the same length of input (for example sentence translation), or we

could also just output the final value of h (for example sentence sentiment classification),

this is depended on the specific task requirement.

A significant problem with this classic recurrent arrangement of neurons reveals when

the model is trained. During training, similar to fully connected layer and convolutional layer

mentioned above, we compare the model output value with the truth value, and compute the

partial derivatives for updating the weights in the neural network.

∂l3
∂w3

=
∂l3
∂y3

∂y3
∂s3

∂s3
∂w3

(2.24)

Where l3 = f(y3) and f is the loss function. w3 is the model weights associated to the

third computing neuron. We also know that s3 is a combination of x3 and s2, and if we

include every previous time stamp:

∂l3
∂w

=
∂l3
∂y3

∂y3
∂s3

∂s3
∂w3

+
∂l3
∂y3

∂y3
∂s3

∂s3
∂s2

∂s2
∂w2

+
∂l3
∂y3

∂y3
∂s3

∂s3
∂s2

∂s2
∂s1

∂s1
∂w1

(2.25)

Here we only show an example at t = 3, if the recurrent chain become very long, then

the calculation involves a long term of multiplying many partial derivatives. The multiplication

would cause the gradients to be exceptionally large or small, and make it impossible to

update the model weights. This is called the exploding and vanishing gradients problems

48 CHAPTER 2. LITERATURE REVIEW

(EVGP) [107].

There are a couple of solutions to overcome the EVGP problem with classic recurrent

neurons. A popular one is call long short-term memory (LSTM) neuron, proposed by Ho-

chreiter and Schmidhuber in 1997 [108]. LSTM neuron has three gates that control what

information to be taken by current activation (input gate), to pass to the next neuron (output

gate) or to discard from the current state (forget gate). Instead of linearly connecting neuron

at every time stamp, it is filtering out what past activations to connect to the neurons at a

later time stamp. It is similar to break the connections for a fully connected layer, and this

solves the EVGP problem to some extent. A Gated Recurrent Unit (GRU) is a new variant

of LSTM, which fundamentally combines the forget and input gate into a single update gate

[109], which is more suitable when the input sequence is short. Chung et al. reported that

LSTM and GRU surpass traditional recurrent units with faster convergence and better final

performance [110].

Recurrent neural network structure, especially LSTM and GRU, are widely applied in

modern deep learning models for natural language processing tasks. Zhou et al. proposed

a neural network model, which combines convolution layer and LSTM layer for sentence

sentiment classification and question classification task [111]. There are also LSTM based

neural network model for named entity recognition in text[112], as well as automatic lan-

guage translation machine [109]. For applications in the financial market, LSTM is usually

combined with some pre-processing steps to perform its tasks. For example, Zhang et al.

used LSTM layers with empirical mode decomposition and principal component analysis as

pre-processing steps to forecast closing price of stock index in the next trading day [113].

Zhang et al. implemented a LSTM layer after inception modules for classifying stock prices

from limit order book data and stated that LSTM could reduce overfitting because the number

2.3. DEEP LEARNING MODELS 49

Figure 2.11: An Auto-encoder Neural Network

of parameters is largely reduced as opposed to a fully connected layer [89].

2.3.4 Auto-Encoder

We have introduced three ways (fully connected, convolution and recurrent) in which artificial

neurons could be arranged at a layer level. These different types of layers could be mixed

into a neural network to perform specific tasks.

If we look at a neural network at a higher level, what we have discussed so far is that a

network takes some input information (matrix or vector) and outputs a label (classification)

or a numerical value (regression). In this section, we will discuss a particular high-level

structure of the network called the auto-encoder (or encoder-decoder) model. Usually, auto-

encoder is only referred to the high-level arrangement of layers in a model, meaning each

layer could be fully connected, convolution or recurrent.

The model structure of the auto-encoder model is shown in Figure 2.11. As we can see,

it is combined with two separate neural networks called the encoder and decoder. Usually,

these two networks have the same structure and are just reflections of each other, which

50 CHAPTER 2. LITERATURE REVIEW

means the encoder transfers a high-dimensional input into a lower dimension. The decoder

transfers the low-dimension representation back to the original high dimension. The input

X and output X ′ are identical matrixes or vectors for an auto-encoder model, meaning the

auto-encoder effectively approximates the identity function f(X) = X. When the difference

between X and X ′ is small enough, the latent representation Z, the output of the encoder

network (input to decoder network), is considered to have successfully stored the information

about the input X in this latent space. Usually, the dimensionality of Z is much smaller than

X (i.e., dimensionality reduction).

The dimensionality reduction functionality of the auto-encoder model has a good deal of

practical usefulness, particularly in image and language processing. Zhang compared dif-

ferent auto-encoder neural networks with fully connected layers and convolutional layers for

performing image compression and image de-nosing tasks and concluded that convolution

layers are better candidates [114]. Chen et al. used a modified auto-encoder model to learn

specific features of a text document with each hidden neuron and perform downstream tasks

of documentation classification [115]. Liou et al. used an auto-encoder model with recurrent

layers to encode polysemous words into a latent sentiment space, where the latent vectors

represent different meanings of a word [116].

Variational Auto-Encoder (VAE) models are a popular extension of the autoencoder frame-

work. It was first proposed by Kingma and Welling in 2013 [117] and later expanded in finer

details [118]. Figure 2.12 shows a variational auto-encoder model structure.

Instead of producing latent encodings Z deterministically like the classic auto-encoder,

the VAE randomly samples them from a normal distribution parameterised by the encoder

neural network. This unique arrangement has one particular advantage. Because encoder

and decoder networks are not directly linked, when the encoder takes the same input batch

2.3. DEEP LEARNING MODELS 51

Figure 2.12: A Variational Auto-encoder Neural Network

in training, the changes in Z are not only due to the updated parameters in the encoder

but also the randomness caused by the sampling process. This forces the decoder network

to learn a distribution of Z values instead of deterministic values, which results in a more

powerful decoder for synthetic data generation. This also explains why a VAE model takes

longer training time than a classic AE model on the same dataset, even with identical training

parameters.

Bergeron et al. implemented variational auto-encoder models on the implied volatility

surfaces from the foreign exchange market [15]. They encoded implied volatility surfaces into

various numbers of latent dimensions (from 2 to 4) but did not clarify how many dimensions

are optimal. This is because their method could not separate the features of a surface

into each latent dimension so that every time a new dimension is added, the model gains

a certain degree of accuracy. However, whether that dimension is encoding a meaningful

feature or just market noise still needs to be answered. In addition to that, the encoding

vectors obtained from their model are not helpful for a stock-specific generation due to the

lack of interpretability.

52 CHAPTER 2. LITERATURE REVIEW

2.3.5 Universal Approximation Theory

In previous sections, we introduced three different formulations for a single layer in a neural

network. We also discussed some applications with the classic input-output structure and the

typical auto-encoder neural network where input and output are identical. In this section, we

will briefly explain why neural networks can handle many challenges across various fields.

With a more profound understanding of the mechanism behind neural networks, we could

better utilise the models to solve a wide range of problems or improve the efficiencies of

existing solutions.

As mentioned in Section 2.3.1, the activation function of a single computing neuron has

to perform some non-linear transformation from the input value to the output value. If we

only use linear activation functions when connecting many neurons to construct the neuron

network, the network would be only able to model linear relationships because the linear

combination of linear functions is still a linear function, which is not practically useful for

many problems in real life.

Many problems we are interested in can be considered to find a non-linear relationship

between two entities. For example, an image classification problem is deemed to look for

the relationship between an image matrix and its classification label vector. Stock price

prediction problems can be seen as finding the relationship between historical stock prices

and future price values or price movement directions. The language translation problem is

to find the relationship between two sentences in different languages.

The universal approximation theorem states that a feedforward neural network with

at least one hidden layer (with non-linear activation function) can appropriate any non-linear

function from one finite-dimensional space to another with any desired non-zero amount of

2.3. DEEP LEARNING MODELS 53

error, as long as the network has enough hidden neuron [119]. Please note the theorem

confirms the ability of a neural network to represent the non-linear relationship but does

not guarantee the successfulness of learning the optimal parameters (weights) in the neural

network. The neural network learning process may fail due to many reasons.

One obvious scenario is that the relationship, which needed to be identified, does not

exist or does not dominate the training data. For example, when we use a neural network

to predict asset prices in the financial market, it is usually best to train the model using data

from recent history and predict the near future. However, suppose the time lag between the

training and testing dataset is significant. In that case, the model performances on the test

dataset are usually bad, even though it fits well for the training dataset. The explanation is

that, in the financial market, the underlying market environment evolves as time passes, and

the relationship between the input features (e.g. some typical technical indicators) and the

output signals (price movements) learnt from the past market environment is no longer valid

in the future market environment. In many machine learning textbooks, this is also called

’óverfitting’, which is the concept of a model that focuses too much on the relationship that

does not exist in the testing dataset.

Another possible failure is caused by inappropriate model structure or training paramet-

ers. In previous sections, we introduced three neuron structure methods (fully connected,

convolution and recurrent). In the early years of developing neural networks for image clas-

sification problems, many models were based on fully connected neurons only, and they

could achieve some degree of satisfaction. However, after convolutional neural networks

were proposed, people found they could achieve much higher accuracy and cost much less

training efforts. Moreover, the convolution operation is naturally more suitable for the image

matrix because it focuses on small windows on the image and shares the learnt parameters

54 CHAPTER 2. LITERATURE REVIEW

across the matrix. Similarly, recurrent neural networks, especially LSTM neural networks,

are more suitable for information with temporal relationships, such as sentences and time

series. In theory, we could use fully connected layers to process image and time series in-

put, but it is not efficient, and more importantly, it is usually challenging to find the optimal

hyperparameters for training the network successfully.

Because of the universal approximation ability, one superiority of neural networks over

other machine learning solutions is the model learned for solving one problem can be ap-

plied to a different but related problem, also known as transfer learning. This is particularly

beneficial when sufficient well-annotated data cannot be acquired easily. It is conventionally

assumed that test and train datasets are independent and identically distributed. However,

from the transfer learning aspect, this condition is no longer required [120]. Network-based

transfer learning reuses for a task the neural network model (including its model structure

and learned parameters) trained for another task. We know that a neural network model

trained on static images could be transferred for recognising actions and objects from video

clips [121]. Features from different languages could also be shared in the hidden layers of

a neural network structure, and a multilingual transfer model surpasses monolingual models

with a clear margin [122]. Sirignano and Cont trained universal neural network models with

over 1,000 US stock and uncovered that a universal price formation mechanism exists in

stock limit order book [123]. Their universal model outperforms stock-specific models for the

out-of-sample test and even for stocks, not in the training sample. The existence of universal

features, which improve the prediction power of neural networks, has also been observed in

the context of cryptocurrency markets [124].

In summary, the universal approximation theorem tells us that neural network models are

universal approximators of non-linear relationships. However, we need to optimise a neural

2.3. DEEP LEARNING MODELS 55

network model to learn the relationship from our training dataset and apply it to the testing

dataset. The challenge is to find the optimal training hyperparameters and the most appro-

priate model structure for the specific task. Neural network models are data-driven solutions,

meaning data quality is the key to success. We must ensure the non-linear relationship is

consistent in the training and testing datasets. This is usually guaranteed for computer vision

tasks rather than financial time series problems. The universal approximation ability brings

the advantage of transfer learning for the neural network model, which could be helpful if

training data in the target domain is insufficient.

2.3.6 Reinforcement Learning

Reinforcement learning (RL) is about an agent interacting with the environment, learning

an optimal policy, by trial and error, for sequential decision-making problems [125]. The

elements of an RL system are the agent and the agent’s current situation (state), the envir-

onment in which the agent interacts, the reward that the agent receives from the environment

and the policy to map the agent’s action to states. Their relationship could be summarized

in Figure 2.13.

In Figure 2.13, we have an agent that takes action At at time t and receives reward Rt

from the environment. The agent’s state changes to St due to the action and the reward

from the environment. The agent also has a set of policies to map states S to actions A.

Therefore, at time t + 1, the agent will take a new action At+1 based on St and its policies,

and the learning process will repeat itself until the termination state has been reached. The

goal of an RF agent is to find the optimal policies that maximize the cumulative reward [125].

In recent years, using deep learning or deep neural networks to solve reinforcement

learning problems has prevailed. Neural networks can process large amounts of high-

56 CHAPTER 2. LITERATURE REVIEW

Figure 2.13: A Reinforcement Learning System

dimensional data, optimised from end to end, with little domain knowledge. Deep neural

networks model the relationship between the actions and rewards in the reinforcement learn-

ing pipeline. The deep Q-network is an example where a deep neural network agent with the

input of only pixels and game scores can surpass the performance of all previous algorithms

across a set of 49 computer games. More importantly, the network is trained with the same

network architecture and hyperparameters for all the games [126].

There are also many applications of reinforcement learning for financial problems. It

could be used to learn a portfolio allocation agent which makes investment decisions and

try to maximise the risk-adjusted return of an investment portfolio [127]. There are also

reinforcement learning solutions for trading S&P500 futures contracts, and the DDQN model

can adjust its policy to different market circumstances and achieve higher trading profits

than the benchmark long-and-hold strategy [128]. The deep hedging pipeline, which will be

discussed in the next section, is also a reinforcement learning solution for hedging the stock

option contracts, and it optimises a neural network model for generating hedging strategies

(policies) when the underlying stock price (environment) changes from one trading day to

2.3. DEEP LEARNING MODELS 57

the next [17].

2.3.7 Deep Hedging

From previous sections, we know that the strength of a neural network is to approximate

non-linear relationships. For example, one well-studied relationship in the financial markets

is the prices of the underlying assets and their option price. The mathematical-based Black-

Scholes-Merton method has been introduced in Section 2.2.5. We could also use neural

networks to capture this relationship.

The first article discussed using neural network models for pricing, and hedging financial

derivatives could be dated back to 1994. Hutchinson et al. simulated many artificial option

prices and then trained neural network models to replicate the option prices. It effectively

tests the network’s ability to approximate the non-linear Black-Scholes-Merton formula [129].

They found that the neural network’s performance is remarkably good, and they argued that

neural networks could be valuable substitutes when conventional parametric methods fail.

However, they only experimented with a single asset S&P 500 futures options from 1987 to

1991. They also did not consider market trading costs when simulating the option prices.

Therefore their work is far from real-life applications.

Deep Hedging is the recent state-of-art framework utilising a neural network for trading

financial derivatives [17]. Let us recall Equation 2.7, while we want to replicate the option

contract using a simple portfolio with only accumulated cash ert and the underlying stock St.

Pt = xte
rt + ytSt (2.26)

yt =
∂Ct

∂St
(2.27)

58 CHAPTER 2. LITERATURE REVIEW

The default version of deep hedging uses a neural network model to find the value of yt

when we observe St in the market. From the classic Black-Scholes-Merton, yt is the partial

derivative calculated from the equation above, but we know it only works under idealised

conditions of (i) underlying stock prices follow geometric Brownian motion movements, (ii)

trading costs and other trading constraints do not exist, and (iii) continuous trading and port-

folio rebalancing is possible. When these perfect conditions do not apply, the replication

portfolio Pt will incur a loss at the termination of the option contract, which is the basis of the

price for engaging the option contract.

The neural network structure for Deep Hedging is not very complex. It is not very "deep"

compared with other purposed networks for financial time series classification or prediction.

There are only two fully connected layers, with fifteen neurons each. There is also an input

layer, which takes the value of St and an output layer, which output the value of yt according

to the equations above.

One fundamental advantage of neural networks is the capability to utilise various loss

functions for different purposes. For example, regarding financial derivatives, loss functions

could represent someone’s unique risk appetite or utility function. In other words, how they

evaluate these cashflows according to their specific situations. Therefore, the loss function

implemented by Deep Hedging differs from those adopted by image or language processing

networks, such as the MAE or MSE functions we introduced in Section 2.3.1. The authors

of Deep Hedging proposed two different types of functions. The first one is entropy risk

measures:

ρ(X) =
1

λ
log E(e−λX) (2.28)

2.3. DEEP LEARNING MODELS 59

λ is a constant number larger than zero, considered some risk appetite. As λ gets larger,

an investor is willing to take more risks. The user of Deep Hedging could set their value of λ,

which reflects specific risk tolerance, shareholders’ requirements and regulatory constraints.

Another loss function is very commonly seen in regulation documents, which is expected

shortfall:

ρ(X) =
1

1− α

∫ 1−α

0
V aRγ(X)dγ (2.29)

The logic behind this is that one could first decide a probability associated with standard

scenarios, say 90%. Then calculate the expected losses if the remaining 10% extreme

events happened, and consider this value a baseline for risk preferences. For example, if the

value of α is set to 99%, then the calculation is based on more extreme events than α is 90%

so that expected losses are larger. In their experiments, they simulated 106 different possible

trajectories of the underlying assets, using the model to hedge each of them and calculate

the mean of the worst 1% termination losses. This could be the basis for determining the

option premium. In the formula, V aR is the Value at Risk.

By linking the loss functions with the risk preferences, Deep Hedging is more suitable

for financial market participants. The regulation requirements are also easier to be met.

Deep Hedging started a new topic to find the non-linear relationship between the prices

of the underlying assets and their derivative instruments with neural networks. This way,

some unrealistic assumptions from the Black-Scholes-Merton method could be dropped. In

addition, including risk preferences in the neural network training makes the algorithm more

applicable and explainable.

However, many aspects could be improved with the default version of Deep Hedging.

60 CHAPTER 2. LITERATURE REVIEW

Instead of trading daily, there could be a mechanism to automatically make trading decisions

when the underlying price reveals specific patterns. This is what we did in our second re-

search project, which will be discussed in Chapter 4

Deep Hedging is the most comprehensive study on developing hedging strategies from

neural network models. There are also a couple of similar methods. Ruf and Wang also

used a neural network to generate hedging strategies for stock options, but their approach

does not use the price of the underlying asset directly as the network input, and they use

hedging error as the loss function instead of a risk measure [130]. There is another similar

model where the objective of the neural network is to optimise profit and loss of hedging at

the end of the contract, and the rebalancing interval is fixed at several days or weeks [131].

2.4 Other Machine Learning Methods

This thesis is focused on neural network models and their applications on various topics

on trading and hedging. First, however, we must compare our novel models with conven-

tional methods to demonstrate superiority. Therefore, we introduce several classical ma-

chine learning methods in this section. Some of these methods are compared with our

proposed algorithm, and some work as supplement models to improve our neural network

based pipeline.

Logistic Regression (LR) is the most straightforward classification algorithm in machine

learning. It uses a logistic function to map the input features into probability distributions

corresponding to each classification category. The results are pretty fast to obtain with the

maximum likelihood method, but LR assumes that the conditional distribution of a data label

given the input features is a Bernoulli distribution [69].

2.4. OTHER MACHINE LEARNING METHODS 61

K-Nearest neighbour (KNN) is a popular and intuitive classification algorithm. During the

testing phase, it calculates the Euclidean distances between a test sample and the whole

training dataset provided. Then, the predicted label of the test data is decided from a certain

amount of points on the feature space that is closest to it [132]. The idea is straightfor-

ward, but an obvious drawback is the computational cost when the feature space has many

dimensions. Its success is highly dependent on the selection of features [133].

Random Forest (RF) is an ensemble method used for classification or regression. The

classification output is the class label produced by most ensemble decision trees. A decision

tree is a non-parametric method that recursively partitions the feature space of the dataset.

Its objective is to find a set of decision rules which maximise some particular scoring criteria

[134]. The flexibility to choose an arbitrary tree size makes it a good candidate for data

mining and feature engineering but also raises the problem of overfitting.

A Support Vector Classifier (SVC) is a natural choice for a classification problem. This

method is similar to LR but outputs class density instead of probabilities [69]. It separates

the data points in the feature space with a hyperplane. Support vectors are those data

points closest to the hyperplane and influence its position. Unfortunately, SVC can hardly

overcome the high computational cost for large datasets. Nevertheless, it was the starting

point for modern deep learning when Hinton used a neural network to outperform SVC on

the MNIST dataset [135].

The Linear Discriminant Analysis (LDA) method is commonly used for dimensionality

reduction. This method projects data points onto a line that maximises the ratio of between-

class variance to within-class variance and thereby guarantees maximal separability. The

drawback is that LDA assumes that different classes are linearly separable in the projected

space, which is untrue for most financial-related problems.

Chapter 3

Technical Analysis Neural Network

For this study, we propose a novel pipeline to predict price movements on noisy high-

frequency data from the foreign exchange (FX) market. Our solution is inspired by recent

advances in the adoption of AI to forecast stock price movements, which are (i) using tech-

nical indicators to encode financial time series into image-like matrices, (ii) forecasting future

price changes by classifying these matrices using a neural network model, (iii) leveraging

across-asset features to achieve improved prediction accuracy. We combine these three ap-

proaches and explore their effects on the high-frequency FX market, wherein the unevenly

sampled tick data is noisy, and the data depth is limited to only one level. Ultimately, we

wonder if these approaches continue to work in a quote-driven market.

We want to demonstrate that a neural network model is capable of handling the high-

frequency tick data from the FX market. Convolution layers are utilised to extract features

across five technical indicators, whereas inception modules and Gated Recurrent Units

(GRU) capture useful spatial structures. We assess the model by testing its out-of-sample

classifications on future price movements. We show how our model outperforms several

62

3.1. INTRODUCTION 63

well-known machine learning methods. We also study how the user’s expectation towards

higher returns would change the balance of the classification categories, and therefore influ-

ence the performances of the model. Finally, we found that training a universal model with

all FX pairs could further improve the classification results.

3.1 Introduction

The foreign exchange (FX) market is one of the most influential markets for the financial

industry, due to its around-the-clock trading, massive traded volume, and diversity of parti-

cipants. Those typical characteristics have stimulated the interests of many investors, poli-

cymakers, and academics [20]. However, FX rate movements are widely considered difficult

to predict [28] [136]. In a much-cited paper, Meese et al. concluded that structural models

could not surpass a random walk model for out-of-sample prediction on FX data [137]. The

phrase ’exchange rate disconnect’ is used to describe the lack of connection exchange rate

and other macroeconomic variable, and many people using various business and economic

model to formulate it [138][139][140].

Conventionally, most datasets and studies published on the FX market are based on

low-frequency, regularly spaced data points. There are emerging concerns from both aca-

demia and industry on analysing the market at a different scale. “High-frequency data" or

“Tick data" for the FX market are collected at much smaller and irregular intervals and ac-

cording to Dacorogna et al., it should be the primary object of research for those who are

interested in understanding financial markets [141]. Many people have been using high-

frequency data to performance various analysis in the foreign exchange market. Glattfelder

et al. discovered 12 empirical scaling laws in FX market from high-frequency data, and these

64 CHAPTER 3. TECHNICAL ANALYSIS NEURAL NETWORK

are important contribution to the theoretical explanations of the market mechanisms [142].

Li et al. used high-frequency data to analysis relative volatility in the FX market [143]. High-

frequency trading is considered an evolution of trading methodology. High-frequency traders

implement sophisticated technical analysis methods combined with powerful computational

resources to seize the fleeting opportunities in the market [144]. Because of the riasing of

high-frequency trading, people have also found that liquidty of the FX spot market has been

influenced by high-frequency trading behaviour [145].

In recent years, many computational intelligent techniques originated from various re-

search fields. Several neural network models achieved outstanding performances and star-

ted new eras for computer vision and natural language processing [105] [146]. In the financial

area, there are also some encouraging achievements in the context of stock prices analysis.

Our work is motivated by three complementary approaches in the literature. Sezer and

Ozbayoglu converted technical indicators into image-like matrices and used a CNN for clas-

sifying stock prices [5]. This work shows an interesting take in leveraging the success of

AI in different application areas and importing them to finance. Sirignano and Cont proved

that there exist universal features among stock prices, and that models trained with univer-

sal price information could beat asset-specific ones [123]. This might be due to the market

microstructure of the limit order books collecting the bids and asks for stocks and an underly-

ing common dynamics in the price formation across assets. Zhang et al. created DeepLOB,

which is the state-of-art architecture, based on inception networks, for predicting short-term

stock price movements on the FI-2010 benchmark dataset of stock limit order books [89]. An

important observation here is that DeepLOB relies on quite expensive and rarely available

limit order book data of depth ten (i.e., ten best bids and asks).

For this study, we investigate whether the combination of the approaches in [5], [123]

3.1. INTRODUCTION 65

and [89] would warrant similar performances in FX markets. The main motivation behind

our study is twofold. Firstly, as argued above, currencies are an important and fundamental

class of assets that people trade. Secondly, FX markets are not order-driven but quote-

driven, which means that some of the market fundamentals behind the success of previous

research are not present. The question is to what extent having very little and shallow data

will deteriorate the performances of conveniently encoded technical indicators, inception net-

works and universal models. We propose a novel pipeline to study the question above. More

specifically, we convert high-frequency FX information into image-like matrices of technical

indicators, utilising inception models and gated recurrent units (GRU) to classify short-term

FX rate changes into three classes: up, stationary and down. We name our model Technical

Analysis Neural Network (TANN). We show that TANN can sustain reasonable perform-

ances with very limited “level 1" (i.e., bid and ask from the market maker) data. In particular,

we compare our model with a number of popular machine learning classification methods,

including K-Nearest Neighbor (KNN), Linear Discriminant Analysis (LDA), Logistic Regres-

sion (LR), Random Forest (RF) and support vector classifier (SVC). These models are all

implemented in Python with scikit-learn package version 0.24.0 and with default model para-

meter settings [147]. Our model outperforms the best machine learning method we have

experimented, which is LDA, by roughly 5% of classification accuracy. As the input informa-

tion is limited, our TANN runs pretty quickly (including the training phase) – and not for much

longer than those machine learning algorithms – on relatively cheap hardware, available to

the majority of financial institutions. We also confirmed that universal features exist in high-

frequency FX data by training a universal TANN model with ten different currency pairs and

comparing test performances of the universal model with currency-specific models.

The remainder of this chapter is organised as follows. Section 3.2 describes the data

66 CHAPTER 3. TECHNICAL ANALYSIS NEURAL NETWORK

Table 3.1: Minute Data for EURUSD

Time Open High Low Close

00:00 1.14168 1.14187 1.14168 1.14184

00:01 1.14184 1.14184 1.14183 1.14183

00:02 1.14183 1.14202 1.14177 1.14180

00:03 1.14179 1.14179 1.14168 1.14172

00:04 1.14179 1.14179 1.14172 1.14172

Figure 3.1: Labelling Process

used and the important data pre-processing steps for our model. Section 3.3 discusses the

model structure and the training of the model. Section 3.4 discusses the performances of our

models comparing with other machine methods and with different threshold settings. Section

3.5 concludes this chapter with some final observations.

3.1. INTRODUCTION 67

Table 3.2: Statistics of Time Intervals Between Consecutive Tick Points (Seconds)

FX

AUDJPY

EURSEK

EURTRY

EURUSD

GBPCAD

GBPJPY

USDCHF

USDDKK

USDJPY

USDNOK

(a) July 2017

Min Mean Max

0.093 0.500 377.250

0.076 0.267 999.250

0.047 0.514 980.500

0.076 0.267 167.000

0.060 0.500 726.500

0.047 0.250 443.000

0.076 0.280 274.496

0.060 0.267 589.243

0.047 0.250 181.750

0.076 0.484 323.746

(b) July 2018

Min Mean Max

0.160 0.500 285.747

0.186 0.250 1078.750

0.126 0.500 299.000

0.170 0.266 321.497

0.170 0.500 111.000

0.126 0.250 263.500

0.126 0.500 656.750

0.126 0.267 951.247

0.160 0.263 210.250

0.186 0.500 186.750

68 CHAPTER 3. TECHNICAL ANALYSIS NEURAL NETWORK

3.2 Data

We want to re-emphasize that the global FX market is not subject to formal regulations,

where there is no single institution recording all the transactions. There is the interbank

market on the top level of FX transactions. Therefore, there is no comprehensive data source

like limit order books from stock markets. One data vendor may have its own data source,

which differs from another vendor.

Our datasets are from histdata.com. We downloaded ten FX pairs for a period of five con-

secutive years (2014 to 2018). Those historical prices are collected in two different formats,

namely tick data and minute data.

In the minute dataset, prices are presented at a regular interval of one minute. For the

convenience of explanation, we identify price information for one minute as a data point, i.e.,

one row in the data table. For every data point, we have four dimensions for the minute

dataset. They are Bid Open, Bid High, Bid Low, and Bid Close. Table 3.1 shows a subset of

minute data we have for EURUSD on the 3rd of July 2017.

In the tick dataset, each data point consists of two features: bid price and ask price. For

each FX pair, there are roughly 164M ticks in our modelling period (2014 to 2018). Time

intervals between two consecutive points are small and irregular. Table 3.2 summarises

time intervals between consecutive points in tick dataset for two particular months of July

2017 and July 2018. It shows that the mean of time intervals between two tick prices are

less than one second, however sometimes the interval become even larger than a couple of

minutes. The arrival of ticks is very irregular and primarily depend on the trading activities in

the market.

Instead of putting raw tick prices directly into the model, we calculate five technical indic-

3.2. DATA 69

ators at eleven different window sizes, and format them into an image-like matrix, where each

row represents one window size and each column represents a technical indicator. There are

three considerations for this. First, for high-frequency FX data, there are only two dimensions

(bid and ask) for a single data point. There is no information regarding the depth of market,

i.e., what are next best prices people want to buy/sell the asset. The fundamental benefit

we receive from high-frequency data is high density of historical information. Abstracting

historical information at various windows sizes is a simple solution to take advantage of this.

The second reason is that tick data are often very noisy, and calculating technical indicators

is the common way to filter financial time series. Finally, the third consideration is from the

model perspective. In theory, a neural network model could ultimately remove noise and

abstract meaningful features from input data. However, in practice, if we were to simply feed

the network with an exceptionally long vector or a large image, a simple model with a few

layers would struggle to converge and become non-trainable. It is possible to increase the

complexity of the model as well as its training process to make it works with raw data, but we

choose to pre-process the data and keep the model simple.

Differently from image classification or speech tagging, there are no natural labels for

financial time series data. Financial time series are highly stochastic. If price movements

are calculated by simply comparing current price pt and next price pt+1, the resulting labels

will be very noisy. Therefore, we adopt the method from DeepLOB model [89], and denote

m− as mean of previous k prices, and m+ as mean of next k prices, that is,

m−(t) =
1

k

k∑
i=1

pt−i (3.1)

m+(t) =
1

k

k∑
i=1

pt+i (3.2)

70 CHAPTER 3. TECHNICAL ANALYSIS NEURAL NETWORK

where k is the prediction horizon, please note that pt is not included in either the calculations

of m−(t) or m+(t). Our labels are calculated based on bid close prices on minute dataset,

and k takes value of 5, 10 or 15 minutes.

We compare the percentage change lt of past and future average prices to decide move-

ments, and lt is defined as follows

lt =
m+(t)−m−(t)

m−(t)
. (3.3)

Lastly, lt is compared to a pre-defined threshold α for deciding a label for each data point.

If lt > α, we assign it label up (1), and if lt < −α, we label it down (−1). For anything else,

we consider it stationary (label 0). The labelling process is illustrated in Figure 3.1.

Since the price ranges for each FX pair are so different, the thresholds α are defined

ad hoc for each FX pair. The thresholds we used are shown in Table 3.3. For a single FX

pair, the split is close to 33% for each class based on the minute data for the whole period.

From a financial perspective, the value of the threshold α can be interpreted as a proxy

for the investor’s risk preference. For a fixed FX pair, the higher the value of α the larger

(smaller, respectively) the price increase (decrease, respectively) needs to be for the asset

to be considered up (down, respectively). In other words, the higher α the more conservative

the trading signals will be for a more risk-averse investor who is expecting higher returns for

taking risks. We will compare our model’s performances with fixed (as in Table 3.3) and

dynamic thresholds in Section 3.4. The fixed thresholds are obtained by calculating the

distribution of all returns for a particular FX symbol (e.g. AUDJPY) with a specific prediction

horizon (e.g. k = 5) and selecting the 33rd percentile and 66th percentile as α1 and α2

respectively.

3.2. DATA 71

Table 3.3: Values of α for each FX pair (×10−4)

FX
k = 5 k = 10 k = 15

α1 α2 α1 α2 α1 α2

AUDJPY -1.13 1.18 -1.46 1.55 -1.71 1.84

EURSEK -0.38 0.41 -0.55 0.59 -0.68 0.74

EURTRY -1.07 1.11 -1.45 1.50 -1.76 1.80

EURUSD -0.71 0.70 -0.93 0.92 -1.10 1.09

GBPCAD -0.84 0.86 -1.09 1.11 -1.27 1.30

GBPJPY -1.00 1.03 -1.29 1.34 -1.51 1.59

USDCHF -0.69 0.72 -0.91 0.97 -1.09 1.16

USDDKK -0.70 0.71 -0.92 0.93 -1.10 1.10

USDJPY -0.77 0.80 -1.01 1.09 -1.21 1.31

USDNOK -0.92 0.95 -1.21 1.26 -1.45 1.51

72 CHAPTER 3. TECHNICAL ANALYSIS NEURAL NETWORK

Figure 3.2: Overall Structure of TANN

3.2. DATA 73

Table 3.4: Matrix for Bid Channel

AUDJPY, at 08:01 on 10th August 2017

History RSI WMA SMA CMO ROC

60 42.105 86.667 86.666 -15.790 -0.024

80 44.865 86.657 86.660 -10.270 -0.022

100 42.326 86.626 86.657 -15.349 -0.038

120 40.784 86.647 86.654 -18.431 -0.054

140 41.489 86.641 86.649 -17.021 -0.055

160 40.823 86.635 86.645 -18.354 -0.067

180 39.560 86.631 86.642 -20.879 -0.088

200 42.132 86.627 86.639 -15.736 -0.072

220 41.801 86.624 86.636 -16.397 -0.082

240 42.735 86.621 86.633 -14.530 -0.079

260 43.307 86.619 86.631 -13.386 -0.079

74 CHAPTER 3. TECHNICAL ANALYSIS NEURAL NETWORK

3.3 Model

An overview of our Technical Analysis Neural Network (TANN) can be found in Figure 3.2.

Our architecture consists of three building blocks: a convolution layer, inception modules and

a GRU layer.

The inputs to our model are image-like matrices. Each image has two channels, bid

channel and ask channel, which are matrices derived from bid prices and ask prices of tick

dataset, respectively. These two channels together represent the information needed for

classifying the price movement for a particular minute. Within each row of the matrix, there

are five technical indicators1 calculated from a fixed length of ticks before this minute. There

are eleven rows for one matrix. An example is shown in Table 3.4.

The selection of indicators is inspired by [5]. Sezer et al. used fifteen different tech-

nical indicators for processing stock prices. However, unlike the stock prices, we do not

have volume, high and low price features in the FX dataset. Therefore, five (williams %R,

commodity channel index (CCI), chaikin money flow indicator (CMFI), directional movement

indicator (DMI) and parabolic SAR) out of the fifteen indicators are not applicable. Among

the remaining ten indicators, we rank them by the mathematical complexity of calculating

them. For example, the percentage price oscillator (PPO) and triple exponential moving av-

erage (TEMA) are the most complex because they are derived from the exponential moving

average (EMA). EMA is more complicated than simple moving average (SMA) and weighted

moving average (WMA). We want to reduce the number of indicators by comparing the clas-

sification performances on the July 2017 data with and without the most complex indicator.

1The five technical indicators are: Relative Strength Index (RSI), Weighted Moving Average (WMA), Simple

Moving Average (SMA), Chande Momentum Oscillator (CMO) and Rate of Change (ROC).

3.3. MODEL 75

If the model classification results are not reduced by removing one indicator, we think the

removed indicator is redundant. We ended up with the five indicators mentioned above.

The first layer in the TANN is a classic convolution layer with 32 filters of size 1*5. We set

strides to be 1*5 as well, so that they scan each row of the input matrix. It is equivalent to

taking a weighted average of all the five indicators for a particular length of historical prices.

Then we have two inception modules. Each inception module consists of two classic

convolution layers. First convolution layers are both 1*1 convolution, and are followed by

2*1 and 4*1 convolution. The 1*1 convolution could transform input into low dimensional

representations, according to the Network-in-Network approach [148]. The following lay-

ers are effectively taking convolution operations at the time horizon for capturing temporal

relationships.

The outputs of two inception modules are concatenated and reshaped to form a short

vector of length eleven but with sixty-four dimensions. Usually people incorporate a dense

layer before the output layer for classifying the features abstracted from previous layers.

However, a dense layer assumes all input are independent, which is clearly not true for our

problem. As discussed in Chapter 2, we choose a GRU layer for modelling the temporal

dynamics of the time series input. It has much smaller number of parameters than a dense

layer, which alleviates the problem of overfitting.

The output layer consists of three neurons with softmax activation function to produce

the probability of labelling the input image-like matrices with one of the categories. All other

layers implement with sigmoid activation function.

The design of model structure is inspired by the DeepLOB model [89]. The size of one

input matrix for the DeepLOB is 100 rows with 40 columns, and each row consists of ten

price-volume pairs. Therefore the filter size is selected to be 1*2, which every price figure

76 CHAPTER 3. TECHNICAL ANALYSIS NEURAL NETWORK

is multipied by the same parameter on the filter, and so does the volume figure. For our

problem, every indicator present different characteristic of the market, it is not sensible to

share parameter among them, so the filter size for the convolution layer is selected to be

1*5. The filter size for the inception modules is similar to the DeepLOB, and it is designed to

take small steps at the temporal dimension of the input matrix.

For training of the model, we use the Adaptive Moment Estimation (ADAM) method and

the optimal learning rate is set to 0.005 by grid search [72]. The search is from large values

(i.e. 0.1), and if the training loss could not be reduced because the learning rate is too high,

then the rate is reduced by multiplying 0.1. We found the training loss starts reducing with

learning rate of 0.001. Then we try learning rate of 0.005 and it also works. With rate 0.005,

the training is faster with 0.001. The loss function is categorical cross-entropy loss. We train

with mini batches of size 8. There are literatures to suggest that large batch sizes tend to

lead the training into a deep local minimum of the loss function, whilst small batch sizes

consistently converge to a flat minimum and allow the model to generalise better [149].

Our TANN could be trained on the free Google Colaboratory platform with a single NVIDIA

K80 GPU. The time needed for training 80 epochs of one currency-specific model with prices

of a single trading day, i.e., 1440 images, is approximately one to two minutes. However, as

we are training an extensive dataset with more than 37K neural network models, a single

GPU is not feasible. Therefore, our results are processed from a cluster of 320 virtual CPUs

spread evenly on ten cloud-based virtual machines, which gives us the advantage of training

and testing multiple models in parallel. For the single model, the training time on the CPU

is longer than a GPU, but parallel computing reduces overall running time dramatically. We

also utilise other could-based infrastructures such as network-attached storage (NAS) and

NoSql database for storing and processing our time series dataset and model evaluation

3.4. EXPERIMENTAL RESULTS 77

Figure 3.3: Moving windows training and testing

results.

3.4 Experimental Results

Our models are trained with a sliding window approach. The window size w represents

the number of past days used to train a model for a target date. Then we calculate the

classification accuracy from the prices within the target date. This approach is illustrated in

Figure 3.3.

3.4.1 Baseline Results

We first take w = 1 so that the model is trained with prices from one trading day and tested

on the next. We use the same method to train other machine learning algorithms (KN, LDA,

LR, RF, SVC). Therefore, we end up with roughly 1265 models for each FX pair in the five

years for every algorithm. The average classification accuracy is summarized in Tables 3.5,

3.6 and 3.7.

It is observed that KNN, RF, and SVC methods are only slightly better than random

78 CHAPTER 3. TECHNICAL ANALYSIS NEURAL NETWORK

Table 3.5: Average classification accuracy from 2014-01-01 to 2018-12-31 with k = 15

FX KN LDA LR RF SVC TANN Average

AUDJPY 36.18% 42.77% 50.30% 37.04% 35.72% 47.47% 41.58%

EURSEK 35.98% 40.07% 36.20% 36.83% 35.68% 47.23% 38.67%

EURTRY 35.84% 39.85% 40.74% 36.59% 35.38% 45.70% 39.02%

EURUSD 36.13% 42.45% 42.35% 37.08% 35.50% 47.56% 40.18%

GBPCAD 36.45% 42.47% 36.61% 37.53% 36.30% 47.90% 39.54%

GBPJPY 36.00% 41.83% 42.70% 36.75% 35.25% 46.20% 39.79%

USDCHF 36.57% 42.98% 38.46% 37.55% 36.50% 48.72% 40.13%

USDDKK 36.13% 42.21% 42.69% 37.03% 35.56% 47.11% 40.12%

USDJPY 36.17% 43.13% 43.85% 37.02% 36.09% 47.57% 40.64%

USDNOK 36.20% 41.30% 40.05% 37.02% 35.87% 46.91% 39.56%

Average 36.17% 41.91% 41.40% 37.04% 35.78% 47.24% 39.92%

3.4. EXPERIMENTAL RESULTS 79

Table 3.6: Average classification accuracy from 2014-01-01 to 2018-12-31 with k = 10

FX KN LDA LR RF SVC TANN Average

AUDJPY 36.55% 43.58% 49.76% 37.41% 36.03% 48.06% 41.90%

EURSEK 35.98% 39.94% 36.60% 36.84% 35.76% 47.32% 38.74%

EURTRY 35.68% 39.43% 39.19% 36.37% 35.13% 45.11% 38.49%

EURUSD 36.43% 42.99% 41.81% 37.41% 35.76% 48.01% 40.40%

GBPCAD 36.49% 42.55% 36.40% 37.81% 36.25% 47.83% 39.56%

GBPJPY 36.34% 42.66% 43.28% 37.20% 35.49% 47.06% 40.34%

USDCHF 36.39% 43.01% 39.72% 37.56% 36.36% 48.60% 40.27%

USDDKK 36.26% 42.47% 43.12% 37.19% 35.66% 47.28% 40.33%

USDJPY 36.36% 43.90% 45.10% 37.34% 36.10% 48.27% 41.18%

USDNOK 36.17% 41.53% 38.27% 37.15% 35.80% 47.03% 39.33%

Average 36.27% 42.21% 41.32% 37.23% 35.83% 47.46% 40.05%

80 CHAPTER 3. TECHNICAL ANALYSIS NEURAL NETWORK

Table 3.7: Average classification accuracy from 2014-01-01 to 2018-12-31 with k = 5

FX KN LDA LR RF SVC TANN Average

AUDJPY 35.62% 41.71% 44.72% 36.48% 35.08% 45.82% 39.91%

EURSEK 35.27% 38.47% 37.08% 36.09% 34.91% 45.24% 37.84%

EURTRY 34.73% 37.75% 38.46% 35.41% 34.16% 42.37% 37.15%

EURUSD 35.62% 41.50% 40.73% 36.52% 35.12% 45.75% 39.21%

GBPCAD 35.41% 40.65% 34.44% 36.33% 35.22% 45.16% 37.87%

GBPJPY 35.70% 41.80% 39.51% 36.60% 35.04% 45.37% 39.00%

USDCHF 35.34% 40.98% 40.02% 36.17% 35.10% 45.76% 38.90%

USDDKK 35.39% 40.83% 41.60% 36.17% 34.89% 44.85% 38.96%

USDJPY 35.55% 42.34% 42.42% 36.49% 35.30% 46.03% 39.69%

USDNOK 35.26% 39.93% 36.80% 36.18% 34.98% 44.77% 37.99%

Average 35.39% 40.60% 39.58% 36.24% 34.98% 45.11% 38.65%

3.4. EXPERIMENTAL RESULTS 81

guess (33%), since as mentioned above our thresholds α have been defined to have a

uniform distribution in three classes. LR shows very volatile performances, and it is slightly

better than our TANN model in rare cases. However, we know that LR is just considering

the relationship between input features and output class labels as a simple logistic function,

which is very sensitive to the general trend in the dataset and not robust to the wide range

of the real market conditions we experimented. From Tables 3.5, 3.6 and 3.7, we also found

that LDA is the best conventional machine learning algorithm we have tested, and it could

achieve an accuracy of up to 43%. The performance of our neural network-based TANN

model is roughly 5% higher than the LDA method across all the FX pairs and prediction

horizons, which certainly beats random guessing with a large margin. The TANN method

can be used as a blueprint for further studies in the area, if not for trading signals directly.

From Tables 3.5, 3.6 and 3.7, we also noticed that for very short future period (k = 5),

all models could not achieve classification performances as good as longer periods (k = 10

or k = 15). This is because FX prices are noisier and closer to random-walk processes for

short time periods [150].

3.4.2 Dynamic Thresholds

All the test results discussed in Section 3.4.1 are using the labels (Up, Stationary and Down)

calculated from fixed risk preference thresholds α defined in Table 3.3. These thresholds

are calculated from the five years of data as a whole, which could indicate a long term-risk

preference for a particular FX pair. However, this long-term fixed risk preference may not be

appropriate for every trading day. From the data science perspective, inappropriate threshold

α results in a very imbalanced training and testing dataset. Therefore, we could relax this

constraint and adapt dynamic thresholds for every testing date. The dynamic thresholds are

82 CHAPTER 3. TECHNICAL ANALYSIS NEURAL NETWORK

Table 3.8: Classification accuracy differences between fixed and dynamic threshold settings

with k = 15

FX KN LDA LR RF SVC TANN Average

AUDJPY 0.86% 1.60% -4.41% 0.80% 2.36% 1.91% 0.52%

EURSEK -0.18% -0.31% -0.57% 0.04% 0.04% 0.39% -0.10%

EURTRY -0.01% 0.27% -2.94% 0.19% 1.36% 1.57% 0.07%

EURUSD 0.56% 1.43% -5.16% 0.63% 1.69% 2.20% 0.22%

GBPCAD -0.12% 0.39% -1.02% -0.17% 0.42% 1.11% 0.10%

GBPJPY 0.87% 2.03% 1.86% 0.92% 2.82% 2.18% 1.78%

USDCHF 0.22% 1.32% -1.32% 0.40% 1.31% 1.76% 0.61%

USDDKK 0.47% 1.61% -4.13% 0.55% 1.82% 2.29% 0.43%

USDJPY 1.26% 2.34% 0.93% 1.16% 3.14% 2.68% 1.92%

USDNOK 0.02% 0.70% -0.98% 0.14% 0.70% 1.45% 0.34%

Average 0.39% 1.14% -1.77% 0.47% 1.56% 1.75% 0.59%

calculated based on the training window specifically to every test date. From the investment

point of view, the risk preference changes every time we train a new model and is calculated

from the most recent observations in the market. From the data science point of view, we

assume the minutes’ prices changes in training and testing datasets have similar ranges.

Hence, their classification labels are both equally divided into three categories.

In Tables 3.8, 3.9 and 3.10, we list the classification accuracy of the dynamic threshold

method minus the fixed threshold method averaged for every FX pair and every model we

tested. There are a couple of important observations. First, dynamic threshold setting could

3.4. EXPERIMENTAL RESULTS 83

Table 3.9: Classification accuracy differences between fixed and dynamic threshold settings

with k = 10

FX KN LDA LR RF SVC TANN Average

AUDJPY 0.75% 1.66% -3.61% 0.88% 2.59% 1.96% 0.70%

EURSEK -0.17% -0.09% -1.01% 0.24% 0.18% 0.44% -0.07%

EURTRY -0.09% 0.51% -1.47% 0.56% 1.29% 1.74% 0.42%

EURUSD 0.49% 1.84% -4.37% 0.39% 1.94% 2.34% 0.44%

GBPCAD -0.15% 0.70% -0.66% -0.35% 0.68% 1.31% 0.26%

GBPJPY 0.82% 2.09% 1.46% 0.66% 2.87% 2.28% 1.69%

USDCHF 0.28% 1.25% -2.63% 0.29% 1.49% 1.74% 0.40%

USDDKK 0.51% 1.96% -4.29% 0.63% 2.25% 2.44% 0.58%

USDJPY 1.41% 2.57% 0.20% 1.09% 3.50% 2.78% 1.93%

USDNOK 0.13% 0.76% 0.95% 0.07% 0.96% 1.39% 0.71%

Average 0.40% 1.33% -1.54% 0.45% 1.78% 1.84% 0.71%

84 CHAPTER 3. TECHNICAL ANALYSIS NEURAL NETWORK

Table 3.10: Classification accuracy differences between fixed and dynamic threshold settings

with k = 5

FX KN LDA LR RF SVC TANN Average

AUDJPY 1.48% 3.26% 2.37% 1.66% 7.58% 4.71% 3.51%

EURSEK -0.38% -0.48% -1.84% -0.27% 0.25% -1.15% -0.65%

EURTRY 0.07% 1.55% -0.55% 0.32% 2.28% 2.19% 0.98%

EURUSD -0.96% 4.39% 4.93% -0.88% 6.08% 5.52% 3.18%

GBPCAD -0.63% 1.09% 4.14% -0.48% 2.41% 2.07% 1.43%

GBPJPY -0.10% 4.74% 8.22% -0.12% 8.20% 5.47% 4.40%

USDCHF 0.93% 3.30% 0.74% 1.31% 4.36% 4.28% 2.49%

USDDKK 0.32% 4.47% 2.85% 0.20% 6.03% 5.69% 3.26%

USDJPY 1.34% 3.78% 3.75% 1.29% 7.25% 4.86% 3.71%

USDNOK -0.63% 2.01% 4.92% -0.42% 2.05% 2.81% 1.79%

Average 0.14% 2.81% 2.95% 0.26% 4.65% 3.65% 2.41%

3.4. EXPERIMENTAL RESULTS 85

achieve higher classification accuracy than fixed threshold setting, particularly for LDA, SVC,

and our TANN model. This indicates that if an investor actively adjusts their risk preference

to the current market environment, the model will perform better. However, this does not

guaranteed a better profit in trading, as a trading strategy involves many other considerations

such as capital availability, timing, risk management and practical constraints. Prediction of

price change is only one area of concern. Second, some FX pairs (such as EURSEK)

behave differently from others across all the models. Third, the LR model shows the most

inconsistent performances for different FX pairs and prediction horizons. This proves again

that a simple linear relationship assumption is not applicable to our problem.

3.4.3 Larger Training Window

We also experimented with using longer periods of data to train a TANN model as opposed

to the default one-day training shown in Sections 3.4.1 and 3.4.2. We selected values of 2

and 3 for w. Since a larger dataset will significantly increase the training time of the model

and computational cost, we only tested the year 2014 with a dynamic threshold setting. The

comparison is shown in Table 3.11. We can see that when w = 1 and w = 2, the average

test accuracy is not significantly improved. When w increases to 3, the model performances

are deteriorated by more than 5%. Therefore, we could conclude that including long periods

of historical information is not helping the model and probably adds more noise.

3.4.4 Universal Model

We also trained a universal model by combining all ten FX pairs of a single day, and tested it

on the next trading day for individual FX pairs in this set. We take the data from three single

months from September 2018 to November 2018 and set the prediction horizon k to 15

86 CHAPTER 3. TECHNICAL ANALYSIS NEURAL NETWORK

Table 3.11: Comparing different training window sizes

FX w = 1 w = 2 w = 3

AUDJPY 51.93% 52.02% 41.32%

EURSEK 47.08% 44.05% 47.41%

EURTRY 47.35% 51.24% 43.44%

EURUSD 53.28% 53.26% 48.13%

GBPCAD 50.48% 60.00% 45.78%

GBPJPY 51.23% 49.62% 40.59%

USDCHF 52.93% 54.37% 48.66%

USDDKK 52.57% 52.02% 47.45%

USDJPY 53.41% 46.95% 45.34%

USDNOK 49.76% 53.39% 46.48%

Average 51.00% 51.69% 45.46%

3.5. CONCLUSIONS 87

minutes. The performances of the universal TANN are then compared to currency-specific

TANNs. For the ten currency pairs and 65 trading days, we obtained 650 comparisons in

total. We also increased the amount of training epoch for each model to 320 to accom-

modate the much larger training dataset. Figure 3.4 is the distribution of the accuracy of

universal TANN minus the accuracy of currency-specific TANN; a positive value for a certain

pair, say EURUSD, means that patterns learnt from other pairs in the ensemble are used

to generalize and predict EURUSD. We found our universal model is on average increase

the prediction accuracy by 1.1%. This indicates there are common features across different

currency pairs, which can be utilized by neural networks. This is rather surprising given that

in the ensemble there are not implied exchange rate (i.e., pairs XY, YZ, XZ) and that this is

a quote-based market. This might indicate that the universal model is learning the pricing

model of the market maker itself, which could be of independent interest and worthy of fur-

ther investigation. We also notice that the distribution implied by the histogram in Figure 3.4

is more heavy-tailed than the one produced for stocks in [123] – we believe this is due to

the dataset being relatively small for training a universal model with only ten currency pairs.

We also believe that the model structure and training process should be further optimized for

obtaining more robust universal models.

3.5 Conclusions

In this chapter, we purpose a novel pipeline for predicting short-term price movement direc-

tions in the FX market. We combined technical indicators with a neural network model for

processing high-frequency FX tick prices, which are considered very noisy. We perform the

same classification task for five different classical machine learning models, as well as our

88 CHAPTER 3. TECHNICAL ANALYSIS NEURAL NETWORK

Figure 3.4: Comparison of Universal TANN and Currency-Specific TANNs

Technical Analysis Neural Network (TANN) pipeline. We found that every machine learning

model performs differently for this task, and Linear Discriminate Analysis (LDA) is the best

among those machine learning methods. Our TANN pipeline surpasses an LDA model with

roughly 5% higher classification accuracy for three different prediction horizons (5 minutes,

10 minutes and 15 minutes). We also found that prediction of future price movement of

smaller prediction horizon is a more challenging task for all machine learning and our neural

network model because short-term FX prices is noisier. Our default setting is collecting

one-day FX prices and test on the following trading day, and we also tried to collect longer

historical periods (i.e. two days and three days), which discover that longer periods would

only degenerate model performances.

We discussed how the investor’s risk attitude would influence the balance of the labels

in the dataset – recall that there are no natural classification labels associated with financial

time series data, which is a key difference of computational finance problems with com-

puter science tasks. If the investor’s risk attitude is changing dynamically as the market

3.5. CONCLUSIONS 89

evolves, model performances could be improved. This suggests that market participants

should always try to understand the evolution of market environment, and not blindly reply

on computer algorithms for making investment decisions.

In addition, we also highlighted that universal features exist in high-frequency FX, and

can be utilised by our neural network model to further improve classification results. The

classification accuracy of the universal model is encouraging.

Chapter 4

Efficient Hedging Frontier

The trade off between risks and returns gives rise to multi-criteria optimisation problems that

are well understood in finance, efficient frontiers being the tool to navigate their set of optimal

solutions. Motivated by the recent advances in the use of deep neural networks in the context

of hedging vanilla options when markets have frictions, we introduce the Efficient Hedging

Frontier (EHF) by enriching the pipeline with a filtering step that allows to trade off costs

and risks. This way, a trader’s risk preference is matched with an expected hedging cost on

the frontier, and the corresponding hedging strategy can be computed with a deep neural

network. We experiment on the default Heston model of the underlying asset prices, as well

as the rough Bergomi model where price increments are not independent.

We further develop our framework to improve the EHF and find better hedging strategies.

By adding a random forest classifier to the pipeline to forecast market movements, we show

how the frontier shifts towards lower costs and reduced risks, which indicates that the overall

hedging performances have improved. In addition, by designing a new recurrent neural

network, we also find strategies on the frontier where hedging costs are even lower.

90

4.1. INTRODUCTION 91

4.1 Introduction

In the past decades, the evolution of financial derivative markets has provided investors

numerous opportunities for trading and, especially for managing risks associated with future

commodity prices, stock prices, interest rates and exchange rates. The markets expanded

massively in the past ten years [151]. As we discussed in Section 2.2.3, an investor utilises

the option to benefit from a future price movement of the underlying asset which aligns with

her expectation, and avoid the risk if the price moves in the opposite direction [152]. The

option buyer pays an option premium to the issuer at the inception of the contract, and

both parties could frequently trade the underlying asset to hedge their exposures to the

price movements. Therefore, finding a better solution for working out an appropriate option

premium and generating hedging strategies is fundamentally important for both parties to

ensure fairness in the option contract and appropriately manage associated risks.

The default method to work out an option price and its hedging strategies is the clas-

sical Black-Scholes-Merton (BSM) method as we mentioned in Section 2.2.5, and there are

quite a lot of articles discussing and proposing solutions to overcome the limitations of BSM

framework. Jankova argued that constant volatiltiy assumption is the key issue of the BSM,

and suggested to include stochastic volatility element [153]. The Heston and Bates process

are two famous stochastic volatility models that introduce uncertainties in the behaviour of

volatility, and consequently allow simulating the price evolution of financial assets more real-

istically [52][154]. Beginning with Hutchinson et al., neural network models were considered

as a non-parametric solution to solve option pricing and hedging problems [129].From the

universal approxiamtion theory disscussed in section 2.3.5, we know that a neural network

model has the capability of arbitrarily approximating any nonlinear relationship [155] . Deep

92 CHAPTER 4. EFFICIENT HEDGING FRONTIER

(a) Original Deep Hedging

(b) Deep Hedging with Price Change Threshold

(c) Deep Hedging with Price Change Threshold

and Random Forest

Figure 4.1: The Original and Amended Deep Hedging

4.1. INTRODUCTION 93

Hedging is one of the most recent advances in this line of work — its technical pipeline is de-

picted in Figure 4.1a for an option with 30 days maturity [17]. The creators of Deep Hedging

propose a framework to replicate conventional delta hedging strategies with learning net-

works. As we mentioned in Section 2.3.6, the Deep Hedging pipeline is a reinforcement

solution for hedging of option contracts, so that delta generator is the policy generator in

reinforcement learning terms, and the final entropy loss defines the rewards for the system.

With Deep Hedging, traders could optimize models under different levels of transaction costs,

as well as various risk measurements and risk appetites. It is also found in [17] that neural

networks achieve better hedging performances than Black-Scholes-Merton model with real

S&P500 index data when re-calibrated on a daily basis. There are also follow-ups stemming

from this work [152][131][156][130].Each of these follow up provides an alternative or exten-

ded algorithm that generating hedging strategies for option contracts from neural network

models. There are literatures focusing on implementing neural network hedging from the re-

inforcement learning aspect [131][152]. HedgeNet method focuses on minimize the hedging

error instead of risk adjusted return or final utility [130].

However, all these papers assume the hedging trades happen at regular intervals (e.g.

every day, every two days), but this restriction is not realistic. It is certainly not the case

on the trading floor. Since continuous trading is impossible, traders often make decisions

based on personal experience and knowledge. They decide the best timing to re-balance

their hedging positions. For example, if it is believed that the underlying price is going to

experience a V-shaped (or reverted V-shaped) pattern, then it is clearly a waste of money

to sell some share and then, within a short period of time, buy it back as transaction costs

would never be zero.

In this work, we tackle the problem of letting the algorithm self-decide when it is the best

94 CHAPTER 4. EFFICIENT HEDGING FRONTIER

moment to buy or sell the underlying asset. The decisions are based upon historical prices

of the underlying, as well as the model’s expectations about future prices movements. From

the technical point of view, these two new inputs act as a filtering step for the deep hedging

network.

We first introduce a price change threshold which restricts the model to perform trades

only when the underlying prices experience significant movements, see Figure 4.1b. The

price change threshold in this chapter is to decide whether hedging trades should happen

or not, whereas in Chapter 3, we also have a price change threshold to decide the predic-

tion labels. These two thresholds both could reflect a model user’s risk attitude towards the

market, but they are applied for different behaviour (trading and hedging). By changing the

value of the price threshold α, we get different incomparable hedging strategies. The larger

α we use, the smaller the number of trades used by the strategy; consequently, we have

smaller hedging costs (given the lower transaction fees) but bigger risk of experiencing a

large loss at maturity (given that we hedge less effectively). More formally, costs and risks

here are measured in terms of the mean and variance of the termination loss over a large

number of market paths, respectively. We call the Efficient Hedging Frontier (EHF) this

curve of undominated strategies in the cost–risk space, inspired by the efficient frontiers

defined in portfolio optimisation [157] and algorithmic execution [158]. From the EHF, a mar-

ket participant can pick a trade-off strategy which satisfies her risk and return preferences,

by choosing an adequate value of α.

Our second filtering step is depicted in Figure 4.1c. We additionally place a random forest

classifier before the network to predict future movements of underlying prices. The classifier

would instruct the neural network to hold its position if it believes a V-shaped pattern is

coming. By adding the classifier, we could shift the EHF and obtain strategies where the

4.2. AN ILLUSTRATION OF DEFAULT DEEP HEDGING 95

mean and variance of termination losses are reduced simultaneously.

Finally, we also experiment with the architecture of the hedging neural network and test

the effectiveness of using recurrent architectures to leverage the temporal relationships in

the price time series. We show how such a design choice can further shift the EHF towards

even better strategies.

The remainder of this chapter is organised as follows. Section 4.2 gives an illustration of

what is the generated hedging strategy from default deep hedging pipeline, so we could com-

pare with our proposed method directly. Section 4.3 describes our first setting which uses

a predefined price change threshold to constrain the model trading activities. Section 4.4

shows how a classifier could benefit a Deep Hedging neural network to reduce both hedging

costs and risks. Section 4.5 presents the results from our experiments and compares them

with Black-Scholes-Merton and Deep Hedging in default settings. In Section 4.6, we show

our further experiments which replace dense networks with recurrent neural networks for

Deep Hedging. Section 4.7 concludes this research chapter.

4.2 An illustration of Default Deep Hedging

We have given detailed discussions of the Deep Hedging model in Section 2.3.7, which

includes its motivation, model structure, typical loss functions, and its strengths and weak-

nesses. In this section, we are going to give an example of the hedging strategies generated

from the default Deep Hedging model in table 4.1

The limitations of default Deep Hedging pipeline is quite obvious. The delta generator (as

shown in figure 4.1a) takes price information from every trading day, and outputs one best

value of delta for that particular day. Sometimes, from one day to the next, the price change

96 CHAPTER 4. EFFICIENT HEDGING FRONTIER

Table 4.1: An illustration of the Default Deep Hedging

Day Price DH Delta Buy/Sell Trading Cost

0 100.00 0.4090 40.9042 2.0452

1 100.13 0.4092 0.0178 0.0009

2 106.12 0.4334 2.5711 0.1286

3 106.34 0.4377 0.4471 0.0224

4 109.43 0.4559 1.9992 0.1000

5 106.71 0.4704 1.5435 0.0772

6 102.52 0.4711 0.0684 0.0034

7 102.28 0.5039 3.3557 0.1678

8 101.99 0.4921 -1.2001 0.0600

9 105.46 0.5205 2.9990 0.1500

10 103.59 0.5114 -0.9491 0.0475

4.3. DEEP HEDGING WITH A PRICE CHANGE THRESHOLD 97

is negligible and the model buys or sells little amount of underlying asset. More importantly,

when there is a V-shaped movement of underlying in two consecutive days, the model would

sell some underlying and then buy them back, which causes unnecessary trading costs.

This is illustrated in Table 4.1. At day 1, 3 and 7, the price changes are small comparing

with the previous days. At day 4 and day 9, they are peak values of underlying prices. It is

reasonable for a trader takes no actions in these days; in this example, this will save roughly

15% of trading costs in a 10-day period.

4.3 Deep Hedging with a Price Change Threshold

We first try to limit Deep Hedging to generate deltas only when the underlying price changes

significantly from one day to another. Therefore, we introduce an additional input feature to

the delta generator. As from above, this amended Deep Hedging pipeline is shown in Figure

4.1b, where orange denotes our novel filtering.

The absolute percentage changes of daily prices are calculated from simulated trajector-

ies, and only the days with absolute price changes higher than a predefined threshold α will

be considered by the neural network. For the other days, the deltas will remain unchanged,

and therefore no buy or sell actions are taken. For the default Deep Hedging algorithm, the

model always outputs 30 deltas for each input path. By adding the threshold α, the trading

frequency for each path reduces from 30 (daily trading) to roughly 0 (no trading) as α in-

crease from 0 to 0.2 for Heston simulation with high volatility settings. We simulated 120,000

paths for our experiments, and Table 4.2 shows the average number of trading days for one

trajectory when the value of α varies. For example, if α is set to 0.04, there would be only

9.53 trades performed during the 30-day period.

98 CHAPTER 4. EFFICIENT HEDGING FRONTIER

Table 4.2: Trading frequency reduction as α increases

Threshold (α) Average Frequency

0.00 30.00

0.02 16.64

0.04 9.53

0.06 5.20

0.08 2.73

0.10 1.40

0.12 0.71

0.14 0.36

0.20 0.05

4.4 Deep Hedging with a Classifier

A classifier is a model used to divide non-labelled data into different categories. It is very

commonly applied with financial time series to predict future movements of asset prices. A

decision tree is one of the most fundamental supervised classification model, which can be

used to discover features and extract patterns for discrimination and predictive modelling

[134]. The idea is basically to break up a complex task into many simpler decisions, and

for each decision, the algorithm tries to increase the homogeneity of each classification

category. As discussed in section 2.4, Random forest (RF) is a popular ensemble model of

many decision trees, where each tree is trained with a sub-sample of the training dataset.

The output is generated from votes of the trees and therefore could improve the predictive

accuracy and control over-fitting [159]. Our random forest classifier takes log of normalised

4.5. EXPERIMENTAL SETTING AND RESULTS 99

stock price (St / S0) in the past 2 days as input, and output one classification label. It utilizes

fifty tress in the ensemble and implements Gini Impurity as the loss function.

Before running the Deep Hedging network, we first label our simulated daily prices with

two labels. If one day’s precentage change of the underlying price is higher (lower) than yes-

terday and lower (higher) than tomorrow by some threshold β, we label it as zero, otherwise

we label it as one. Basically, zero means do not trade one that day, because today’s profit

(loss) will be recovered tomorrow. We set β to be 0.05 for our experiments. The value of β

is generally reflecting the size of the V-shaped movement of stock price, which we want to

avoid. We then take log-normalised prices from the previous two days and train a random

forest classifier to classify every daily price into category zero or category one. Because

we use synthetic data, the classification accuracy is relatively high, with more than 90% for

test data. Subsequently, we start training the Deep Hedging network, and add the labels

predicted from the random forest classifier as an extra feature. These labels will instruct our

neural network to skip the days, where underlying prices are local maxima or local minima,

see Figure 4.1c.

4.5 Experimental Setting and Results

We simulated 120,000 trajectories for our experiments, split in 100,000 for training and

20,000 for testing. We train the network to optimise the issuer’s accumulated cost at the

maturity of an option contract, which we refer to as termination loss. The paths are sim-

ulated using the Heston model and the rough Bergomi (rBergomi) model, and the detailed

formulation of these two approaches have been discussed in Section 2.2.6 and Section 2.2.7

respectively.

100 CHAPTER 4. EFFICIENT HEDGING FRONTIER

Table 4.3: Heston parameters used in our experiments

Market Scenario v0 θ κ µ σ ρ S0

Low Volatility 0.4 0.4 1 0.01 4 -0.7 100

High Volatility 0.8 0.8 1 0.01 4 -0.7 100

We use two sets of Heston parameters for our experiments, which try to simulate market

scenarios with different levels of fluctuation. The values for those parameters are shown in

Table 4.3. For the rBergomi simulations, the parameters S0 and ρ are the same as Heston

model. We also set η = 1.9 and V0 = 0.05. We change the values of H to demonstrate how

the EHF react to the correlation of price changes, which will be discussed further. These

paths are simulated using the popular quantitive analysis software package of QuantLib

[160].

Our neural network models are implemented in Python with Tensorflow [71], and the

neural network structure is the same as default deep hedging, with 2 fully connected layers

(delta generator) and 30 neurons at each layer. The model is trained with Adam optimizer

with learning rate of 0.0001 and batch size of 128 [72]. The loss function is the entropy

function purposed by default deep hedging with risk measurement parameter λ. The random

forest classifier utilised is from scikit-learn package [147].

In this section, we first present our experiments under high market volatility scenario with

Heston simulations, and then follow by discussing different market conditions. After that, we

will also show the EHF with the rBergomi simulations.

4.5. EXPERIMENTAL SETTING AND RESULTS 101

Figure 4.2: The Heston EHFs for different trading costs (λ = 0.5)

4.5.1 Heston Simulation with Various Trading Costs

As mentioned in Section 4.1, our ultimate objective is to reduce unnecessary trading for

our Deep Hedging system. Using the approach discussed in Section 4.3 we first attempt to

force the network to only focus on trading days where there is a significant price changes.

Comparing with the default Deep Hedging [17], there is one additional input feature of the

daily price change percentage. The price change threshold α could reduce the average

termination losses for our 120,000 simulated paths, but also increase the standard deviation.

Therefore, by tuning the value of α we could obtain the EHF under high volatility market

assumption as shown in Figure 4.2.

There are three colours in Figure 4.2 indicating different market trading cost assumptions.

Market costs are assumed to be proportional to the cash amount spent for buying/selling

the underlying assets. There are 100 points for each line, and each point represents one

particular price change threshold α selected evenly from 0 to 0.2. The Y-coordinate of a

102 CHAPTER 4. EFFICIENT HEDGING FRONTIER

point in Figure 4.2 is the mean of 20,000 termination losses from testing trajectories for a

given value of α. The X-coordinate is the relevant standard deviation of these losses. As α

increases, the points move from left to right. Therefore, the bottom-left point is the standard

Deep Hedging that trades every single day (α = 0). At the top-right point of each line, where

α = 0.2, the system is making only 0.05 trades during the 30-day period (see Table 4.2). The

average loss over 20,000 test paths gets very small (i.e. no trading cost), but the standard

deviation of losses is significant (i.e. no hedging). It is also worthwhile to observe that at

right end of each line, there are clusters of points. The explanation is that when α makes

small changes at high values (e.g., from 0.196 to 0.198), the algorithm could not filter out

many extra trading days, so the results are faltering because of the randomness nature of

neural networks.

At 5% trading cost and α ∈ [0, 0.1], we can calculate the average of mean termination

losses as well as the average of standard deviations of termination losses from those points

in in Figure 4.2. The statistics are -13.628 and 5.578 respectively. If the hedging strategy

is calculated with the Black-Scholes-Merton method instead, and average of means and

average of standard deviations are -14.790 and 6.978 with the same values of α. This also

proves Deep Hedging outperforms delta hedging by a clear margin with Heston simulations.

Clearly, adding a price change threshold is not actually improving Deep Hedging but

provides a new prospective for trading-off risks and returns. An investor could decide a point

on the efficient hedging frontiers to represent her risk appetite and then make the appropriate

hedging strategy decisions.

4.5. EXPERIMENTAL SETTING AND RESULTS 103

Table 4.4: Improved Deep Hedging with Random Forest

Day Stock Price DH Delta Buy/Sell Trading Cost

0 100.00 0.4334 43.3373 0.8667

1 97.09 0.4346 0.1144 0.0023

2 93.72 0.4300 -0.4301 0.0086

3 101.45 0.4300 0.0000 0.0000

4 93.91 0.4331 0.2969 0.0059

5 80.61 0.3064 -10.2177 0.2044

6 82.60 0.3274 1.7344 0.0347

7 89.02 0.3803 4.7137 0.0943

8 96.33 0.3803 0.0000 0.0000

9 84.12 0.3122 -5.7299 0.1146

10 83.97 0.3129 0.0603 0.0012

Table 4.5: Improvement through RF classifier (λ = 0.5, α ∈ [0, 0.1])

Mean of Losses Standard Deviation of Losses

2% Cost 3% Cost 5% Cost 2% Cost 3% Cost 5% Cost

DH -11.253 -11.898 -13.628 4.887 5.143 5.578

DH with RF -10.718 -10.784 -11.683 4.209 4.353 4.543

Improvement 4.75% 9.36% 14.27% 13.87% 15.37% 18.54%

104 CHAPTER 4. EFFICIENT HEDGING FRONTIER

Figure 4.3: The Heston EHFs with Random Forest forecast (λ = 0.5)

4.5.2 Heston Simulation with Random Forest Classifier

Our next step is to combine the Deep Hedging algorithm with a random forest classifier, as

shown in Figure 4.1c. The classification labels generated from the random forest is treated

equivalently to the trader’s expectations of the future movements of underlying prices. We

show that if the classification task is solved sufficiently well (or, equivalently, the trader has

good knowledge of the market) the hedging losses and risks could be reduced simultan-

eously. For high volatility market scenario, the result is shown in Figure 4.3. There are two

groups of lines, which represent two trading cost assumptions. There are two lines in each

colour group. The higher line shows the performances of Deep Hedging with the help of

random forest classifier. At low values of α (i.e. left end), the gap between performances of

Deep Hedging with and without random forest is larger than at high values of α (i.e. right

end). When α is really large, the two models exhibit similar performances, as α is filtering

out most trading days and good predictions could not make much contributions.

4.5. EXPERIMENTAL SETTING AND RESULTS 105

Figure 4.4: The Heston EHFs under different market conditions (λ = 0.5)

Table 4.4 gives an illustration of how the combined system makes hedging decisions.

The forecasts from the random forest algorithm instructs the neural network that day 3 and

day 8 are local maximum points for the underlying, according to its threshold (5%), therefore

the hedging generator skipped both days. The numerical comparisons of Deep Hedging with

and without random forest classifier are shown in Table 4.5. Note we only take values of α

from 0 to 0.1 for calculating the averages, as larger values limit the trading frequencies too

much. Overall, the improvement for standard deviations of termination losses is higher than

for means of termination losses, which can also be visually observed in Figure 4.3.

4.5.3 Heston Simulations with Different Market Conditions

We also test the model in the low volatility market condition; the EHFs are displayed in

Figure 4.4. The price change thresholds α considered are still in the interval from 0 to 0.2

and evenly distributed. It is noticed that when the underlying asset is less volatile, both

106 CHAPTER 4. EFFICIENT HEDGING FRONTIER

Figure 4.5: The rBergomi EHFs for different trading costs and H (λ = 0.5)

mean and standard deviation of termination losses are reduced as expected. In addition, the

length of the EHF is getting shorter and the points are more compactly distributed. It is also

observed that the slope of the frontier is smaller with 2% trading cost than with 5% in both

market conditions.

4.5.4 Rough Bergomi Simulation with Different Hurst Parameters

If the underlying prices are simulated from a rBergomi model, there are similar patterns with

the Heston simulations. Figure 4.5 shows that the EHFs with low trading costs have smaller

slope than those with high costs. For any value of H larger or smaller than 0.5, both mean

and standard deviation of termination loss are increased. It is also noticed that for H = 0.1,

the mean and standard deviation have the minimum ranges.

The above experiments are carried out with entropy risk measure parameter λ = 0.5. If

λ changes to 0.7, the frontier will shift slightly to the right and when it is 0.2, the frontier is

4.6. UPDATING THE NEURAL NETWORK 107

Table 4.6: Comparing neural network architectures (λ = 0.5, α ∈ [0, 0.1])

Mean of Losses Standard Deviation of Losses

2% Cost 3% Cost 5% Cost 2% Cost 3% Cost 5% Cost

DH -11.253 -11.898 -13.628 4.887 5.143 5.578

DH with GRU -10.938 -10.685 -13.094 5.073 5.259 5.597

Improvement 2.79% 1.79% 3.92% -3.18% -2.27% -0.35%

slightly to the left. This is expected since the EHF moves in the same direction of the trader’s

risk aversion.

4.6 Updating the Neural Network

As discussed above, the default Deep Hedging model utilises two fully connected layers for

the delta generator, and the input is only one daily price. Therefore, it does not consider the

temporal relationships of underlying time series. It is very common and intuitive to choose

recurrent neurons instead of dense connections for this problem.

We tested the use of Gated Recurrent Unit (GRU) as the recurrent element and re-

designed the Deep Hedging pipeline. As illustrated in Figure 4.6, we use a vector (instead of

a single number) to input historical prices from Heston simulations in the past 3 days to the

GRU layer. The delta generator consists of two recurrent layers each with ten recurrent units

and one dense layer to output a single number, which means the optimal amount to hold the

underlying asset. We need to point out that in the first two days for a trajectory, there are not

enough past prices for constructing the vector, so for those we still incorporate dense layers

as the default Deep Hedging.

108 CHAPTER 4. EFFICIENT HEDGING FRONTIER

Figure 4.6: Deep Hedging using Gated Recurrent Network

Figure 4.7: The Heston EHFs with GRU neural network (λ = 0.5)

4.7. CONCLUSIONS 109

Comparing the EHFs of the standard Deep Hedging with GRU version, we can conclude

from Figure 4.7 that while the mean of termination losses are reduced with the GRU architec-

ture for small values of α, the expected deviation of losses increases. The two lines overlap

rather quickly as price change threshold α gets larger. The numerical results are shown in

Table 4.6.

4.7 Conclusions

We wanted to limit the trading activities of a Deep Hedging model so that unnecessary trad-

ing costs could be saved. By adding a price change threshold, which filters out trading

days with insignificant price movements, we could generate an efficient hedging frontier.

On the frontier, a market participant could intuitively balance his/her position between risk

tolerances and expecting losses when hedging a European call option, and generate ap-

propriate strategies accordingly. We experimented with various trading costs and market

volatility assumptions, as well as different values of λ for entropy risk measures. We could

also improve the efficient hedging frontier by incorporating a random forest classifier with the

Deep Hedging neural network. Outputs from the classifier are treated as prior knowledge

of how the underlying price will evolve in the near future, which helps the delta generator

network to avoid trading against V-shaped movements. Experiments with rBergomi show

similarities with Heston simulations, as well as differences when the H parameter changes.

In addition, our experiments also proved that replacing dense layers with GRU layers could

reduce the expected mean of termination losses for Deep Hedging, but increase the standard

deviations.

Chapter 5

A New Encoding for Implied Volatility

Surfaces

In financial terms, an implied volatility surface can be described by its term structure, its

skewness and its overall volatility level. We use a PCA variational auto-encoder model to

perfectly represent these descriptors into a latent space of three dimensions. Our new en-

coding brings significant benefits for synthetic surface generation, in that (i) scenario gener-

ation is more interpretable; (ii) volatility extrapolation achieve better accuracy; and, (iii) we

propose a solution to infer implied volatility surfaces of a stock from an index to which it be-

longs directly by modelling their relationship on the latent space of the encoding. All these

applications, and the latter in particular, have the potential to improve risk management of

financial derivatives whenever data is scarce.

110

5.1. INTRODUCTION 111

5.1 Introduction

The Black-Scholes-Merton (BSM) model is the benchmark for stock option pricing and valu-

ation [47][48]. As mentioned in Section 2.2.5 and section 2.2.9, one major weakness of the

standard BSM method is the assumption that volatility of the underlying stock is a constant,

and not related to the moneyness or the remaining term of the option contract. This does not

conform with our observations in the market.

If we equate the BSM formula with market option prices and solve for the volatility para-

meter, we get the implied volatility value. Implied volatilities have a typical characteristic,

which is, the value of volatility gets smaller as the option moneyness move close to one and

gets larger as it moves away from one. This phenomenon is referred to as the implied Volat-

ility Smile or Volatility Skewness [161]. If we take the remaining term of an option contract as

another dimension into the volatility smile, we get the Implied Volatility Surface.

Implied volatility surface is the most important variable to consider if anyone wants to

design, trade or evaluate financial derivatives. The most straightforward use case is to cal-

culate the option prices of non-existent term and moneyness combinations of a particular

underlying stock [162] on a particular trading day. This involves the process of predicting

an extended subset of volatility values on a surface from some existing values that can be

observed from the market. This task is commonly referred to as the implied volatility ex-

trapolation. Once the extended volatility values are extrapolated, they can be put into the

BSM formula to calculate the required prices of financial derivatives of the special term and

moneyness. The most common scenario is to extrapolate from products with short-term ex-

piration to products with long-term expiration. The profit or loss of issuing such products are

largely depended on the accuracy of the extrapolated implied volatility values.

112 CHAPTER 5. A NEW ENCODING FOR IMPLIED VOLATILITY SURFACES

Moving one step further, we could not only predict the extended term and moneyness

combinations, but also predict implied volatility surfaces of a specific stock from another

related stocks or stock index. We consider a scenario where, on a particular trading day,

we have zero information about a stock’s implied volatility surface, and therefore we can-

not perform extrapolation. However, we have the historical implied volatility surfaces of this

stock and some other related stocks or stock indexes. We need to identify the relationships

between different stocks/indexes from their empirical volatility surfaces and predict future im-

plied volatility surfaces from scratch. This task is most challenging, and to the best of our

knowledge, there is no established method to solve this problem.

It is also believed that the shape of an implied volatility surface reflects the current market

perception of risk and return, and the implied volatility values indicate the demand and supply

for different combinations of moneyness and term structure [163]. Ideally, market participants

could generate many implied volatility surfaces with similar shape but not identical values,

all representing typical market environments, and use this batch of synthetic surfaces for

evaluating their derivative trading engines. Because stress scenarios are rarely represented

in the historical data, the ability to generate synthetic implied volatility surfaces of good quality

and in an interpretable manner is crucial.

In this paper, we present a new encoding mechanism of implied volatility surfaces using

a PCA variational auto-encoder model. The new encoding significantly improves the state of

the art for the three problems mentioned above.

There is limited literature on the modelling of implied volatility surfaces with neural net-

work approaches [164][165][15][166]. Their work did not clarify the question of what features

of the implied volatility surfaces are exactly encoded or learnt by the neural network model.

This is a crucial issue, as we want to generate (a subset or the whole of) a volatility surface to

5.2. PCA VARIATIONAL AUTO-ENCODER 113

perform the aforementioned tasks. If we do not know how the neural network model encodes

the market data or what is represented in the neural network model, we cannot interpret the

generated synthetic surfaces or infer the implied volatility surface from an index to a stock.

The remainder of this chapter is organised as follows. In section 5.2, we explain the PCA

variational auto-encoder model, which is used to encode the implied volatility surface differ-

ently for performing the tasks mentioned above. Section 5.3 introduces the data we used

for our experiments and, more importantly, how we evaluate the usefulness of our generated

synthetic implied volatility surfaces. Section 5.4 introduces our method of encoding implied

volatility surfaces; we compare our approach with an alternative solution highlighting the dif-

ferences on the training process, as well as the unique characteristics of the encoded latent

space. Section 5.5 shows how we can leverage the new encoding to efficiently solve the

three challenges on synthetic surfaces generation; interpretable scenario-based generation,

implied volatility extrapolation and stock-specific generation. Section 5.6 concludes our work

for this chapter.

5.2 PCA Variational Auto-Encoder

To address the problems discussed above, we upgrade the variational auto-encoder (VAE)

model introduced in section 2.3.4 to a PCA variational auto-encoder.

As discussed in section 2.3.1, the functionality of a neural network model is effectively

controlled by its loss function. Different loss function instructs the model to capture different

features from the training data.

The PCA auto-encoder model was first developed by Ladjal et al. [16]. They made an

important change to the loss function of a classic auto-encoder by adding an extra term Lcov,

114 CHAPTER 5. A NEW ENCODING FOR IMPLIED VOLATILITY SURFACES

which measures the covariance between all pairs of latent dimensions. They try to reduce

the value of Lcov, which effectively forces the latent dimensions to be independent to each

other. The formula for Lcov is:

Lcov =
D∑
i=1

D∑
j=i+1

[
1

B

B∑
t=1

(Zt,iZt,j)−
1

B2

B∑
t=1

Zt,i

B∑
t=1

Zt,j

]
(5.1)

where B is the number of data point in a training batch, and we combine the concept of PCA

auto-encoder with the variational auto-encoder models. The final loss function for training

our PCA variational auto-encoder becomes:

L = Lrecon + λkl · Lkl + λcov · Lcov. (5.2)

The value of λcov controls how much restriction we want to enforce on the model due to the

covariance. On one hand, if λcov is too small, the latent dimensions are not independent. On

the other hand, the model loses the ability to generate surfaces if λcov is too large. By trial

and error, we found the optimal value of λcov is 0.1 for training a PCA variational auto-encoder

on implied volatility surfaces.

We will be using the VAE model structure together with this loss function to train the PCA

variational auto-encoder models. The encoder and decoder neural networks are identical,

with each network has 2 fully connected hidden layers and 32 neurons for each layer. The

activation function is Relu function for all layers, and the model is trained with Adam optimizer

with learning rate of 0.0001.

We are going to demonstrate their unique characteristics for the model training process

and encoded latent space, and their strengths for dealing with the three synthetic surface

generation challenges mentioned in the introduction.

5.3. DATASET AND EVALUATION CRITERIA 115

5.3 Dataset and Evaluation Criteria

Our dataset consists of daily implied volatility surfaces for the period from 4 October 2016

to 4 October 2021. We collected data from 44 European listed stocks, as well as the stock

index of STOXX501. We also have the daily high, low, open, close prices of these stocks and

index over the same period of time. The volatility surfaces computed before 4 October 2020

are marked as training datasets, and those after that date are testing datasets.

Among the 44 stocks, we take 6 stocks out of the dataset for performing the volatility

surface extrapolation and specific stock generation tasks. We want to emphasize that the

PCA variational auto-encoder model is capable of learning the general features of volatility

surfaces, which not only exist among the temporal dimensions but also between difference

stocks.

After we generate synthetic implied volatility surfaces from our model, we wish to meas-

ure how realistic or useful they are. To evaluate a model, one often calculates the numerical

difference, as, e.g., the mean absolute error (MAE), between every point on a real surface

and the generated surface. The conclusion would be that if MAE values are smaller, the

model performs better. However, this seems unsatisfactory for two reasons. Firstly, the fin-

ancial dataset sampled from the market contains a lot of noise. Consequently, we should not

force the model to learn every piece of the data and the aforementioned evaluation method

would more easily lead to overfitting. The MAE and other similar measurements are more

adequate for computer science tasks, where the data has much less misleading information.

Secondly, if we generated a surface that is identical to the market surface (i.e., with zero

MAE) then it would not be useful in our context. We want our synthetic surfaces to be similar

1STOXX50 is a stock index covers 50 stocks from the Eurozone

116 CHAPTER 5. A NEW ENCODING FOR IMPLIED VOLATILITY SURFACES

Table 5.1: Evaluation Thresholds for Implied Volatility Surfaces

M ∈ (0, 0.9] M ∈ (0.9, 1.05] M ∈ (1.05,∞)

τ ∈ (0, 3] 1.49% 1.83% 1.69%

τ ∈ (3, 9] 0.88% 1.18% 1.05%

τ ∈ (9,∞) 0.90% 0.98% 1.09%

but not identical to the market, and the similarity is within a reasonable range (e.g. bid/offer

spread), so that the synthetic surfaces are considered useful. In order to obtain a measure of

usefulness, we collected 9082 market quotes for options on European stocks submitted by

front office traders in September 2021. Among these quotes, bid and ask quotes are roughly

equally distributed. We calculate the implied volatility value for every submitted quote using

the quote price and the reverse of equation 2.18, and obtain the implied volatility values for

bid and ask quotes separately. We average the distances between bid and ask implied volat-

ility values for different ranges of term and moneyness, and we come up with the evaluation

threshold as listed in Table 5.1. The table needs to be read in the following way. If, for ex-

ample, the absolute difference between the market implied volatility and generated implied

volatility |σ3,0.9−σ′
3,0.9| is smaller than 0.0149, then we consider the generated σ′

3,0.9 as a sat-

isfactory implied volatility point. We calculate the percentage of satisfactory points within all

the points on all the surfaces we generate, and call this the satisfaction rate. In other words,

if the generated implied volatility is within the range of bid offer spread from the market value,

we consider it as satisfactory.

5.3. DATASET AND EVALUATION CRITERIA 117

(a) Classical Variational Auto-encoder (3 Latent)

(b) PCA Variational Auto-encoder (3 Latent)

(c) PCA Variational Auto-encoder (4 Latent)

Figure 5.1: Training of Different Variational Auto-Encoders

118 CHAPTER 5. A NEW ENCODING FOR IMPLIED VOLATILITY SURFACES

Figure 5.2: Encoded Latent Space for STOXX50

5.4 Encoding Implied Volatility Surface

In this section, we are going to compare the training process of a PCA variational auto-

encoder with a classic variational auto-encoder model, and discuss our discoveries from the

trajectories of the training losses. Once the model is trained, we can obtain the plots for the

encoded values of each implied volatility surfaces. As our model is a PCA variational auto-

encoder in which input data are encoded into distributions, we are going to plot the mean µ

and logarithm of the variance Σ.

5.4.1 Training the PCA Variational Auto-encoder

As mentioned in Section 5.1, the PCA variational auto-encoder model incorporates covari-

ance measurements for each pair of latent dimensions in the loss function. By restricting

the value of covariance during model training, independent features of volatility surfaces are

embedded into latent dimensions. This modification not only largely improves practicabil-

5.4. ENCODING IMPLIED VOLATILITY SURFACE 119

ity and interpretability of auto-encoder for surface related applications, but also significantly

changes the trajectory for the reconstruction losses during model training.

In this section, we focus on the model training process. It is undoubtedly important to

understand what is exactly learnt by the neural network during the training, and this will be

a solid foundation for various volatility surface generation applications to be discussed in

Section 5.5.

There are three plots in Figure 5.1, which represent the evolution of reconstruction loss

Lrecon in (5.2) and covariance loss Lcov in (5.1) during the training of different variational

auto-encoder models. The plots are for a classic variational auto-encoder model, a PCA

variational auto-encoder model with three latent dimensions and a PCA variational auto-

encoder with four latent dimensions, respectively. The x-axis contains the number of training

epochs, whereas the y-axis measures the loss values.

Figure 5.1a shows the training process of a classic variational auto-encoder model (i.e., λcov =

0) for implied volatility surfaces. We can clearly observe three turning points where the re-

construction loss is significantly reduced; they are at epoch number 2, 7 and 108. Every time

the reconstruction loss has a large reduction, the covariance loss is reduced as well, but it

quickly grows afterwards. The final value of covariance loss is roughly 0.468.

The training process of a PCA variational auto-encoder (with λcov = 0.1) is shown in Fig-

ure 5.1b. It is evident that by adding a covariance constraint to the loss function, the training

epochs needed to reach the minimum reconstruction error is smaller (reduced from 108 to

35 epochs). The explanation is that since the covariance is limited, the information encoded

in the first two latent dimensions are largely reduced so that there is more information to

be captured by the third dimension, and the model can quickly learn the feature. On the

contrary, for the case of the classic variational auto-encoder, there is little information left for

120 CHAPTER 5. A NEW ENCODING FOR IMPLIED VOLATILITY SURFACES

the third dimension, so the model struggles to learn the marginal information. It is important

to note that in Figure 5.1b we show then training until 130 epochs for comparison with Fig-

ure 5.1a. The actual model we use for our experiments is trained after 40 epochs to avoid

over-fitting.

Bergron et al. argue that implied volatility surfaces can be captured by variational auto-

encoder using as few as two latent dimensions [15]. From our experiments of training PCA

variational auto-encoder with 2 latent dimensions, we found that even though the recon-

struction (MAE) error is small after two dimensions are learnt, the covariance loss is not

small enough. More importantly, we did not observe the independence of the latent numbers

when we build the interactive generation tool, which will be presented in Section 5.5.1.

We want to explore further the training process by adding one more latent dimension into

the PCA variational auto-encoder model; the training process is shown in Figure 5.1c. We

keep training the model until 500 epochs and cannot observe any further significant reduction

in the reconstruction loss. This indicates that there is no further independent feature to be

modelled by the PCA variational auto-encoder model. From these observations, we can

confirm that three latent dimensions are the only reasonable choice for encoding implied

volatility surfaces with PCA variational auto-encoder models. Fewer dimensions will not

promote independent features encoded latent dimensions, and adding further dimensions

will not encode any extra meaningful features; this will also be emphasised in Section 5.5.1.

5.4.2 Encoded Latent Space

After a PCA variational auto-encoder is trained, we can generate the latent encoding of our

training data and examine how the model transfers the implied volatility surfaces into the

latent space.

5.4. ENCODING IMPLIED VOLATILITY SURFACE 121

Figure 5.3: Generated Synthetic Surfaces

We plot the values of µ and logΣ for all the STOXX50 index implied volatility surfaces, see

Figure 5.2. We marked all the surfaces for the trading days in March 2020 and April 2020

as stress scenarios and coloured them in red, as the COVID-19 pandemic caused much

turbulence in the market during that period.

In Figure 5.2, we first observe from the top graphs that µ1, µ2 and µ3 are independent to

each other, which is the unique characteristic for PCA variational auto-encoders. If the model

is a classic variational auto-encoder, there will be some degree of linear relationship between

them. We also discover that the stress scenarios for March and April 2020 are caused by

abnormally small values of µ1, which also means that Z1 is small, as Z1 is sampled from a

normal distribution of mean µ1. The stress scenario is not much related to the second or

third latent dimensions.

In addition, from the bottom left graph in Figure 5.2, we found that when µ1 is approx-

imately -0.1, Σ1 is minimum. As µ1 moves away from -0.1, Σ1 increases rapidly. From

subsequent analysis, which will be discussed in Section 5.5.1, we know that the first dimen-

sion controls the overall volatility level of a surface. It makes sense that extreme cases are

more volatile in the market.

122 CHAPTER 5. A NEW ENCODING FOR IMPLIED VOLATILITY SURFACES

5.5 Generating Synthetic Surface

We are going to show several important applications of our PCA variational auto-encoder

model. The importance and difficulties of these tasks have already been discussed in Sec-

tion 5.1. We will compare our results with [15] whenever applicable.

5.5.1 Scenario-Based Generation

We mentioned several times that PCA variation auto-encoder is able to encode difference

features of implied volatility surfaces independently into three latent numbers. We are going

to present how visually this is going to influence the shape of generated synthetic surfaces.

There are four synthetic volatility surfaces in Figure 5.3, together with the values of latent

vector Z which is used to generate each of these surfaces. The first surface on the left is a

reference surface, whereas others are generated by changing only one latent values of the

reference surface.

From Figure 5.3, we can discover that Z1 only controls the overall volatility level, Z2 only

changes the skewness and Z3 affects only on the term structure of a volatility surface. There-

fore, we have a powerful method to generate synthetic surfaces for any specific description

of the scenario that is requested. For example, if we need a surface of overall high volatility

level, small difference of volatility among moneyness and large spread between short and

long term, we can use small values for Z1 and Z3 and a large value of Z2 to generate such a

surface. This is not possible with the classical variation auto-encoder model.

5.5. GENERATING SYNTHETIC SURFACE 123

Table 5.2: Volatility Surface Extrapolation with Classic VAE Model

Stock MAE (Known Points) MAE (Unknown Points) Satisfaction

DPWGn.DE 0.0044 0.0211 0.6571

DTEGn.DE 0.0154 0.0297 0.5161

LVMH.PA 0.0029 0.0159 0.6857

MUVGn.DE 0.0049 0.0288 0.5366

SGEF.PA 0.0040 0.0232 0.5098

SIEGn.DE 0.0065 0.0299 0.6268

Average 0.0063 0.0248 0.5887

Table 5.3: Volatility Surface Extrapolation with PCA VAE Model

Stock MAE (Known Points) MAE (Unknown Points) Satisfaction

DPWGn.DE 0.0066 0.0259 0.8143

DTEGn.DE 0.0051 0.0202 0.6598

LVMH.PA 0.0032 0.0117 0.7411

MUVGn.DE 0.0070 0.0336 0.6643

SGEF.PA 0.0236 0.0600 0.4902

SIEGn.DE 0.0165 0.0290 0.7491

Average 0.0103 0.0301 0.6865

124 CHAPTER 5. A NEW ENCODING FOR IMPLIED VOLATILITY SURFACES

5.5.2 Implied Volatility Extrapolation

We have briefly introduced the volatility extrapolation problem in Section 5.1. The task is

to predict (extrapolate) the full implied volatility surface from only a subset of points on the

same surface.

The extrapolation challenge can be interpreted as a two-step problem. The first step is to

make sure that the encoding vector calculated from the known subset of a surface contains

enough information to extrapolate the unknown points. This depends on what model is used

to generate the encoded latent space. The second step is to use an optimisation method to

efficiently find the points on the latent space which represent the known subset of a surface.

Bergeron at el. suggested to use classic variational auto-encoder to encode the latent

space and the L-BFGS algorithm to find the optimal latent encoding vector which minimises

the difference on the known subset of a implied volatility surface [15]. To to generate the

unknown subset of the surface, they provide this vector to the pre-trained decoder neural

network.

In our dataset, each implied volatility surface has eight terms (3, 6, 9, 12, 18, 24, 36,

48 months) and 7 moneyness settings (0.80, 0.90, 0.95, 1.00, 1.05, 1.10, 1.20). For our

extrapolation experiments, we assume the known subset of a volatility surface is of short

term (month value of 3, 6, 9 and 12) and close to being at-the-money (moneyness value

of 0.95, 1.00 and 1.05), which consists of 12 points. The remaining 44 points are to be

extrapolated, and we compare the full generated surface with the full true surface to evaluate

the performance of the extrapolation methods using the satisfaction criteria introduced in

Section 5.3.

We found that for the extrapolation task, PCA variational auto-encoder model is a better

5.5. GENERATING SYNTHETIC SURFACE 125

solution to produce the encoded latent space. In Section 5.5.1, we showed that the model

captures the correlation between short- and long-term volatility through latent dimension Z3,

which indicates that the latent vector found from only short-term information also contain

the relevant shape information for the long-term. Because volatility surfaces have to satisfy

the no-arbitrage conditions, this connection is pretty stable across stocks and time-horizons.

This is also the case for Z2, which presents the volatility skewness. This is an important ad-

vantage of PCA variational auto-encoder, which leads to better extrapolation performances,

as shown in Table 5.2 and Table 5.3.

We calculate the mean absolute errors on the known subset of surfaces (12 points) and

unknown subset (44 points) separately in Table 5.2 and Table 5.3, as well as the satisfaction

rates among all the 56 points on the surfaces. We can observe that even though both

MAE errors are higher for PCA variational auto-encoder, the satisfaction rate achieved is

10% higher. This indicates that PCA variational auto-encoder is encoding the shape of

surfaces instead of individual values of volatility. We also found that the differences of MAEs

between two subsets are smaller, which indicates that our model is better to infer the long-

term volatility from the short-term volatility as discussed above. However, we think L-BFGS is

not a perfect method for optimising on the encoded space because of the level of over-fitting;

finding better solutions could be the object of further research.

5.5.3 Stock Specific Generation

The third practical question we want to solve is to infer the implied volatility surfaces for a

particular stock from the stock index, by modelling their historical relationships on the latent

space produced by a PCA variational auto-encoder model.

For every trading day, we have 39 volatility surfaces, which represent 38 stocks and 1

126 CHAPTER 5. A NEW ENCODING FOR IMPLIED VOLATILITY SURFACES

stock index (STOXX50). We encode these volatility surfaces using a trained PCA variational

auto-encoder, and plot for every stock and trading day, its correspondent first latent number

(Z1) of the stock volatility and STOXX50 volatility surfaces. The plot is shown in Figure 5.4.

Every point plotted in Figure 5.4 represents a particular stock on a single trading day.

Different colours represent different stocks; we also plot the line y = x as a reference.

We can see From figure 5.4 that there is a linear relationship between Z1 of each stock

and Z1 of STOXX50. This relationship exists for all the stocks we plotted in the figure. If we

draw lines to models these relationships, we see the lines should have slopes close to one,

which indicates if the index volatility surface shifts, the stock volatility surface moves roughly

by the same amount. We also notice that most stocks have an intercept smaller than one,

meaning that Z1 of stocks are generally smaller than Z1 of STOXX50. If we refer to volatility

surface generation mentioned in Section 5.5.1, this should reflect that the volatility surface of

a single stock is usually higher than the surface of the STOXX50 index on the same day, a

known stylised fact of the market. Similar linear relationships hold true for Z2 and Z3 as well.

Based on these observations, we use linear regression models to capture the relationship

between a particular stock and the STOXX50 index in the encoded space. For every stock

on a trading day, we train three linear regression models to predict its three latent numbers

separately. The independent variables for linear regression models are the latent number

of STOXX50 index and the stock’s long-term price volatility. Every linear regression model

has two independent variables. The models are trained in a moving windows manner, as

illustrated in Figure 5.5.

For every trading day in the test period, we use three linear regression models to obtain

the latent encoding of the implied volatility surface, which represents , and put the encoding

vector into our pre-trained PCA variational auto-encoder. We then compare the generated

5.5. GENERATING SYNTHETIC SURFACE 127

Figure 5.4: Z1 of single stocks and STOXX50

Figure 5.5: Z1 of MUVGn.DE and STOXX50

128 CHAPTER 5. A NEW ENCODING FOR IMPLIED VOLATILITY SURFACES

Table 5.4: Predict Stock Volatility Surface Using STOXX50

Stock Z0 Error Z1 Error Z2 Error Satisfaction

DPWGn.DE 0.0072 0.0112 0.0066 0.7611

DTEGn.DE 0.0088 0.0098 0.0052 0.6981

LVMH.PA 0.0080 0.0086 0.0062 0.8672

MUVGn.DE 0.0086 0.0092 0.0047 0.7131

SGEF.PA 0.0096 0.0090 0.0081 0.6984

SIEGn.DE 0.0069 0.0086 0.0050 0.8383

Average 0.0082 0.0094 0.0060 0.7627

surface with the true surface in our dataset and obtain the results shown in Table 5.4. The

errors in Table 5.4 are calculated as the MAE between the true Z value and the predicted

one. We see the average satisfaction rate is 76%, which indicates most predicted implied

volatility values are within the bid offer spread of the market.

5.6 Conclusion

We use a new way to encode implied volatility surfaces into a latent space with a PCA vari-

ational auto-encoder neural network. The extra covariance measurement in the loss function

for model training ensures independence of the three latent dimensions, which brings signi-

ficant benefits for different synthetic surface generation applications.

The scenario-based generation process becomes intuitive and interpretable. The three

latent dimensions could represent the overall volatility level, the volatility term structure and

the volatility skewness separately. The description of a volatility surface could be interpreted

5.6. CONCLUSION 129

into numerical values of latent encodings directly.

The volatility extrapolation performance is largely improved and over-fitting is reduced,

because of the independence of three latent dimensions. Comparing with classic VAE model,

PCA VAE model significantly reduces the differences on mean absolute error for the known

area of a volatility surface and the unknown area of the surface.

We also developed a novel solution to infer a single stock volatility surface from the stock

index volatility surface, based on our observations that first latent encoding of a stock im-

plied volatility surfaces and its relevant stock index has a linear relationship on every trading

day. We used a dynamic linear regression model to present this relationship, and adjust the

parameters according to the market environment movements. The prediction processing is

efficient, and as far as we know, it is the first model to prediction stock volatility surfaces

directly from index volatility surfaces.

Chapter 6

Conclusion

This chapter is the conclusion chapter for this thesis. It provides an overall summary of

the research work and points out the achievements and contributions. It also suggests fur-

ther research directions for applying deep learning for trading and hedging in the financial

markets.

6.1 Summary

As indicated by its title, this thesis is focused on applying different types of deep neural

network models to the financial markets to tackle real-life problems associated with trading

and hedging financial assets. By studying a wide range of pieces of literature about financial

mathematics, we understand that there are many sophisticated nonlinear relationships in the

financial markets for the foreign exchange rates, stock prices and derivative contracts. Con-

ventionally, people use mathematical equations to represent these relationships and help

market participants set up trading and hedging strategies. But those conventional methods

have many limitations. Some cannot utilise sufficient data generated from the market, some

130

6.1. SUMMARY 131

do not provide satisfactory performances, and some are based on idealised assumptions.

We also learnt, from many influential neural network models that emerged recently from

computer vision and natural language processing files, that deep neural network models are

universal approximators of nonlinear relationships. It has been successfully applied to cap-

ture relationships for different types of information. For example, the relationship between

one image and its categorical label or the relationship between one sentence and its trans-

lation in another language. Therefore, We first ask if neural networks could also capture

relationships inherited in the nature of financial assets. In addition to that, standing in the

shoes of financial people, we know that the financial industry is fundamentally different to the

computer science industry, where human knowledge has much more in-depth involvement

in day-to-day decision-making, it is not only to increase efficiencies and accuracies but also

to benefit the interpretability of the methods, which is required by the highly regulated nature

of the industry. ‘

Based on these considerations, we carry out three studies in this thesis to understand the

capability of neural network models to process data from financial markets. These signals

are considered much noisier than other areas where neural network models have already

been well studied. We also explored combining neural network models with partial financial

knowledge and requirements that investors or regulators specify to provide a more insightful

data analysis so that the whole pipeline is more suitable for practical use in dynamic financial

markets.

The first study is presented in chapter 3. We collected high-frequency foreign exchange

rates from the market and proposed a pipeline for forecasting short-term price changes in

the FX market.

Inspired by several recent models proposed for the stock market, we combine technical

132 CHAPTER 6. CONCLUSION

indicators with a convolutional neural network to predict future price movements in the for-

eign exchange market. Five technical indicators are calculated to filter out noise information

from the high-frequency FX data, and they are also arranged to focus on eleven different

historical window sizes. We capture market information which is most relevant to short-term

price movements. We use a convolutional neural network with a recurrent layer to scan the

preprocessed matrix and classify the high-frequency price information into three categories

representing three directions of future FX price changes. Our proposed Technical Analysis

Neural Network (TANN) model captures the relationship between high-frequency ticks in the

past and the price movement direction for the short-term future. Our prediction accuracy

is, on average, about 5% higher than the best conventional machine learning we tested,

the LDA method. Furthermore, using high-frequency ticks from the previous day for train-

ing the neural network and testing the following day gives the best performance, indicating

the model could learn short-term market conventions, and it helps predict the market. In

general, we show that prediction power exists in high-frequency FX ticks if there is an appro-

priate method to formulate and process the information. Our results also emphasised that

financial time series prediction is possible without the support of typical microstructure for

the market, such as limit order books (LOB).

We have built a neural network model to process market information at irregular inter-

vals, and this model can help investors better understand the trend in the FX spot mar-

ket. We want to explore further the possibility of fitting neural network models closer to a

market participant’s risk tolerances, so the model could better utilise its capabilities and be

more practically useful. We tackle one essential shortcoming of the popular deep hedging

pipeline, which is to perform trading of the underlying assets at regular intervals, regardless

of the user’s risk preference or expectation. We upgrade the default deep hedging pipeline

6.1. SUMMARY 133

to include a filter element before the hedging generator in deep hedging. The filter is con-

trolled by the model user’s preset risk tolerance, and it decides that trading is only allowed

when the price change of the underlying asset exceeds the risk tolerance. This way, when

the risk tolerance increases, the average final loss of the 20000 simulations reduces as re-

duced trading frequency saves trading costs. However, the standard deviation of the final

loss increases because only significant price movements are dealt with. By varying the risk

tolerance threshold, we could generate a line to illustrate the trade-off between the mean

and standard deviation of the final hedging loss. We call it the Efficient Hedging Frontiers

(EHF). This work is discussed in chapter 4.

EHF is the tool for a model user to trade off between expected risk and expected re-

turn from the hedging strategies generated by the deep hedging model. It incorporates the

user’s risk appetite into the neural network based pipeline, which brings the popular model

one step closer to real-life scenarios. We also use a random forest classifier to forecast the

future prices of the simulated paths and instruct the strategy generator to avoid V-shaped

movements of share prices. In this way, the overall performance of the deep hedging model

could be improved, which means the EHF lines shift to the upper left direction. For a given

level of risk (standard deviation of termination losses), the model user could achieve a bet-

ter return (larger mean of termination losses). We also experiment using GRU layers in

the neural network, which give slightly better trading profits than the default fully connected

version.

We explored and developed new methods regarding trading and hedging in the financial

market for the first two studies. After that, we are going to look at the pricing side.

Implied volatility surfaces are the pricing devices for various financial derivatives, which

means implied volatility is the most crucial variable for the BSM option pricing model. We

134 CHAPTER 6. CONCLUSION

apply the loss function from a PCA autoencoder model to the classic variation autoencoder

to obtain the encoded vectors of implied volatility surfaces of 44 European stocks and a

European stock index, in which three independent latent dimensions are obtained. We found

that each latent dimension represents a unique characteristic of the overall volatility level,

volatility skewness and volatility term structure for an implied volatility surface. These inde-

pendent latent encodings introduce significant benefits to the three synthetic surface genera-

tion tasks, which are most attractive to academics and industries. First, the synthetic surface

generation process is much more interpretable, as the descriptions of required implied volat-

ility surfaces could be directly translated to the values of the three latent numbers. The model

user would have clear expectations of the generated surface and how the model produced

these synthetic surfaces. Second, volatility extrapolation achieves better accuracy. Because

one latent number explicitly controls the relationship between the short-term subset and the

long-term subset of an implied volatility surface, it is easier to extrapolate long-term from

short-term. This is also true for extrapolating out-of-the-money from in-the-money volatilities,

which is the skewness of an implied volatility surface. Third, we proposed a novel method to

predict volatility surface from a stock index to a specific stock based on their relationships on

the independent latent spaced generation by our PCA variational autoencoder model. The

method could be beneficial in determining the price of financial derivatives of illiquid stocks

where its implied volatility surfaces are not directly observable from the market.

6.2 Contribution

This thesis explores various applications of deep neural network models for trading and

hedging financial assets. The major contributions of this thesis are as follows:

6.2. CONTRIBUTION 135

1. We propose the Technical Analysis Neural Network (TANN) pipeline for processing

high-frequency tick prices from the quote-based foreign exchange market and fore-

casting foreign exchange rate movements in future 5, 10 and 15 minutes. The method

surpasses conventional machine learning methods by a clear margin. Furthermore,

the performance of the TANN method indicates noisy financial market data could be

utilised by a neural network as long as there is an appropriate way to extract crucial

information from the market. There is a relationship between historical ticks and future

price movement direction in a short time, and neural networks can model the relation-

ship.

2. We upgraded the default deep hedging pipeline, which could trigger hedging actions

based on actual market situations and model users’ risk preferences, instead of trading

blindly on a regular daily basis. In this way, we establish the relationship between

risk (standard deviation of contract termination losses) and return (mean of contract

termination losses) using the Efficient Hedging Frontiers. The frontiers could assist

the model user in deciding the optimal hedging risk tolerance level, which brings deep

hedging one step closer to real-life scenarios.

3. We also demonstrate that using extra anticipations of future price movement directions

for the underlying asset, such as price predictions obtained from random forest models,

could shift the frontiers to the upper left direction so that the overall profits achieved at

the end of an option contract is higher, for a given level of risk tolerance.

4. We create a new three-dimensional encoding space for the implied volatility surfaces

of forty-four stocks and a stock index, using a PCA variational autoencoder model.

The significance is that three latent dimensions are forced to encode independent fea-

136 CHAPTER 6. CONCLUSION

tures of implied volatility surfaces, which are verbally interpretable. The novel encoding

space benefits the fundamental tasks of synthetic implied volatility surface generation.

The generation process becomes intuitive and explainable. The accuracy of implied

volatility extrapolation is increased.

5. We propose a novel method to predict the volatility surfaces of a typical stock from

the stock index surfaces based on our observation of the relationship between the

implied volatility surfaces of stocks and the stock index on the latent encoding space.

The method utilised a regression model and the decoder of a pre-trained autoencoder

neural network. The novel solution provides benefits for pricing derivatives of illiquid

stocks when their implied volatility surfaces are not observable from the market directly.

6.3 Future work

This thesis discusses several areas where deep learning could be applied for the trading

and hedging of financial assets. It proves that even the noisiest high-frequency tick data

could be utilised to analyse market trends and predict future prices. It also proposes novel

methods to incorporate investors’ knowledge and expectation with start-of-art neural network

models to make more explainable hedging decisions. The pricing of financial derivatives is

also improved with the new encoded space of implied volatility surfaces.

The Technical Analysis Neural Network (TANN) pipeline discussed for predicting short-

term future foreign exchange rate movement could first be upgraded by finding possible

alternative neural network model structure which generates better results. The proposed

model structure is similar to the DeepLOB model for stock price prediction, but there are

novel solutions to optimise neural network structures using genetic programming and other

6.3. FUTURE WORK 137

similar methods. There is a possibility that the neural network model structure is related to

the data type or data quantity to some degree. Another direction for improvement is to look at

the technical indicators, and it is possible using other indicators or even create new indicators

to achieve better prediction accuracies. The third direction could be to develop a downstream

method for trading the foreign exchange and test the profitability. Good prediction does

not guarantee a good profit in trading. There are plenty of other aspects to consider. For

example, the capital allocation, the timing to place an order, the trading cost and latency, etc.

We propose using the Efficient Hedging Frontiers (EHF) to understand better the hedging

decisions generated by the deep hedging neural network model. It is possible to extend the

method to more complex derivatives types. For example, the American option allows the

holder to exercise the right anytime before termination instead of only at the termination. It

is also possible to consider a portfolio of option contracts at different expiration or different

underlying stocks. In this case, when deciding the optimal dates for trading, we have to

consider correlations in the portfolio. Not only the risk preference or trading frequency. Other

constraints may also exist in reality, for example, the allocation of capital. We could work

towards incorporating them into the deep hedging neural network and finding out how these

constraints would change the balance between the standard deviation of termination losses

and the mean of termination losses.

The newly encoded latent space of implied volatility surfaces has plenty of potential re-

search directions. First, check the non-arbitrage conditions for the generated surfaces and

the existence and level of arbitrage values on the encoded latent space. If arbitrage values

exist, a modified version of the loss function should force the model to generate arbitrage-

free surfaces. The latent encoding values are assumed to have standard normal distributions

for the PCA variational autoencoder model, but other distributions may also be tested. The

138 CHAPTER 6. CONCLUSION

choices of distribution may be related to the market scenario in general. It is also possible to

extend the proposed regression model for stock-specific implied volatility surface generation

for the scenario that there are no historical surfaces for the stock at all. We should also try to

modify the neural network layers from fully connected to convolutional layers because it may

detect other meaningful features which specifically target a specific area in the surface, for

example, the long-term out of the money volatilities, which are more critical for some types of

financial derivative contracts. Recurrent layers are also a candidate for this neural network

model because it may specifically target the term structure of implied volatilities.

Bibliography

[1] Paramjit Kaur, Kewal Krishan, Suresh K Sharma, and Tanuj Kanchan. Facial-

recognition algorithms: A literature review. Medicine, Science and the Law, 60(2):131–

139, 2020.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation

by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[3] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp,

Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al.

End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

[4] Abolfazl Zargari Khuzani, Morteza Heidari, and S Ali Shariati. Covid-classifier: An

automated machine learning model to assist in the diagnosis of covid-19 infection in

chest x-ray images. Scientific Reports, 11(1):1–6, 2021.

[5] Omer Berat Sezer and Ahmet Murat Ozbayoglu. Algorithmic financial trading with deep

convolutional neural networks: Time series to image conversion approach. Applied

Soft Computing, 70:525 – 538, 2018.

[6] Ritika Singh and Shashi Srivastava. Stock prediction using deep learning. Multimedia

Tools and Applications, 76(18):18569–18584, 2017.

139

140 BIBLIOGRAPHY

[7] Anastasia Borovykh, Sander Bohte, and Cornelis W Oosterlee. Conditional time series

forecasting with convolutional neural networks. arXiv preprint arXiv:1703.04691, 2017.

[8] Francesco Costantino, Giulio Di Gravio, and Fabio Nonino. Project selection in project

portfolio management: An artificial neural network model based on critical success

factors. International Journal of Project Management, 33(8):1744–1754, 2015.

[9] Zhengyao Jiang, Dixing Xu, and Jinjun Liang. A deep reinforcement learning frame-

work for the financial portfolio management problem. arXiv preprint arXiv:1706.10059,

2017.

[10] Eliana Angelini, Giacomo Di Tollo, and Andrea Roli. A neural network approach for

credit risk evaluation. The quarterly review of economics and finance, 48(4):733–755,

2008.

[11] Vincenzo Pacelli, Michele Azzollini, et al. An artificial neural network approach for

credit risk management. Journal of Intelligent Learning Systems and Applications,

3(02):103, 2011.

[12] Jingtao Yao and Chew Lim Tan. A case study on using neural networks to perform

technical forecasting of forex. Neurocomputing, 34(1-4):79–98, 2000.

[13] An-Sing Chen and Mark T Leung. Regression neural network for error correction

in foreign exchange forecasting and trading. Computers & Operations Research,

31(7):1049–1068, 2004.

[14] Ashok K Nag and Amit Mitra. Forecasting daily foreign exchange rates using genetic-

ally optimized neural networks. Journal of Forecasting, 21(7):501–511, 2002.

BIBLIOGRAPHY 141

[15] Maxime Bergeron, Nicholas Fung, John Hull, Zissis Poulos, and Andreas Veneris.

Variational autoencoders: A hands-off approach to volatility. The Journal of Financial

Data Science, 4(2):125–138, 2022.

[16] Saïd Ladjal, Alasdair Newson, and Chi-Hieu Pham. A pca-like autoencoder. arXiv

preprint arXiv:1904.01277, 2019.

[17] Hans Buehler, Lukas Gonon, Josef Teichmann, and Ben Wood. Deep hedging. Quant-

itative Finance, 19(8):1271–1291, 2019.

[18] Xiaotao Zhang, Ziqiao Wang, Jing Hao, and Feng He. Price limit and stock market

quality: Evidence from a quasi-natural experiment in the chinese stock market. Pacific-

Basin Finance Journal, page 101778, 2022.

[19] Otc foreign exchange turnover in april 2022. https://www.bis.org/statistics/

rpfx22_fx.htm. Accessed: 2023-07-20.

[20] Ioannis Souropanis. Essays on exchange rate forecasting. PhD thesis, University of

Kent, 4 2019. Available at https://kar.kent.ac.uk/73470/.

[21] Martin D Gould, Mason A Porter, Stacy Williams, Mark McDonald, Daniel J Fenn, and

Sam D Howison. Limit order books. Quantitative Finance, 13(11):1709–1742, 2013.

[22] Angelo Ranaldo. Order aggressiveness in limit order book markets. Journal of Finan-

cial Markets, 7(1):53–74, 2004.

[23] Francesco Rundo. Deep lstm with reinforcement learning layer for financial trend pre-

diction in fx high frequency trading systems. Applied Sciences, 9(20), 2019.

https://www.bis.org/statistics/rpfx22_fx.htm
https://www.bis.org/statistics/rpfx22_fx.htm
https://kar.kent.ac.uk/73470/

142 BIBLIOGRAPHY

[24] Md Samsul Alam, Syed Jawad Hussain Shahzad, and Román Ferrer. Causal flows

between oil and forex markets using high-frequency data: Asymmetries from good

and bad volatility. Energy Economics, 84:104513, 2019.

[25] Yi-Chieh Kao, Hung-An Chen, and Hsi-Pin Ma. An fpga-based high-frequency trading

system for 10 gigabit ethernet with a latency of 433 ns. In 2022 International Sym-

posium on VLSI Design, Automation and Test (VLSI-DAT), pages 1–4. IEEE, 2022.

[26] Martin Martens and Jason Zein. Predicting financial volatility: High-frequency time-

series forecasts vis-à-vis implied volatility. Journal of Futures Markets: Futures, Op-

tions, and Other Derivative Products, 24(11):1005–1028, 2004.

[27] Abdalla Kablan and Wing Lon Ng. Intraday high-frequency fx trading with adaptive

neuro-fuzzy inference systems. International Journal of Financial Markets and Deriv-

atives, 2(1-2):68–87, 2011.

[28] Taufiq Choudhry, Frank McGroarty, Ke Peng, and Shiyun Wang. High-frequency

exchange-rate prediction with an artificial neural network. Intelligent Systems in Ac-

counting, Finance and Management, 19(3):170–178, 2012.

[29] S Villa and Fabio Stella. A continuous time bayesian network classifier for intraday fx

prediction. Quantitative Finance, 14(12):2079–2092, 2014.

[30] Burton G. Malkiel. The efficient market hypothesis and its critics. Journal of Economic

Perspectives, 17(1):59–82, 3 2003.

[31] Sunil Poshakwale. Evidence on weak form efficiency and day of the week effect in the

indian stock market. Finance India, 10(3):605–616, 1996.

BIBLIOGRAPHY 143

[32] Raymond M Leuthold and Peter A Hartmann. A semi-strong form evaluation of the

efficiency of the hog futures market. American Journal of Agricultural Economics,

61(3):482–489, 1979.

[33] Salman Syed Ali, Khalid Mustafa, and Asad Zaman. Testing semi-strong form effi-

ciency of stock market [with comments]. The Pakistan Development Review, pages

651–674, 2001.

[34] Joseph E Finnerty. Insiders and market efficiency. The journal of finance, 31(4):1141–

1148, 1976.

[35] Steven B Achelis. Technical analysis from a to z, 2001.

[36] Andrew W Lo and A Craig MacKinlay. Stock market prices do not follow random walks:

Evidence from a simple specification test. The review of financial studies, 1(1):41–66,

1988.

[37] Alireza Sadeghi, Amir Daneshvar, and Mahdi Madanchi Zaj. Combined ensemble

multi-class svm and fuzzy nsga-ii for trend forecasting and trading in forex markets.

Expert Systems with Applications, 185:115566, 2021.

[38] He Ni and Hujun Yin. Exchange rate prediction using hybrid neural networks and

trading indicators. Neurocomputing, 72(13):2815 – 2823, 2009.

[39] Saeede Anbaee Farimani, Majid Vafaei Jahan, Amin Milani Fard, and Seyed

Reza Kamel Tabbakh. Investigating the informativeness of technical indicators and

news sentiment in financial market price prediction. Knowledge-Based Systems,

247:108742, 2022.

144 BIBLIOGRAPHY

[40] John C Hull. Options futures and other derivatives. Pearson Education India, 2003.

[41] Ali Hirsa and Salih N Neftci. An introduction to the mathematics of financial derivatives.

Academic press, 2013.

[42] Yue-Kuen Kwok. Introduction to derivative instruments. Mathematical Models of Fin-

ancial Derivatives, pages 1–34, 2008.

[43] Robert Brown. Xxvii. a brief account of microscopical observations made in the months

of june, july and august 1827, on the particles contained in the pollen of plants; and

on the general existence of active molecules in organic and inorganic bodies. The

philosophical magazine, 4(21):161–173, 1828.

[44] Krishna Reddy and Vaughan Clinton. Simulating stock prices using geometric

brownian motion: Evidence from australian companies. Australasian Accounting, Busi-

ness and Finance Journal, 10(3):23–47, 2016.

[45] Kiyosi Itô. 109. stochastic integral. Proceedings of the Imperial Academy, 20(8):519–

524, 1944.

[46] Rahul R Marathe and Sarah M Ryan. On the validity of the geometric brownian motion

assumption. The Engineering Economist, 50(2):159–192, 2005.

[47] Fischer Black and Myron Scholes. The pricing of options and corporate liabilities.

Journal of Political Economy, 81(3):637–654, 1973.

[48] Robert C. Merton. Theory of rational option pricing. The Bell Journal of Economics

and Management Science, 4(1):141–183, 1973.

BIBLIOGRAPHY 145

[49] Xisheng Yu and Xiaoke Xie. On derivations of black-scholes greek letters. Research

Journal of Finance and Accounting, 4(6):80–85, 2013.

[50] Viktor Stojkoski, Trifce Sandev, Lasko Basnarkov, Ljupco Kocarev, and Ralf Metzler.

Generalised geometric brownian motion: Theory and applications to option pricing.

Entropy, 22(12):1432, 2020.

[51] Svetlana Boyarchenko and Sergei Z Levendorskii. Non-Gaussian Merton-Black-

Scholes Theory, volume 9. World Scientific, 2002.

[52] Steven Heston. A closed-form solution for options with stochastic volatility with applic-

ations to bond and currency options. Review of Financial Studies, 6:327–343, 1993.

[53] Ole E Barndorff-Nielsen, Mikko S Pakkanen, and Jürgen Schmiegel. Assessing

relative volatility/intermittency/energy dissipation. Electronic Journal of Statistics,

8(2):1996–2021, 2014.

[54] Ole E Barndorff-Nielsen, Fred Espen Benth, and Almut ED Veraart. Modelling en-

ergy spot prices by volatility modulated lévy-driven volterra processes. Bernoulli,

19(3):803–845, 2013.

[55] Jim Gatheral, Thibault Jaisson, and Mathieu Rosenbaum. Volatility is rough. Quantit-

ative Finance, 18(6):933–949, 2018.

[56] Christian Bayer, Peter Friz, and Jim Gatheral. Pricing under rough volatility. Quantitat-

ive Finance, 16(6):887–904, 2016.

[57] Mikkel Bennedsen, Asger Lunde, and Mikko S Pakkanen. Hybrid scheme for brownian

semistationary processes. Finance and Stochastics, 21(4):931–965, 2017.

146 BIBLIOGRAPHY

[58] Taras Bodnar and Wolfgang Schmid. Econometrical analysis of the sample efficient

frontier. The European journal of finance, 15(3):317–335, 2009.

[59] Mark Rubinstein. Markowitz’s" portfolio selection": A fifty-year retrospective. The

Journal of finance, 57(3):1041–1045, 2002.

[60] Robert C Merton. An analytic derivation of the efficient portfolio frontier. Journal of

financial and quantitative analysis, 7(4):1851–1872, 1972.

[61] Henri Berestycki, Jérôme Busca, and Igor Florent. Computing the implied volatility in

stochastic volatility models. Communications on Pure and Applied Mathematics: A

Journal Issued by the Courant Institute of Mathematical Sciences, 57(10):1352–1373,

2004.

[62] Jin E Zhang and Yi Xiang. The implied volatility smirk. Quantitative Finance, 8(3):263–

284, 2008.

[63] Jyh-Woei Lin. Artificial neural network related to biological neuron network: a review.

Advanced Studies in Medical Sciences, 5(1):55–62, 2017.

[64] Tomasz Szandała. Review and comparison of commonly used activation functions

for deep neural networks. In Bio-inspired neurocomputing, pages 203–224. Springer,

2021.

[65] Timothy P Lillicrap, Adam Santoro, Luke Marris, Colin J Akerman, and Geoffrey Hinton.

Backpropagation and the brain. Nature Reviews Neuroscience, 21(6):335–346, 2020.

[66] Dabal Pedamonti. Comparison of non-linear activation functions for deep neural net-

works on mnist classification task. arXiv preprint arXiv:1804.02763, 2018.

BIBLIOGRAPHY 147

[67] Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, R. Howard, Wayne

Hubbard, and Lawrence Jackel. Handwritten digit recognition with a back-propagation

network. In D. Touretzky, editor, Advances in Neural Information Processing Systems,

volume 2. Morgan-Kaufmann, 1989.

[68] Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. Loss functions for neural net-

works for image processing. arXiv preprint arXiv:1511.08861, 2015.

[69] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,

521(7553):436–444, 2015.

[70] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:

An imperative style, high-performance deep learning library. Advances in neural in-

formation processing systems, 32, 2019.

[71] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow:

Large-scale machine learning on heterogeneous distributed systems. arXiv preprint

arXiv:1603.04467, 2016.

[72] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,

abs/1412.6980, 2015.

[73] Martin Riedmiller and Heinrich Braun. A direct adaptive method for faster back-

propagation learning: The rprop algorithm. In IEEE international conference on neural

networks, pages 586–591. IEEE, 1993.

[74] Eric W Weisstein. Convolution. https://mathworld. wolfram. com/, 2003.

148 BIBLIOGRAPHY

[75] Ali N Akansu, Richard A Haddad, and Paul A Haddad. Multiresolution signal decom-

position: transforms, subbands, and wavelets. Academic press, 2001.

[76] William D Warner and Cyril Leung. Ofdm/fm frame synchronization for mobile ra-

dio data communication. IEEE Transactions on vehicular technology, 42(3):302–313,

1993.

[77] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. Advances in neural information processing sys-

tems, 25, 2012.

[78] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarch-

ies for accurate object detection and semantic segmentation. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 580–587, 2014.

[79] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken, Rob

Bishop, Daniel Rueckert, and Zehan Wang. Real-time single image and video super-

resolution using an efficient sub-pixel convolutional neural network. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages 1874–1883,

2016.

[80] Mohammad Sabokrou, Mohsen Fayyaz, Mahmood Fathy, Zahra. Moayed, and Rein-

hard Klette. Deep-anomaly: Fully convolutional neural network for fast anomaly de-

tection in crowded scenes. Computer Vision and Image Understanding, 172:88 – 97,

2018.

BIBLIOGRAPHY 149

[81] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter, Helen M

Blau, and Sebastian Thrun. Dermatologist-level classification of skin cancer with deep

neural networks. Nature, 542(7639):115—118, 2 2017.

[82] Hongwen Yan, Qingliang Cui, and Zhenyu Liu. Pig face identification based on im-

proved alexnet model. INMATEH-Agricultural Engineering, 2020.

[83] Hao Wu and Jinsong Zhao. Deep convolutional neural network model based chemical

process fault diagnosis. Computers & chemical engineering, 115:185–197, 2018.

[84] Sid Ghoshal and Stephen Roberts. Thresholded convnet ensembles: neural networks

for technical forecasting. Neural Computing and Applications, 04 2020.

[85] Srijan Sood, Zhen Zeng, Naftali Cohen, Tucker Balch, and Manuela Veloso. Visual

time series forecasting: an image-driven approach. In Proceedings of the Second

ACM International Conference on AI in Finance, pages 1–9, 2021.

[86] Jiasheng Cao and Jinghan Wang. Stock price forecasting model based on modified

convolution neural network and financial time series analysis. International Journal of

Communication Systems, 32(12):e3987, 2019.

[87] Lounnapha Sayavong, Zhongdong Wu, and Sookasame Chalita. Research on stock

price prediction method based on convolutional neural network. In 2019 international

conference on virtual reality and intelligent systems (ICVRIS), pages 173–176. IEEE,

2019.

[88] Can Yang, Junjie Zhai, Guihua Tao, et al. Deep learning for price movement predic-

tion using convolutional neural network and long short-term memory. Mathematical

Problems in Engineering, 2020, 2020.

150 BIBLIOGRAPHY

[89] Zihao Zhang, Stefan Zohren, and Stephen Roberts. Deeplob: Deep convolutional

neural networks for limit order books. IEEE Transactions on Signal Processing,

67(11):3001–3012, 2019.

[90] Omer Berat Sezer and Ahmet Murat Ozbayoglu. Financial trading model with stock

bar chart image time series with deep convolutional neural networks. arXiv preprint

arXiv:1903.04610, 2019.

[91] Xiurui Hou, Kai Wang, Cheng Zhong, and Zhi Wei. St-trader: A spatial-temporal deep

neural network for modeling stock market movement. IEEE/CAA Journal of Automatica

Sinica, 8(5):1015–1024, 2021.

[92] S Kumar Chandar. Convolutional neural network for stock trading using technical in-

dicators. Automated Software Engineering, 29:1–14, 2022.

[93] Lina Ni, Yujie Li, Xiao Wang, Jinquan Zhang, Jiguo Yu, and Chengming Qi. Forecast-

ing of forex time series data based on deep learning. Procedia computer science,

147:647–652, 2019.

[94] Rian Rassetiadi and Suharjito Suharjito. Foreign exchange prediction based on in-

dices and commodities price using convolutional neural network. Indonesian Journal

of Electrical Engineering and Computer Science, 18(1):494–501, 2019.

[95] Chen Liu, Weiyan Hou, and Deyin Liu. Foreign exchange rates forecasting with con-

volutional neural network. Neural Processing Letters, 46:1095–1119, 2017.

[96] Lkhagvadorj Munkhdalai, Tsendsuren Munkhdalai, Kwang Ho Park, Heon Gyu Lee,

Meijing Li, and Keun Ho Ryu. Mixture of activation functions with extended min-max

normalization for forex market prediction. IEEE Access, 7:183680–183691, 2019.

BIBLIOGRAPHY 151

[97] Kevin Chantona, Ronsen Purba, and Arwin Halim. News sentiment analysis in forex

trading using r-cnn on deep recurrent q-network. In 2020 Fifth International Confer-

ence on Informatics and Computing (ICIC), pages 1–7. IEEE, 2020.

[98] Che-Yu Lee and Von-Wun Soo. Predict stock price with financial news based on re-

current convolutional neural networks. In 2017 conference on technologies and ap-

plications of artificial intelligence (TAAI), pages 160–165. IEEE, 2017.

[99] Joy Iong-Zong Chen and Kong-Long Lai. Deep convolution neural network model for

credit-card fraud detection and alert. Journal of Artificial Intelligence and Capsule

Networks, 3(2):101–112, 2021.

[100] Kang Fu, Dawei Cheng, Yi Tu, and Liqing Zhang. Credit card fraud detection using

convolutional neural networks. In Neural Information Processing: 23rd International

Conference, ICONIP 2016, Kyoto, Japan, October 16–21, 2016, Proceedings, Part III

23, pages 483–490. Springer, 2016.

[101] Abolfazl Mehbodniya, Izhar Alam, Sagar Pande, Rahul Neware, Kantilal Pitambar

Rane, Mohammad Shabaz, and Mangena Venu Madhavan. Financial fraud detec-

tion in healthcare using machine learning and deep learning techniques. Security and

Communication Networks, 2021:1–8, 2021.

[102] Tadaaki Hosaka. Bankruptcy prediction using imaged financial ratios and convolutional

neural networks. Expert systems with applications, 117:287–299, 2019.

[103] Yilin Ma, Ruizhu Han, and Weizhong Wang. Prediction-based portfolio optimization

models using deep neural networks. Ieee Access, 8:115393–115405, 2020.

152 BIBLIOGRAPHY

[104] Zihao Zhang, Stefan Zohren, and Stephen Roberts. Deep learning for portfolio optim-

ization. The Journal of Financial Data Science, 2020.

[105] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper

with convolutions. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 1–9, 2015.

[106] Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990.

[107] Roger Grosse. Lecture 15: Exploding and vanishing gradients. University of Toronto

Computer Science, 2017.

[108] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Compu-

tation, 9(8):1735–1780, 1997.

[109] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On

the properties of neural machine translation: Encoder–decoder approaches. In Pro-

ceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statist-

ical Translation, pages 103–111, Doha, Qatar, 10 2014. Association for Computational

Linguistics.

[110] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Empirical

evaluation of gated recurrent neural networks on sequence modeling. In NIPS 2014

Workshop on Deep Learning, December 2014, 2014.

[111] Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and Francis Lau. A c-lstm neural network

for text classification. arXiv preprint arXiv:1511.08630, 2015.

BIBLIOGRAPHY 153

[112] Zengjian Liu, Ming Yang, Xiaolong Wang, Qingcai Chen, Buzhou Tang, Zhe Wang,

and Hua Xu. Entity recognition from clinical texts via recurrent neural network. BMC

medical informatics and decision making, 17(Suppl 2):67, 7 2017.

[113] Binbin Yan, Memon Aasma, et al. A novel deep learning framework: Prediction and

analysis of financial time series using ceemd and lstm. Expert systems with applica-

tions, 159:113609, 2020.

[114] Yifei Zhang. A better autoencoder for image: Convolutional autoencoder. In

ICONIP17-DCEC, 2018.

[115] Yu Chen and Mohammed J Zaki. Kate: K-competitive autoencoder for text. In Pro-

ceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 85–94, 2017.

[116] Cheng-Yuan Liou, Wei-Chen Cheng, Jiun-Wei Liou, and Daw-Ran Liou. Autoencoder

for words. Neurocomputing, 139:84–96, 2014.

[117] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114, 2013.

[118] Diederik P Kingma, Max Welling, et al. An introduction to variational autoencoders.

Foundations and Trends® in Machine Learning, 12(4):307–392, 2019.

[119] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward net-

works are universal approximators. Neural networks, 2(5):359–366, 1989.

154 BIBLIOGRAPHY

[120] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang

Liu. A survey on deep transfer learning. In International conference on artificial neural

networks, pages 270–279. Springer, 2018.

[121] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and transferring

mid-level image representations using convolutional neural networks. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 1717–1724,

2014.

[122] Jui-Ting Huang, Jinyu Li, Dong Yu, Li Deng, and Yifan Gong. Cross-language know-

ledge transfer using multilingual deep neural network with shared hidden layers. In

2013 IEEE International Conference on Acoustics, Speech and Signal Processing,

pages 7304–7308. IEEE, 2013.

[123] Justin Sirignano and Rama Cont. Universal features of price formation in financial

markets: perspectives from deep learning. Quantitative Finance, 19(9):1449–1459,

2019.

[124] Fan Fang, Waichung Chung, Carmine Ventre, Michail Basios, Leslie Kanthan, Lingbo

Li, and Fan Wu. Ascertaining price formation in cryptocurrency markets with

deeplearning. CoRR, abs/2003.00803, 2020.

[125] Yuxi Li. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274,

2017.

[126] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Os-

BIBLIOGRAPHY 155

trovski, et al. Human-level control through deep reinforcement learning. nature,

518(7540):529–533, 2015.

[127] Yuh-Jong Hu and Shang-Jen Lin. Deep reinforcement learning for optimizing finance

portfolio management. In 2019 amity international conference on artificial intelligence

(AICAI), pages 14–20. IEEE, 2019.

[128] Frensi Zejnullahu, Maurice Moser, and Joerg Osterrieder. Applications of rein-

forcement learning in finance–trading with a double deep q-network. arXiv preprint

arXiv:2206.14267, 2022.

[129] James M. Hutchinson, Andrew W. Lo, and Tomaso Poggio. A nonparametric approach

to pricing and hedging derivative securities via learning networks. The Journal of

Finance, 49(3):851–889, 1994.

[130] Johannes Ruf and Weiguan Wang. Hedging with linear regressions and neural net-

works. Journal of Business and Economic Statistics, 2020.

[131] Jay Cao, Jacky Chen, John Hull, and Zissis Poulos. Deep hedging of derivatives using

reinforcement learning. The Journal of Financial Data Science, 3(1):10–27, 2021.

[132] Leif E Peterson. K-nearest neighbor. Scholarpedia, 4(2):1883, 2009.

[133] Jorma Laaksonen and Erkki Oja. Classification with learning k-nearest neighbors. In

Proceedings of International Conference on Neural Networks (ICNN’96), volume 3,

pages 1480–1483. IEEE, 1996.

156 BIBLIOGRAPHY

[134] Anthony J Myles, Robert N Feudale, Yang Liu, Nathaniel A Woody, and Steven D

Brown. An introduction to decision tree modeling. Journal of Chemometrics: A Journal

of the Chemometrics Society, 18(6):275–285, 2004.

[135] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data

with neural networks. science, 313(5786):504–507, 2006.

[136] Hasna Haifa Zahrah, Siti Saâ, Rita Rismala, et al. The foreign exchange rate prediction

using long-short term memory. International Journal on Information and Communica-

tion Technology (IJoICT), 6(2):94–105, 2020.

[137] Richard Meese and Kenneth Rogoff. Empirical exchange rate models of the seventies:

Do they fit out of sample? Journal of International Economics, 14:3–24, 1983.

[138] Robert P. Flood and Andrew K. Rose. Fixing exchange rates a virtual quest for funda-

mentals. Journal of Monetary Economics, 36(1):3 – 37, 1995.

[139] Andrew Lilley, Matteo Maggiori, Brent Neiman, and Jesse Schreger. Exchange rate

reconnect. Review of Economics and Statistics, 104(4):845–855, 2022.

[140] Oleg Itskhoki and Dmitry Mukhin. Exchange rate disconnect in general equilibrium.

Journal of Political Economy, 129(8):2183–2232, 2021.

[141] Ramazan Gençay, Michel Dacorogna, Ulrich A Muller, Olivier Pictet, and Richard

Olsen. An introduction to high-frequency finance. Elsevier, 2001.

[142] James B Glattfelder, Alexandre Dupuis, and Richard B Olsen. Patterns in high-

frequency fx data: discovery of 12 empirical scaling laws. Quantitative Finance,

11(4):599–614, 2011.

BIBLIOGRAPHY 157

[143] Shengnan Li, Edward PK Tsang, and John O’Hara. Measuring relative volatility in

high-frequency data under the directional change approach. Intelligent Systems in

Accounting, Finance and Management, 29(2):86–102, 2022.

[144] Irene Aldridge. High-frequency trading: a practical guide to algorithmic strategies and

trading systems, volume 604. John Wiley & Sons, 2013.

[145] Alexis Stenfors and Masayuki Susai. Liquidity withdrawal in the fx spot market: A

cross-country study using high-frequency data. Journal of International Financial Mar-

kets, Institutions and Money, 59:36–57, 2019.

[146] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,

U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,

editors, Advances in Neural Information Processing Systems 30, pages 5998–6008.

Curran Associates, Inc., 2017.

[147] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Du-

bourg, et al. Scikit-learn: Machine learning in python. the Journal of machine Learning

research, 12:2825–2830, 2011.

[148] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv e-prints, page

arXiv:1312.4400, 12 2013.

[149] Nitish Shirish Keskar, Jorge Nocedal, Ping Tak Peter Tang, Dheevatsa Mudigere, and

Mikhail Smelyanskiy. On large-batch training for deep learning: Generalization gap

158 BIBLIOGRAPHY

and sharp minima. In 5th International Conference on Learning Representations, ICLR

2017, 2017.

[150] Menzie D. Chinn and Richard A. Meese. Banking on currency forecasts: How pre-

dictable is change in money? Journal of International Economics, 38(1):161 – 178,

1995.

[151] Xing Huan and Antonio Parbonetti. Financial derivatives and bank risk: evidence from

eighteen developed markets. Accounting and Business Research, 49(7):847–874,

2019.

[152] Edoardo Vittori, Michele Trapletti, and Marcello Restelli. Option hedging with risk

averse reinforcement learning. In Proceedings of the First ACM International Con-

ference on AI in Finance, pages 1–8, 2020.

[153] Zuzana Janková. Drawbacks and limitations of black-scholes model for options pricing.

Journal of Financial Studies and Research, 2018:1–7, 2018.

[154] David S. Bates. Jumps and stochastic volatility: Exchange rate processes implicit in

deutsche mark options. The Review of Financial Studies, 9(1):69–107, 1996.

[155] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural

Networks, 4(2):251–257, 1991.

[156] Ji Hyun Jang, Jisang Yoon, Jungeun Kim, Jinmo Gu, and Ha Young Kim. Deepoption:

A novel option pricing framework based on deep learning with fused distilled data from

multiple parametric methods. Information Fusion, 70:43–59, 2021.

[157] Harry Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91, 1952.

BIBLIOGRAPHY 159

[158] Robert Almgren and Neil Chriss. Optimal execution of portfolio transactions. Journal

of Risk, pages 5–39, 2000.

[159] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[160] Luigi Ballabio. Implementing quantlib, 2005.

[161] Leif Andersen and Jesper Andreasen. Jump-diffusion processes: Volatility smile fitting

and numerical methods for option pricing. Review of derivatives research, 4(3):231–

262, 2000.

[162] Cristian Homescu. Implied volatility surface: Construction methodologies and charac-

teristics. arXiv preprint arXiv:1107.1834, 2011.

[163] Janne Äijö. Implied volatility term structure linkages between vdax, vsmi and vstoxx

volatility indices. Global Finance Journal, 18(3):290–302, 2008.

[164] Jay Cao, Jacky Chen, and John Hull. A neural network approach to understanding

implied volatility movements. Quantitative Finance, 20(9):1405–1413, 2020.

[165] Damien Ackerer, Natasa Tagasovska, and Thibault Vatter. Deep smoothing of

the implied volatility surface. Advances in Neural Information Processing Systems,

33:11552–11563, 2020.

[166] Yu Zheng, Yongxin Yang, and Bowei Chen. Gated deep neural networks for implied

volatility surfaces. arXiv preprint arXiv:1904.12834, 7, 2019.

	Introduction
	Overview
	Research Objectives
	Research Methodologies
	Thesis Structure
	Publications

	Literature Review
	Introduction
	Financial Concepts and Theories
	High-frequency FX spot rate forecasting
	Efficient Market Hypothesis and Technical Analysis
	Futures, Option, and Hedging
	Geometric Brownian Motion
	Black-Scholes-Merton
	Stochastic Volatility Model
	Fractional Brownian Motion and rough Bergomi model
	Efficient Frontier
	Implied Volatility Surface

	Deep Learning Models
	Fully Connected Layers
	Convolution Layers
	Recurrent Layers
	Auto-Encoder
	Universal Approximation Theory
	Reinforcement Learning
	Deep Hedging

	Other Machine Learning Methods

	Technical Analysis Neural Network
	Introduction
	Data
	Model
	Experimental Results
	Baseline Results
	Dynamic Thresholds
	Larger Training Window
	Universal Model

	Conclusions

	Efficient Hedging Frontier
	Introduction
	An illustration of Default Deep Hedging
	Deep Hedging with a Price Change Threshold
	Deep Hedging with a Classifier
	Experimental Setting and Results
	Heston Simulation with Various Trading Costs
	Heston Simulation with Random Forest Classifier
	Heston Simulations with Different Market Conditions
	Rough Bergomi Simulation with Different Hurst Parameters

	Updating the Neural Network
	Conclusions

	A New Encoding for Implied Volatility Surfaces
	Introduction
	PCA Variational Auto-Encoder
	Dataset and Evaluation Criteria
	Encoding Implied Volatility Surface
	Training the PCA Variational Auto-encoder
	Encoded Latent Space

	Generating Synthetic Surface
	Scenario-Based Generation
	Implied Volatility Extrapolation
	Stock Specific Generation

	Conclusion

	Conclusion
	Summary
	Contribution
	Future work

