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Abstract
The diversity of services and infrastructure in metropolitan edge-to-cloud network(s) is rising to unprecedented levels. This 
is causing a rising threat of a wider range of cyber attacks coupled with a growing integration of a constrained range of 
infrastructure, particularly seen at the network edge. Deep reinforcement-based learning is an attractive approach to detect-
ing attacks, as it allows less dependency on labeled data with better ability to classify different attacks. However, current 
approaches to learning are known to be computationally expensive (cost), and the learning experience can be negatively 
impacted by the presence of outliers and noise (quality). This work tackles both the cost and quality challenges with a 
novel service-based federated deep reinforcement learning solution, enabling anomaly detection and attack classification at 
a reduced data cost and with better quality. The federated settings in the proposed approach enable multiple edge units to 
create clusters that follow a bottom-up learning approach. The proposed solution adapts a deep Q-learning network (DQN) 
for service-tunable flow classification and introduces a novel federated DQN (FDQN) for federated learning. Through such 
targeted training and validation, variation in data patterns and noise is reduced. This leads to improved performance per 
service with lower training cost. Performance and cost of the solution, along with sensitivity to exploration parameters, 
are evaluated using examples of publicly available datasets (UNSW-NB15 and CIC-IDS2018). Evaluation results show the 
proposed solution to maintain detection accuracy in the range of ≈75–85% with lower data supply while improving the 
classification rate by a factor of ≈2.

Keywords Cyber security · Federated deep reinforcement learning · Deep Q-learning · Anomaly detection · Cloud-to-edge 
continuum · Fog computing

1 Introduction

Digital transformation increases the diversity of actors and 
distribution of data, services, and resources in metropoli-
tan edge-to-cloud (i.e., fog) computing ecosystems. This 
intuitively raises the threat of a wider mixture of cyber 
attacks to new levels [1, 2]. Added to that, the shift towards 

service-based paradigms attracts finer granularity attacks, 
targeting application components rather than hosts. Conse-
quently, there is a mounting need to develop efficient ser-
vice-based anomaly detection solutions able to cope with this 
change, at the granularity of hosts and services. The pros-
pect of deploying such solutions in the resource-constrained 
edge of the fog motivates the requirement for efficient use of 
resources and incentivizes the interconnection of such solu-
tions for collaborative knowledge building.

Machine learning is an attractive approach to anomaly 
detection, supporting intelligence-based rapid and autono-
mous reaction. Existing learning methods vary in their 
capabilities of detecting cyber attacks [3–5]. Supervised 
learning is found to be highly effective in identifying known 
attacks while being relatively easy to implement; but the 
strong dependency on labeled data during training renders 
the approach less effective against zero-day attacks. Unsu-
pervised learning does not require labeled data; however, 
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the complexity of the approach is considerably higher 
than that of the supervised counterpart, making it com-
putationally expensive. The complexity and cost are even 
higher for deep learning variants. Added to that, while both 
approaches perform well when the training and testing sets 
are drawn from similar types of data, their performance 
plummets when the training and testing datasets differ [6]. 
Reinforcement learning presents a trade-off in having weak 
dependency on labeled data while offering the ability to 
associate patterns. This approach is attractive for anomaly 
detection as it allows detecting known and unknown attacks 
with less computation complexity than unsupervised coun-
terparts and better ability to adapt to differing datasets.

So far, research efforts have proposed few solutions for 
intelligent anomaly detection in service-based systems 
[7–9]. Most of them follow a centralized approach in which 
data feeds are collated in a large data warehouse and utilized 
to train global models, irrespective of individual services. 
Fewer solutions, such as [10, 11], propose a federated learn-
ing approach where models are trained in parts of the net-
work and interconnected to shared knowledge. These solu-
tions are better aligned with the fog computing paradigm, 
but they remain service-agnostic. While this has proven to 
be successful, two main drawbacks are emerging from using 
a dataset of all services: first, such a set has a maximum 
pattern-diversity and all the outliers. Consequently, training 
would require longer cycles, which adds to the computa-
tion cost, and may suffer from an increased likelihood of 
raising false alarms. Second, using such a set obscures the 
individuality of each service, hindering the ability to adapt 
the learning task to the service. Moreover, with prominent 
adoption of a cloud-to-edge continuum, there is a stronger 
need for service-based federated learning. In particular, there 
is a need to improve the detection and classification accuracy 
despite the lower local supply of data, while reducing the 
demand for computation resources.

This article extends the novel solution, presented earlier 
in [12], of service-based federated deep reinforcement learn-
ing for anomaly detection in fog ecosystems. The proposed 
solution defines learning clusters that follow a bottom-up 
approach; each is a system of agents and an aggregation 
point. Each agent, likely to run at the edge, trains and scores 
a service-tunable deep Q-learning network (DQN), then 
sends it to its aggregation point. The latter incorporates a 
novel federated DQN (FDQN) that calculates an aggregate 
of local scores and uses it to decide whether or not to gener-
ate and disseminate a cluster model.

This is to achieve faster training without compromis-
ing the detection accuracy, hence achieving sophisticated 
learning over constrained resources. We evaluate the per-
formance and cost of the proposed solution over publicly 
available example datasets, UNSW-NB15 [13] and CIC-
IDS2018 [14, 15].

Evaluation results illustrate the superiority of the pro-
posed service-based solution (both central and federated) 
over service-agnostic counterparts. This is reflected by 
improvements in detection accuracy and attack classifica-
tion, at a lower supply of training data. Furthermore, we 
analyze sensitivity to the exploration parameters and show 
the impact of different settings on performance quality.

The contributions of this work are summarized as follows:

• A service-based federated deep reinforcement learning 
solution for anomaly detection and classification in fog 
ecosystems. This includes a FQDN algorithm that pro-
vides score-based generation of aggregate models.

• Utilization of DQN in combination with a class-based 
reward policy to enable service-tunable anomaly detec-
tion and classification.

• Inter-cluster, same-service, model exchange to allow for 
knowledge transfer across clusters.

To the best of our knowledge, the initial work of [12] and 
its extension here are the first to propose such a service-
based solution. Finally, we evaluate the performance, cost, 
and sensitivity of the proposed solution using example data-
sets and compare the results against state-of-the-art service-
agnostic baseline.

The rest of this paper is structured as follows: Section 2 
provides an overview of state-of-the-art work on anomaly 
detection using machine learning. Section 3 describes the 
proposed federated learning system, while Section 4 pre-
sents the performance and cost evaluation along with the 
results of the sensitivity analysis. Finally, Section 5 draws 
our conclusions.

2  Related work

Recent years have witnessed a rapid adoption of machine 
learning for detecting anomalies in network traffic [4, 5, 16] 
or application domains such as [17]. Multiple solutions for 
service-agnostic detection based on centralized deep learn-
ing have been proposed, such as [7, 18]. Nedelkoski et al. [7] 
propose a solution that combines a variational autoencoder 
and are current neural network (RNN) to learn from data-
sets of IT operations in large distributed systems, in order 
to identify anomalous behavior of services. Although their 
work is focused on service anomalies, the learning process 
is agnostic to services. Sethi et al. [18] propose a central-
ized deep Q-learning solution for intrusion detection in the 
cloud that is able to identify zero-day attacks with low false-
positive rate. These solutions have high computation cost 
that comes with training over all the captured data, making 
them computationally-heavy for the resource-constrained 
edge. In contrast, by focusing a learning task on a service, 
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using only the service’s data, both the volume of needed data 
for training and number of training cycles can be tailored to 
a service’s needs. This allows flexibility in tuning resource 
allocation based on needs and capacities.

The propositions of [8, 9] focus on service-based anomaly 
detection. Zuo et al. [8] propose microservice-based anom-
aly detection system using a spatio-temporal deep learning 
for temporal service logs and spatial queries. Zoppi et al. [9] 
propose a self-adaptive online learning method combining 
Historical Checker and Statistical Predictor and Safety Mar-
gin algorithms for anomaly detection in dynamic service-
oriented systems. While their system shows improvement 
over evaluated alternatives, it is unclear how well the system 
performs in detecting anomalies of individual services, nor 
how the system parameters are tuned towards individual 
services. Furthermore, these models remain central without 
incorporating knowledge from different operational sites.

Orthogonally, federated learning solutions have been pro-
posed for anomaly detection [10, 11, 19–21]. Preuveneers 
et al. [10] propose a deep federated learning solution that 
incorporates the use of blockchain to maintain an immu-
table record of benchmark copies of the models as a pro-
tection mechanism against adversarial poisoning attacks. 
Shengjie et al. [11] present an AI-enabled anomaly detec-
tion mechanism for fog environments. The proposed frame-
work follows a bottom-up approachÂ based on three com-
ponents: Fog-enabled infrastructure, Fog-enabled AI, and 
threat intelligence. The framework combines both local and 
global parameters to build a comprehensive AI framework. 
However, it requires extensive communication between Â 
different components. Amangele et al. [19] provide a hier-
archical learning solution for anomaly detection in software 
defined networks (SDN); whereby, a lightweight model 
is co-located with SDN switches to facilitate lightweight 
detection of anomalies, which is then pushed to a central 
model co-located with the SDN controller to provide a more 
comprehensive analysis of suspicious traffic. Liu et al. pro-
pose in [20] an on-device federated learning solution with 
aim of providing collaborative training on an anomaly 
detection model as a way of improving the generalization 
abilities. Hellander et al. propose in [21] Fedn, a federation 

framework for management and control of federated learn-
ing deployments. The aim is to provide a production-level, 
resilient, federation system.

Although these federated solutions enable collaborative 
learning between different sites, such as in a fog ecosystem, 
they are service-agnostic. This results in sub-optimal use 
of computation resources as a result of the “un-focused” 
learning approach while missing pattern details of individual 
services. In comparison with the aforementioned efforts, the 
proposed solution in this article offers a focused approach 
to identify anomalies in network traffic. By working at the 
level of services, resources and learning tasks can be tai-
lored to the service traffic and needs. Aside from the higher 
flexibility in managing resources, having focused learning 
reduces the chances of false alarms. In the following section, 
we describe the service-based federated deep reinforcement 
learning solution of this work.

3  Proposed solution

We propose a service-based federated anomaly detection 
solution, using federated deep reinforcement learning (as 
illustrated in Fig. 1).

3.1  Preliminary on the fog ecosystem

We assume a fog ecosystem that follows the OpenFog refer-
ence architecture [22]. The edge of the fog is comprised of a 
set of nano data centers, defined as edge nodes. These have 
constrained capacity, hence providing limited resource elas-
ticity. Each edge node is co-located with an access gateway, 
offering a subset of services to a local group of end-devices 
that belong to an enterprise-level user. Examples of the latter 
may include (but not limited to) smart building managers, 
Industry 4.0 and/or a hospital. The set of services may dif-
fer, depending on such metrics as local demand and service 
deployment plans. Consequently, local data observed at each 
edge node is assumed to affiliate with the services offered by 
the node. Moving from the edge towards the core, the capac-
ity of a data center (i.e., node) increases while the number 

Fig. 1  An overview of the pro-
posed service-based federated 
deep reinforcement learning 
system, showing clusters of 
agents and their aggregation 
points for DNS and HTTP 
services. Aggregation points 
can exchange cluster models 
following a publish/subscribe 
approach HTTPDNS
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of data centers, nodes, decreases. Nodes are controlled by 
one or multiple virtual resource orchestration platforms such 
as Kubernetes1 to enable deployment of variety of services, 
including traffic monitors and anomaly detection applica-
tions. The control-plane functions of an application are able 
to communicate with the resource orchestrator to commu-
nicate application requirements.

3.2  Preliminary on deep Q‑learning network (DQN)

DQN was introduced by Google in [23, 24] to overcome 
correlation and overestimation issues in classic Q-learning 
network. DQN is a system of two deep neural networks 
(DNN), utilized to select and estimate the value (reward) of 
an action for any given state in a Q-learning network. The 
system relies on building experience over time and using it 
to make decisions of higher rewards. For any state, the first 
DNN selects an action either randomly or following a greedy 
policy that maximizes rewards, calculated by the network. 
The selection process is a function of an exploration param-
eter that decays over training cycles.

Initially, the exploration parameter has a higher weight 
in the selection function, to allow for exploring the action 
space and build experience. The second network improves 
on accumulative knowledge of action rewards through expe-
rience replay, selecting random batches from past training 
records and learning from them. The two networks syn-
chronize periodically, to utilize the Q values learned in the 
second network in training the first one. DQN lends itself 
to adaptation for federated learning, as the neural networks 
aggregation can reflect experience learned by separate, 
remotely located, instances of DQN. Moreover, the state-
action structure of QN makes it suitable for anomaly detec-
tion and classification, where a selection of data features 
can be considered as a set of actions to classify data. In the 
context of this work, the unique set of labels of benign and 
malicious flows provides a combination of benign and attack 
classes that can directly be represented as a set of actions.

3.3  Service‑based federated learning clusters

Given the above, we propose an anomaly detection and 
classification solution that follows a bottom-up learning 
approach. It consists of a set of federated learning clus-
ters, at least one per service of benign and/or malicious 
behavior. Each cluster consists of a set of learning agents 
and an aggregation point. Learning agents are likely to be 
deployed at edge nodes—though it is not a constraint—in 
order to limit the propagation of end-user data through the 
provider’s network. Whereas, the aggregation point is likely 

to be deployed in a node that has reliable connectivity to 
the majority of nodes where cluster agents are running, to 
minimize the likelihood of cluster disruption. We assume 
optimized placement of agents and their aggregation point 
over fog nodes to be achieved by the fog orchestrator(s), 
incorporating pre-defined cluster needs. The selection of 
agents in a cluster and their homogeneity is decided by 
cluster management entities. For the sake of this work, we 
assume that cluster’s agents are relatively homogeneous in 
terms of the volume of training and validation data. Further-
more, cluster deployment correlates with the deployment of 
the service of interest for anomaly detection and classifica-
tion. The strength of correlation depends on the tightness of 
the constraint to co-locate an agent with a service runtime. 
We recognize this challenge but will not further elaborate 
on it here, as cluster management and orchestration is left 
for our future work.

Each agent trains a DQN over a flow-based local dataset 
of a specific service. Each record of the data is labeled either 
as benign or a type of attack. We assume labeled data to 
be generated separately, using, for example, unsupervised 
learning solutions outside the scope of this work. To this 
end, a service can be flexibly defined at the desired gran-
ularity of the provider. For instance, a service can be the 
application-layer protocol, the URL, the IP address, or any 
other form of identifiers. Here, we define a service by the 
application layer protocol, represented by the transport-layer 
port number.

It is worth noting that we recognize the implication of 
defining HTTP in particular as a single service to be a coarse 
aggregation of all web-services. A finer-granularity classifi-
cation of said services is likely to reveal distinctive patterns. 
However, due to space limitation here and given that our 
work is the first to introduce service-based anomaly detec-
tion, we tolerate this coarse aggregation. Future work will 
focus on disentangling the behavior of distinct classes of 
web-services.

3.4  Cluster model

Here, we describe the mathematical model of a learning 
cluster and the variables utilized in the remainder of the 
paper. For a service i, a learning cluster is defined as c. It 
consists of a set of learning agents L that run a service-tun-
able DQN, and an aggregation point that runs FDQN. Each 
flow of service i is defined as s ∈ S

i
l
 , with Si

l
, |Si

l
| = Si

l
 being 

the set of flows (states) analyzed by agent l ∈ L . The action 
set of i is defined as Ai

, |Ai| = Ai . Notice that the action set 
is unified across all agents of a cluster. This homogeneity 
is required in order to enable accurate aggregation of local 
DQN models into a cluster counterpart. The replay buffer is 
defined as athcalD , and the reward matrix per service Ri as:

1 https:// kuber netes. io/

https://kubernetes.io/
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where ρ and σ are predefined reward values. Additional 
hyper parameters of DQN are defined as: 𝜇 > 0 the replay 
buffer size and 0 < 𝛽 < 𝜇 the mini batch size.

The Epoch size in number of states per learning cycle is 
defined as mi . Hence, the number of Epochs (i.e., rounds for 
federated learning) is defined as Mi = min({Si

l
|l ∈ L})∕mi , 

where min({Si
l
|l ∈ L}) is the smallest dataset in the cluster.

3.5  An agent: anomaly detection and classification 
with DQN

Each agent runs a DQN system of two fully-connected 
deep neural networks (DNN). The number of layers and 
the number of neurons per layer are tunable per service, 
with some services requiring shallower and/or smaller net-
works than others. In this work, each DNN is set to be of 6 
layers, with 30 neurons at each of the hidden layers. This 
is to ensure sufficient depth and breadth for flow analysis, 
as well as a leveled-field for comparison across services. 
An action set Ai that includes unique labels of all flows 

(1)

R
i =

⎧
⎪⎨⎪⎩

−𝜌 if (a
�

s > 0 ∧ as < 0) ∨ (a
�

s < 0 ∧ as > 0)

+𝜌 if (a
�

s > 0 ∧ as > 0) ∨ (a
�

s = 0 ∧ as = 0)

+𝜎, 𝜎 > 𝜌 if (a
�

s > 0 ∧ as > 0) ∧ (a
�

s = as)

in the service dataset is provided to DQN. The label set 
includes 0 for benign flows and a ∈ 1, 2, ... ∈ A

i for attack 
classes with the value of a representing the attack class. 
Recall that services may have different classes of attacks 
and hence the action set is defined on a per-service basis. 
For each state s ∈ S

i
l
 (i.e., data flow), DQN selects an 

action a�

s ∈ A
i (i.e., flow label) with a predictive reward, 

calculated as described earlier in Section 3.2 for a given 
exploration parameter � of a decay rate �.

The reward is chosen from the matrix defined by (1), 
determined by comparing the selected label a′

s with the 
actual counterpart as . If the selected label a′

s > 0 but the 
actual one as = 0 or vice versa (i.e., false-positive or false-
negative), the reward is of negative value. In contrast, if both 
a

′

s > 0 and as > 0 or a�

s, as = 0 (i.e., true-positive or true-
negative), the reward is of positive value. Moreover, if the 
true-positive is classified by a known class of attacks (i.e., 
a

�

s, as > 0, a
�

s = as ), an even higher positive reward is given.
The DQN of an agent is illustrated in Algorithm 5. By 

the end of each training cycle t ≤ Mi , every agent would 
have accumulated a total reward, Ri

l,t
 for all actions taken 

by their DQN over the set of states used in the cycle. 
This reward is counted as a score of the model quality at 
the cycle. The model checkpoint at the end of the cycle, 
DQNl,t , is then sent to the aggregation point to contribute 
in generating an update of the cluster model, DQNc,t.

Algorithm 1   Agent: DQN
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3.6  An aggregation point: federated DQN (FDQN)

Agents share their trained models and score with the aggre-
gation point, which utilize them to calculate a cluster-wide 
score of the cycle, Ri

c,t
 . The function to calculate the cluster 

score may differ for different clusters; here, we apply a sim-
ple average function defined as:

If the new score is higher than the current best score, 
the aggregation point applies an algorithm such as FedAvg 
[25] to aggregate local models into a cluster counterpart. 
The selection of model aggregation function depends on the 
service and the cluster; FedAvg is applied here merely for 
its simplicity. It is realized by calculating the average of 
every layer in each of the two neural networks of all mod-
els. Consequently, each of the two neural networks of the 
cluster model is the result of averaging layers of the same 
network in the local models. The cluster model is dissemi-
nated back to the cluster’s agents for use in the next cycle. 
Alternatively, if the new cluster score is lower or the same 
as the last best one, agents are simply notified to continue 
training using their current models (i.e., no cluster model is 
disseminated). The FDQN of the aggregation point is sum-
marized in Algorithm 2.

3.7  Inter‑cluster model exchange

An aggregation point may publish updates of its cluster 
model to other clusters. This is foreseen to enable clus-
ters facing shortage in data supply to compensate with 
models trained elsewhere in the ecosystem. A published 
model may be associated with metadata specifying such 

(2)ClusterScore =

∑
l∈LR

i
l,t

�L�

information as: the service of focus, the model score, and 
the hyper parameters used in training. An aggregation 
point may further be interested in external cluster mod-
els of specific metadata, such as the service of focus and 
model score. If a published model of matching specifi-
cations exists, the aggregation point subscribes to it to 
receive model updates. The latter can be treated differ-
ently; here, we assume an external model will merely be 
considered as an added “local” model with the publish-
ing cluster perceived as an “agent” that supplies model 
updates but not necessarily receive cluster updates.

3.8  Pathway to realization

The proposed system can be realized by exploiting a com-
bination of suitable functionalities of federated learning 
frameworks such as Fedn [21]; fog orchestration platforms 
such as Kubernetes; and principles of service resolution 
from information-centric networking research such as 
[26]. For instance, using Kubernetes a HTTP-based feder-
ated learning cluster X can be defined as a set of connected 
micro-services, one for the aggregation point and L = |L| 
for the agents. The microservice used by the aggregation 
point to publish the cluster model can be in the form, 
CModel.ap.X.HTTP.com, exposed to all agents of the 
cluster and potentially to other clusters. Meanwhile, the 

microservice used by agent l to share their local model can 
be in the form: LModel.l.X.HTTP.com and published in 
return to the aggregation point. The aggregation point may 
also subscribe to the cluster model published by remote 
cluster Y, CModel.ap.Y.HTTP.com to achieve the capa-
bility described earlier in Section 3.7. Notably, the pub-
lish/subscribe logic is not directly supported by existing 

Algorithm 2   Aggregation 
Point: FDQN
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platforms; hence, it is part of our future work. To manage 
and control the operation of a cluster, Fedn can be utilized 
with suitable modifications.

4  Evaluation

We utilize the UNSW-NB15 [13] and CIC-IDS2018 [14] 
public datasets to evaluate the performance and cost of the 
proposed solution and analyze the sensitivity to exploration 
parameters. Performance is evaluated for two scenarios: 
with and without inter-cluster model exchange. Notably, 
the evaluation using CIC-IDS2018 dataset along with solu-
tion performance given inter-cluster model exchange are 
extensions of this work from the earlier baseline of [12]. We 
use the aforementioned datasets because they provide less 
noisy data, with sufficient number of flows per-service and 

per-attack. The UNSW-NB15 dataset is comprised of four 
sets, providing a total of 2,540,047 records with 12 distinct 
services each monitored for 9 classes of attacks. The CIC-
ID2018 dataset is comprised of ten sets, providing a total of 
5,538,479 records with 8 major services each monitored for 
13 classes of attacks.

The datasets are summarized in Table 1 for the most 
commonly targeted services, constituting ≈94.5% of service 
records in UNSW-NB15 dataset and ≈90% of records in 
CIC-IDS2018 counterpart. Noteworthy is that attack flows of 
individual services contain a subset (i.e., not all) of the total 
attacks. For instance, DNS in UNSW-NB15 dataset has 4 out 
of 9 attacks with a domination of the “Generic” class. This 
means that DNS records overall are in binary state of either 
benign or not, with no clear indication of the type of attack. 
The same binary status is observed for DNS in CIC-IDS2018 
dataset, with one attack class recorded as “Infiltration.”

Table 1  Summary of service-
based flows in the UNSW-NB15 
and CIC-IDS2018 datasets

Service Attacks Attack flows Benign flows

UNSW-NB15
  DNS Generic

Exploits
DoS
Reconnaissance

209,809
275
174
35

588,669

  HTTP Exploits
Reconnaissance
DoS
Generic
Fuzzers
Analysis
Worms
Backdoors

11,751
2181
1782
1726
1456
616
153
67

206,966

  FTP-data Exploits
DoS

1876
14

123,893

  Email (SMTP + POP3) Exploits
DoS
Generic
Reconnaissance
Analysis

5597
489
419
7
6

76,660

  FTP Exploits
Fuzzers
DoS
Generic
Backdoor

2115
804
73
16
7

46,075

CIC-IDS2018
  DNS Infiltration 25,798 1,376,386
  HTTP DDOS HOIC

DoS Hulk
DoS GoldenEye
DoS Slowloris
Infiltration
DDOS LOIC-UDP
Brute Force-Web
Brute Force-XSS
SQL Injection

686,012
461,912
41,508
10,990
2976
1730
460
225
87

800,439

  HTTPS Infiltration 12,249 647,389
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We compare the system performance and cost in service-
agnostic and service-based settings, with clusters of 1, 2, and 
4 agents. Performance is evaluated with and without the abil-
ity to exchange aggregate models across clusters. Notice that 
a cluster of 1 agent is a special case that resembles central 
learning. A scenario of a service-agnostic cluster of 1 agent 
without inter-cluster model exchange is positioned as a base-
line representation of state-of-the-art central anomaly detec-
tion solutions. Recall that each agent is expected to run in an 
edge data-center, rather than end-devices; hence, the number 
of agents does not need to be large. Furthermore, the quality 
of the solution is not impacted by the number of agents, as the 
aggregation point only shares a model update when the cluster 
score improves.

In terms of services, as described earlier, this work defines 
a service by the application layer protocol. Here, we focus on 
two examples for which there is a large volume of data in the 
UNSW and CIC sets, DNS and HTTP, and compare them with 
the service-agnostic baseline. The latter involves training and 
validation over datasets that contain flows of all application 
layer protocols, as published by the data providers. While, for 
each of the services, we collate a service-based dataset, where 
all the flows (benign and malicious) belong to the same appli-
cation layer protocol.

For performance given inter-cluster model exchange, we 
assume a baseline scenario: first, each cluster develops its own 
model through interaction between local agents and their aggre-
gation point, as described in Sections 3.3-3.6. This is grounded 
by the fact that clusters need to build their models first before 
sharing with peers. Each cluster then publishes their model and 
subscribes to an external one, randomly selected from the pool 
of publications under the same service and given the same set 
of actions (i.e., attack classes). The similarity is required here 
to ensure straightforward incorporation of the external model 
in the aggregation process. Following reception of the exter-
nal model, the aggregation point will include it as an addi-
tional—immutable—input to the FQDN, i.e., the number of 
input models to the algorithm will increase to L + 1 . Notably, 
immutability here means the external model will not be further 
trained by the subscriber cluster, but merely included in the 
aggregation phase. This is a deliberate choice, as re-training 
the external model is associated with a range of open research 
questions that cannot be adequately addressed here.

We analyze three key performance indicators (KPIs): 
F1-score, Accuracy and Attack Matching. The first two reflect 
the detection precision and accuracy, respectively, while the 
third indicates accurate matching of the anomaly to an attack 
class. The latter constitutes a classification of the anomaly 
within known classes of attacks. Notably, for novel attacks, an 
anomaly might still be identified but not necessarily classified. 
For performance comparison between scenarios with/without 
inter-cluster model exchange, we calculate the relative change 
of each KPI per validation round, t′ , following the formula:

where KPI0
t
′ is the KPI’s value given no inter-cluster model 

exchange, and KPI1
t
′ is the value when an external model is 

incorporated. For sensitivity analysis, we focus on the 
impact of varying the exploration parameter and its decay 
rate on model performance. For cost, we analyze the volume 
of data supply per agent and the number of Epochs per clus-
ter. The first is indicative of data and storage resource 
demand, while the latter is indicative of compute resource 
demand. Together, they provide a preliminary evaluation of 
the cost.

All analyses are shown for the validation phase of 
trained models. Each dataset is utilized once in validation 
and another in training. Each experiment involved a unique 
pair of different sets for training and validation. To this end, 
we split, curate, and normalize each dataset before using it 
in training or validation. First, each dataset is split by port 
number and/or service name into a service-based subset. The 
latter as well as the original service-agnostic sets are then 
curated by removing biasing features of: IP addresses, port 
numbers, transport protocol, and state.

To emulate federated clusters, each dataset is randomly 
split into subsets equal to the number of agents in the cluster. 
This means that as the number of agents per cluster grows, 
the volume of training-validation data per agent shrinks. 
This assists in illustrating the impact of reduced data sup-
ply. A unique subset is provided to each agent for training, 
while another is provided for validation. Notably, although 
the email service (i.e., SMTP and POP3) is of interest for 
analysis, it has been omitted here. Due to space limits and 
given that the UNSW-NB15 and CIC-IDS2018 datasets have 
a challenging heterogeneity of attack classes (i.e., actions 
set). The latter requires more advanced data engineering, 
beyond a mere random split, that we consider in future work.

The proposed DQN has been implemented using PyTorch 
and evaluated with hyper-parameters: Epoch size mi = 200 
records, replay buffer size � = 10000 records, and batch size 
β = 32 records. The ratio of attack/benign flows is 0.5 . The 
reward values are set as ρ = 1 and σ =  + 2. The full FDQN 
system is evaluated over a GPU server of 2 × NVIDIA P100 
12 GB cards.

4.1  Performance without inter‑cluster model 
exchange

4.1.1  UNSW‑NB15

Figures 2 a–c present the performance results of the pro-
posed solution, over the UNSW-NB15 dataset. From a 

(3)ΔKPIt� =
KPI1

t�
− KPI0

t�

KPI0t�
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service perspective, the detection accuracy and precision of 
service-based learning are comparable to the service-agnos-
tic baseline. HTTP shows a marginal improvement, whereas 
DNS exhibits higher variation of outliers. This illustrates 
that service-based learning can achieve similar accuracy per 
service with smaller datasets. It also reveals the distinct pat-
tern of each service and its effect in agnostic training. Here, 
DNS has a higher variation than HTTP, yet when considered 
together in the agnostic baseline, HTTP has a visible impact 
in masquerading the variation of DNS.

In terms of attack classification, both HTTP and DNS 
show a significantly higher rate of matching ≈25–35% and 
≈10.5–53% for HTTP and DNS, respectively, compared to 
≈10.5–25% for the agnostic baseline. Notably, DNS has a 
wide range between the 1st and 3rd quartiles, compared to 
HTTP which has a wider range of whiskers. This is caused 
by the “binary” nature of attack classes in DNS data shown 
earlier in Table 1, showing the majority of DNS attacks 
have not been actually classified. Some of these attacks may 
belong to classes of much fewer records, yet as the dominant 
class is “Generic,” a match is not detected. At the same time, 
the high value of the 3rd quartile and the maximum indi-
cate that although DNS data classification is not sufficiently 
granular; the set of attacks is small or has a high similarity.

Moving from central to federated learning with clusters 
of 2 and 4 agents, average overall accuracy is maintained 
to similar levels. Albeit, the span of outliers in DNS accu-
racy is widened by ≈15–17% in clusters of 2 and 4 agents, 
respectively. The classification rate per service, however, 
improved when moving to federation clusters of 2 and 4 
agents. HTTP exhibits the most significant improvement as 
the average increases by ≈5% while the minimum and 1st 

quarterlies increase by ≈15%. This is caused by the federa-
tion approach of the FDQN, where a cluster model is only 
disseminated back if the average score improves. This allows 
agents to train a cluster model sufficiently such that varia-
tion of DQN weights across agents is reduced. This in turn 
reduces the smoothing impact of weight aggregation in the 
cluster model.

4.1.2  CIC‑IDS2018

Figures 2 d–f show the solution performance over the CIC-
IDS2018 dataset. From a service perspective, the results 
considerably differ from that of the UNSW-NB15 counter-
part. HTTP shows the best performance with the highest 
average F1-score of ≈80% and average accuracy of ≈77%. 
The attack matching rate is an average of ≈55%, with a neg-
ligible variation of ≈1–2% when increasing the number of 
learning agents. Added to that, the variation between the 
first and third quartiles is small at ≈2–3%. In contrast, DNS 
results are the worst with the lowest average F1-score of 
≈55% and accuracy of ≈50%. Although, the average rate 
of attack classificationis high at ≈58%, the variation span 
between the 1st and 3rd quartiles is large ≈25–27%.

This illustrates the impact of data size and distribution 
on the quality of detection and classification. In the case of 
HTTP, the volume of data per attack class for the three most 
recorded attacks is sufficiently large for DQN to learn the 
attacks’ patterns. Added to that, the difference in volume 
between benign and malicious data is small, which yields a 
balance in the selected batch of data for each learning epoch.

In contrast, DNS has a significantly low number of attack 
records, associated with the Infiltration attack. Added to 

Fig. 2  Validation performance of UNSW and CIC datasets with-
out inter-cluster model exchange for service-agnostic learning and 
service-based counterpart, for HTTP and DNS services. Learning 

systems are central (baseline) and federated, with clusters of {2,4} 
agents per cluster. The exploration parameter ϵ = 0.5 with a decay rate 
α =  10−.5
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that, infiltration records generally have a less distinguished 
pattern from benign counterparts, as the actual attack traffic 
is primarily for reconnaissance purpose with the number of 
packets per flow and average packet size being comparable to 
that of benign flows. This results in insufficient distribution of 
attack patterns, compared to a diverse distribution of benign 
patterns. This in turn leads not only to high false positive 
but also high false negative. The latter is the key driver of 
the low F1-score and accuracy. Moving towards a federated 
learning system with increasing number of agents improves 
the F1-score (i.e., model precision and recall). Because, split-
ting the data into smaller subsets—for increasing number of 
agent—reduces the pattern-diversity in each subset, particu-
larly for benign records. This drives the rate of false negative 
lower, improving F1-score and the matching rate.

4.1.3  CIC‑IDS2018 HTTP attacks

Given the large number of HTTP attack flows in the CIC 
dataset, here we analyze the effect of segregating them by 
subsets of attacks and benign traffic. The aim is to draw 
insights on the impact of focusing the learning experience by 
reducing the mixture of attacks in a dataset. To achieve the 
above, we split HTTP dataset into three subsets, correspond-
ing to attacks: DDoS-HOIC, DoS-Hulk and Others (i.e., all 
the remaining HTTP attacks), and evaluate the relative per-
centage difference in each of the KPIs. Notably, for DDoS-
HOIC and DoS-Hulk, we omit the results of the matching 
rate as there is only one class of attacks per data subset. The 
results were collated for clusters of {1,2,4} agents; how-
ever, we found that difference in cluster size only results in 
marginal ≈0.01–0.05% variation in results. Hence, Table 2 
presents the five-qauntiles of the relative percentage differ-
ence results drawn from clusters of 1 agent as a sample of 
any of the cluster sizes.

Overall, the results indicate a negative effect on perfor-
mance when segregating these attacks into separate clus-
ters. The value of F1-score drops by a range of ≈2.1–13% 
across the 5–75% qauntiles of DDoS-HOIC attack, while 
for DoS-Hulk, the dropage range is ≈2–12.5%. For the sub-
set of remaining attacks, the degradation range of F1-score 
is ≈0.77–6.8%, for the 5–50% quantiles, while the 75% 

qauntile shows a positive change of 1.74%. The 95% gener-
ally shows a positive change across clusters, which illustrate 
a benefit for a minor number of validation batches. This is 
caused by a consistent increase in the number of false nega-
tives in these clusters as opposite to general HTTP clusters. 
The increase in false negatives is primarily met by a decrease 
in true positives and true negatives. This in turn causes a 
comparable degradation in the Accuracy.

The above illustrates a trade-off between “focus-of-
context” and “level of knowledge” learned by a model. By 
over-narrowing the mixture of “services,” a negative overfit-
ting effect may occur over some services and their datasets. 
Here, maintaining the different classes of DoS/DDoS attacks 
in one HTTP dataset has a constructive effect in providing 
pattern diversity, yielding a better differentiation of benign 
traffic.

4.2  Performance with inter‑cluster model exchange

This section evaluates the relative percentage change of KPI 
value per validation round, when incorporating an external 
model as calculated by Eq. (3). A negative value indicates 
a performance degradation for the validation round, while 
a positive value indicates a performance improvement. 
Figure 3 shows the relative percentage change for the CIC 
dataset. Overall, each KPI has positive and negative observa-
tions, with the average change remaining at the zero thresh-
old. However, the quartiles and whiskers illustrate a more 
significant variation, particularly for service-agnostic and 
DNS clusters. For F1-score and Accuracy, the worst nega-
tive value is recorded at ≈30% for DNS clusters of 1 and 4 
agents, as opposite to the best positive value of ≈45%, for 
the same settings. For clusters of 2 agents, DNS has a large 
number of positive outliers with a maximum of ≈208%. 
The Matching KPI is the most affected by incorporating an 
external model. The worst degradation in matching rate is 
recorded at ≈70% for service-agnostic clusters of 4 agents, 
while the best improvement is recorded at ≈163% for the 
same clusters. The highest improvement is ≈446% for DNS 
clusters of 2 agents. HTTP matching rate varied too in clus-
ters of 4 agents, with the worst degradation recorded at 
≈40% and the best improvement at ≈62%.

Table 2  Relative percentage 
difference per KPI per 
validation round for all 
validation rounds of CIC HTTP 
validation sets

Attack KPI 5% 25% 50% 75% 95%

DDoS-HOIC F1-score  − 12.90  − 8.32  − 5.33  − 2.11 2.34
DDoS-HOIC Accuracy  − 8.75  − 3.43 0 3.55 9.72
DoS-Hulk F1-score  − 12.56  − 8.19  − 5.17  − 1.92 2.74
DoS-Hulk Accuracy  − 8.23  − 3.29 0.62 4.05 9.79
Others F1-score  − 6.83  − 3.17  − 0.77 1.74 4.99
Others Accuracy  − 9.15  − 3.97  − 0.66 2.77 7.85
Others Matching  − 19.35  − 6.89 1.72 10.20 24.55
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Overall, this shows a positive effect of the external model, 
particularly for such services as DNS that are lacking suffi-
cient data supply and do not have a large action set. There, the 
external model brings further knowledge of the data patterns 
to the cluster counterpart leading to improved performance. 
Oppositely, the negative results are partially caused by the 
immutability of the external model, during the training phase. 
By including the external model in the aggregation process 
without training it over cluster data, a constant smoothing 
effect is repeatedly added to the weights of the cluster model. 
This introduces a randomness factor with an increasing 
impact, relative to the decay in the exploration parameter ϵ.

For the UNSW dataset, the relative percentage change of 
F1-score and Accuracy has been marginal ≈0.1–2%. A more 
significant change is witnessed in the matching rate, with the 
results of the five quantiles shown in Table 3.Overall, the 
results exhibit similar pattern to that seen with the CIC data-
set. The 25% quantile shows negative change in observations 
in the range of 7.69–58.82%, while the 75% counterpart shows 
a positive change in the range of 15.15–231.77%. Noticeably, 
in HTTP clusters of 1 and 2 agents, the average change is 
positive 7.4% and 2.86%, respectively. Meanwhile, the lowest 
degradation in the 5% quantile is 87.27%, exhibited by DNS 
clusters of 1 agent. The same set of clusters show the highest 
improvement of 689.44%, in the 95% qauntile.

Notably, the analysis above is merely an introductory 
insight into the impact of inter-cluster model exchange. 
Further analysis of various model exchange and training 
approaches is needed to develop an advanced understand-
ing of their impact on performance quality. We preserve such 
analysis for our future work, due to space limitation and to 
avoid overloading the work here.

4.3  Cost

Figure 4 shows the volume of data supply per agent per ser-
vice, utilized to achieve the performance shown above in 
Sections 4.1 and 4.2. The overall volume of data per service 
varies considerably, with service-focused datasets being 
smaller than a service-agnostic alternative. This shows flex-
ibility in utilizing constrained storage resources. Orthogo-
nally, the volume of data supply per local agent is reduced 
by the same factor used for increasing the number of agents 
per cluster. This shows that the proposed solution can sustain 
significant reduction in data supply and still maintain steady-
level performance.

Figure  5 shows the maximum number of training 
epochs (rounds for federated learning), Mi , per cluster 
given an epoch size of 200 flows. Clusters range from 
central learning with 1 agent to federated learning of 

Fig. 3  Percentage change in validation performance of CIC data-
set for learning systems with inter-cluster model exchange, relative 
to no inter-cluster model exchange for service-agnostic learning and 
service-based counterpart, for HTTP and DNS services. Learning 

systems are central (baseline) and federated, with clusters of {2,4} 
agents per cluster. The exploration parameter ϵ = 0.5 with a decay rate 
α =  10−5

Table 3  Percentage difference 
in attack matching per 
validation round for all rounds, 
for learning systems with inter-
cluster model exchange relative 
to systems without inter-cluster 
model exchange of UNSW 
validation sets

Agents/cluster Service 5% 25% 50% 75% 95%

1 Agnostic  − 64.00  − 26.67 0 46.67 136.36
1 HTTP  − 27.50  − 7.69 7.40 28.17 90.56
1 DNS  − 87.27  − 77.16  − 8.33 231.77 689.44
2 Agnostic  − 61.29  − 26.14 0 42.86 153.85
2 HTTP  − 28.20  − 11.43 2.86 22.69 146.03
2 DNS  − 86.54  − 58.82 0 42.86 244.44
4 Agnostic  − 78.95  − 28.57 0 50.00 212.50
4 HTTP  − 30.77  − 13.54 0 15.15 44.69
4 DNS  − 46.15  − 14.29 5.77 36.96 470.00
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{2,4} agents percluster. Notably for time’s sake, the 
actual number of training epochs was capped to 500. 
Nevertheless, all trained models reached convergence. 
The number of training epochs directly correlates with 
the volume of compute resources required to train local 
DQN models. Having lower volume of noise in service-
based datasets allowed for faster convergence, which 
in turn consumes less compute resources. The saving 
in resources is realized without compromising perfor-
mance, as shown above.

4.4  Sensitivity

Figure 6 shows the impact of varying the exploration param-
eter and its decay rate on the detection accuracy and match-
ing across services. The results are drawn from federated 
learning clusters of 4 agents.

4.4.1  UNSW‑NB15

Figures 6 a–c show the results of the UNSW datasets. Over-
all, a higher value of ϵ = 1.0 yields a performance degra-
dation, despite the fast decay rate. The F1-score drops by 
≈15%, while accuracy drops by ≈25%. The matching rate 

suffers the most, dropping by ≈30–35%. Although, the dif-
ference span between matching values reduces here. This 
is particularly observed for DNS, with a propagative effect 
in the agnostic baseline. In contrast, the lower end of DNS 
matching rate improves with the higher ϵ. This shows a non-
trivial positive impact of higher randomness, more likely to 
be deceitful than true (i.e., a match is not really a match). 
This is due to the binary-like distribution of DNS classes. 
Higher randomness in action selection means higher likeli-
hood of selecting the “Generic” label and similarly higher 
chance of matching with the actual label. However, as 
Generic’ does not represent a clear class, the decision is 
likely not to be an accurate match in reality.

In contrast, a lower ϵ = 0.5 shows improvement of detec-
tion accuracy, coupled with better matching rate for HTTP 
and the upper end of DNS boxes. This is because a lower � 
allowed for better enforcement of DQN experience during 
training phase. Consequently, this allowed for taking more 
informed decisions during validation phase. The change in 
decay rate � has a lower impact on overall performance, 
compared to varying ϵ. A slower decay rate α =  10−5 has 
shown to improve the matching rate across board. This is 
driven by the arising trade-off—during training—between 
freedom to explore the action space and greediness in 
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selecting maximum-reward decisions. Here, a slower decay 
of � facilitates abetter exploration of the action space, yield-
ing a better learning. Though, the impact of sensitivity 
parameters is highly dependent on DQN structure and the 
datasets. Furthermore, more comprehensive analysis using 
different datasets and different configurations of DQN are 
needed to establish a more general view.

4.4.2  CIC‑IDS2018

Figures 6 d–f show the sensitivity results of the CIC datasets. 
For service-agnostic and HTTP clusters, a larger value of the 
exploration parameter ϵ = 1.0 leads to performance degrada-
tion, particularly given the low number of 500 learning rounds 
(epochs). The average F1-score and Accuracy drop by ≈20%, 
compared to their values when ϵ = 0.5 and irrespective of the 
decay rate α. When ϵ = 0.5, slowing the decay rate lpha from 
 10−4 to  10−5 reduces the average F1-score and Accuracy by 
≈5%, yet it increases the min–max matching rate by ≈5%. This 
shows that a slower decay rate in these cases is allowing the 
respective DQNs to better learn the attack patterns. DNS KPIs 
are generally low irrespective of the ϵ and α values, and they only 
drop by a marginal ≈5% when � varies from 0.5 to 1.0. Here, the 
sensitivity of a DNS model to the hyper parameters is masked by 
the more dominant effect of the nature of DNS data in the CIC 
sets. Recall that the latter have insufficiently low number of DNS 
infiltration attack flows—compared to benign flows—that do not 
have distinctive flow patterns from benign small flows. This lim-
its DQN’s ability to differentiate between benign and malicious 
flow, leading to a high number of false negatives. Essentially, 
DQN of a DNS model acts with a high degree of randomness, 
where varying � only has a marginal effect on it.

The matching rate, similar to UNSW, is the most affected 
KPI. For service-agnostic and HTTP clusters, varying � from 
0.5 to 1.0 results in ≈40–50% degradation in the matching rate. 
This is correlated with degradation in the prediction accuracy, 
as DQNs tend to have a higher degree of randomness and with 
the large number of attack flows per distinct classes, the likeli-
hood of random decision being accurate drops significantly. 
For DNS clusters, varying ϵ results in ≈15–20% degradation 
in the matching rate. When ϵ = 0.5, the matching rate is higher 
than HTTP because the number of attack classes in DNS is 
limited to one. Consequently, an accurate detection of a mali-
cious flow automatically leads to accurate matching.

5  Conclusions

This work proposed a service-based federated deep rein-
forcement learning system, for efficient anomaly detection 
and classification in fog ecosystems. The solution includes 
a federated DQN (FDQN), which incorporates a class-based 
reward matrix and performs score-based model dissemination. 
The former enables attack classification per service, while the 
latter allows to reduce model variation across local agents. 
We evaluated the performance, cost, and sensitivity of the 
proposed solution for DNS and HTTP, compared to a service-
agnostic baseline. Performance results showed that service-
based learning maintains detection accuracy, despite the 
lower volume of data, while improving attack classification 
by a factor of ≈2. Similarly, the proposed federation approach 
allows for maintaining the same accuracy as that achieved by 
central training, with better attack classification. Furthermore, 
incorporating additional models from peer clusters can lead to 

Fig. 6  Performance sensitivity to change of the exploration parameter 
ϵ ∈ {0.5,1.0} and its decay rate α ∈ {10−4,10−5}. This is observed for 
UNSW and CIC datasets, in service-agnostic and service-based learn-

ing, for HTTP and DNS services having federated learning clusters of 
4 agents per cluster
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positive improvements in performance quality. While, over-
focusing a service definition for a learning cluster can lead to 
performance degradation due to overfitting. Sensitivity results 
of the analyzed scenarios revealed that a larger exploration 
opportunity is not always needed and can lead to performance 
degradation. The exploration parameter and decay rate are 
subject to optimizations that address the trade-off between 
freedom to explore and greediness in maximizing rewards. 
Addressing this trade-of is part of our future work.
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