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Abstract

The use of robotics in industrial environments has increased dramatically over the past

decade. Advances in automated systems have given rise to a multitude of applications,

from automated robotic security to drone delivery services. With research and develop-

ment motivated by both economic incentives and accentuated by national and global issues,

such as labour shortage, climate change and continuously increasing demand, the agricul-

tural industry has recently found interest in automated robotic technologies. Robotics are

an ideal solution to crop harvesting. This often repetitive, time consuming, labour intensive

and costly task is perfectly suited to automation with a capable system. Automated robotics

would enable 24 hour operation, increasing efficiency and improving resource management,

whilst significantly reducing many associated costs. This task from a human’s perspective

is straightforward, yet when thought of in a robotic system’s context requires many inter-

linked components including navigation and control methods and computer vision systems.

The research of this thesis concentrates on the practical implementation of a navigation and

control software system for a strawberry picking task. It includes a novel software archi-

tecture, a navigation and control method and initial work into a low cost implementation of

an automated robotic fruit harvesting system. The software architecture is a configurable,

built on top of the Robot Operating System (ROS). It contains perception and action systems

to coordinate dual arms with a mobile base platform to pick strawberries. This architecture

is able to host laser SLAM for building farm maps for autonomous navigation. The design

and implementation of the software architecture, and the evaluation of the laser SLAM map-

ping building are included. The autonomous navigation and control software for the system

incorporates the provision for both robotic arms and mobile base. The motion strategy of

the mobile base and dual arms for picking strawberries is proposed, and the analysis of its

performance in both a laboratory setting and an agricultural environment is included. Finally

the thesis contributes the implementation of a single board computer for the software archi-
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tecture. The focus of this portable implementation is the performance analysis of instance

segmentation and SLAM systems based on an RGBD camera. The experimentation to deter-

mine the viability of implementing the system overall on to a single board computer is also

introduced.
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Chapter 1

Introduction

Autonomous robotic systems, first invented over 70 years ago, have improved drastically

since their first introduction. With continuously improving technology, affordability and

decades of research and development, these systems are becoming increasingly capable, ap-

plicable and perhaps most importantly, useful, across many areas of society and in virtually

all industries. Robotic systems with autonomous capabilities are being employed to assist

or indeed entirely replace humans with both repetitive and more specialised tasks, provid-

ing an increase in productivity, efficiency whilst operating safety in almost any environment.

Autonomous robots can be found in a wide range of applications, factory assembly lines

and warehouse floor automation, exploration terrestrially in difficult to reach environments

such as remote locations or underwater and extra-terrestrially and hazardous and dangerous

environments with disaster recovery and security.

An interesting, difficult application of these systems, yet increasingly commonplace is in

commercial settings with drone delivery systems and in industrial environments, these not

necessarily more difficult for the robotic system, but requiring extremely strict safety con-
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straints. One such environment, requiring complex navigation and control, operating in dif-

ficult, dynamic and unpredictable terrain and conditions is the agricultural sector, the focus

of this research.

Agricultural robotic technology has seen a dramatic rise in interest over the last few decades

with increasing capabilities through innovative research and development, a reduction in cost

of component and sensor technology and robotic system resilience, enabling these systems

to withstand outdoor, rigorous environments and varied climates. These technological and

methodological improvements all contribute to agri-techs continued improvement.

These systems are required to operate in often complex, dynamic and technologically inhos-

pitable environments, whilst ensuring the safety of any humans that may be in the area and

whilst ensuring they are capable of matching or exceeding a human’s performance in their

intended application.

Agricultural robotics have been in use again for decades, with automated tractors being of

particular note, using GPS to navigate around farm land. With improving technological ca-

pabilities, new and novel uses are being realised, monitoring the health of crops, pest control

and crop planting. Requiring precise movement and functionality of a system are becoming

increasingly viable alternatives, reducing human labour requirements whilst improving the

efficiency of these tasks.

A considerably difficult agri-tech application is in the harvesting of plants such as fruits,

whether at ground level or above. This task requires many systems to operate in parallel. For

a ground based target, this could be to detect, move over and harvest the plant a difficult task

in itself. This becomes further challenging with fruit above ground, such as strawberries, re-

quiring a method of detecting a given fruit, moving to it, picking the fruit without damaging
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it, often in occluded or articulate places.

This task presents an interesting problem, is an autonomous fruit harvesting system possible

in this type of environment and would it be capable of harvesting efficiently whilst matching

or exceeding the productivity of a human, being cost effective and in a safe manner. These

systems, although reducing in cost are still initially relatively expensive in comparison with

human labour, but are able to operate 24 hours a day when required. This potentially is able

to reduce wasted fruit, and if able to match a human in regard to harvesting rate, may prove

to be an effective and economically viable solution to this task.

This research aims to answer these questions, by proposing, implementing and evaluating

a novel navigation and control system for an autonomous fruit harvesting system, in a chal-

lenging, dynamic vertical growing environment.

This chapter contains the motivation behind this research, the objectives and challenges it

presents, the methodology and contributions made and an overview of the thesis.

1.1 Motivation

Robotics is an interesting, exciting and innovative field of research, often combining many

disciplines, including navigation systems, control methodologies and computer vision solu-

tions. Their applicability extends to almost all environments, and their use can be greatly

beneficial to society. Autonomous robotic systems in place of humans are able to explore

environments that are often remote, inhospitable or hard to reach. They can be used in place
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of humans in hazardous, dangerous environments such as disaster recovery and explosive

ordinance disposal or to entirely replace humans in many industries. With current global

issues such as climate change leading to a reduction in viable agricultural land and labour

shortages, they are able to replace humans for mundane, laborious and time consuming tasks,

whilst potentially doing so in a more efficient, economical and productive way. An example

of this can be found in strawberry harvesting. This task to a human is reasonably straight for-

ward, with skilled labourers able to pick up to 50 strawberries a minute. To a robotic system

however, this requires complex, adaptable and dynamic behaviour, such as first perceiving a

target strawberry then determining how to reach and harvest the fruit. To develop a system

capable of these applications, many complex problems require solving.

Autonomous navigation is in of itself a challenging problem. Different terrain and dynamic

environments require various sensors to enable a system to perceive its surroundings. When

these systems are to be used with humans, safety also becomes an important factor, a problem

to which there is yet a perfect solution. Navigation is one aspect of an autonomous system,

for it to be applicable to many tasks, complex control methods are also required depen-

dent on the tasks the system is developed for and the components required for these. Many

applications require these systems to contain additional components such as robotic arms,

effectively making these systems of systems, these requiring novel solutions to incorporate

these additional components and to effectively use them dependent on their application.

These systems present challenging, exciting and interesting problems. This research aims

to contribute to the field of robotics by proposing, implementing and evaluating a solution

to a multi-robot system for autonomous strawberry harvesting, although intended for this

application, the solutions proposed may be applied to autonomous robotics in many other
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applications.

1.2 Objectives and Challenges

The objective of this research is to propose and implement a novel solution for an automated

strawberry harvesting robot in a vertical growing farm.

This problem presents interesting challenges, a method of integrating multiple components

and systems, a novel solution for navigation and control in this type of environment and for

this application and to do so in an efficient, economically viable way. The main objectives

of this research are summarised as follows:

• The design and development of an adaptable, versatile software architecture to facili-

tate the multiple components and systems required.

• The development and implementation of a novel navigation and control method, capa-

ble of operating efficiently and safely in an agricultural environment.

• To determine the efficiency of the system, if it is possible for it to be applied to this task

with the same if not improved performance of a human, whilst remaining economically

viable, and if any improvements could be made.

These objectives contribute individual aspects of this research. A novel solution to the sys-

tems architecture must first be developed, before a navigation and control methodology can

be implemented followed by an evaluation of the system and its performance, determining if

any improvements can be made. The following subsections detail the challenges involved in

solving these problems.
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1.2.1 Fruit Harvesting Robotic System Architecture

The use of robotics in industrial or factory automation applications is often a single, repeti-

tive task. A system can be developed to complete one specific objective efficiently, but does

not often require much if any adaptation or reconfiguration except in replacing faulty or up-

grading existing components. These systems can be tightly coupled, with no impact on their

application as they are only intended to complete one task.

The system developed for this research requires multiple robotic components, sensors and

software modules to operate in parallel in order to complete its intended application. This

system of systems, particularly in its initial development, may require many adaptations with

additional components and sensors being added or removed, these requiring accompanying

software that must also operate in combination with the rest of the system. The environment

the system is intended for is itself dynamic, a configuration that is applicable to a laboratory

environment may require adaptation and reconfiguration for application in a vertical farm

environment. The robot will also be working alongside humans in the vertical farm, this

also requires safety standards to be met, for example the TS ISO 15066 international safety

standards and ISO 10218-2 collaborative robot safety standards. These include ensuring the

robot operates within its specification boundaries such as arm or base movement speed and

would require a risk assessment before being used commercially in the vertical farm envi-

ronment.

This system is required to not only harvest the strawberries, but to do so autonomously,

as such a navigation module is required to move along a row of fruit. There are many po-
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tential solutions to this, including the use of GPS or SLAM systems, as such, determining

the viability of a navigation method is a vital part of this system. This type of adaptability

requires a new methodology for a modular, configurable, loosely coupled system architec-

ture, to enable these adaptability and configurability, as such, a solution to this objective is

proposed as the first chapter of this research.

1.2.2 Multi-Robot Navigation and Control

Virtually all robotic systems incorporate multiple components depending on their applica-

tion, for example automated warehouse robotic system requires a navigation method to move

around its environment and components such as a gripper and carrying plate for moving

items. Various sensors are required to dynamically detect and avoid obstacles and to target

and locate items to be moved. These functionalities require the coordination of multiple

components, operating around a single frame of reference. This can be summarised as a

navigation and control method.

Agricultural environments present unique challenges rarely found in other applications. The

terrain the systems are required to operate in is often unstructured and undulating, resulting

in accumulating error and drift in navigation systems. The systems are often required to

operate around other machinery and humans, whilst avoiding damage to themselves and the

environment around them.

In harvesting fruit, the position and elevation of the fruit bushes is often dynamic, unstruc-

tured and occluded and atmospheric factors such as weather conditions all need to be taken

into account. This presents many navigation and control challenges, the multiple systems
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need to be combined to operate dynamically together, on varying terrain and with differing

target positions for strawberry harvesting. The second chapter of this research proposes a

novel navigation and control method for an agricultural environment to enable this function-

ality.

1.2.3 Performance and Optimisation Improvements

A potentially prohibitive factor of autonomous robotics is their cost. When a system is de-

veloped for automated manufacturing, the initial cost can be relatively high, but this is often

offset by the systems improved efficiency and productivity. The risk of system failure is also

considerably lower as these applications are often static.

When used in warehouse or industrial automation, these systems are often in structured rel-

atively static environments, further reducing the risk of damage to the system and its sur-

roundings. Agricultural environments are considerably different and pose many additional

risks to the system and its environment, these all contributing to their economical viability.

Along with reducing the cost of these systems, performance and optimisation improvements

and additional functionality can all assist with offsetting the economic risks of investing in

these systems.

The initial development of the system is as a proof of concept, to determine whether the pro-

posed solution to autonomous fruit harvesting is capable of this functionality. Once this type

of system is developed and evaluated, potential improvements can be made. The systems

modular design and configurability also enable these improvements to be integrated with the

existing system, without redesigning it overall. This chapter looks at potential improvements

that could be made by reducing component costs and additional functionality such as metric

collection and environment monitoring.
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1.3 Methodology and Contributions

The methodology followed for this research was to first propose a software architecture in-

corporating the components of the system. Once this had been established, to then develop

this and implement the components of the system, to have a minimum viable robot for lab-

oratory and farm testing. As the intended environment of the robot is seasonal, much of its

development and evaluation was completed in a laboratory environment.

The navigation software would initially be simulated using a custom developed virtual repre-

sentation of the robot in an agricultural environment, to ensure the initial navigation software

would function as expected before being tested in a laboratory and the vertical farm.

This approach was chosen as to ensure that the system could be evaluated in a farm envi-

ronment when available, but so that development could continue when this was not possible.

This research methodology is separated into the following sections:

• Configurable Software Architecture for an Agricultural Robot

• Strawberry Picking Positional Control

• Single Board Computer for a Strawberry Picking Robot

These individual sections of this thesis each providing a solution to the objectives of this

research.

1.3.1 Configurable, Modular Software Architecture for an Autonomous

Strawberry Harvesting System

The software architecture of the system, although developed for a strawberry harvesting

robot, also had the potential applicability of being a generalised solution for automated har-
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vesting. This involved designing the software architecture in a way as to enable configura-

bility and adaptability. The software architecture would was designed to enable additional

modules, components or sensors to be easily added or removed, without redesigning the

system. The network used by the perception system for example could be changed to an-

other crop or an additional component or sensor could be added for another task if required.

This was enabled by ensuring the system was loosely coupled and compatible with various

software modules. This section contains the following robotics research contributions:

• A configurable, modular software architecture for an autonomous fruit harvesting sys-

tem.

• The software design and implementation of the custom built, modular system.

• Initial evaluation and proof of concept of the system in a laboratory setting.

• Initial evaluation of a SLAM algorithm in a vertical harvesting agricultural environ-

ment.

This first set of objectives being to enable modular system components and software to be

combined, then allowed for the navigation and control software to be developed.

1.3.2 Strawberry Picking Positional Control Movement Strategy and

Implementation

The systems navigation and control is to enable the system to efficiency move to and between

strawberries autonomously, whilst harvesting them. This providing the following research

contributions:

• 1. The development and integration of the modular configurable system architecture.
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• 2. Novel navigation and control method for the robotic arms and base in a vertical

facility.

• 3. The experimentation and evaluation of the system in a laboratory environment.

• 4. The experimentation and evaluation of the system in the agricultural environment.

The final section of this research was to determine and implement potential system improve-

ments and optimisation, whilst also aiming to reduce the cost of the system.

1.3.3 System Improvements and Performance Optimisation

The systems performance and optimisation improvements focused on reducing the cost of the

system components used, whilst adding additional functionality, this providing the following

research contributions:

• 1. A comparative analysis of instance segmentation networks on a Laptop, Jetson

Nano and Jetson Xavier is conducted to ensure the single board computer is capable

of running the existing system in an agricultural environment.

• 2. A 3D instance segmented environment reconstruction system is proposed.

These sections detailing the proposed method implementation, evaluation and results for

each of the objectives of this research.

1.4 Overview of Thesis

This thesis is separated into 3 main research chapters, a literature review and conclusion, a

brief synopsis of each section is as follows:
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1.4.1 Chapter 2: Literature Review

This chapter gives a theoretical background to my thesis, with a detailed exploration of ex-

isting technologies and research in autonomous robotics in general and in an agricultural

environment. This review includes navigation techniques that may be applicable to the sys-

tem such as the use of GPS, inertial navigation systems and simultaneous localisation and

mapping as well as control methods for robotic systems for static and autonomous applica-

tions.

This section also contains a review of computer vision techniques that may be applicable

for improvements to the system, including semantic and instance segmentation networks

and environment reconstruction systems.

1.4.2 Chapter 3: Configurable Software Architecture for an Agricul-

tural Robot

The first main research chapter of my thesis details the software architecture of the system,

the design considerations for the specific components of the system, the architectures im-

plementation and initial proof of concept experimentation and evaluation of the potential

navigation methods in the vertical farm environment.

1.4.3 Chapter 4: Strawberry Picking Positional Control

Chapter 4 includes the development, implementation and experimentation of the navigation

and control software for strawberry picking and positional control.

The systems movement strategy is first defined, before the systems position and component
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control methods are detailed, including the parallel operation of the multiple components of

the system. The experimentation and performance analysis of the system is then shown in

the laboratory and agricultural farm environments.

1.4.4 Chapter 5: Single Board Computer for a Strawberry Picking

Robot

Chapter 5 proposes potential improvements and optimisation methods for the system, in-

cluding a method of reducing the system component’s costs and of introducing additional

functionality using a potential replacement for the robots perception system, a 3D environ-

ment reconstruction method.

This includes a comparative analysis of instance segmentation networks on different single

board computers. It is first conducted to determine if these are capable of replacing the ex-

isting perception system, this followed by the initial development of a proposed replacement

strawberry perception system with additional functionality.

1.4.5 Chapter 6: Conclusion and Future Work

This final chapter gives a summary of the research in this thesis, the contributions made and

the academic publications generated from this research.

The potential applications of the systems developed are also discussed, with final comments

on future work that could continue from this research.
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Chapter 2

Literature Review

Robotics is a multidisciplinary area of research, complex systems are often composed of

many sensors and components working together as part of a system overall. Research and

continuous improvements in autonomous robotics are enabling additional and new capabil-

ities for these systems in an increasing number of industrial and commercial applications.

For a robot to be autonomous and able to move around an environment, it requires a number

of systems, the first of these being navigation capabilities, of which there are many varying

methods and approaches. A control method for the individual components and their com-

bined functionality is also required, along with various sensors to perceive its environment,

dependent on the robotic systems intended use and the environment it will be operating in.

This research is focused on a navigation and control system for an autonomous strawberry

harvesting robot, as such, the current state of the art in agricultural robotics, navigation

techniques and multi-robot control methods are of particular interest. This system uses an

existing perception system to detect target fruits using a camera sensor, an additional use of

15
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the robot may be in metric collection and environment monitoring, as such, techniques such

as semantic and instance segmentation methods are also explored to determine the state of

the art in these fields and their potential applicability to this system as another method of

perceiving its environment.

2.1 Robotic Systems and Applications

Autonomous robotics are becoming increasingly applicable to a vast array of environments

and tasks in many industries, with significant advancement in recent years. Many labour in-

tensive, repetitive and often dangerous tasks can now be carried out by robots such as drones,

unmanned ground vehicles and robotic arms, with these systems often improving efficiency,

productivity and safety in the areas they are applied.

Autonomous robots are becoming increasingly viable in extreme environments or for haz-

ardous tasks such as search and rescue [7] [8] [9], explosive ordinance disposal [10] and

geographic mapping in inaccessible or inhospitable environments [11] [12]. Along with

these more specific uses, they are also commonly found in industrial and commercial set-

tings such as warehouse management [13], manufacturing automation [14], automated drone

delivery [15] and for the purpose of this system, in agricultural settings [1] as shown in

Fig.2.1. [2] as shown in Fig.2.2. [16] [17] [18].

2.1.1 Agricultural Robotics

Agri-Tech has been an active research field for a number of decades, as far back as the early

1900’s, a frequent contribution being automated driving systems utilizing GPS [19] [16] [1]

[20] [21]. These systems have often required human supervision if not direct involvement.

But with improving autonomous unmanned robotics technology, many new applications are
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now becoming feasible and actively seeing development.

Figure 2.1: RASberry based on Thorvald II System [1].

The application of autonomous robots in agriculture has many benefits, through increased

productivity with continuous, efficient harvesting and reduced waste with pest detection and

removal to name a few, these becoming increasingly relevant with current global issues such

as labour shortages, climate change and a reduction in viable agricultural land. There have

been a number efforts for GPS assisted, remote controlled agricultural robots, such as seen

in [16], this system is used for ploughing, seeding and leveling farmland. The system pro-

posed for pumpkin harvesting [22] is another interesting method, this system using Bluetooth

and an application for its control. Although viable in large, open, outdoor environments, for

systems requiring millimetre precision such as fruit or vegetable harvesting and to operate

indoors, GPS is often too inaccurate, unreliable if not entirely unavailable. Remote con-

trolled methods also require human supervision or operation, this, although useful in reduc-

ing labour requirements, would not be an entirely autonomous solution. There are a number

of autonomous research efforts into fruit harvesting [2] as shown in Fig.2.2 [23] [24] [25].

A cost effective fruit harvesting system has been developed using an Arduino, robotic arm

and vision system for detecting and reaching fruit [25]. This method although able to reach

a fruit does not have navigational capabilities. The orange harvesting autonomous robot is
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able to detect and move toward a fruit tree in order to harvest the fruit [23]. This method

uses a ZED camera to determine the centre point of a tree and uses these coordinates to

move toward it, before the robotic arm then harvests the fruit. The Thorvald II [2] system

as shown in Fig.2.2 is an example of a mechanically modular agricultural robot, designed to

be re-configurable for many different environments. This system again often relies on GPS

which can not be guaranteed in its environment, or human input for control. RASberry [1],

a system based upon Thorvald also using GPS as well as LiDAR for navigation, operates

in ground based poly-tunnels, with its localisation based upon a combination of GPS and

LiDAR data for movement.

Figure 2.2: Thorvald II System [2].

In recent years there has been significant interest in the harvesting of fruits such as straw-

berries, one such example capable of this task in a polytunnel [17] is a following further

improvement of a previous system [18], with a modified, cable driven gripper. This system

uses a robotic arm and mobile base for harvesting strawberries in ground based static fruit

trays, navigating using a 2D LiDAR, this also based upon the Thorvald II [2] robot.

This task, although receiving considerable interest in recent years, is yet to have a perfect

solution, many systems are needed to operate together, without GPS, in unstructured, dy-

namic and often undulating terrain environments as seen in the vertical strawberry farm,
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whilst maintaining the precision required to harvest strawberries, without damaging them

and efficiently as to be an economically viable human replacement.

2.2 Navigation Methods

Navigation systems for autonomous robotics has been an active field of research for decades

[26], with many differing techniques proposed dependent on the environment. Global Nav-

igation Satellite Systems (GNSS) such as GPS are predominantly used in outdoor environ-

ments, ideally with a line of sight to multiple satellites to operate and are often unusable

in occluded or indoor environments. As such, alternatives such as dead reckoning, using

artificial or natural beacons and simultaneous localisation and mapping have been and con-

tinue to be of significant interest. There is as of yet, no absolute replacement solution for the

capabilities offered by GPS, although techniques such as SLAM in particular are becoming

increasingly capable, combined with machine learning. These may soon be capable of pro-

viding the same coverage and reliability in indoor, as GPS in outdoor environments.

Navigation in an agricultural type of environment often has the the challenges found in ur-

ban or indoor environments, along with many others, a lack of structure and often varying

terrain and dynamic obstacles being of significance. The environments often being large and

open, with few easily determinable reference points can lead to rapidly accumulating error

in position estimation. This drift if unaccounted for can quickly and dramatically reduce the

systems localisation accuracy.

A common solution to this in outdoor environments has again been found in GPS, this having
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long been a solution for the automated traversing of farm environments [19]. This system is

able to navigate in outdoor environments but it may not always have the accuracy required

in all settings, for example if traversing under tree cover or into a large structure, and is not a

reliable option for this system. This navigation solution and GPS overall would not be suit-

able for this systems navigational requirements as the facility is predominantly in an indoor,

closed environment, and requires centimetre precision in a confined area when traversing

throughout each row of vertical hanging baskets in order for the arms to operate as intended

and without damaging the fruit or vertical growing system.

2.2.1 Dead Reckoning and Sensor Fusion

An early technique in navigation systems that can be used in place of GPS is dead reck-

oning, the estimation of a robots position as it moves, based on previous sensor data. This

method can use various sensors such as wheel odometry, LiDAR measurements or an iner-

tial measurement unit (IMU), a combination of gyroscopes and accelerometers, to determine

and track its pose. These systems are self contained, requiring no external input for pose

estimation and are, in ideal environments, precise in tracking a systems position initially. As

a robot moves, many small errors from sources such as wheel or track slippage, can accu-

mulate rapidly. This accumulating error can lead to drift, a robots estimated pose according

to its sensor readings differing from its actual position. An IMU alone for most applications

is insufficient. A method to combat this can be through combining these sensors with ad-

ditional data sources to improve their pose estimation, by periodically having their absolute

pose updated. The dead reckoning method has been a navigation technique researched for

many years, with considerably more advanced solutions now available, such as those found

in sensor fusion methods.
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The use of combining data from multiple sensors is an interesting research area for naviga-

tion systems and a potential replacement for GPS based systems, improving sensor accuracy

and the use of filter techniques for pose estimation, such as the variants of Kalman filter, can

enable this method to be reasonably effective. As this method can operate in GPS denied

areas, it can be particularly applicable to agricultural environments, with active research into

systems using this method [3] in Fig.2.3., this utilizing an extended Kalman filter for pose

estimation, using wheel odometry, IMU and camera sensor data in an agricultural environ-

ment.

Figure 2.3: Visual, Wheel Odometry, IMU Robot [3].
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2.2.2 Artificial and Natural Beacon Based Navigation

A potential solution considered for these requirements was through natural or artificial bea-

cons [27] [28]. This type of navigation uses artificial or natural way points such as land-

marks, coloured markers or WiFi to determine and update a systems location. This type

of way point system may not require prior knowledge of the environment, but may need

constant maintenance in a dynamic agricultural setting. This would not be suitable as the

interior environment itself is dynamic and frequently changing in regard to the position of

the vertical growing baskets. This may render natural or artificial landmarks or coloured

markers unreliable as there visibility would not be guaranteed with the frequently changing

position of the vertical hanging baskets, with WiFi also being unreliable if not unavailable

in this environment and not providing the positional accuracy required to operate safely and

effectively in the vertical rows.

The terrain being soil, dust and plants would also effect the visibility of ground based bea-

cons, reducing this and requiring both time and labour to maintain. Using artificial or natural

beacons as way points for predetermined path planning would also not be a viable solution

for this navigation system as the vertical growing facility is frequently changing its layout,

the hanging baskets are fixed, moving vertically only, but are free hanging and may sway or

move, not necessarily returning to their exact initial position.

2.2.3 Simultaneous Localisation and Mapping

A potential solution for the navigation system in this research is that of a combination of

global simultaneous localisation and mapping (SLAM) for larger, less absolute accuracy
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dependent areas, and a precise local path planning controller to keep the robotic arms in op-

erational range.

SLAM is a necessity for many applications in automated robotics, for a robot to know its

local or global location in an unknown environment it requires a map, to develop a map it

requires its location. SLAM systems use their sensors to generate a map of an environment

whilst localising to this map. These systems accuracy in location estimation relative to their

environment can be effected by many external influences, accumulating error from drift as

with dead reckoning or inaccurate sensor readings can quickly and dramatically effect the

reliability of its determined location, this also effecting the accuracy of a map generated.

With these challenges, there have been many various techniques and methods explored, with

intriguing results and improving system’s navigation capabilities. SLAM has been an active

research area for many years with a wide variety of differing methods developed using mul-

tiple combinations of sensors [29] [30] [31] [32] [33], including LiDAR with efforts such as

GMapping [29] and Google Cartographer [30] and RGB-D camera based systems such as

ORB-SLAM [34] [35] and RTABMap [36]. These systems use sensory information to deter-

mine a robot’s pose whilst keeping track of its position as it moves through an environment,

simultaneously localising and updating the map as it moves throughout an area.

A relatively successful approach to this problem has been in the use of occupancy grid based

methods [37] [38], using odometry readings and a laser scanner for example to gradually

generate a map of an environment based on the likelihood of a grid cell being occupied or

empty. This method could often face problems from accumulating errors, an issue that can

be countered by using filtering techniques as with other methods, such as the Kalman and
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Figure 2.4: GMapping SLAM with Mobile Robot.

extended Kalman filter [39] [40] or the ICP algorithm used in Robust 3D SLAM [41]. With

the lowering cost and improving capabilities of 3D laser scanners, LiDAR based point cloud

techniques have also been developed for SLAM, the data collected from a laser scanner can

be used to generate a 3D point cloud rendering of an environment, with accurate depth mea-

surements obtained from landmarks and objects [42], [43] [44] [45]. There have also been

approaches taken using camera sensors in visual SLAM methods, for example, with stereo

based SLAM methods [46], [47] taking two images from a precisely calibrated stereo cam-

era and determining the disparity between these two images to determine the depth from

an object or environmental feature. This can then find distances from objects to be used as

beacons that, through triangulation or trilateration, for example can be used to determine the

systems location in an environment whilst also mapping this environment. Along with stereo

vision, monocular cameras have also proven to be effective for real-time simultaneous local-
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isation and mapping [48] [49] [34] [35] [50] [51]. A monocular camera can also be used to

determine distance in images by taking two images and determining the disparity between

two pixels in a corresponding image, the depth of objects and environmental features in an

image being determined using this method.

As with previous methods, sensor fusion techniques such as combining a laser and camera

sensor for simultaneous localisation and mapping have also been research areas of inter-

est [52], for example in [53] using a camera to detect landmarks, and a laser to determine

the distance as well as the RGB-D camera methods [54] [55]. The problem of localising to

and mapping an unknown environment is still an active area of research, with the lowering

cost and improving performance of 3D laser scanners. Their use in SLAM systems com-

bined with a monocular or stereo camera could assist in the systems accuracy, coalescing the

detail inherent in an image with the accuracy of a lasers distance measurements. A system

combining these sensors could then also be used for purposes such as 3D environment re-

construction as the required data to generate this would have already been collected as RGB

images and point cloud data.

2.3 Multi-Robot Control Methods

A robotic base on its own may find use in exploration tasks but to be useful in many en-

vironments requires others systems to be integrated, such as robotic arms, end effectors,

dependent on its intended application. The combination of multiple robotic systems requires

various components to operate cohesively. Complex systems often need to operate in the

same coordinate reference frame to ensure they do not conflict, whilst also potentially en-
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able multiple individual systems to operate in the same environment. The software libraries

using robot operating system (ROS) are ideally suited for this task, enabling multiple com-

ponents and sensors to function together in the same reference frame.

2.3.1 Robot Operating System

Robot Operating System (ROS) is a collection of libraries facilitating the use of multiple

robotic components and sensors. ROS enables individual components and sensors of a sys-

tem to be developed and used as nodes that can communicate with each other through one

main server, in a publisher, subscriber model as shown in Fig.2.5. [56] [57] [58] This system

enables rapid development and prototyping of robotic systems using this model, whilst also

having various tools such as simulation and robot model development tools, Gazebo and

RViz, respectively, available for testing software.

ROS also has a method for combining multi-system robots in its transformation tree struc-

ture, this enables multiple components to operate in the same coordinate frame by linking

them to a single base component of which the other components of the system use as a ref-

erence point. This would enable a robot comprised of, for example, one robotic base and

multiple robotic arms to all operate using one coordinate system, instead of accounting for

each components seperate coordinate transformations when the system moved. The require-

ment of multiple systems operating together with various sensors for this research make the

use of ROS ideal.
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Figure 2.5: ROS Structure, Clearpath Robotics [4].

2.4 Semantic and Instance Segmentation

Semantic and instance segmentation is the continuation of research in object detection and

recognition. Semantic segmentation is the process in which every pixel in an image is la-

belled and pixel-wise classified. These pixels are then grouped together as individual objects

by having the same label, for example people and cars. Improving on this, instance seg-

mentation is the process of detecting each individual object in an image, for example each

individual person or car. This is achieved by identifying each individual object in a pixel-

wise classified image.
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Figure 2.6: Instance Segmentation using Mask R-CNN [5].

2.4.1 Camera Based Methods

There has been significant progress in this field using camera sensors, with many differing

approaches. A number of various approaches to this problem inspired by the “Fully Con-

volutional Networks for Semantic Segmentation” [59], the first fully convolutional neural

network for semantic pixel-wise labelling. This initial work leading to improvements such

as FCAN [59], ICNet [60], DeepLab [61] and ERFNet [62]. Recently, the focus has shifted

toward improved inference speed for real-time performance, whilst maintaining and improv-

ing accuracy in semantic segmentation. The BiSeNet [63] and BiSeNetv2 [64] methods

propose separating a network into a spatial branch and a semantic branch, this improving

the inference speed of semantically segmenting an environment, whilst ensuring accuracy

loss is kept at a minimum using an RGB-D camera sensor as shown in their results. Along

with this research, approaches have been taken in using the data acquired by a camera sensor

for semantic segmentation to also be used in 3D reconstruction as seen in, [65] proposing a

dual use for their CNN, both semantically labelling and reconstructing an environment, and

“Dense RGB-D Semantic Mapping with Pixel-Voxel Neural Network” [66]. These methods

utilise both monocular images, and RGB-D data collected respectively to semantically seg-
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ment and reconstruct an environment.

Object detection and recognition to semantic segmentation has now progressed to identi-

fying and labelling individual instances of objects in an environment, instance segmentation.

Although relatively new, this is also an active area of research, with advancements such

as MID-Fusion [67], a system capable of 3D reconstructions of objects in an environment,

whilst also instance segmenting them using an RGB-D camera sensor. This has also been

attempted using a recurrent neural network (RNN) [68] and achieved impressive results at

the time it was published along with ReScan [69] and “Volumetric Instance-Aware Semantic

Mapping and 3D Object Discovery”[16] for indoor environment object instance segmenta-

tion. The more widely used CNN approach has led to the current state of the art in camera

based instance segmentation in Mask R-CNN [5]. Mask-RCNN [5] is based upon previous

work in RCNN [70], Fast-RCNN [71] and Faster-RCNN [72].

RCNN, Fast-RCNN, Faster-RCNN and RPN

R-CNN [70] uses selective search to find regions in an image that may contain an object.

It does by looking for regions of interest (ROI). A ROI is an area in an image of similar

pixels, colour or texture for example, that are grouped together in regions because of their

similarity. These boxes are then passed to a convolutional neural network for feature extrac-

tion using layers of filters, instead of the input image with no initial attempt at identifying

objects, speeding up the process, before then in R-CNN being passed through a support vec-

tor machine (SVM) layer to determine and output a classification. Fast RCNN [71] was the

next successor to this. R-CNN [70] is computationally expensive as through selective search,

a large number of regions were selected before then individually being passed through the
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CNN for classification. Fast R-CNN speeds this process up by first passing the input image

through a CNN to generate the ROI’s using selective search on the feature map generated by

the CNN.

A feature map is the output produced after an image passes through a layer of filters, with

each filter designed to detect a specific feature, for example to detect a straight line, in a

convolutional neural network, there can be anything from 10’s to 100’s of filters in a layer to

detect these features. It then continues through the network to be classified through an ROI

pooling layer and finally an activation function layer resulting in a predicted classification.

The ROI pooling layer enables a list ROI’s to be checked against one feature map, instead of

having to check each ROI individually.

This is done by downsampling the regions into smaller sub samples of equal size, i.e. sum-

marised versions of the features detected in the input. This downsampling can cause loss

of data, an issue resolved using ROI align. The next improvement to Fast R-CNN is Faster

R-CNN [72], Faster R-CNN [72] is a real time object detection network introducing the

method of regional proposal networks (RPN). RPN’s further speed up this process by being

more computationally efficient in how the regions of interest are found. RPN’s generate a

prediction of an object in an image being an object, given the proposed region meets a de-

fined threshold.

An input image is first passed through a CNN to generate a feature map. The feature map is

then scanned over to generate a series of anchors. Anchors are boxes of various sizes gener-

ated across the entire previously output feature map, often overlapping to cover as much of

the image as possible. These anchors detect first the background or foreground of an image,

before then refining there alignment over the potential object. The most likely of these ob-
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jects is determined by the intersection over union (IoU) of all of the predicted regions, if the

IoU reaches a certain threshold, the region is considered an ROI, removing unlikely ROI’s

and keeping the ones with the highest prediction of containing an object. These proposed

ROI’s are then passed to an ROI pooling layer which enables a single feature map containing

all of the proposed regions of interest to be passed to a CNN for classification instead of

individual regions of interest, before then to an activation function layer to be classified.

Mask-RCNN

Mask R-CNN [5] is built on Faster R-CNN [72] and is the current state-of-the-art in seman-

tic segmentation using images. Mask R-CNN is a significant milestone in image recognition

as it is capable of real time semantic segmentation and introduces the concept of ROI align.

Mask R-CNN, similar to Faster R-CNN, first passes an input image through a CNN to gen-

erate a feature map as an output. After this, the feature map is then passed through an RPN

to detect regions of interest to be passed through the convolutional network. The RPN gener-

ates proposed regions of interest, with a foreground or background class, along with a refined

alignment over the potential object. In the next stage of Mask R-CNN [5], the proposed re-

gions are passed through the network to further refine the object detection using ROI align,

the process of ROI align has the same function of reducing ROI size to all be smaller and

equal, but losing less data in the process than in ROI pooling, a more solution. The final

stage of Mask R-CNN is the addition of segmentation masks, image masks enable certain

parts of an image to either be visible or not by changing the pixel values, depending on the

values of the mask. In this stage, a mask is generated for each ROI, for example removing

the background to reveal just the object that is being detected, the masks generated in Mask

R-CNN are low resolution, these are then scaled up for inferencing, with the networks output
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being the instance segmented predicted class of an object.

2.4.2 Laser Based Methods

There has been significant interest in research in using laser sensors for semantic and in-

stance segmentation in recent years as the cost of these has reduced dramatically, whilst the

performance has improved. Earlier research in this area can be found in “Fast Semantic

Segmentation of 3D Point Clouds with Strongly Varying Density” [73], SegCloud [?] and

a fusion of image and point cloud [74] for semantic segmentation developed by R. Zhang,

et al, as well as PASS3D [75], an outdoor semantic segmentation method using a LiDAR

scanner performing comparably to SqueezeSeg [76] and PointSeg [77]. These along with

the methods proposed in RangeNet++ [78], PointSeg [77], OREOS [79], MultiModal [80]

and DeepTemporalSeg [81] also demonstrate accurate semantic segmentation capabilities in

outdoor scenes. This work in semantic segmentation has subsequently then led to research

in instance segmentation using laser scanners. This field has considerably less research than

can be found when using RGB and RGB-D camera sensors or semantic segmentation using

a laser scanner, although there has been a number of efforts proposed. A substantial con-

tribution has been made through [82] using a LiDAR scanner to detect instances of objects.

The authors also provide a new point cloud dataset that is publicly available. This is a sub-

stantial contribution as a large limitation to research in this area is the availability of labeled

datasets for training point cloud based networks. The current state of the art in point cloud

segmentation and instance segmentation is PointNet [83] and PointNet++ [6].
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Point Cloud Segmentation

The task of semantic and instance segmentation using point cloud data, although an active

field of research is relatively new compared to that of RGB and RGB-D based techniques.

The difficulty with point cloud data is that it is an unstructured set of data points, this can

make determining objects in 3D difficult when points may not necessarily be related, al-

though close together. A recent breakthrough in this field has been found in PointNet [83],

and the current state of the art PointNet++ [6]. There can be thousands of inputs in any given

set of point cloud data, the general structure of point cloud data being unordered means there

can be N! permutations of this data. To use this data for object detection and semantic seg-

mentation, it needs to be invariant to these permutations, to represent the same structure if

rotated or translated for example.

PointNet

PointNet [83] itself takes point cloud data directly as an input, and outputs a classification

label for an object, or per point classification for semantic segmentation. The architecture

of the PointNet network consists of three components, each point at first is processed in-

dependently having a feature transformation applied, before then a max pooling layer and

generating a global feature vector of the inputs. The input data in the form of coordinates is

mapped to a space. The result of this mapping is a global feature vector of per point features.

To ensure the order of the points does not have an effect, the authors make use of max pool-

ing to downsample and reduce the dimensionality of the feature vector. The idea being, once

a global feature vector has been generated from the data set, through max pooling the data

will show the features regardless of transformation for example translation or rotation. This

is important, as with RGB image classification, the object being detected is 2D, where as in
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point cloud object detection, the object being detected may be formed of points that from

one angle seen unrelated, but from another represent part of a structure, as distance between

points are a fundamental part of the structure in point clouds. The global feature map is then

passed back to the initial per point features and linked with its respective global feature point

generated from the max pooling layer, this gives the new per point features local and global

information. The final stage of this network is to apply an affine transformation matrix to the

input points. This is achieved by a mini-network resembling the larger PointNet network.

The network is fully connected and, using per point feature extraction and max pooling, the

affine transformation matrix generated from this network is then applied to the input points

to correct for geometric distortions that may occur, generating a more accurate representa-

tion. PointNet is capable of 3D object classification, 3D part segmentation, and semantic

scene segmentation, and is the basis for PointNet++ [6].

PointNet++

PointNet++ [6] is an extension of PointNet, with an added hierarchical structure of set ab-

straction levels, these levels are comprised of a Sampling layer, Grouping layer and PointNet

layer as shown in Fig.2.7. The Sampling layer selects a set of points, defining the centre

of a region, points near this centre are then grouped together in the Grouping layer, and fi-

nally the PointNet layer uses the same process as the PointNet network to determine feature

vectors from these sampled and then grouped data sets. The Sampling layer uses Iterative

Farthest Point (FPS) to determine the subsets. This gives a better coverage of the entire point

set than rather than random sampling, as through random sampling centre points may not be

as evenly distributed across the entire dataset. The points near these central points are then

grouped together in the Grouping layer in varying densities as the number of points may be
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Figure 2.7: The Hierarchical PointNet++ Feature Learning Architecture [6].

different in different regions. The PointNet layer then applies the PointNet process to the in-

put from these subgroups to output local region feature vectors. These local region features

may vary in density, an object in a region for example will have a higher point density in

the set than an empty region. This could cause an issue for generalising feature learning, in

more dense or sparse areas of data.

The authors of PointNet++ attempt to solve this problem by looking for larger features in

sparse data, and finer features in dense data through a process they have named density

adaptive PointNet layers. This process learns to combine features from different scales and

different point densities. To combine features from different point densities and scales, the

authors give two solutions. The first being multi-scale grouping (MSG) shown in Figure

2.8.A., where features at different scales from every local region feature vector that were

previously obtained, are captured and are then grouped together. The network is trained to

optimise this multi- scale feature grouping by randomly dropping input points, which they

call random input dropout, from each set of points. This gives the network various sparsity

training data. This solution can be computationally expensive however as there are often

a large number of central points. The second option is multi-resolution grouping (MRG)
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shown in Figure 2.8.B. This compares two feature vectors and uses the most reliable vector

based on its point density. This is done by joining two vectors of points together at a given

set abstraction level. The first is from the feature obtained in a local region by processing all

of the points in the region through a PointNet [83] at the given level. The second vector is

generated by joining all of the sub region features from the level below a given level. This

joined set of two vectors can then be used depending on the point density of a region, the

vector chosen is determined by a weight given depending on the requirements. If the den-

sity is low, the first vector could be less accurate because of sampling deficiency, in which

Figure 2.8: A: Multi-Scale Grouping (MSG). B: Multi-Resolution Grouping (MRG) [6].

case the second vector could be used, if the point density is high, the first vector may be

more accurate as it can show finer details in higher resolutions. This solution was found to

be more computationally efficient as the density adaptive layers enable the first vector to be

used for higher density regions and the second vector to be used for lower density regions

for feature extraction. The final part of the PointNet++ network is to output classification

and segmentation predictions. The segmentation part of this network joins points together

based on distance and using skip links, to skip between levels before these grouped points

go through a PointNet network, this process is repeated for feature extraction from the initial
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set of points. For classification the feature vectors go through a fully connected network

using the rectified linear unit activation function (ReLU) to update the points for classifica-

tion. This extension to the PointNet network adds a hierarchical grouping method to the data

set, extracting features from different levels of different sub sets of the initial data set. This

improves the performance of the network significantly, with PointNet++ having a lower er-

ror rate than PointNet without the hierarchical structure. PointNet extracts features from the

initial set, generates a feature vector before passing this back to the initial points to extract

features globally, PointNet++ instead uses a hierarchical approach to generate sub groups of

points to extract local features, and applies this repeatedly for global data set classification

and segmentation.

2.4.3 Laser and Camera Fusion Networks

There has also been a significant amount of research focused on RGB-D camera based sys-

tems, camera sensors with a depth element taken by determining the distance between two

corresponding images, a method which has seen substantial success. Tt may be possible to

further improve this by utilising both a camera and laser sensor separately. There has been

a number of proposals at combining a laser and camera sensor for this purpose, including

“PointFusion for 3D Object Bounding Box Estimation” [74] [84], “Real-time probabilistic

fusion of sparse 3D LiDAR and dense stereo”, “Label Propagation from ImageNet to 3D

Point Clouds” [85] and “Depth Aware CNN for RGB-D Segmentation” [86] for indoor envi-

ronments. The most successful of these methods being LDLS [87] based on Mask-RCNN,

capable of instance segmentation in outdoor environments. This method incorporates Mask-

RCNN for images combines this with point cloud data obtained using a 3D laser scanner

to generate an instance segmented 3D point cloud of an outdoor environment. This method



38 2.5. 3D Environment Reconstruction Techniques

has proven successful at segmenting people, cars and pedestrians in a 3D point cloud with

improved accuracy over previous methods.

2.5 3D Environment Reconstruction Techniques

A potential additional use of the sensor data obtained by the system in this research could

be in generating a 3D reconstruction of its environment. There has been a number of meth-

ods for environment reconstruction, mainly focused around camera sensors such as RGB-D

cameras, methods such as PanopticFusion [88] StaticFusion [89], DynaSLAM [90], Mask-

Fusion [91], and ReFusion [92].

MaskFusion uses Mask R-CNN for semantic segmentation to assist in mapping and tracking

multiple objects. The authors note that it is however limited to reconstruction, tracking and

recognition as it can only recognise objects that the Mask R-CNN network had been trained

on, not accounting for errors in classification, it also does not handle dynamic, moving or

small objects efficiently, which can lead to lowering its performance.

ReFusion [92] is capable of localising to and reconstructing a static environment using an

RGB-D camera. This method has proven to frequently surpass current state of the art sys-

tems in static environments and also has comparable results on dynamic environments. It

is noted that dynamic environments are more challenging without a semantic segmentation

algorithm available, the authors also provide a dataset used for their work.

2.6 Datasets for Agricultural Environments

The use of a semantic or instance segmentation network in an agricultural environment

would be reliant on the dataset a network has been trained with for its classification ac-

curacy. There are a number of labelled datasets available for image based training such as
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the KITTI dataset, MSCOCO, NYU Depth and the TUM RGB-D Dataset.

There is however far less data available for 3D point cloud classification networks currently,

with Semantic KITTI and Semantic3D being two of the main datasets available. The perfor-

mance of a network would be dramatically effected if it were trained on images of buildings

and cars for example, then used in an agricultural environment for fruit harvesting.

A systems robustness and ability to perform efficiently in this type of environment requires

many different training examples, often specifically for the type of fruit bushes to be classi-

fied. Whilst this is becoming more widely available for image based classification, it is still

a time consuming problem and more so for a point cloud based network.

A potential solution to this could be through synthetic data. TensorFlow, an open source

machine learning library enables the ability to synthesise images that can then be used as

training data, for example, if 1000 images of a specific type of fruit bush in an agricultural

environment were taken, these images can be transformed, moving an object in an image

to different locations in the image, in this example, 1000 images could be used to generate

4000 images, this could potentially be useful for this system.

2.7 Research Novelty

The system proposed in this research is designed to operate in an indoor vertical growing

facility, with no rigid ground based structure nor guarantee of GPS being available.

The accuracy of GPS if available would also be insufficient for the system to move between

each narrow row as it finishes harvesting in each of them or to move along each row to au-

tonomously harvest the fruit in hanging baskets of varying and frequently changing height.
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It will also be required to operate entirely without assistance from a human, as such remote

controlled methods would not be applicable.

The system will be comprised of a custom built robotic base with two robotic arms and

multiple sensors as shown in Fig.2.9. Additional software modules such as the navigation

and control system, sensor repositioning throughout the systems development or additional

component integration may be required, as such, a modular and configurable architecture will

be required. This would also enable generalisation of the system to different crop harvesting

and environments. This will also ensure rapid prototyping and evaluation in a laboratory and

agricultural environment will be possible, without the need to redesign the entire system if

a new component is added or removed, as such a novel system architecture capable of these

requirements is needed for the system.

The system once developed may also be capable of additional functionality such as met-

ric collection to determine potential harvest yield, fruit quality and environment monitoring.

The data required for this is often obtained as navigation data, with it potentially possible to

use this data for this additional functionality, using classification techniques such as instance

segmentation and a 3D reconstruction method.
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Figure 2.9: Robotic System for this Research.
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Chapter 3

Configurable Software Architecture for

an Agricultural Robot

3.1 Introduction

The agricultural sector has seen considerable interest in the use of robotics and intelligent

systems over recent years, with advancements in the capabilities and reduced cost of un-

manned ground vehicles and their peripherals, such as LiDAR and stereo camera sensors

and robotic manipulator arms. With these advancements, many new applications are see-

ing active research and becoming commercially viable. There is nonetheless still much re-

search and development required in this area for the realisation of autonomous agricultural

robotic systems. The agricultural industry may benefit dramatically from the use of such

technologies, this becoming increasingly of interest and importance with national and global

issues such as labour shortages and climate change, reducing viable agricultural land and

rising populace demand. An application of robotics in agriculture is that of autonomous fruit

harvesting, an often time consuming and laborious task. An autonomous solution for this

43
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task has the potential to greatly assist with these challenges in both reducing waste whilst

increasing crop yield, alleviating labour shortages through harvesting twenty four hours a

day, whilst facilitating new methods of agriculture such as vertical farming to utilize avail-

able land as efficiently as possible. Robotic systems are often associated with laboratory or

factory settings such as warehouses, automated production and assembly lines, commercial

settings such as drone delivery services and specialised uses in the medical or space sectors.

These environments are often structured and purpose built for these systems. For use in an

agricultural setting a system would be required to be adaptable and robust, able to tolerate

environmental conditions typical of agricultural settings such as soil and dust, whilst main-

taining precision in prolonged, repetitive tasks and in varying terrain.

This chapter introduces a novel software architecture, describing the design, development

and initial evaluation for a configurable, modular robotic system capable of autonomously

harvesting strawberries in a vertical growing facility. The following sections first establishes

the hardware the system is comprised of, followed by a description of the software architec-

tural design, development and implementation. The section is concluded with the modular

software implementation description and the initial experimentation of the system as a proof

of concept for both navigation and control capabilities.

3.1.1 Objectives and Contributions

The objectives and contributions of this chapter are the design, development and imple-

mentation of a configurable, modular software architecture for an agricultural robotic fruit

harvesting system.

This chapter includes:
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• A modular, configurable software architecture, a conceptual and practical architecture

for autonomous strawberry harvesting and agricultural fruit harvesting.

• A multi-robot system implementation, a method of combining multiple robotic sys-

tems to function together.

• An initial evaluation of the system as a proof of concept in a laboratory setting.

• SLAM experimentation in the laboratory and in the vertical farm, to determine the

limitations of the SLAM algorithm in an agricultural environment, and prove the re-

quirements of local positional control for fruit harvesting.

These objectives presented numerous challenges, with the system being required to operate

in a dynamic, unstructured, natural environment, utilizing multiple sensors and components

operating in parallel, whilst incorporating a perception system for detecting the fruit to har-

vest.

3.2 Hardware Description

The robot is entirely custom built, the robotic arms and base being pre-assembled with ad-

ditional components specifically for the task of strawberry harvesting in a vertical growing

facility added to the system.

An overview of the hardware components of the system can be seen in Fig. 3.1, categorised

into three main aspects, the robotic base, robotic arms and sensors. These individual com-

ponents communicate together to provide the systems functionality, for example the sensor

data obtained by the stereo camera is used by the robotic arms and if required, the robotic

base to move to and harvest a strawberry as shown in Fig. 3.1.
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The configuration of the system’s hardware is modular by design and can be modified and

changed with sensors able to be added, replaced or removed dependent on the requirements

or environment the robot is operating in.

This modular design has the additional capability of being adaptable to additional harvesting

requirements with the capability of changing sensors and components if required, without

having to redesign the entire system. The components of the system are detailed in the

following sections.

Figure 3.1: Overview of System Components.

3.2.1 Robotic Base

The robotic base is a custom built Clearpath Husky Unmanned Ground Vehicle as shown in

Fig.3.2. The base unit is an outdoor all terrain field research robot, with a base plate size of

21.4in x 16.5in, a maximum payload of 70kg and speed of 1.0 m/s.

It is capable of carrying up to four robotic arms, a variety of sensors and has an internal
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power supply enabling the system to be entirely wireless and self contained. The robot

is compatible with Robot Operating System (ROS) and able to operate in various terrain

making this an ideal prototyping platform for an agricultural robot. [4]

Figure 3.2: Husky Robotic Base Schematic. [4]

3.2.2 UR3 Robotic Arms

The robotic base was custom built to accommodate two universal robots UR3 robotic arms,

Fig.3.3, these being pre-installed onto the top plate of the base.

The arms each have customised end effectors, designed for harvesting strawberries, with a

total weight of 11.2kg each and a maximum payload of 3kg. They each have 6 degrees of

freedom, with each joint capable of 360 degree rotation, except the wrist joint, this capable

of infinite rotation. The base, shoulder and elbow joints are capable of a maximum rotational

speed of 180 degrees per second, with the three wrist joints capable of up to 360 degrees per

second.

This gives the robotic arms considerable flexibility and maneuverability to reach at numerous

angles, ideal for this task where the strawberry stems may require the arms to maneuver into

many different angles to be harvest-able.
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Figure 3.3: UR3 Robotic Arm.

3.2.3 Components and Sensors

The robot as standard is capable of providing odometry readings through encoders in each

of the four wheel motors, with 78,000 measurements per rotation. The additional sensors for

perception and navigation required a platform for installation, this above the top plate of the

robotic base to ensure they have the required height for their application and to facilitate the

number of sensors required. In the center of the robot, a custom built mount was installed

as a platform for the sensors to accommodate this, capable of mounting numerous sensors

as required as shown in Fig. 3.4. The robot is equipped with three main additional sensors,

Figure 3.4: UGV Sensor Mount.
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a Velodyne Puck 3D LiDAR sensor, a Redshift Labs UM7 inertial measurement unit and a

ZED Mini stereo camera. A network switch was installed to connect the robotic arms and

LiDAR sensor, with a router added as a wireless access point for the system, this capable

of both Ethernet and wireless connectivity. Finally, the battery was replaced with a higher

capacity variant to increase operational time with the additional sensors and components,

this giving the system a battery life of 3-4 hours with this configuration. The full robotic

system can be seen in Fig.3.5. The system’s hardware components then required a method

Figure 3.5: ClearPath Husky UGV Custom Built.

of integration to be developed for their functionality, this solution needing to be modular and

configurable to ensure the components are able to function together. The following section

details the software architectural solution for this.
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3.3 Configurable Software Architecture

The system’s components required a novel software architecture to be designed for their inte-

gration and operation. As the system was a prototype to determine and evaluate the viability

of automated robotic fruit harvesting, a modular, configurable architectural design was de-

cided upon to enable rapid component addition, integration, movement and replacement.

The systems architecture design had a number of requirements, for example hardware com-

ponents such as additional sensors may have been required to be added or replaced in the

system, with functionality added for each component.

The position of the sensors may also have required moving through the systems develop-

ment, for example the camera sensors position to ensure it did not obstruct or conflict with

the robotic arms. The configurable architectural design facilitated these requirements, en-

abling rapid and dynamic changes to be made without the system overall needing to be

redesigned.

The sensors and components of the system once installed required corresponding software

modules to enable their functionality, this enabled through the software architecture design.

The modular design of the system enabled these software components to be integrated, as

well as functionality such as navigational capabilities and arm functionality to be added and

removed without having to rebuild the system with each iteration. This design enabled rapid

testing and adaptation of the system.

The software architecture’s modular design, and through using ROS to integrate the individ-

ual components, enabled the system to support additional sensors and components with soft-

ware written in multiple languages, such as Python, C and C++, this giving further flexibility

to the system and its capabilities. The architecture is separated into four core components
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with each containing multiple modules, the system overall being controlled through a user

interface as shown in Fig. 3.6.

These main components are the Navigation Control, UR3 Arm Control and the Perception

System, with the inter-operable functionality of the robotic base, arms and perception system

combined in the Navigation and Control module of the system.

The main aspects of the system are loosely coupled, requiring only coordinates from the per-

ception system as an input, this further facilitating the capability of components being able

to be added or removed. For example the perception system can be replaced with another

version trained for a different fruit, another arm could be connected to the system or a differ-

ent navigation method.

3.3.1 Perception System

The perception system used for fruit detection was an existing system developed for this

project. The systems architecture, arm control and navigation and control were developed to

be integrated with the perception system, this used to provide the coordinates of the fruit to

be harvested.

The perception system provides X, Y and Z coordinates to a network connected to each

robotic arm, each network then calculating the joint angles required to harvest the fruit.

These joint angles are then passed as an input to each robotic arm, these inputs then used for

navigation control.
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Figure 3.6: Software Architecture Overview.

3.3.2 Robotic Arm Control and Navigation Modules

The robotic arm control and navigation and control modules control the motion of the robot

base and arms. The navigation and control class combines the functionality of the UR3 arm

control, navigation control and perception system modules through multiprocessing, with

the system overall controlled through a user interface.

The robot modules are loosely coupled to enable the addition and removal of components,
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with the perception system providing coordinates for the fruit harvesting, these being the

basis for the navigation control. With this modular design, the robotic arms, base or sensors

can function independently of each other, for example if the left arm only is in range of a de-

tected fruit, it would be able to harvest it or if the base is required to move to a new position

to reach the detected fruit it can do so independent of the robotic arms.

The system, when the core components are interlinked, is designed to be led from the left

arm, the coordinates from the perception system are passed to the left arm control, this

leading the system with the left arm as the primary component for the robots direction and

movement.

The right arm functions independently as a separate module, and is able to operate when it

is in range of a fruit to be harvested, but will not overrule the left arm, this being the only

difference between the left arm module and the right, or any additional arm module, with

this functionality removed from the right arm.

The arm functionality is combined and controlled in the UR3 Arm control module, enabling

additional arms to be connected, without having to redesign the system. The different func-

tionality of the system is controlled through a user interface, enabling a user to access both

independent module functionality, such as navigation control or each arm, as well as to begin

and exit autonomous operation, and for manual control of the robotic base.

3.3.3 Module Integration and Multiprocessing

The modules of the system are individual, loosely coupled sets of functions for each compo-

nent, for example the left and right robotic arms. All functionality of a module is contained

within its respective class as one modular component for example with the left arms func-

tions, except its additional control of the robotic base. These functions could be applied to
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any number of robotic arms and will have the same functionality. The only dependence the

class has is in receiving coordinates and joint angles to move to, these acquired from the

perception system. The navigation and all other modules of the system are designed in this

manner. The navigation class can function entirely independently or take an input from the

perception system as a target to move to. The individual module functionality is combined

with the rest of the system through the navigation and control class. This class contains

multiple multi-threaded functions designed for different uses of the robot. The module inte-

gration overview is shown in Fig. 3.7.

Figure 3.7: Module Integration.

3.4 Software Implementation

The software for the robot is comprised of multiple, independent modules as described, with

each able to operate as an entirely stand alone function, or as part of the system overall, with

additional functionality added as the modules are linked together.

This modularity is facilitated through ROS, using its transformation tree structure, Unified

Robot Description Format (URDF) and launch files. The URDF and launch file composition,

transformation tree and abstract module design is described in the following section.
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3.4.1 ROS Node Structure, URDF and Launch Files

The navigation system is built using the Robot Operating System (ROS) software libraries.

The robot being entirely custom built meant a new description of itself was developed and

introduced to link each component and sensor in relation to the rest of the robot, this devel-

oped using ROS’s transformation tree system.

This is required as each component and sensor would be considered to be the center of its

respective transformation without a system to control this. The description ensures that each

component transformation is following the same coordinate system as the robot moves, this

through ROS’s coordinate frames system.

The ROS system uses Unified Robot Description Format (URDF) files to create a virtual rep-

resentation of a given system, these URDF files comprised of simulated visual components

of a system, and enable each components position in a system to be defined, for example

where the robotic arms are in relation to the rest of the robot, or where a sensor is mounted.

The system operates with two coordinates systems, for the robotic base and arms, these at a

90 degree angle horizontally to each other and the robotic arms being at a 45 degree angle

vertically to the rest of the robot. The URDF and subsequent transformation tree enables

both systems to operate in the same coordinate frame. The ROS URDF file system enables

a description of the robot to be written as a transformation reference system for the robot.

This enables the sensors to operate around one single point of reference as the robot moves.

This is useful for robotic systems as it enables multiple sensors to be added and to operate

together in one coordinate system. The sensors can be defined in the URDF file including

their location and orientation on the robot, from there when the robot moves. The sensors

are transformed around a central defined point this titled as the base frame.
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The launch file system enables all of the required components of the software to be launched

simultaneously when the robot is powered on, including all components, sensors and config-

uration files. This system required a custom launch file to include the control configuration

file, with ROS using Yet Another Markup Language (yaml) files for these configuration files.

The control yaml file is a configuration file used to set the initial parameters of the robot, this

launched through the control launch file, included with the main launch files when the sys-

tem is started. The control file initializes the robotic base’s initial parameters, for example

the base frame of the transformation tree and the speed parameters of the robot. The config-

uration files can be used to set parameters for multiple components of the system, including

the GMapping SLAM algorithm used in the systems evaluation, the results of this shown

further in this chapter.

The individual sensors of the robot each have a corresponding launch file, collated into a

single main system launch file, called when the system is started. This ensures all of the

components of the system are launched when the system is powered on. The system was

developed using both a simulated and the real system. There were two simulated versions

developed, using ROS’s RViz visualization software and the Gazebo simulation software.

The first simulated version of the robot was the robotic base with a Velodyne Puck LiDAR

sensor, as shown in Fig. 3.8 and 3.9, with and without the sensor mount. This was for devel-

oping the navigation software in a simulated environment. The second simulated version was

a separate URDF and configuration file with a simulated version of the system incorporating

the robotic arms. This was developed initially to test the robotic arm control in a simulated

environment. This was not required and not used as the functionality of the robotic arms

was tested instead in a real world environment, separate to the navigation system using the
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Figure 3.8: Simulated version of the
Robot with Velodyne LiDAR Sensor.

Figure 3.9: Simulated version of the
Robot with the Custom Sensor Mount and
Velodyne LiDAR Sensor.

perception system as the coordinate inputs.

3.4.2 Transformation Tree and Coordinate Frames

A transformation tree in ROS represents a coordinate system for all components in a robot.

When the robot moves, all of the robots components are then transformed around a single

point of reference, removing the need to keep track of each component. This system also

enables rapid customisation for additional sensors and peripherals such as adding additional

sensors, and enables multiple robots to operate in the same world environment using mul-

tiple maps. The transformation tree representing the components of this robot is shown in

Fig.3.10, The coordinate system follows the ROS convention of:

• Earth Link:

A global link that can enable multiple robots to operate using multiple maps.

• Map Link:

A global frame of reference generated by the robots laser scanner.
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• Odom Link:

A local frame of reference obtained through the robots IMU.

• Base Link:

A frame of reference related directly to the robot, a point on the robot to which all

other components are linked.

Figure 3.10: Visual Representation of the Robot with Transformation Links. The individual
links of the system ensure the robot operates in the same coordinate frame.

The relevant links in the transformation tree for this robot can be see in detail in Fig. 3.11

and Fig. 3.12. The base link is the initial point of the transformation tree and linked to the

center of the top plate of the mobile base. The wheels and the majority of the structural

components of the system are linked below the base link, with the front and rear bulkheads

linked to this. The velodyne mount is then linked to the center of the front bulkhead, with

the Velodyne sensor and IMU linked to the velodyne mount. The robot and its sensors are

initiated by a launch file when the robot is started, the custom description is passed to the
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control launch file to initialize the connected sensors and the base launch file to initialize the

required ROS nodes when the robot is started, giving it at an accurate representation of itself.

The navigation software was developed initially using a simulated farm environment for the

basic functionality before being tested and developed in a laboratory environment and the

agricultural environment.

3.4.3 Software Component Integration

The navigation and control class contains the methods to combine the functionality of the

system, for example the robotic base and left arm movement. In this class, there are various

functions for the parallel operation of components in the system. Parallel operation in this

context refers to the simultaneous operation of components, this through multiprocessing,

using a CPU core for each operation, as opposed to sharing the computational load across

multiple cores. The navigation and control class combines the separate modules of the sys-

tem and passes these as functions to the user interface. The process threads from each module

are called in this class in their respective functions. This modularity enables the base, one

or both arms to function independently or in parallel, dependent on the robots operational

requirements. With each robotic manipulator being controlled by a separate network and

the network determining the joint angles based upon input from the perception system. The

navigation control is designed to keep the system in the optimal position for the left arm

to harvest the fruit, with the robotic base moving the system dependent on the coordinates

provided for the left arm only to ensure this. The right arm will function provided it is in the

correct position, but the base will not move to ensure the optimal position for the right arm.

This is to ensure the coordinates sent to each arm do not conflict, resulting in the robotic

base attempting to move into the optimal position for the left and right arms simultaneously.
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Figure 3.11: The transformation tree of the robot shows the individual links between the
systems components. The Velodyne for example is linked to the Velodyne mount, this linked
to the front bulkhead before the top plate, then the base link.
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Figure 3.12: Transformation tree detailing the robotic base wheel links.
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The LiDAR sensor and all other sensors the system contains follow this modular approach,

to connect a sensor and module to the system would require the following:

• 1. Connect the required sensor to the system.

• 2. Add this sensor to the URDF file, including defining its position in x, y, z coordi-

nates for the transformation tree.

• 3. Add the sensor launch file to the main robotic system launch file.

• 4. Add the sensor script to its respective module to take an input or give an output.

The system could have a separate additional camera sensor mounted parallel to the current

sensor on the robotic base, with two additional robotic arms mounted parallel, and these

would be able to function. An abstract view of this can be described as, the limit of the

number of sensors and components is the size of the base plate and power supply required.

The global SLAM software uses the laser scanner to generate a 2D topological map of the

environment for autonomous navigation throughout the facility. The GMapping algorithm

was used as as a proof of concept for the navigation system, to determine its capability and

viability in, at first a laboratory setting before an agricultural environment.

3.4.4 UI and System Control

The user interface enables control of the robot, with options for all functionality of the sys-

tem. This includes manual and automated control of the robotic base, the control of each arm

individually, controlling each gripper and launching the perception system. The user inter-

face is terminal based, with a graphical user interface considered that could be used through

a tablet. An overview of the user interface is shown in Fig. 3.13.
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Figure 3.13: User Interface.

3.5 Initial Proof of Concept and Evaluation

The initial proof of concept of the system was to determine the software architecture func-

tions as expected, enabling all of the integrated components to operate, and to determine

through experimentation the viability of a SLAM algorithm such as GMapping to be used

as part of a navigation solution, in this type of environment. There are a number of exist-

ing potential solutions that would fundamentally not be viable for this application. A robots

basic navigational capabilities, such as wheel odometry only would be far too inaccurate

over prolonged distances and GPS would be unusable in this setting as the robot is required

to operate on uneven ground and in a partially indoor environment. The use of odometry

would be too inaccurate, with drift and slippage accumulating significant errors in a large

environment, and GPS again not giving the accuracy required to maintain a specific distance
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from the fruit bushes. The bushes are also naturally uneven, a straight path through the en-

vironment would also not give the required accuracy throughout the environment. The robot

is required to move throughout the farm environment and identify specific rows to traverse

between whilst maintaining a constant distance between the robotic arms and the fruit plants,

this whilst ensuring it does not damage the fruit or lose its position to ensure the perception

system can operate. This requires a novel navigation system to be developed based on both

global and local path planning requirements. A global requirement is to ensure the robot

travels to the correct row, this may be methodically, one after another or decided ahead of

time by a drone or other robotic system at another location in the global environment. In

order to navigate to the required location, the system must constantly update its perception

of the area as the vertical hanging baskets frequently move position whilst it is operating and

the density of plants in the baskets also frequently changes, this meaning a pre-existing map

may not accurately reflect the current environment. When the vertical baskets move, areas

below them previously occupied are no longer.

3.5.1 Natural and Artificial Beacons for Path Planning and SLAM

Natural and artificial beacons may also have been an option for this task, they would again

present their own challenges in this setting as the environment, although topologically rea-

sonably static, the interior of the environment by its nature changes frequently, with the

vertical bushes being of varying density’s in the environment. Using a beacon based ap-

proach would also require considerable maintenance to ensure they are visible at all times

and from all required view points for the robot to accurately maintain its position in each

row of the vertical bushes. The option of using a SLAM algorithm for this objective, at first

may seem to be suitable system. A 2D SLAM method is used as part of this system for the
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topological map of the environment, but it would not give the required accuracy in localised

regions of the setting. A 3D SLAM approach, although able to map localised regions with

reasonable precision, would require the laser or camera sensor used to be mounted in a way

that the fruit bushes do not distort its view. If the sensor is positioned too high or low on the

robot, it would not be able to determine the position required, or may give incorrect distance

measurements rendering the system unable to complete its objective. A view of the verti-

cal growing facility is shown in Fig. 3.14. The navigation system is required to ensure the

Figure 3.14: Vertical Farm

robot keeps within a set distance of the plants in order for the perception system to operate.

If the robot moves too far from the fruit or too close, it may lose its view and be unable

to function, or damage the fruit or growing system itself. To ensure the robot stays within

these parameters, a novel solution for local path planning and following is also a require-

ment. With the fruit plants in the environment between each row varying in density, as such

the laser sensor was tested in between a row to determine if it was capable of detecting the

plants whilst travelling through the row. The navigation system and robotic arms are also

required to be dynamic and adaptable to obstacles in the environment. The farming facility

having many employees, potentially other robotic systems and the vertical hanging baskets
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changing position, requires the robot to be able to detect and avoid these obstacles as they

move, or to ensure the robotic arms do not collide with the vertical hanging baskets or other

obstacles. The initial experiments conducted were to ensure the robot base and arms func-

tioned in parallel, the laser scanner and inertial measurement unit added to the robot were

configured correctly, and that the SLAM algorithm was capable of mapping the laboratory,

before then using the robot in an agricultural setting.

3.5.2 Simulation and Laboratory Experimentation

The robot base was simulated using the RViz simulation software and ROS, this for the

navigation controllers development using the LiDAR sensor as shown in Fig. 3.15.

This allowed for the controller to be developed and experimented with for the mobile base in

a laboratory setting before being evaluated in the agricultural facility. The robots description

developed was used to give an accurate representation of the actual robot in the simulation.

Figure 3.15: Velodyne Lab Outline

The initial laboratory experiments proved to be successful and the system functioned as

required, with both arms and the robot base operating in parallel, and the sensors and robot

description all functioning correctly. The robot navigational capabilities were then evaluated

in the agricultural environment using the GMapping SLAM algorithm.
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The experiments for the robotic system in a laboratory were to evaluate the system overall

before experimentation in the agricultural environment. The software required both arms and

the mobile base to function in parallel, this was at first ensured in a controlled environment.

The agricultural environment can be simulated by adding a horizontal row of fruit bushes, to

evaluate its ability to operate with both arms and the mobile base in parallel and to determine

the systems configuration including all sensors.

This initial experimentation data can also be compared against standard odometry, beacon

based and a SLAM method of navigation and experimental results obtained from the agri-

cultural facility.

The initial evaluation of the Gmapping SLAM algorithm can be seen in Fig.3.16, Fig.3.17,

this proved that the laser sensor had been configured correctly for 2D laser scanning and

functioned with the system overall.

The parallel functionality of the robotic base and arms were evaluated, with the base and

each arm able to function independently and in parallel.

Each sensor was also checked to ensure they were functioning, along with basic movement

commands for the robot, including its ability to navigate to a given coordinate. The system

in its entirety proved to be successfully integrated.

Figure 3.16: Velodyne Lab Outline Figure 3.17: Velodyne Lab Outline
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3.5.3 Mapping and Navigation in an Agricultural Environment

The experiments conducted were to evaluate the system’s mapping capabilities in a large,

open environment. The facility is 40m x 40m, with translucent boundaries which could have

effected the laser sensors ability to determine them.

The facility is also mostly empty other than the vertical hanging baskets. This can also effect

the mapping capability in a large environment as the system would have few environmental

objects to detect as it moves assisting in the map generation.

This can be seen in Fig.3.18, Fig.3.19. The area mapped in this evaluation was 10m x 10m,

the boundary detected in Fig.3.18, being a line of tape covering the majority of one row of

the fruit bushes.

The system was able to detect the boundary at the edge of the facility relatively well de-

spite the translucency, but as expected encountered significant drift whilst moving over this

distance.

Figure 3.18: Facility Boundary Figure 3.19: Facility Boundary

The system was then evaluated in determining and traversing rows in the environment.

The laser was able to detect the rows but as seen in Fig.3.20, Fig.3.21, the laser sensor can

not entirely detect the fruit bushes as a boundary.



3.5. Initial Proof of Concept and Evaluation 69

This is because they are not very dense and this is not precise enough to enable the robotic

arms functionality with centimetre precision. The robot also encountered significant drift

when traversing the rows as with the general environment, this because of the terrain.

This drift was apparent within the first 1-3 metres of the robot bases movement, identifying

further a need for a feedback control method of localised path planning to correct for this

drift to ensure the robot is both in operating range of the fruit bushes and to ensure it does

not damage the vertical hanging baskets. With this experiment the robot began at the start of

the row and traversed 20m to the end and back.

Figure 3.20: Navigating a row 1. Figure 3.21: Navigating a row 2.

As can be seen in Fig.3.22, Fig.3.23, the robot as it reached the end of the row and

traversed to the second was able to detect this, but within 1m of traversing the row, the

boundary density was too transparent and the GMapping algorithm merged to the first row.

Whilst the robot traversed the row, GPS data was also collected to determine its accuracy

in the facility as shown in Fig.3.24. Whilst traversing each row in one direct, GPS was able to

track its location with reasonable accuracy, but when the robot turned around and traversed

back it quite dramatically lost its location.

This proves that GPS would not be accurate enough for this application as the arms are

required to be within centimetre accuracy of the fruit bushes, and also to ensure the robot
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Figure 3.22: Navigating a row 3. Figure 3.23: Navigating a row 4.

Figure 3.24: Overlay of GPS with Robot Navigation.

does not damage the facility. The system was evaluated again, this time ignoring a row to

assist the SLAM algorithm in determining a second row as shown in Fig.3.25. This enabling

a second row to be determined, but the drift was also dramatic in this experiment. The rows

were detected relatively well, but the drift can be seen quite dramatically in each row as each

is a straight line to the end of the facility.

As can be seen in Fig.3.25, Fig.3.26, Fig.3.27, Fig.3.28, the SLAM algorithm also shifted

the map forward part way through the first row.
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This shows the first row as longer than the second although they are equal length. This

could be because of inaccurate sensory information from the odometry, IMU or laser, or a

limit to the SLAM algorithms capabilities in this type of environment. The algorithm was

able to determine the entrance to each row it passed as shown in Fig.3.27, and again able to

determine the boundary of each row relatively well given the type of environment and the

accumulating error as it traversed each row.

Figure 3.25: Farm Row Navigation 1. Figure 3.26: Farm Row Navigation 2.

Figure 3.27: Farm Row Navigation 3. Figure 3.28: Farm Row Navigation 4.

The GMapping SLAM algorithm was capable of determining both row entrances and the

rows as it traversed them reasonably well in the experiments conducted, but the algorithm as

shown in Fig.3.25 and Fig.3.26, was incapable of determining the row boundaries with the

required accuracy for the system. As can be seen in Fig.3.27 and 3.28, the boundary of a row
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of fruit is detected and reasonably distinguishable, however the system would be required to

traverse the row without colliding with or damaging either the fruit or infrastructure. The

granularity of the fruit bushes as detected by the algorithm did not provide a sufficient level

of detail to ensure the system would be capable of avoiding this, with the actual fruit bushes

not distinguishable by the algorithm.

The robot also encountered considerable drift and accumulating error whilst traversing the

rows and the environment with this type of terrain. This experimentation with the GMapping

SLAM algorithm and the robot controller not having any form of error correction, along with

the GPS accuracy, proved a navigation controller capable of accurate path following would

be required.

3.6 Conclusion

This chapter demonstrates the design, implementation and initial experimentation and evalu-

ation of a novel modular, configurable software architecture for an autonomous robotic fruit

harvesting system. The proposed configurable software architecture is used for strawberry

harvesting in this chapter, but could be generalised to other complex robotic systems. Under

this architecture, a ground mobile base, multiple arms and multiples sensors are able to be

integrated into one entity, this is a very generic combination for agricultural robotic systems,

or other industries. The next chapter details the navigation and control software of the sys-

tem, its design, implementation, experimentation and evaluation in a simulated, laboratory

and agricultural setting.



Chapter 4

Strawberry Picking Position Control

4.1 Introduction

The use of technology in agriculture for food production and harvesting has been of increas-

ing interest over the past decade, with a rising global population comes an increasing food

requirement. These systems such as robotics may be one solution to this problem. The use of

automated robotics in agricultural environments can solve many current issues. Their ability

to operate 24 hours a day could dramatically increase productivity and harvesting yield, with

minimal human labour requirements, whilst reducing food waste. This solution has many

challenges to be overcome to enable automated robotics to operate and complete tasks in

these environments.

The nature of agricultural areas is often dynamic, structurally variable and hazardous. An au-

tomated system would be required to operate with humans in the vicinity, navigating difficult

terrain and maintaining accurate functionality such as the task of fruit harvesting. Agricul-

tural environments such as found in a vertical growing facility have a general overall struc-

ture, including a defined perimeter, the interior environment however is dynamic, with the

73
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vertical growing baskets changing position, the terrain often being undulating and comprised

of soil or other shifting material and often without GPS as found in the environment used in

this research.

This type of environment would require an automated system to be capable of dynamically

adapting to its environment, for example whilst moving along a vertical hanging basket row,

and to be capable of accurately harvesting fruit without damaging any infrastructure or the

fruit itself. The system would also need to detect any humans or obstacles in the environment

to avoid whilst harvesting.

This chapter is a description of the development, implementation and evaluation of an auto-

mated system for agricultural fruit harvesting as shown in Fig.4.1. First the objectives and

contributions are described, detailing the methodology and outcome objectives of the sys-

tem. This followed by the implementation of the system, how the system was built and its

implementation within the architecture previously described. The final section of this chap-

ter details the experimentation and evaluation of the system in a simulated, laboratory and

real world environment.

4.1.1 Objectives and contributions.

The objective of this chapter is to develop and evaluate a novel method of autonomous straw-

berry picking positional control and navigation in a large, unstructured, agricultural environ-

ment for the purpose of fruit harvesting using two robotic arms.

The application of the system being to harvest strawberries from fruit bushes presents a num-

ber of interesting and complex challenges. The environment consists of open, uneven terrain,

with the fruit bushes being in vertical rows throughout the facility. The terrain and environ-

ment the system is required to operate in means methods such as artificial or natural beacons,
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Figure 4.1: Robotic System in Vertical Fruit Row.

or natural or prior installed line following are not practical as the rows are frequently chang-

ing position, with varying fruit bush density and with differing degrees of visibility along a

fruit row.

A line following method would require considerable maintenance and would be inaccurate

by the nature of the ground being both uneven and shifting, potentially covering any sort

of colour based line for a line following method to follow. Magnetic paths to follow would

also be unsuitable for this environment as, although the ground layout does not frequently

change, the shape and density of the fruit bushes hanging vertically would render this often

inaccurate if not unusable. The facility being partially indoors would also render GPS inac-

curate, if not unusable as demonstrated in chapter 3.

A natural or artificial beacon based navigation method would be unsuitable in this type of

environment as the vertical fruit bush density constantly changing may cover artificial QR



76 4.2. Overview and Requirements

codes, or natural beacons. For this type of navigation to be feasible, it would require constant

maintenance. It would also not be able to be generalised to different facilities without con-

siderable human intervention, a consideration of this system, such as updating the QR codes

or ensuring the path the robot is traversing is kept clear. This meant a new method would

need to be developed for the system to travel along a row of fruit, harvesting the strawberries

as it moves.

This chapter details the implementation of the configurable, modular software design in

chapter 3. The system development and implementation is first described before experimen-

tation and performance analysis of the system in a laboratory environment and the vertical

farm. The section is comprised of the following contributions for this research:

• 1. The development and integration of the modular configurable system architecture.

• 2. Novel navigation and control method for the robotic arms and base in a vertical

facility.

• 3. The experimentation and evaluation of the system in a laboratory environment.

• 4. The experimentation and evaluation of the system in the agricultural environment.

The system’s design was to be modular and configurable with a potential to be adaptable

for many agricultural environments. This implementation is in regard to a vertical growing

strawberry farm as described in the following sections.

4.2 Overview and Requirements

The system as shown in Fig.4.2, is comprised of two main aspects, a perception system and

a navigation controller: The system requires each component to function. The perception
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Figure 4.2: Perception and Navigation Components.

method is a separate system to this research, and provides target coordinates for each straw-

berry to harvest.

As a series of individual inputs, these target coordinates are then used by the strawberry pick-

ing position and navigation control for both left and right robotic arms and mobile base. This

gives two coordinates systems, one for the robotic base and arms and one for the perception

system, named Robot Coordinates and Camera Coordinates respectively.

• Robot Coordinates: Xr, Yr, Zr

• Camera Coordinates: Xc, Yc, Zc

These two coordinate systems are the X,Y and Z coordinates of the robot and camera as

shown in Fig. 4.3, providing a bounding box in which the robotic arms can operate, without

conflicting or damaging themselves. The perception system’s output is the Xc, Yc and Zc

coordinates and joint angles for each arm.

These are the inputs taken by the position and navigation control method. The perception

system passes these coordinates to the PMP network for each robotic arm, a part of the per-

ception system, that generates the joint angles to the detected fruit to be harvested. The

picking position and navigation control uses these coordinates and target joint angles to de-
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Figure 4.3: Visualisation of Operating Region for the Robotic Arms.

termine whether a given strawberry is reachable by the robot in its current pose, if the robotic

base is required to move, and to determine the most optimal position of the robotic base for

harvesting the fruit.

The optimal position for harvesting the fruit was determined through experimentation as de-

scribed in this chapter. If the strawberry is in a suitable position for harvesting, the robotic

arm or arms will operate and harvest the fruit. If the robotic base is required to move, the

coordinates from the perception system are passed to the position and control methods and

the robot will move left or right, dependent on which direction will bring the robotic base

to its most optimal position for the arms to function. Once the fruit has been harvested, the

robot will continue moving left along a fruit basket harvesting strawberries autonomously

until a new fruit is detected through the coordinates received from the perception system and

the process repeats. This continues until there is no fruit detected or by stopping the system.

The system is controlled through a user interface as shown in Fig.4.4, all operational modes

including the perception system can be launched from this menu. The UI allows optional

control of manual navigation, left and right arms individually, gripper control and an au-

tonomous operation mode of the robot.
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Figure 4.4: User Interface.

4.3 Navigation and Control

The navigation and control is separated into two main components, a navigation class for

basic movement of the robot and a navigation control class that is directly related to the left

arm class. This combines the functionality of the left and right arms with the robotic base

for the system to operate at the same time. The robot is driven forward by the requirements

of the left arm as shown in Fig.4.5, the system repeatedly checking and updating the target

position against the robot base’s current position and correcting for this until the left arm is

in an optimal position to harvest the fruit, this based upon the Zr and Zc coordinates being

within or equal to 500mm to 800mm from the target strawberry to harvest.The system was
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designed to follow the left arm specifically to ensure there are no conflicting base movement

parameters, for example the base attempting to move left and right at the same time to ensure

the optimal range for the left and right arms, and to ensure the left and right arms do not

conflict and damage each other. This also ensures no strawberries are missed by the system

as it moves. If a fruit is not detected by the left arm as the robotic base moves along the row,

it may be detected by the right arm.

4.3.1 Movement Strategy

There were various movement strategy’s considered to use for the systems functionality. The

system could have been developed to attempt to harvest a strawberry as soon as one had been

detected by either arm, left then right arm driven or to only attempt to harvest a strawberry if

both arms were in an optimal position amongst other methods. The system was required to

operate with both arms and base functioning at the same time, this meant a strategy would

be needed that enabled either robotic arm to operate, without conflicting left and right base

movements. The most appropriate movement strategy for this system was decided to be to

follow the left arm. The perception system provides two separate sets of coordinates, one

for the left arm and one for the right, the robot is designed to move left along a fruit bush,

prioritising the left arm. If a strawberry is detected and reachable by the left arm without

the base movement, the arm functionality will attempt to harvest the strawberry. If the left

and right arms are within range, they will both attempt to harvest the strawberries, if the left

arm is not in optimal range, the base will move to position the left arm. If the right arm is

not in optimal range and there is no strawberry detected for the left arm, the base will move

to position the right arm. The base will move left or right to ensure the optimal position for

either arm, but will prioritise the left arm, if there are strawberries detected for both arms
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and neither are in an optimal range, the base will move to position the left arm. This strategy

also meant that as the robot moved left, if the left arm had missed a strawberry, the right arm

may be able to harvest it as it moved along the fruit bush, this also ensured that the robot

continued moving to unharvested areas of the fruit bush, as the left side of the robot was

continuously moving toward a new area.

4.3.2 Robotic Base Movement, Arms and ROS

The robotic base will continue moving left with the left arm pushing the system forward

whilst coordinates for fruit to harvested are obtained. The system will continue moving

autonomously until no strawberries are detected by the left arm as shown in Fig.4.5. A

second manual controller was also developed for the system, to enable manual control of the

robot throughout the vertical farm in the initial testing of the system. The robot requires 3

Figure 4.5: Robotic Base Movement.

distinct components to operate in parallel, the robotic arms, base and the perception system.

Both arms also require individual networks to run in parallel. This is completed through

multiprocessing, combining multiple system modules to function at the same time. The

order of operation is as follows:

• Left and Right target coordinates are obtained.

• Left and Right coordinates are passed as inputs to the respective control functions.
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• The mobile base moves to the robot’s optimal position according to the left arms co-

ordinates.

• The fruit is harvested and the process repeats until there are no further fruit detected.

The individual arms are controlled through separate left and right arm classes and combined

in a main arm control class. The parallel operation of the arms is defined in this class, this

also combining the navigation control class and its respective functions, to be passed to the

UI.

4.3.3 Position and Position Correction

The position and positional correction of the system is designed to ensure the left arm is

always in the optimal position to harvest the fruit and to ensure the robot continues moving

along the fruit row without conflicting directions to the robotic base that may occur if two

targets are received at the same time. This is controlled through multiple conditions as shown

in Fig 4.10. The positional correction behaviour of the robotic base automatically moves the

base to a new position if the coordinates to a fruit are out of optimal or unreachable range

of the robot. The robotic base will move left or right dependent on which direction would

move the robotic arms closer to the required position. The target for both left and right arms

are repeatedly updated in the software until a strawberry is detected. Once a fruit has been

identified for harvesting by either the left or right arms, these target coordinates are then

repeatedly updated and checked in each robotic arms control software as shown in Fig.4.6,

whilst the robot is moving, until the robotic arm to be used is in the optimal position to

harvest the fruit. If the robotic base is in an optimal range of the base, this determined through

the coordinates received being within the optimal parameters, the robotic arm will attempt
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to correct its position three times through wrist movements. If the fruit is still detected, it

is considered not harvestable and the robotic base will move again until it is in an optimal

position.

Figure 4.6: Coordinates to Left and Right Arms and Navigation Control.

4.3.4 Left Arm Control

The left arm control method is shown in Fig.4.10, this takes the coordinates Xc, Yc, Zc.

A snapshot of these coordinates is taken and stored as Zr, Yr and Xr at specific points in

the software. These are taken before the robotic arms function or the base moves from the

perception system and are then used to check if the robot base is in the correct position. The

ideal position of the fruit for the robotic arms was determined through experimentation, at

first the robotic arms had considerable constraints imposed, able to operate in a very small

area to ensure they did not conflict or damage each other. The robotic arms have a maximum

operating range that would extend across each arms operational area, to ensure they did not

conflict, the distance and width required to harvest the fruit was measured and correlated to

the input received from the perception system.
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The ideal range for the robotic arms to be positioned in front of the target fruit, defined as

Y Robot (Yr) and Z robot (Zr), was determined through measurement and experimentation

to be 76mm for the Yr coordinate and 500mm to 800mm for the Zr coordinate, this being

a minimum Zr=500mm and maximum Zr=800mm to the target fruit. The Y camera (Yc)

value was obtained from the perception system, with Yr being the target value. The Yc value

was repeatedly updated as the robot moved. As such, when the robotic arm functionality

began, the Yr value was set as an additional control method along with the Zr and Zc values,

to ensure this value did not update if the strawberry became occluded when the arm was

moving. This essentially took a snapshot of its last and targeted location. The Zr minimum

and maximum values are also defined at multiple points in the software after the robotic base

had moved or before a robotic arm function as additional constraints, to ensure the robotic

arms would not function if they are out of the ideal operational range. This was initially

determined by measuring the distance from the arms to the strawberry detected, reducing

the robotic arms speed, attempting to harvest detected fruit and stopping the robotic arms if

they appeared to have any unexpected behaviour. Any range above or below these values

can cause unexpected behaviour and potential damage to the robotic arms or surrounding

infrastructure, for example the robotic arm rotating 180 degrees at its shoulder joint as shown

in Fig.4.7 or a collision with a vertical fruit basket. These constraints would then prevent

this behaviour, with multiple constraints added in the initial development of the system and

reduced as the systems development progressed.

The robotic base is constantly attempting to move the arms to an ideal position when it is

operating, to ensure the Yr and Zr values are in their ideal operating range. When a fruit

has been detected the robotic arms will not function until the Zr coordinate is equal to or
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Figure 4.7: Robot Arm Error without Constraints.

greater than 500mm or less than or equal to 800mm and the target Yr value of 76mm has

been reached. As the robot moves left or right, the Yc and Xc values are updated with respect

to the robot’s Yr and Xr coordinates and a snapshot of the coordinates are taken as with the

Zc, Zr coordinates. The left or right movement of the robotic base is determined by the Yc

input value. A target value Yreq is first calculated before being checked against the current

Yc of the robot.

Y c−Y r = Y req (4.1)

This would provide the required movement distance in mm (Yreq) to position the robotic

arm in front of the strawberry to be harvested, this value is then set as Y position (Y pos) to

be used to track the distance moved by the robotic base. The Yc value is then set as Ycurrent

(Ycur), If the Yreq value is greater than the Ycur value, the robot will move left, if it is lower,

the robot will move right.

Y req > Y cur (4.2)
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Y req < Y cur (4.3)

The coordinates are repeatedly updated as the robot moves to determine if an ideal harvesting

position, Yr, Zr has been reached.

The robots position is then checked again once an ideal position has been reached to ensure

the fruit is still detected and harvestable as shown in Fig.4.8. If it is not the robotic base will

continue to move and update its position until it is in an ideal range. The distance moved,

Y position (Ypos) is updated each second as the robot moves until the robotic base has

travelled the calculated required distance. The left or right arm will then attempt to harvest

Figure 4.8: Robotic Arm Harvesting Strawberry.

the strawberry detected once the Yr, Zr and Zc coordinate are within the defined range as
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shown in Fig.4.9. If the fruit is still detected after this first attempt and the robotic base is

still in an ideal range, the arm adjustment, error correction behaviour is triggered.

The left or right arm’s fifth or wrist axis is adjusted left, right and vertically to correct for

where the fruit stem is located as shown in Fig.4.9. The method attempts three different

corrections. If the fruit is not detected, it is determined to be harvested and the method

begins again. If the fruit is still detected it is determined to not be harvestable, the robot base

will move position again and the process will repeat.

The Xr and Xc coordinates are also obtained and updated as the robotic base moves, and

Figure 4.9: Robotic Arm Harvesting Target Position

could be used to move the robot further or closer to the vertical hanging basket if required.
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The systems ability to navigate to given X, Y coordinates was tested in the laboratory but

was not required for testing the system.

When evaluating the system’s picking and positional control, this was not required as the

robotic base and arm length was wide enough to reach the vertical fruit hanging baskets

from its furthest or closest positions whilst in the row in regard to the systems X distance

from the fruit bushes.

The system also had the capability of using the Velodyne laser for object detection to stop

if an object or fruit basket became too close to the system to prevent injury or damage, this

determined to be 70cm from the center of the robot, where the Velodyne laser is mounted.

This functionality was also tested in the laboratory. The fruit baskets are often within this

70cm range, as such the laser obstacle detection was directed infront of and behind the robot,

ignoring the distance to the fruit basket either side of the system.

The left and right arms will continue to function with the robotic base moving left along a

fruit row until no fruit is detected or is considered not harvestable, this enabling autonomous

picking and positional control of the system.

4.3.5 Right Arm Control

The right arm control operates in the same way as the left arm as shown in Fig.4.11, but does

not move the robotic base. The arm follows the same control method, this through checking

if a fruit is detected. If a fruit is detected, the Zr and Zc coordinates are checked to ensure

the robotic arm can reach the fruit.

The robot base will also move to correct the right arms position, provided there is no coordi-

nate from the left arm, this to prevent conflicting base movement position. The coordinates

are then updated again to determine if the fruit has been harvested. If a fruit is still detected
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Figure 4.10: Left Arm Control Method.

and the arm is in an optimal position with the Zr and Zc values of 500mm to 800mm, the

system will attempt to harvest the fruit in three different arm positions as with the left arm.

The coordinates will repeatedly update to determine if the fruit has been harvested. If it is de-

tected after the third arm positional movement, the fruit is determined to not be harvestable.

If the fruit is not harvestable by the right arm, the system will stop and wait for the left

arm to move the base to a position where this method will repeat, this to ensure the base is

consistently moving along the row and not given conflicting left and right target coordinates.

4.3.6 Automated Fruit Harvesting

The autonomous harvesting option as shown in Fig.4.4, in the UI, is the continuous and

normal operational state of the robot, to enable continuous harvesting of a row of fruit. The

system was initially evaluated in a laboratory environment as shown in Fig.4.12, for both
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Figure 4.11: Right Arm Control Method.

individual and combined arm and base functionality.

The robot was then evaluated in the vertical growing farm as shown in Fig.4.13, there were a

number of further obstacles to overcome in this setting. For example additional factors such

as wind, lighting conditions, wet terrain and obstacles in the robots path.

The evaluation and performance analysis of the system shows first laboratory experimental

conditions followed by the vertical growing farm. The system’s performance was determined
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based upon its ability to successfully move to and harvest strawberries autonomously.

Figure 4.12: Robotic System in the Labo-
ratory.

Figure 4.13: Robotic System in the Farm.

4.4 Experimentation and Performance Analysis

The robotic system was extensively tested and improved in simulation for the navigation as

in chapter 3, a laboratory setting for the initial testing and improvement of the control method

and in the vertical farm to prove the concept of the system.

The laboratory setting used at first a representation of a strawberry, this followed by a to

scale replica of a section of the vertical hanging baskets and real strawberries.

The system was then tested in the vertical growing farm and its performance was evaluated

before improvements being developed and implemented and the evaluation repeated whilst

reducing the constraints of the robotic arms to improve the performance of the system.

The laboratory and farm experimentation, evaluation and performance analysis was sepa-
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rated into a number of tests to establish the robots functionality, these in the laboratory and

vertical growing farm as listed below:

Laboratory:

• Initial testing for base movement and arm control with a plastic strawberry represen-

tation.

• Autonomous harvesting with arms and robotic base using a real strawberry bush.

Veritcal Growing Farm:

• Initial testing in the vertical growing farm for base movement and the left robotic arm.

• Arm error correction with real strawberry bush’s for occluded or difficult to reach

strawberry’s.

• Autonomous harvesting with the robotic base and robotic arms in a row of the vertical

farm.

4.4.1 Laboratory Experimentation and Evaluation

The laboratory experimentation and evaluation enabled the year round continuous develop-

ment and improvement of the system. The position and control method was tested for its

ability to repeatedly detect, move to and harvest a fruit, its speed and harvest rate.

The system was capable of harvesting fruit continuously at a rate of one strawberry every 10

- 30 seconds, dependent on the visibility of the fruit and whether it harvested the fruit in the

first attempt or after subsequent attempts with the error correction.

The perception system categorised the fruit as easy, medium and hard in regard to visibility.
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The system was capable of harvesting all of the strawberries categorised as easy that were

detected and was able to harvest fruit with both arms. The left arm gripper functioned as

expected throughout the evaluation of the system. The right arm gripper was damaged in an

unrelated experiment and was unable to open and close.

With this, if the arm reached the strawberry and was able to position the stem in a 2cm gap

between the left and right parts of the gripper cutter, the strawberry was considered to be

harvested. The right arm, although unable to cut the stem with the broken gripper, was able

to reach the detected fruit with all of the strawberries categorised as easily visible.

The following experimental results show the system evaluation in the laboratory for both

robotic arms in Fig. 4.14 to 4.16 using a representation of a strawberry.

The evaluation of the system with real strawberries is then shown in Fig.4.17 to 4.19. The

system was repeatedly improved and evaluated in the laboratory before being evaluated in

the vertical farm environment to ensure it functioned as expected and not cause damage to

the vertical hanging baskets, environment or to the robot itself.

4.4.2 Picking and Position Control with Representative Fruit in a Lab-

oratory

The system is shown to move along the vertical row and picks the three representative straw-

berries autonomously. The system at first moved left to position itself for the left most

strawberry, this also enabled the right strawberry to be detected and was also harvested.

The system then moves right to position itself for the final left strawberry and was able to har-

vest this. With the system capable of autonomously harvesting representative strawberries,

it was then evaluated with real strawberries in a replicated version of the vertical growing

farm. The following sequence of Figures show this functionality, at first a left and right
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strawberry are detected, the robotic base then moves left to position the left arm optimally in

front of the fruit as shown in Fig.4.14. The right arm is also in a correct position to harvest

a strawberry after this movement and both arms operate as shown in Fig.4.15. This enables

two strawberry’s to be harvested, the final strawberry is then detected by the left arm, for

this the robotic base moves right to position itself as shown in Fig.4.16, the left arm then

functions again and harvests the left strawberry. This was completed using a metal frame

Figure 4.14: Laboratory Pick-
ing 1.

Figure 4.15: Laboratory Pick-
ing 2.

Figure 4.16: Laboratory Pick-
ing 3.

set to the height of the vertical hanging baskets and using real strawberry plants that were

to be harvested. The system was capable of repeatedly harvesting strawberries categorised

as easy and frequently capable of harvesting strawberries categorised as medium difficulty

to harvest. The strawberries categorised as hard were intentionally ignored by the system as

these were considered not to be harvestable without human intervention.

4.4.3 Picking and Position Control with Strawberries in a Laboratory

The laboratory experimentation with the real strawberries is shown in Fig.4.17 to Fig.4.19.

This proved to be successful with each easy categorised strawberry repeatedly harvested,
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medium strawberries again frequently harvested, and strawberries categorised as difficult ig-

nored. The robotic base first moved from its initial position right to the optimal position for

Figure 4.17: Laboratory Pick-
ing Strawberry 1.

Figure 4.18: Laboratory Pick-
ing Strawberry 2.

Figure 4.19: Laboratory Pick-
ing Strawberry 3.

the left arm as shown in Fig.4.17 and Fig. 4.18., the right arm also detects a strawberry it

is able to harvest and both arms operate. The right arm gripper is damaged in this exper-

iment and although reaches the target correctly but is unable to open and close to harvest

the fruit correctly, the left arm functions as expected and harvests the strawberry as shown

in Fig.4.19. The initial laboratory evaluation proved the system was capable of autonomous

strawberry harvesting in ideal conditions and capable of repeatedly demonstrating this. The

next evaluation would be in the vertical farm environment, this having a number of additional

challenges to evaluate the performance of the system.

4.4.4 Vertical Growing Farm Evaluation and Performance Analysis

The system was then evaluated at the vertical growing farm as shown in Fig.4.20 to Fig.4.23.

This presented a number of expected and unexpected challenges. The increased density of

the fruit bushes and narrower operating environment were expected and accounted for in

the development of the system, being considerations for the initial constraints of the robotic

arms and base. An unexpected yet considerable challenge in this environment was wind.

The vertical farm is indoor, and testing was often in warm conditions without wind, as such



96 4.4. Experimentation and Performance Analysis

this was not initially accounted for. The error correction behaviour of the system was able to

accommodate for most windy conditions and enabled the system to continuously harvest the

fruit, this demonstrating the robustness of the system. The system performed as expected in

these conditions. If weather conditions were able to move the fruit bushes enough to change

the fruit detected from easy to medium or hard, the system was not as capable of harvesting

the strawberries. If the fruit was categorised as easy in the vertical farm, the system was able

to maintain a 100 percent harvest rate in all experimental attempts.

4.4.5 Picking in Vertical Farm

The system was able to repeatedly harvest each of the strawberries categorised as easily

visible, as long as their stems were not considerably occluded, this is shown in Fig.4.20

to 4.23. This was also in a considerably more challenging environment in regard to fruit

bush density and terrain, this showing the systems precision and accuracy in maintaining an

optimal robotic base and arm position. The system proved to be capable of harvesting the

strawberries in the farm environment as in the laboratory environment. The considerably

denser fruit bushes and uneven terrain meant that more strawberries were being categorised

as medium or hard in regard to visibility and the easy categorised strawberries were some-

times more occluded, requiring a particular angle to be harvested. This required the method

of error handling and correction. If a strawberry was categorised as easily visible, but the

stem was occluded, the error capability was able to account for this and the fruit was able to

be harvested.
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Figure 4.20: Vertical Farm Strawberry
Picking 1.

Figure 4.21: Vertical Farm Strawberry
Picking 2.

Figure 4.22: Vertical Farm Strawberry
Picking 3.

Figure 4.23: Vertical Farm Strawberry
Picking 4.

4.4.6 Picking Error Correction in Vertical Farm

The error correction method is shown in Fig. 4.24 and functioning at the vertical farm in

Fig.4.25 to 4.28 for the left robotic arm, with each being capable of this behaviour and able

to harvest strawberries that are categorised as easily visible. The robotic arm first attempts

to harvest the strawberry and misses, in the second attempt the robotic gripper rotates right 5

degrees and is able to harvest the strawberry. If the harvesting attempt was not succesful, the

robotic gripper would rotate to its initial position, then 5 degrees left, with a third rotation

back to its initial point and moving 10 degrees downward in order to attempt three differ-

ent gripper positions that may improve its ability to harvest the strawberry. If these three
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Figure 4.24: Error Correction Behaviour.

positions did not harvest the fruit, the optimal position of the arm would be checked again

and the base move if required, the arm functionality repeat, or if the strawberry detected was

not categorised as medium or hard in regard to visibility, the system would move to the next

strawberry detected categorised as easily visible. The error correction behaviour accounted

Figure 4.25: Vertical Farm Error Correction
1.

Figure 4.26: Vertical Farm Error Correction
2.

Figure 4.27: Vertical Farm Error Correction
3.

Figure 4.28: Vertical Farm Error Correction
4.
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for occluded strawberry stems that were categorised as easily visible and enabled the system

to harvest all strawberries detected as easily visible. The final evaluation of the system was

with autonomous harvesting.

4.4.7 Picking and Position Control in a Vertical Farm

The system was then evaluated with autonomous harvesting in a row of the vertical farm as

shown in Fig.4.29 to 4.32. The robot first moves left to position the left arm in an optimal

position for harvesting the detected strawberry, the strawberry is then harvested as shown

in Fig.4.29 to Fig.4.30. The robotic base then moves left to position the arm in the optimal

position to harvest the next strawberry detected as easily visible, the arm functionality then

harvests the strawberry as shown in Fig.4.31 to Fig.4.32. The system was capable of con-

tinuously detecting and autonomously harvesting strawberries, moving along the row whilst

strawberries categorised as easily visible were detected, the system was tested along 10m of

the vertical fruit row and able to harvest all of the strawberries categorised as easily visible.

This experimentation and evaluation proving the concept and capabilities of the system. The

system was evaluated and improved in the laboratory and vertical growing farm continuously

to improve its harvesting accuracy with it able to harvest all strawberries categorised as eas-

ily visible.

The mobile base, although capable of moving at 1.0 m/s, was set at a speed of 0.1m/s

throughout this experimentation. The robotic arms were also constrained to an arm acceler-

ation and speed of 4 radians per second, with delays between arm function execution at first

set at 2.0 seconds to ensure the system functioned as expected. The delays were then lowered

to 1.0 seconds to increase the system’s harvesting efficiency and performance improvement.

The system was able to harvest a strawberry at a rate of 1 per 9 seconds and tested 10-
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Figure 4.29: Vertical Farm Autonomous
Harvesting 1.

Figure 4.30: Vertical Farm Autonomous
Harvesting 2.

Figure 4.31: Vertical Farm Autonomous
Harvesting 3.

Figure 4.32: Vertical Farm Autonomous
Harvesting 4.

40 times on multiple occasions in both a laboratory environment and the vertical farm. This

evaluation and performance analysis proving the concept of the autonomous picking position

and navigation control system.

4.5 Conclusion

This chapter detailed the development and implementation of the system, the functionality

of the left and right arms and robotic base, and the combination of this functionality.

The evaluation and performance analysis of the system showed the robot to be capable of

autonomously harvesting strawberries in a laboratory and vertical farm environment, able to

harvest all strawberries categorised as easily visible.
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The arm speed was increased and constraints reduced throughout the development and eval-

uation of the system as its capabilities and accuracy were improved. It was capable of error

correction for strawberries of increasing difficulty and of harvesting strawberries with the

left and right arms, with the robotic base capable of navigating to the optimal position for

the require arm.

This experimentation and evaluation proved the concept of a configurable, modular system

architecture and strawberry picking positional and navigational control for an autonomous

fruit harvesting robot.

The next section details a potential replacement for the perception system, with an instance

segmented 3D environment reconstruction system, on a small, light weight device, incorpo-

rating this position and navigation system.
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Chapter 5

Single Board Computer for a Strawberry

Picking Robot

5.1 Introduction

The effective use of an agricultural fruit harvesting system would require it to operate over

large areas for a prolonged period of time, as such, reducing the power requirements of

the system would be beneficial in enhancing operational time and productivity. There are

a number of components whose power consumption can not realistically be reduced with-

out affecting the functionality of the system, such as the robotic base and arms. The system

computer used for navigation, control and perception is the most appropriate power intensive

component that can be changed. This would also have the additional benefit of reducing the

overall cost of the system, whilst also increasing the operational time of the system between

the battery charges.

The system had currently been controlled by a laptop with a maximum battery life of 45

minutes, without being connected to a mains power supply. If this were to be replaced with a

103
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lower powered embedded system such as a single board computer(SBC), this would be quite

drastically improved.

Along with reducing the systems power consumption, its efficiency and productivity could

be further improved by incorporating additional functionality into the perception system, by

replacing this system with a method capable of obtaining metrics such as harvesting yield

and crop quality, or to enable new functionality such as remote crop monitoring for mould

or pest detection. This additional functionality could be realised through a 3D instance seg-

mented environment reconstruction of the robots environment, obtained by using largely the

same data collected by the robot as it moves throughout the rows of the farm.

The modular design of the system architecture would enable any additionally required sen-

sors, for example a second camera sensor and additional software to be implemented with

the existing components and without having to redesign any of its other aspects, essentially

with a plug and play methodology.

In order to replace the onboard computer, the candidate replacement single board computers

would first need to be evaluated to ensure they are capable of running the system’s existing

components, such as the navigation and control software and the perception system.

This chapter proposes a method to achieve these tasks by first evaluating three instance seg-

mentation networks based upon their capabilities to detect strawberries in an agricultural

environment using a single board computer, to determine whether the boards are capable of

running the networks with the higher resolution images required to detect the detailed fea-

tures of a strawberry. The two single board computers are compared with the currently used

laptop based on their real time inference speed performance. The final section of this chapter

introduces a method of 3D environment reconstruction for the system.
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Figure 5.1: The Robotic System.

5.1.1 Objectives and Contributions

The objectives of this chapter are to improve power consumption and efficiency of the sys-

tem. The two methods identified to achieve this are by reducing the systems power consump-

tion and through incorporating additional capabilities such as metric collection. Currently,

the system has a terminal based user interface and graphical interface displaying the percep-

tion system, these functions are power and computationally expensive.

The autonomous operation of the system does not require a visual output to ensure the system

will function correctly as there are a number of redundancies to ensure it will only attempt to

harvest fruit if it is able to reach it as described in the previous chapter. As such, the most ap-

propriate component to replace of the system would be the computer used to control it. This

chapter explores the options available to achieve this through the following contributions:

• 1. A comparative analysis of instance segmentation networks on a Laptop, Jetson

Nano and Jetson Xavier is conducted to ensure the single board computer is capable



106 5.2. Single Board Computer for a Fruit Harvesting System

of running the existing system in an agricultural environment.

• 2. A 3D instance segmented environment reconstruction system is proposed.

This chapter at first introduces two single board computers, detailing their specification to

determine their suitability as a replacement for the currently used laptop, whether the boards

are compatible with the base software of the system such as their operating system and

software library compatibility. This is followed by initial experimentation with the selected

SBCs to determine if they are capable of detecting strawberries in an agricultural environ-

ment, before a comparative analysis of three instance segmentation networks on the laptop

and the single board computers.

The comparative analysis of these systems would also be to determine their real time per-

formance in comparison with the currently used laptop, to ensure they would be a viable

replacement and able to run the existing system. The final section proposes a 3D instance

segmented environment reconstruction method including the initial evaluation of a 3D cam-

era based SLAM algorithm.

5.2 Single Board Computer for a Fruit Harvesting System

A single board computer (SBC) is a small, low powered single circuit computer, comprised

of a microprocessor, input/output and memory, with some of these systems containing addi-

tional components such as a graphical processing unit dependent on their intended applica-

tion. They are compatible with various operating systems, software libraries and languages,

often used as a controller for a wide variety of applications across many industries from

factory controllers to satellites and particularly in robotics.
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5.2.1 Robotic System Software Compatibility

The system chosen for this application is required to run a variety of software components,

the navigation and control software and three separate networks, one for each of the robotic

arms and the perception system.

SBCs are often developed for specific controller applications. This system requires many

software components to function at the same time. As such, to be viable replacement for the

laptop used, a relatively computationally powerful SBC would be needed, capable of running

the various software components of the system, whilst maintaining real time performance for

the perception system.

The navigation and control software was developed specifically to be compatible with Ubuntu

20.04, using Python 3.7 and ROS Noetic. This was to ensure future compatibility through-

out the system’s development as there were multiple aspects to be integrated as the robots

development progressed. The perception system required NVIDIA CUDA to run, a toolkit

developed by NVIDIA to enable a graphics processing unit (GPU) to be used for general

purpose processing, this only compatible with NVIDIA hardware. This system also required

Tensorflow, an open source machine learning, training and inference software library.

These requirements meant an SBC with an NVIDIA GPU able to run CUDA would be

needed, of which there were a number of options available. The two boards selected were a

Jetson Nano and Jetson Xavier NX based upon their low battery requirements and relatively

high computational power for their size and cost, whilst compatible with all of the require-

ments of the system.

Along with these software requirements, the SBC would also need up to 4 I/O ports and

1 Ethernet port for the system existing and potentially additional sensors, for example if a
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second camera was added.

5.2.2 Jetson Nano Single Board Computer

The first board selected was a Jetson Nano, this SBC has a Quad Core Arm Cortex-A57 CPU,

4GB of 1600MHz DDR4 Memory, 4 USB 3.0 ports, 1 Ethernet port and a 128 Core GPU,

whilst only requiring a 5V power supply. This SBC is compatible with NVIDIA CUDA,

Figure 5.2: Jetson Nano.

ROS Noetic and Python 3.7, making this an ideal candidate SBC for evaluation.

5.2.3 Jetson Xavier Single Board Computer

The second board selected was the Jetson Xavier NX, this has a 6 Core NVIDIA Carmel

ARM V8.2 64bit CPU, 8GB 1600MHz DDR4 Memory, 4 USB 3.0 ports, 1 Ethernet port and

a 384 Core GPU. Include that the ZED2 Camera was used. This SBC, although considerably

Figure 5.3: Jetson Xavier.
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higher cost than the Jetson Nano, has the same number of I/O ports, also requiring a 5V

power supply but with double the memory and 3x the GPU cores. It is also compatible with

NVIDIA CUDA, ROS Noetic and Python 3.7, this being selected as the second board for

evaluation.

5.3 Instance Segmentation Network Selection and Method-

ology

The instance segmentation networks selected for evaluation were Mask RCNN, YOLACT

and YOLACT Edge. These networks were chosen based upon their inference speed rather

than their classification accuracy, as they were required to run on a single board computer.

The YOLACT Edge being the most recent of these was also claimed to be capable of run-

ning in real time on a SBC. The networks would first be tested to ensure they were capable

of running on a SBC using a densely populated image of cars and people, items the network

models were trained to detect.

This is followed by compact images of fruit to determine if the models used would be capa-

ble of classifying these before their comparison.

The networks would then be compared using a number of images of strawberries taken

from the vertical farm, these being relatively high resolution to ensure the strawberries were

clearly visible in detail. After this initial evaluation, the networks would then be compared

for their frame rate speed on the laptop, Jetson Nano and Jetson Xavier using 400 images

from the KITTI 2015 Dataset and 400 images taken of a real world environment to determine

their real time performance with differing resolution images.
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5.3.1 Instance Segmentation Network Comparative Analysis

The comparative analysis was conducted using 400 images from the KITTI Stereo 2015

dataset using the laptop, an Alienware M15 with an NVIDIA 2080 RTX GPU, the Jetson

Nano and the Jetson Xavier, with each network tested using the same dataset.

The laptop was able to run MASK RCNN using these images at 7.9 FPS, YOLACT at 13.65

FPS and YOLACT Edge at 22.34 FPS and was able to instance segment the images as shown

in Fig.5.4-Fig.5.11. The Jetson Nano was unable to run MASK RCNN, or YOLACT Edge,

but obtained 0.88 FPS with YOLACT using the same dataset.

The Jetson Xavier was also unable to run the Mask RCNN network, but managed to achieve

comparative speeds for YOLACT and YOLACT Edge in this experiment at 2.27 and 2.56

FPS, respectively, this slow processing speed may have been because of the image size being

1242x375. The Jetson Nano, although able to run the YOLACT network, only able to per-

form at 0.88 FPS, was far below the FPS performance required, as such this platform would

not be suitable for the system.

The Jetson Xavier, although unable to run the Mask RCNN network, was able to process

the same dataset at 2.27 FPS using the YOLACT network and 2.56 FPS using the YOLACT

Edge network, although this speed was far slower than required, these results are summarised

in Table 5.1.

The YOLACT Edge network being determined to have the highest FPS of the three networks

evaluated on the laptop was then also evaluated using a set of 400 images containing house-

hold items, at a lower resolution of 672x376 as shown in Fig.5.12 and Fig.5.13. The image

processing speed was considerably faster with these images at 29.73 FPS determining the
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Figure 5.4: KITTI Dataset 1. Figure 5.5: KITTI Dataset 1 Instance Seg-
mented.

Figure 5.6: KITTI Dataset 2. Figure 5.7: KITTI Dataset 2 Instance Seg-
mented.

Figure 5.8: KITTI Dataset 3. Figure 5.9: KITTI Dataset 3 Instance Seg-
mented.

Figure 5.10: KITTI Dataset 4.
Figure 5.11: KITTI Dataset 4 Instance
Segmented.

Network Comparative Analysis KITTI Stereo 2015 Dataset
Hardware Mask RCNN YOLACT YOLACT Edge
Jetson Nano n/a 0.88 FPS n/a
Jetson Xavier n/a 2.27 FPS 2.56 FPS
RTX 2080 7.9 FPS 13.65 FPS 22.34 FPS

Table 5.1: Network Comparative Analysis.
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Figure 5.12: Image Dataset 1.
Figure 5.13: Image Dataset 1 Instance
Segmented.

resolution had a reasonable impact on the FPS obtained.

5.3.2 Network Inference on a Single Board Computer

The YOLACT Edge network being the fastest of the three networks evaluated was also tested

to determine its inference capability on a variety of images to be potentially used as part of a

3D instance segmentation environment reconstruction system.

The Jetson Xavier was also used in this evaluation to determine if it would be capable of

processing images taken in the vertical growing farm. The datasets the models used for each

network were trained on included cars, people, animals and household items as shown in

Fig.5.14 to Fig.517, this having been ran on the Jetson Xavier. With the YOLACT Edge

Figure 5.14: Image of Cars before In-
stance Segmentation.

Figure 5.15: Instance Segmented Image
of Cars.
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Figure 5.16: Image of People before In-
stance Segmentation.

Figure 5.17: Instance Segmented Image
of People.

network able to classify these images, the next set of images were of densely populated to

fruit to ensure the model could detect these objects as shown in Fig.5.18 to Fig.5.21.

Figure 5.18: Image of Fruit before In-
stance Segmentation.

Figure 5.19: Instance Segmented Image
of Fruit.

Figure 5.20: Image of Fruit before In-
stance Segmentation.

Figure 5.21: Instance Segmented Image
of Fruit.
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These were also able to be classified, although the network began to infer objects incor-

rectly as shown in Fig.5.19 and was unable to detect certain smaller or occluded fruits as

shown in Fig.5.21. This is being of relevance as the network would be required to detect

strawberries, these often appearing as a similar size in images. The misclassification may

also have been because of the dataset the model used was trained on. This would require a

new model to be trained for the network to be used in the vertical farm.

After these initial images, the next set were of strawberries taken at the vertical farm as

shown in Fig.5.22 to 5.27. These images contained mixed results, with some of the straw-

berries able to be detected as can be seen in each figure, but some were misclassified. This

is because of the dataset it was trained on as some of the fruit in the image are detected,

with bounding boxes clearly drawn around the fruit. The network overall was able to seg-

ment some of the fruit using the Jetson Xavier. The misclassified fruit in these image may

be resolved with a model trained specifically for these objects. To improve this a dataset

taken from the vertical farm may also increase the classification accuracy of the network.

The Jetson Xavier also being compatible with the navigation and control software, this being

considerably less computation intensive, may be a potential candidate to replace the laptop

used for the system. The next experimentation would be to determine the speed at which the

laptop and boards could run the networks.

5.3.3 Comparative Analysis Evaluation

The network performance could be attributed to an optimisation issue for the single board

computer, the network model used, this having been trained on the MS COCO dataset, the

dataset resolution or a combination of these. The network FPS results maybe improved by

training the network with an appropriate dataset for the type of environment it is inferring,
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Figure 5.22: Instance Segmented Image
of Strawberry 1.

Figure 5.23: Instance Segmented Image
of Strawberry 2.

Figure 5.24: Instance Segmented Image
of Strawberry 3.

Figure 5.25: Instance Segmented Image
of Strawberry 4.

this requiring further experimentation. The single board computers were determined in this

evaluation, although compatible with the navigation and control software, were not able to
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Figure 5.26: Instance Segmented Image of
Strawberry 5.

Figure 5.27: Instance Segmented Image of
Strawberry 6.

run any of the instance segmentation networks in real time, but provide a potential option as

a replacement for the system. With the trend of available lightweight network models, it is

possible to use a single SBC for this robotic system.

5.4 3D Environment Reconstruction for a Fruit Harvesting

System

The final aspect of this research was to develop a method of 3D environment reconstruction

to be used for metric collection and monitoring as the robot harvested the fruit in the farm.

The methodology for the reconstruction system was to use a stereo camera to obtain RGB-

Depth values from an image sequence in conjunction with a 3D SLAM algorithm. The

system would have unmodified images to enable monitoring of the farm and instance seg-

mented images to enable individual fruit to be detected.
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An image sequence would be taken with their individual time stamps recorded before being

processed as an unmodified and instance segmented version, separated into individual RGB

values.

The system would also obtain LiDAR measurements as shown in Fig.5.28, that could then

be mapped to the pixel values for each frame. They would then be recombined pixel-wise as

Figure 5.28: Lab LiDAR Map.

the robot moved, using LiDAR distance measurements corresponding with the image frames,

the depth map from these images as shown in Fig.5.29. The instance segmented RGB value

data, LiDAR measurements and depth map data would then be combined with the robots

x, y, z pose data obtained by the SLAM algorithm, this represented in Fig.5.30, and linked

to the images by their timestamps. The system as with the navigation and control was also

intended to be developed to be modular and compatible with the rest of the robotic fruit har-

vesting system, with individual modules such as the camera sensor or reconstruction system

able to be integrated.
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Figure 5.29: Lab Depth Map.

Figure 5.30: 3D Environment Reconstruction Representation.

5.4.1 Laser and Camera SLAM for Location Data

The RTABMap stereo camera 3D SLAM algorithm was first implemented to be used to ob-

tain Cartesian coordinates as part of the 3D reconstruction system. The algorithm was first

implemented and tested moving around a room in a square and the coordinates obtained out-
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put to a CSV file as shown in Fig.5.31 - Fig.5.32.

This was the initial start of the development of this system. A stereo camera sensor would

be used to obtain a sequence of time stamped images, these then instance segmented. The

SLAM algorithm location data would then have been combined with the instance segmented

images and depth map data from the RGB-D camera as part of an instance segmented 3D

environment reconstruction system.

The software to obtain the RGB values was developed for this system, with an image se-

quence able to be processed, instance segmented and the RGB values output to be combined

with the location data from the SLAM algorithm. This would have been integrated with the

robotic system.

The system would have used the 3D reconstruction system to generate an overlay as well

Figure 5.31: Location Data using
RTABMap.

Figure 5.32: X, Y, Z Data Obtained from
RTABMap.

as a 3D view of the environment, this could be used for monitoring the environment as the

robot moves along with obtaining metric data.
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5.5 Conclusion

This chapter’s objectives were to explore potential single board computer options to replace

the laptop used for the robotic fruit harvesting system, to reduce its power requirements and

cost and improve the systems efficiency. A method of 3D environment reconstruction was

also proposed and the initial implementation begun.

The two SBCs evaluated, although capable of running the navigation and control software,

were not capable of running the instance segmentation networks at an FPS required for the

system. This may have been because of the model used for the networks inference or the

image resolution of the dataset used for the experimentation. The Jetson Xavier was able to

run a network at 29.73 FPS with a Small image size. This is a promising result.

To resolve this, a model could be trained using images from the vertical farm, specific to this

application, to potentially improve the image processing speed. The image resolution could

have also been reduced as the dataset images used for the comparison were relatively high

resolution.

The single board computers were compatible with the navigation and control software and

would have been a suitable replacement for this, but they would have also been required to

run two deep learning networks for the robotic arms. As such, the SBCs selected for this

were determined not to be viable replacements for the laptop used for the systems control.
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Conclusion and Future Work

6.1 Research Summary

The purpose of this research was to determine whether an autonomous fruit harvesting could

be developed for a vertical farm environment and to evaluate its performance. To answer this

question, a novel modular, configurable software architecture was proposed and developed,

with an initial navigation method evaluated in the first of the three main chapters. The soft-

ware architecture proved to be extremely useful and enabled the configurability required to

develop the system as well as for its interoperable functionality.

The second chapter contained the movement strategy, navigation and control implementa-

tion and evaluation of the system. The system was capable of autonomous operation, using

the robotic base to position itself for the two robotic arms to harvest the fruit. The system

was capable of harvesting the strawberries highly accurately, in multiple laboratory and ver-

tical farm environment experiments. A problem the system did encounter was with varying

weather conditions such as wind. This was an unexpected environmental factor as the vertical

121
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farm is indoors. The navigation system would also require further improvement to navigate

out of a row and into another, especially the row directly next to it, as shown in chapter 4.

The algorithm used in this environment was unable to determine every row entrance, often

detecting every other row. This may have been because of the lack of structure and large size

of the environment or the sensor resolution with this algorithm being too low, instead deter-

mining two close row entrances to have been the same or practically indistinguishable. A

potential solution in further work could be to use a camera based SLAM system for absolute

navigation or the proposed 3D environment reconstruction system.

The third chapter was to look at reducing the cost of the system using a single board com-

puter. This was to replace the laptop that was being used to reduce the systems cost and

improve its power efficiency. This required testing multiple single board computers with

three different classification networks, to determine if these were capable of running the

navigation and control software as well as the perception system. Although these boards

were unable to run these networks at the required speed, they were capable of running the

networks. They were also compatible with the navigation and control software. With im-

proving classification algorithm techniques and the increasing capabilities of single board

computers, it may have been possible to have used a higher specification SBC to replace the

laptop, or, with further work, to enable additional capabilities using the proposed 3D envi-

ronment reconstruction system.

The system overall was able to autonomously harvest strawberries in a vertical growing

environment, efficiently and highly accurately in ideal operating conditions.
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Figure 6.1: Autonomous Robotic Fruit Harvesting System.

6.2 Research Contributions

This thesis contains the following contributions to the field of autonomous robotics:

Configurable Software Architecture for an Agricultural Robot

A configurable, modular software architecture for an autonomous fruit harvesting system.

The software design and implementation of the custom built, modular system.

An initial evaluation and proof of concept of the system in a laboratory setting with this ar-

chitecture enabling continuous, rapid development and experimentation.

An initial evaluation of a SLAM algorithm in a vertical harvesting agricultural environment.

This included determining the limitations of a SLAM algorithm in an agricultural environ-

ment and proved the requirements of a local position control method.
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Strawberry Picking Position Control

The development and integration of the modular, configurable system architecture.

A novel navigation and control method for the robotic arms and base in a vertical farm, ca-

pable of autonomously harvesting strawberries in this environment.

A method of moving along a row of dense and sparsely arranged strawberries that could be

applied to many other agricultural tasks

Developed and implemented a method of error correction to improve the systems harvesting

capabilities.

Developed, implemented and proved an Autonomous Robot is capable of fruit harvesting in

a vertical farm environment.

The experimentation and evaluation of the system in a laboratory and vertical farm environ-

ment demonstrated the system was capable of repeatedly harvesting strawberries categorised

as easy by the perception system, at a rate of up to one every 9 seconds, as well as frequently

capable of harvesting medium categorised strawberries.

Single Board Computer for a Strawberry Picking Robot

A comparative analysis of instance segmentation networks on a Laptop, Jetson Nano and

Jetson Xavier was conducted to ensure the single board computer is capable of running the

existing system in an agricultural environment.

Determined the limitations of current single board computers with the perception system.

A 3D instance segmented environment reconstruction system was proposed.
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6.3 Academic Publications

ICAC 2022: “Novel Software Architecture for an Autonomous Robotic Fruit Harvesting

System”

6.4 Potential Applications

The system developed for this research continued to be evaluated in the vertical farming

environment, with further development to the system beyond the scope of this research. Au-

tonomous agricultural robots capable of operating in indoor environments for repetitive, time

consuming tasks could be extremely beneficial to the agricultural industry, but also to society

with increased efficiency and productivity whilst reducing labour requirements.

These type of systems could also operate in fleets of multiple robots operating together. The

technology involved in this systems development can also be applied to other environments,

the configurability and modularity of the system enabling components to be easily changed

and integrated for its required application.

6.5 Future Work

There are many potential aspects of future work for this system, in agriculture, the ability to

forecast crop yield, avoid or remove damaged fruit and detecting pests is often an important,

time consuming task, frequently carried out by a human, that may not be very reliable as it

is often based upon conclusions from smaller samples that are then extrapolated for entire

crops or parts of a farm.
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These tasks reliability could be greatly improved by a system be capable of monitoring its en-

vironment and collecting metric data as it moves throughout the farm. This could be through

counting the amount of strawberries harvested in a given time to predict crop yield, the qual-

ity of the fruit in regard to which rows are ripe and which are not ready for harvesting and to

assist with pest detection to avoid the plant becoming damaged, potentially detecting these

sooner than would normally be noticed.

This additional functionality could be added to the system by implementing a new perception

system with the capability to perceive its environment in 3D. A 3D environment reconstruc-

tion system could use the data obtained by the system as it navigates through the rows in a

farm by incorporating an additional front facing stereo camera and using this image data as

it moves to generate a 3D representation of the fruit plants. By integrating a LiDAR sensor

with this system, this could potentially provide an accurate virtual representation of the en-

vironment, enabling automatic detection and monitoring of the crops for these metrics.

The cost and power consumption of the system and its components is also an area that may

be the focus of future work. This system could be extended to a fleet a robots to cover a much

larger area in a shorter amount of time, this may become prohibitively expensive with the

systems current components. The laptop is one aspect of the system that could be replaced,

the single board computers evaluated in this research were not capable of running the en-

tire system, but with improving technology and higher specification single board computers

reducing in cost and with the capabilities of light weight instance segmentation networks

improving, this may be a potential area for future research.
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The navigational capabilities are also aspect of the system that could see future work. The

system could potentially use a 3D reconstruction of its environment, incorporating a camera

SLAM algorithm to navigate, using this improvement for metric as well as navigation. For

the system to navigate around the entire farm environment or for the use of a fleet of these

robots, the system could generate a map that is used by itself and any other robots in the

same environment. This would assist with obstacle detection and avoidance and with path

planning for the fleet of robots to ensure they are not operating in the same rows.

A drone could also be incorporated with the system using the new perception system to de-

termine rows in the farm with the highest yield and directing harvesting robots to these rows,

enabling these to be found considerably faster than if the system were to navigate to these on

the ground.

The systems architecture was also developed to be generalised to many different environ-

ments in its modular, configurable design, by changing the components and incorporating a

perception system for a given task, the system could be used to harvest additional types of

fruit, remove damaged or mouldy fruit, distribute pesticides in specific locations and many

other tasks requiring precise articulation and accuracy.
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