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Abstract— Mental workload can be monitored in real
time, which helps us improve work efficiency by main-
taining an appropriate workload level. Based on previous
studies, we have known that features, such as band power
and brain connectivity, can be utilized to classify the levels
of mental workload. As band power and brain connectivity
represent different but complementary information related
to mental workload, it is helpful to integrate them together
for workload classification. Although deep learning models
have been utilized for workload classification based on
EEG, the classification performance is not satisfactory. This
is because the current models cannot well tackle variances
in the features extracted from non-stationary EEG. In order
to address this problem, we, in this study, proposed a novel
deep learning model, called latent space coding capsule
network (LSCCN). The features of band power and brain
connectivity were fused and then modelled in a latent
space. The subsequent convolutional and capsule mod-
ules were used for workload classification. The proposed
LSCCN was compared to the state-of-the-art methods.
The results demonstrated that the proposed LSCCN was
superior to the compared methods. LSCCN achieved a
higher testing accuracy with a relatively smaller standard
deviation, indicating a more reliable classification across
participants. In addition, we explored the distribution of the
features and found that top discriminative features were
localized in the frontal, parietal, and occipital regions. This
study not only provides a novel deep learning model but
also informs further studies in workload classification and
promotes practical usage of workload monitoring.
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I. INTRODUCTION

W ITH the advancement of information technology and
the wide application of automatic machines, workers

have ever changed their working manner with a reduction
of physical load but an increased mental workload. Mental
workload (MW) refers to the psychological and physiological
burden generated by the operator when performing specific
cognitive tasks, which is generally related to situational aware-
ness, emotion, and alertness [1]. Task execution is closely
related to the psychological state of the operator. However,
our brain capacity seems not to be enhanced in line with the
increasing requirement of mental resources in jobs. In such a
situation, the required mental resources may exceed people’s
capacity, resulting in mental fatigue, low performance, and dull
cognition [2]. In order to reduce the incidence of the above
problems and maintain the health of workers, an appropriate
workload should be assigned to avoid overloading [3].

Mental workload was assessed mainly based on behaviors
and subjective feedback in early research studies [4]. Usually,
a questionnaire, such as the National Aeronautics and Space
Administration’s Task Load Index (NASA-TLX), or task
accuracy and reaction time were utilized to assess workload
level. This assessment can only be carried out after the
completion of a task and cannot provide a real-time indicator
of workload. With the advancement of physiological signal
measurement and processing technology, more researchers
have attempted to utilize physiological signals to obtain
an objective and real-time assessment of mental workload
[5]. These physiological signals include electroencephalogram
(EEG), heart rate variability (HRV), electrooculogram (EOG),
electrocardiogram (ECG), and functional near-infrared spec-
troscopy (fNIRS) [6], [7], [8], [9]. In this study, we used
EEG for the assessment because EEG exhibits suitability
for reflecting brain activities associated with the mental
workload. Moreover, EEG has highly temporal resolution
and can be recorded in a non-invasive way and at a low
cost [10].

A few categories of features extracted from EEG can be
used for mental workload classification. One of the frequently
used categories is band power. For instance, the theta power
in the frontal midline area increased along with the elevation
of mental workload [11]. Brouwer et al. found that the alpha
power in the parietal area was decreased with the increase
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of mental workload [12]. Besides, delta, beta, and gamma
bands were also associated with mental workload [13], [14],
[15]. Considering the interactions between brain regions, func-
tional connectivity can be combined with band powers to
enhance the performance of mental workload classification.
This has been evidenced in our previous study [16]. The study
demonstrated that the features of band power and functional
connectivity were complementary and the workload classi-
fication was improved by combining them [16]. According
to the comparison results, the connection features in the
gamma band were relatively better than that in other bands in
terms of workload classification. The band powers reflect the
information existing in individual channels (corresponding to
each brain region) while brain connectivity reflects interaction
information between brain regions. As shown in the study [17],
[18], the complex interactions among brain regions associated
with mental workload states can be robustly displayed through
functional connectivity. Based on these previous findings,
we, therefore, determined to fuse the features of functional
connectivity from the gamma band and the features of band
power from all typical bands in this study.

Traditional machine learning classifiers, such as k-Nearest
Neighbors (k-NN) [18], Support Vector Machine (SVM)
[12], [17], random forest (RF) [16], and Linear Discrimi-
nant Analysis (LDA) [3], [19], have been used for mental
workload classification. Blanco et al. trained different classi-
fiers (i.e., k-Nearest Neighbors, Discriminant Analysis, Naïve
Bayes, Decision Trees, and SVM) with different parameter
settings to predict different levels of workload in simulated
flight missions, among which LDA achieved the best results
[19]. These traditional machine learning classifiers can be
combined to improve classification performance. For exam-
ple, Gu et al. combined Extreme Learning Machine (ELM)
and Support Vector Machine (SVM) to develop the ELM-
SVM model, which achieved higher accuracy than separate
classifiers (i.e., the single SVM and the single ELM) in the
mental workload classification [20]. Besides, deep learning
models were also used for workload classification. Deep
learning is more powerful in feature extraction than traditional
methods and exhibits advantages in mental workload classi-
fication. Convolutional neural network (CNN) is one of the
representative algorithms of deep learning for classification
based on EEG [21], [22], [23]. Lee et al. proposed a con-
volutional neural network (CNN) based on multiple feature
blocks that enhanced classification accuracy to 0.75 for the
pilots’ mental states’ analysis [24]. Zhang et al. proposed
two-stream neural networks (TSNN) that combined CNN and
a temporal convolutional network (TCN) for three-class mental
workload classification and also proved the effectiveness of
CNN in extracting information [25]. Long Short-Term Mem-
ory (LSTM) can also be used to retain long-term context
for workload classification [26], [27]. Moreover, Bashivan
et al. introduced CNN into LSTM to develop deep recurrent
convolutional neural networks (RCNNs) for preserving EEG’s
spatial, spectral, and temporal structure in classifying mental
workload [28]. The above methods are to add classifiers after
feature extraction for classification, while Li et al. proposed

supervised Canonical Polyadic Decomposition, which directly
adds auxiliary label information in the decomposition process
so that the classification can be implemented without an
additional classifier [29].

Features extracted from non-stationary EEG are not robust
enough in terms of classification, especially for mental work-
load classification. In this study, we attempted to mitigate this
problem by embedding a variational auto-encoder (VAE) into
the model to create latent variables [30], [31], [32]. The VAE
establishes the probability distribution of features in the latent
space to reduce the impact of the handcrafted EEG features
on the classification robustness. Considering that deep learning
approaches such as CNN are not good at capturing structural
information, the performance of workload classification could
be improved by the capsule network (CapsNet) [33], and it
could achieve good performance without massive training data
[34]. The capsule network was also applied in schizophrenia
identification and P300 detection successfully and proved to be
an effective method for neurophysiological signal classification
[35], [36].

Taking all the above into consideration, we proposed a
latent space coding capsule network (LSCCN) for workload
classification. In this model, the features of band power and
brain connectivity were modelled in the VAE module to
form latent variables. The relationships between the latent
variables were captured via subsequent convolutional and
capsule layers. The proposed model was compared to the state-
of-the-art methods, and detailed comparison results were given
in this paper. In addition, we explored the features to show
their distributions for deepening the understanding of mental
workload.

II. METHOD

A. Participants and Experiment
A prescreen was administered to exclude those who had

attended any EEG-related experiments or had the experience
of the use of the aircraft simulation. Seven healthy participants
were included in this study. The institutional review board
of the National University of Singapore approved the exper-
imental protocol. All participants gave their written consent
forms for participation in the experiment. In the experiment,
participants needed to wear the Oculus Rift virtual reality
headset, which was used to display virtual aircraft, and to
manipulate a simulated aircraft via a joystick. The participants
experienced three levels of manipulation difficulty, which
correspond to three workload levels: low, medium, and high
workload. Under the low workload, participants did not need
to do any tasks and just looked at an autonomous simulated
aircraft. Under the medium workload, participants needed to
manipulate the simulated aircraft manually. Under the high
workload, malfunctions, such as engine failure, occurred,
which led to unstable aircraft. Participants had to pay more
effort to manipulate the unstable aircraft. Accordingly, the
required workload was more than that under the medium
workload condition. Each workload level lasted 2 minutes,
resulting in a total of 6 minutes for a session. Each participant
performed three sessions.
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B. Feature Extraction and Fusions
EEG signals were recorded by 62 electrodes at a sampling

rate of 256 Hz. A standard EEG preprocessing was adopted
to remove artifacts, including bandpass filter (0.5∼48 Hz) and
independent component analysis (ICA). Then the preprocessed
EEG signals were divided into two-second segments, result-
ing in 540 segments (62 channels × 512 data points) for
each participant. The data of each channel were transformed
into power spectral density (PSD) using short-time Fourier
transform (STFT) with a one-second sliding time window
(i.e., 256 data points). Different overlapping settings were used
and compared in terms of classification performance. After
STFT, we obtained the band power features by summing up the
powers of each frequency within respective frequency bands
(i.e., Delta: 1∼4 Hz, Theta: 4∼8 Hz, Alpha: 8∼12 Hz, Beta:
12∼30 Hz, and Gamma: 30∼45 Hz), resulting in a feature
matrix (number of time windows × 5 bands) for each channel.

The connectivity strengths between channels were quan-
tified by either phase locking value (PLV) [37], [38], [39]
or phase lag index (PLI) [40]. Specifically, the preprocessed
EEG signals were firstly filtered into the gamma band (rather
than all five bands) for extracting brain connectivity features,
because the gamma band has an advantage in the connectivity
feature extraction for the workload classification according to
our previous study [16]. The PLV of EEG signals of channel k
and channel l over time span t = t1, t2, . . . , tn was calculated
by:

P LV k,l = ⟨ej(φk (t)−φl (t))⟩, (1)

where ⟨·⟩ represents the average over the time span, φk and
φl are the signal phases of channel k and l. The range of PLV
is [1, 0], of which 0 indicates no phase synchronization and
1 indicates perfect phase synchronization [37], [38], [39].

PLI is also a phase-based method and was used to measure
consistent and nonzero phase lag between channels. PLI is
calculated as:

P L I k,l = |⟨sign[1ϕk,l(t)]⟩|, (2)

where 1ϕk,l(t) represents the phase difference between chan-
nel k and channel l at time t , and sign is a signum function,
and | · | denotes an absolute value function. The PLI value
range is also from 0 to 1. A value of 0 indicates either no
synchronization or phase synchronization difference centered
around 0 and π . In contrast, a value of 1 indicates perfect
phase synchronization with consistent phase differences other
than 0 and π [40]. After calculating PLV or PLI values for
any two channels, all these values were formed a functional
connectivity matrix. The size of this matrix is 62 × 62, which
is for a segment. Subsequently, the band power features were
merged into functional connection features. Moreover, the
merged features were normalized into [1, 0] across channels.
For functional connection features, the entries on the main
diagonal (i.e., self-connections) were excluded in the feature
normalization.

C. Model Architecture
The model architecture of the proposed LSCCN is illus-

trated in Fig. 1. The proposed model includes the VAE

Fig. 1. The architecture of the proposed model. The brain connectivity
features and band power features were extracted through PLV and
STFT, respectively. Then, these two kinds of features were fused and fed
into the following module. There are VAE module, convolution module,
and capsule module in the proposed model. Notes: this illustration is
based on the case of the no overlapping and the use of PLV.

module, the convolution module, and the capsule module.
We took the case of PLV and STFT without overlapping as
an example for the illustration. In this case, the size of the
merged feature matrix X was 62 × 72 for each segment.
This matrix X was fed into the first module (i.e., the VAE
module).

The VAE module was designed to learn the latent variable
from sample X . It is assumed that the sample X can be
generated based on the unobserved latent variable z. Specif-
ically, we extracted information by 2 convolutional layers
containing 16 and 32 convolution kernels (3 × 3) with a
stride of 1 and a max-pooling layer with the kernel of 2× 2.
After two convolutional layers and a max-pooling layer, the
output (32 × 29×34) was flattened into a vector x. The
latent variable is generated by the prior distribution pθ (z).
And x can be determined by the conditional distribution
pθ (x|z). However, the parameter θ and the values of the
latent variable z are both unknown, and the true posterior
pθ (z|x) =pθ (x|z)pθ (z)/pθ (x) is intractable. Hence, Kingma
et al. introduced the encoder qφ(z|x) to generate a distribution
of the possible values of the z from the sample x that aims
to approximate the true posterior pθ (z|x) [31]. Similarly, the
decoder pθ (x|z) generates a distribution over the correspond-
ing values of x based on the latent variables z. The below
formula represents the process of approximate inference of
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the posterior distribution of hidden variables:

z ∼ qφ(z|x). (3)

The encoder qφ(z|x) is a multivariate Gaussian with a
diagonal covariance structure, as shown in

log qφ(z|x) = log N (z;µ, σ 2 I ), (4)

where I is an identity matrix, µ and σ log2 are derived by
the neural networks (i.e., a fully-connected neural network).
In addition, the reparameterization trick is applied. The latent
variable z is sampled by using

z = µ+ σϵ, (5)

where ϵ is an auxiliary noise variable ϵ∼N (0, 1). Specifically,
the output was converted into 200 means and 200 variances by
each individual neural network layer, forming a latent variable
z (1× 200) in the latent space.

Then, the output z from the VAE module was fed into the
convolutional module. The convolutional module has 16 ker-
nels with the size of 1× 9 and a stride of 1, and the rectified
linear unit (ReLU) is set as the activation function.

The output of the convolutional module was then fed into
the capsule module. The capsule module has two layers
(i.e., a Primarycaps layer, and a Digitcaps layer). The pri-
marycaps layer is designed to generate primary capsules and
contains 32 convolutional filters with a 1 × 9 kernel and a
stride of 2. The feature matrixes of 1 × 92 were achieved
by 32 filters. Each primary capsule’s depth was set as 4.
Specifically, the features were grouped with 4 as a unit to form
(32/4)×1×92 primary capsules (i). The final layer (Digitcaps
layer) has three capsules ( j) with a depth of 16 to represent
different levels of mental workload. The length of each capsule
indicates the probability of each mental workload level, and
the capsules were trained by dynamic routing.

D. Dynamic Routing
The dynamic routing algorithm [34], [35], [41], [42] is

used to predict higher-level capsules. Specifically, a “predicted
vector” û j |i is obtained through multiplying the output ui of
the i-th primary capsule by the weight matrix. The formula is
as follows:

û j |i = Wi j ui , (6)

where Wi j ( j= 1, 2, 3) represents the weight matrix.
Secondly, the total input s j of the j-th mental workload

capsule is obtained by the weighted sum of the “predicted
vector” û j |i of the lower capsules. The formula is as follows:

s j = 6i ci j û j |i , (7)

where ci j is the coupling coefficient. The sum of all coupling
coefficients between the lower capsule and all the higher
capsules is 1. The coupling coefficients are determined by the
SoftMax function. The SoftMax function is as follows:

ci j =
exp(bi j )

6kexp(bik)
, (8)

where bi j is the log prior probability that the i-th primary
capsule is connected to the j-th mental workload capsule,
and bi j is initialized with zero.

Then, the vector output v j of j-th mental workload capsule
is determined by a no-linear activation function. The formula
is as follows:

v j =
||s j ||

2

1+ ||s j ||
2

s j

||s j ||
, (9)

This operation normalized the length of the vector output of
j-th mental workload capsule to be between 0 and 1. And we
updated log prior probabilities bi j with the routing iterations
by

bi j ← bi j + û j |i · v j , (10)

In addition, the dynamic routing has a limit of iteration
number. That is, it is stopped when a predefined number of
iterations is reached. After the dynamic routing, the outputs
of the capsule layer are used for the classification.

E. Loss Function

We proposed to use a combination of margin loss, recon-
struction loss and the K L (Kullback-Leible) divergence to
minimize the composite loss during the training. The margin
loss for each mental workload capsule is calculated according
to the following formula:

Lk=Tk max
(
0,m+−||vk ||

)2
+λ(1−Tk) max (0, ||vk ||−m−)

2
,

(11)

where Tk is an indicator of the class. Tk is equal to 1 if
the mental workload of class k is present, otherwise Tk =0.
m+ and m− were set as 0.9 and 0.1, which were used to
punish false positives and false negatives, respectively. λ was
used to adjust the proportion of the loss for absent mental
workload classes, and it was set as 0.5 in our case. The
reconstruction loss acted as regularization for the model [41].
The process was performed by three layers that are fully
connected to the output vector v j . The reconstruction loss of
v j was calculated by mean square error (MSE). We scaled
down the reconstruction loss by 0.005 (η1) so that it did not
affect the margin loss, which was the dominant part, during
training.

Moreover, while training the VAE module, the optimization
objective of the VAE module consisted of two parts. The first
part was the reconstruction loss calculated by binary cross
entropy (BCE) through three layers fully connected to the
latent variables, while the second term is the K L divergence
of the approximate posterior from the prior [31]. In order that
the capsule module dominated the total loss, identical to the
reconstruction process in the capsule module, the optimization
objective of the VAE module was also scaled down by 0.00001
(η2). And the K L divergence was scaled down by 0.1 (η3).
Finally, the total loss included the margin losses of all mental
workload capsules, the two parts of reconstruction losses, and
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Fig. 2. Classification performance comparison of different connectivity
feature extraction methods and different numbers of overlapping data
points.

the K L divergence:

Total loss = margin lossη1 × reconstruction loss of v j

+ η2 × (reconstruction loss of z + η3

× K L(qφ(z|x)||pθ (z))). (12)

This total loss was used during the model’s training. The
training process was terminated when the total loss was less
than 10−5 or the iteration reached the predefined maximum
number (i.e., 200). Also, we used an exponentially decaying
learning rate to optimize the learning. The learning rate was
changed with the iteration and was calculated by

lrcurrent = lr last × aepoch, (13)

where lrcurrent represents the learning rate of the current
iteration, and lr last represents the learning rate of the last
iteration. a is the base of the decaying learning rate during
training, and epoch represents the number of the current
epoch.

III. RESULT AND DISCUSSIONS

A. Effects of Connectivity Extraction Methods and
Overlapping Percentages

As the combination of power features and connectivity
features benefits workload classification, we used feature com-
binations in this study. We first investigated the effects of
different connectivity feature extraction methods (i.e., PLV
and PLI) and different numbers of overlapping data points
(0, 32, 64, 96, 128) in STFT when extracting power and
connectivity features. Five-fold cross-validation was employed
to evaluate the performance of mental workload classification.
The classification results for each participant were listed
in Table I. The classification performance was the best in
participant 3. More than 90% was obtained no matter which
connectivity extraction method was used and how many data
points were overlapped. The lowest performance was observed
in participant 5 (more than 70%). For each overlapping
case, we averaged accuracies across all participants. These

Fig. 3. The confusion matrix was averaged across all participants for
the LSCCN using the combination of power features and connectivity
features extracted by STFT under the condition of no overlapping and
PLV.

average accuracies are shown in Fig. 2. The results showed
that, regardless of the number of overlapping data points,
the performance with PLV was higher than that with PLI.
PLI could remove some information useful for classification
because it employed the sign function for robustness [43].
Based on the comparison between these overlapping cases,
the best performance (88.34% ± 4.77%) was obtained using
PLV and STFT without any overlapping data points (i.e., the
number of overlapping data points is zero). In the subsequent
method comparison, the combination of power features and
connectivity features was extracted by STFT under the condi-
tion of no overlapping and PLV. The confusion matrix, in this
case, is shown in Fig. 3. It showed that the identification of the
low workload level outperformed that of the other two levels.

B. Methods Comparison
In this study, we compared the proposed LSCCN to the

state-of-the-art methods and investigated the role of each
module in the LSCNN in terms of classification accuracy.
These are LSTM [27], CNN [44], RF [16], a single VAE
classifier, and a single capsule network. The model parameters
were tuned to have optimal classification performance. The
parameters of LSCCN are listed in Table II.

a) LSTM [27]: According to the existing study [27], the
model consists of two LSTM layers and 100 units. Dropout
rate was set to 20% and located between the first LSTM and
the input layer. A fully-connected layer served at the last layer.

b) CNN [44]: The model consists of two convolution layers
based on 3 × 3 convolutional kernels with a stride of 1. All
convolutional layers are activated by the rectified linear unit
(ReLU). A max-pooling layer with 2×2 kernels and a softmax
were adopted.

c) RF [16]: In our previous study, compared with other
combination features, the combination of connection and
power features can achieve a higher classification accuracy
(i.e., 83.12%) by the random forest (RF, 500 trees). After



3422 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 31, 2023

TABLE I
RESULTS OF PLV AND PLI UNDER DIFFERENT OVERLAPPING DATA POINTS

TABLE II
MODEL PARAMETERS

using feature selection, the classification accuracy of RF was
improved to 84.34% with the combination of features of power
features, graph metric (PLV), connection features (PLV), and
F-score.

d) A single VAE classifier: The model consists of the VAE
module and a softmax. The VAE module was kept the same
as that in LSCCN.

e) A single CapsNet: The model consists of the convolution
layers which were the same as those in LSCCN. In the capsule
layers, each primary capsule’s depth was set as 8, and each
mental workload capsule was set as 32 in the Digitcaps layer.

Five-fold cross-validation was employed to evaluate the
classification performance of the models and compared
them in terms of accuracy mean ± standard deviation (see
Fig. 4 and Fig. 5). The results showed that LSCCN had the
highest average accuracy of 88.34% ± 4.77%. The other
models, LSTM [27], CNN [44], RF [16], the single VAE

Fig. 4. Classification performance comparison using different methods.

Fig. 5. Standard deviation comparison using different methods.

classifier, and the single capsule network achieved accuracies
of 84.50% ± 7.89%, 86.51% ± 6.60%, 83.34% ± 6.36%,
82.75% ± 6.79%, and 87.20% ± 6.17%. LSCCN also had a
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Fig. 6. Comparison of classification results for different features of each
module and LSCCN.

relatively smaller standard deviation (i.e., 4.77%), indicating
a more reliable classification performance across participants.
The detail of individual accuracies for each participant is
shown in Table III.

C. Ablation Exploration
We further conducted ablation exploration to understand the

contribution to the classification performances for each module
in our proposed LSCCN and individual feature categories. We
disassembled the LSCCN into two main modules (i.e., VAE
module and CapsNet) and checked whether or not the per-
formance was decreased. We also checked the performance
when either brain functional connectivity features or band
power features were used individually. The results can be
found in Tables IV. The results showed that, regardless of
the feature category, the classification results of our proposed
LSCCN were higher than those of the VAE classifier and
the CapsNet. It indicated that our application of the VAE
module was effective, and our proposed LSCCN also had
a good robustness in dealing with different kinds of input
features. We compared the classification results based on the
individual feature category with that of the fused features (see
Fig. 6). We found that the classification performance of PLV
features was better than that of band power features, indicating
that the information transmission between brain regions was
more conducive to mental workload classification. Besides,
the classification results of fused features were higher than
those of individual feature categories (i.e., brain functional
connectivity features and band power features), indicating that
the fusion of different features could supplement each other’s
information to improve classification performance.

D. Features Associated With Mental Workload
We also explored band power features to gain insights

into the features in relation to the differences among the
levels of mental workload. Band powers were averaged over
all segments and all participants for each frequency band

Fig. 7. The topographies of power features under low, medium, and
high workload were averaged across all segments and all participants.

respectively. The average band powers are visualized in
Fig. 7. The elevation of the theta power in the prefrontal
area was associated with the increase of the workload. In
addition, an obvious decrease in the parieto-occipital region
was observed in the alpha band when the workload increased,
which was in line with the finding in Kakkos etal.’s study
[17]. Also, Roy et al. found a reduction in the alpha power
and the beta power at the midline region when the workload
increased [45]. This phenomenon was also been found in
our study. Besides the power features from the low-frequency
bands, the higher frequency band (i.e., gamma) also exhibited
discriminative information, which can provide complementary
information [46].

Likewise, we explored functional connectivity features and
compared connectivity strengths between mental workload
levels. The connectivity strength differences are shown in
Fig. 8. It shows that connectivity strengths are dominantly
different between the low workload level and the other two
workload levels. The strength differences between the medium
workload level and the high workload level are relatively
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TABLE III
MODELS COMPARISON

TABLE IV
THE CLASSIFICATION PERFORMANCES FOR INDIVIDUAL FEATURE CATEGORIES

Fig. 8. Differences of connectivity strengths (obtained by PLV) averaged over all segments and all participants between mental workload levels.
(a), (b), and (c) illustrates the differences between the low workload and the medium workload, between low workload and the high workload, and
between medium workload and high workload, respectively. (d) illustrates the layout of electrodes used in this study.

small. This supports that the classification between medium
and high levels is more difficult, and the misclassification is
higher (see confusion matrix in Fig. 3). It suggests that the
difference in PLV may reflect the significantly changed infor-
mation transmission activity of the brain during processing
tasks with the different mental workload. This may reflect
the increased information transmission between brain regions
when performing high mental workload tasks.

In addition, we found that most of the PLVs were significant
differences in the frontal and parietal regions. In addition, the
connection of some nodes in the occipital region also showed
differences under the different kinds of mental workload. It
indicates that the functional connection features between the
different brain regions considerably impact the level of mental
workload. This corroborates with previous studies indicating
frontal-parietal modulations in regard to mental workload [18],
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Fig. 9. Visualization of the latent variables after dimension reduction using principal component analysis.

[46], [47], [48], [49]. For example, Guan et al. found that
some nodes and some connectivities changed significantly
in the frontal-parietal region with the mental workload [49].
Similarly, Kakkos’s study found that workload was associated
with elevated frontal and parietal regions in the n-Back task
and the Mental Arithmetic task [17]. The superior frontal
region supports working memory processes. It has been proved
that the frontal region is involved in mental arithmetic-induced
workload [50] and the fronto-executive dysfunction may lead
to impairment of arithmetic function [51]. In addition to the
prefrontal cortex, working memory was also supported by the
parietal region [52]. Our study added favorable evidence for
the effect of the frontal and parietal regions on the mental
workload.

E. Insight Into LSCCN
In the LSCCN model, the VAE module can encode input

data into latent variables in the latent space, which can
be decoded to recover the input data as much as possi-
ble. It ensures that the input data can be embedded into
a lower dimension space while retaining the discriminative
information. In order to gain insights into the VAE module,
we visualized the latent variables. Because the dimension
of features was still much more than two, even if it had
been reduced compared to the dimension of the input data,
we used principal component analysis to reduce the dimension
of features to two. The samples were visualized by these
two-dimensional features in Fig. 9. From the visualization,
it is obvious that the samples from the same class were
generally gathered together to form a cluster. For example,
samples were clearly separated among low, medium, and high
workload levels in participant 3. Separation is also quite
good in participant 1. It means that the features extracted
by the VAE module well represent discriminative information
between workload levels. This can be proven by the results

of workload classification. The classification accuracies are
high (more than 90%) for these two participants. In contrast,
samples are relatively overlapped in participant 5 (see P5
in Fig. 9). The samples from different workload levels are
superimposed between each other. Accordingly, the workload
classification performance is relatively low in participant 5.
It is also found that the overlap is large between the medium
workload level and the high workload level. The low workload
level is generally away from the other two workload levels.
This is consistent with the result of the confusion matrix. It is
also in agreement with the participant’s involvement in the
tasks of the experiment. Participants were required to pay
much more effort in the medium and high workload tasks
compared to that in the low workload task. The brain tended
to enhance the efficiency of information transmission between
brain regions to deal with the pressure caused by higher
workload tasks [49].

F. Limitations
In this study, the number of participants is not large, which

limits the confidence of the findings. The findings derived from
this study need a further study with a much larger number of
participants to be confirmed. However, the limitation of a small
number of participants does not degrade the contribution of the
study because the main contribution of the study is to provide
an effective classification model for the mental workload. The
reported findings are added contributions.

IV. CONCLUSION

In this study, we proposed a novel deep learning model,
latent space coding capsule network (LSCCN), to classify
multiple levels of mental workload. The LSCCN mainly
includes the VAE module, the convolution module, and the
capsule module. The VAE module creates latent variables
learned from the fused features of EEG to enhance the
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robustness of feature representation. The capsule module can
capture the relationships between the latent variables for
better mental workload classification. The proposed model
was compared to LSTM, CNN, RF, the single VAE classifier,
and the single capsule network in terms of the classification
performance. The comparison results demonstrated that the
proposed model outperformed all these compared methods.
We further explored band powers, connectivity strengths, and
latent variables to gain insights into the mental workload. We
found that modulations in the frontal, parietal and occipital
regions were closely related to mental workload. Through the
visualization of the latent variables, we can see that the latent
variables are vital for the workload classification. In this study,
we not only proposed a promising model for mental work-
load classification, but also provided the insights into mental
workload from the perspective of feature representation. These
could give a positive effect on the investigation of mental
workload and the development of workload classification
models in the future.
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