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Abstract—Facial emotion processing by the brain plays a
decisive role in human social interactions. This signal helps
us interpret and predict people’s behaviours. However, other
social signals such as human voices or human body odours
may facilitate or impair the identification of facial expressions.
Here we studied the effects of emotional human body odours on
face processing by measuring evoked neural responses and brain
connectivity using the electroencephalogram (EEG). We used an
emotion recognition task in which the participants attributed
an emotion (i.e. happy vs fearful) to a presented face image
while simultaneously exposed to emotional body odours. First, we
measured face related potentials (FRP)s including P100 and N170
components. Statistical analyses revealed significant differences
among FRPs recorded in different odour conditions. Second,
we used a hierarchical Bayesian approach including a group
dynamic causal model (DCM) followed by parametric empirical
Bayes (PEB) to characterize the brain network explaining dif-
ferences between FRPs. Our preliminary results suggested that
different brain networks contribute to neutral face processing in
the presence of different emotional body odours.

Index Terms—human body odour, social interaction, effective
brain connectivity, dynamic causal model, parametric empirical
Bayes.

I. INTRODUCTION

The brain processes information with a high degree of
efficiency in order to perform the most accurate inference from
the data it receives. This complex process involves various
neural mechanisms that analyze, filter, and combine incoming
information to produce the best possible conclusion. One
interesting example is the way the brain processes emotions
conveyed by facial expressions in the presence of human
body odours. Previous research suggested that the perception
of facial expression is influenced by body odours that are
collected in various emotional contexts [1]–[4]. In spite of this
existing literature on the behavioural effects of body odours
on face processing, its underlying neural mechanism is not
understood.
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In a recent study, Callara et al. [5] investigated the effects
of happy and fearful body odours on neutral face processing.
They used EEG to measure the modulation of neural responses
in the context of emotional body odours. Estimated face related
potentials indicated a significant increase in the amplitude
of the late positive potential (LPP) in the central-left brain
area. They also measured behavioural responses to investigate
the level of valence and arousal induced by body odours.
However, statistical analysis did not reveal significant changes
in the behavioural responses collected. In other research,
Rekow et al. [6], [7] performed an EEG study to explore the
effects of body odours on visual categorisation. The measured
EEG spectrum showed that body odour facilitated categorising
ambiguous face-like objects as real faces. In addition, their
findings revealed a significant effect of body odour on the
amplitude of the EEG spectrum during visual processing
and on the right hemisphere. Body odour assistance for face
categorization has also been investigated by Leleu et al. [8].
The main focus of their research was to explore if maternal
body odour can help infants for successful face categorization.
In this study, maternal body odours were collected from
the t-shirts of infants’ mothers under controlled conditions.
Leleu et al. [8] measured brain responses by averaging the
power of EEG signals acquired during maternal and control
odour conditions. Comparing the estimated powers indicated
a significant increase in the amplitude of the EEG spectrum
when using maternal body odours. The enhancement of neu-
ral responses was observed over the right occipito-temporal
cortex. It is important to note that Rekow et al. [6], [7] and
Leleu et al. [8] both relied on ambiguous visual signals being
processed by the brain. This was examined by using face-like
pictures and recruiting immature face processing systems in
young infants in [6], [7] and [8] respectively. There is little
EEG research in this area, and the existing literature suffers
from a lack of brain connectivity analysis to identify the neural
circuit modulated by body odours. Connectivity analysis could
be particularly important when multiple sensory inputs must
be combined. For example in the present study visual stimuli
are blurred making the fusion of visual and olfactory cues
important.

Here, we addressed this issue by performing connectivity
analysis on an EEG data set to study how emotional body
odours modulate neutral face processing in the brain. In light
of previous findings, it was expected that the central-left brain
area and the right occipito-temporal cortex play a dominant
connectivity role. We proposed a data analysis pipeline based



on dynamic causal modeling (DCM) and parametric empirical
Bayes (PEB) for measuring effective connectivity in the level
of hidden neural states [9], [10].

II. MATERIALS AND METHODS

A. Data acquisition

Data from 30 healthy subjects were recorded using 32 EEG
electrodes at a sample rate of 500Hz. All the participants had
normal olfaction and normal or corrected-to-normal vision.
In addition, they provided signed informed consent before
undertaking the experiment. The acquisition was performed
by the 32-channel EEG system LiveAmp (Brain Vision Inc.)
at the Polytechnic University of Valencia (UPV). The study
received approval from the scientific committee of the UPV
(P2 18 06 19).

B. Experimental protocol

In this study, an experimental protocol was designed using
olfactory and visual stimuli to investigate the influence of body
odours on facial emotion attribution. The olfactory stimuli
consisted of clean air and body odours. The body odours were
collected from a number of donors when they experienced
neutral, happy and fearful emotions [11]. For brevity, we call
these four conditions clean air, neutral, happy and fearful
body odours, respectively. An experimental paradigm included
four blocks of odours in which participants were exposed to
clean air and body odours were used. The block with clean
air was used as the baseline or control and the blocks of
body odours were used as experimental conditions. The visual
stimuli consisted of 40 face images (21 men, 19 women)
expressing neutral emotion [12]. In order to enhance the effects
of olfactory factors on decision-making, low-contrast face
images were used in this study. The contrast of face images
was progressively increased (see Fig. 1(b)) at a rate determined
empirically when designing the experiment and kept fixed
throughout the data collection. condition. In each block of
odour presentation, 10 neutral face images were presented and
the subjects were requested to decide whether the given face
was happy or fearful by pressing two keys on the keyboard.
Subjects had permission to submit their response immediately
after receiving the visual stimuli and as soon as they were
able to attribute emotion to the presented face. The screen was
cleared when the subject answered and then after one second
the next face image was presented on the screen. Fig. 1(a)
shows a schematic illustration of the olfactory blocks used
in our study. Each block included 10 trials and in each trial,
one neutral face image was shown to the subject. The order
of images was randomised across the blocks and the order of
olfactory blocks was also randomised across subjects. Fig. 1(b)
shows two sample trials of the paradigm.

C. Data Analyses

1) Preprocessing: All the preprocessing stages were per-
formed using the scripts implemented by MATLAB and
EEGLAB toolbox [13]. In the first stage of preprocessing, the
acquired EEG signals were down-sampled to 128Hz. Then a

(a)

(b)

Fig. 1: A schematic illustration of the experimental design. (a)
The experimental design consisted of one control (i.e air) and
three experimental conditions (i.e. happy, fearful and neutral
body odours) each including 10 trials. (b) Two sample trials
of the experiment. RT in the figure denotes the response time.

band-pass filter with cut-off frequencies at 0.1Hz and 40Hz
was used for noise removal. The reason for selecting such a
wide frequency band was to avoid losing EEG information as
much as possible. In the third stage of preprocessing, non-EEG
channels such as electrooculogram (EOG), flat-line channels,
low-frequency drifts and short-time bursts were removed from
the data. Then, the remaining channels were interpolated to re-
trieve the channels removed in the previous stage. Interpolation
recovers the spatial resolution of EEG to the initial resolution
that data was recorded. After interpolation, common average
referencing was used to re-reference the EEG signals. Then,
the trial epochs were calculated by segmenting data from −1 s
to 2 s around the face stimulus onsets. Then we performed a
visual inspection to remove the epochs contaminated by abrupt
artifacts. In the last stage, independent component analysis
(ICA) was used to remove residual noise components such as
eye blinks, eye movements and muscle movements. The ICA
algorithm used in this study was infomax which is available
in EEGlab [14]

2) Face Related Potentials: We estimated face related po-
tentials associated with experimental and control conditions by
averaging clean EEG epochs across all subjects. The computed
FRPs represent the brain responses to face stimuli in different
olfactory conditions. To measure the modulation of FRPs by
odours, we focused on evaluating the FRPs differences in both
scalp and neural spaces. The modulation of the scalp data
was investigated by comparing FRPs measured in the experi-
mental (i.e. emotional body odour) and control (i.e. clean air)
conditions using ANOVA. The threshold value was p = 0.05
and the results were corrected for multiple comparisons us-
ing a false discovery rate (FDR). The modulation of brain
responses in neural space was investigated by measuring brain
connectivity underlying the observed FRPs. To this aim, the
contrast between FRPs associated with emotional body odours
and clean air was used to characterise the parameters of the
brain network underlying each condition. Using the contrast
of ERPs measured in experimental and control conditions led
to reducing the effects of the face images while boosting the
effects of body odours on brain connectivity.



3) Brain Connectivity: We used the statistical parametric
mapping (SPM) toolbox to conduct brain connectivity anal-
yses [15]. In particular, we focused on measuring effective
connectivity among brain regions. Effective connectivity infers
directed causal influences among neural populations [16]. In
this context, experiment factors may modulate one neural
population’s causal effect on another. Here, we used a hierar-
cherved data. The parameters ofical Bayesian approach based
on DCM and PEB to characterise effective connectivity [10],
[17]. The dynamic causal model is the most popular frame-
work proposed to explore effective connectivity [9]. DCM
employs a set of differential equations to explain the cognitive
process in the brain that produce the observed signals. The
parameters of the differential equations represent either the
strength of connections among brain sources or the strength of
connections’ modulations resulting from experimental condi-
tions. In DCM analysis, a forward model is needed to project
the activities of the hidden neural populations to the scalp.
Here, we used the ERP neural-mass model [18] that has
been implemented in SPM12. The coordinate of the brain
sources in MNI space and the prior value of the connectivity
parameters should be specified for DCM first. Then DCM
uses the Bayesian technique to estimate the posteriors. In this
study, we specified five brain areas as the network’s nodes that
were detected through the group source inversion approach
proposed by Litvak and Friston [19]. Group source inversion
is a constrained source localisation technique assuming all
subjects rely on the same source priors. The brain regions
identified by group source inversion and their corresponding
MNI coordinates are:

• superior occipital (O): 14,-96,20
• superior parietal (P): 28,-50,64
• superior temporal (T): 54,0,-14
• superior motor (M): 14,18,56
• inferior frontal (F): 48,36,8

The above brain regions have been reported by the relevant
research as the areas underlying visual/olfactory processing
or decision-making tasks [20]–[22]. A fully connected DCM
was generated using the above regions as the prior model of
brain connectivity. We assumed all the connections could be
modulated by two factors (i.e. face and odour). Since we are
interested in investigating the effects of olfactory stimuli on
face processing, the face image stimulus was considered as
the driving input in our analysis. Fig. 2 shows a schematic
illustration of the model specified according to the above
assumptions as a prior for brain connectivity investigation.

We proposed a hierarchical Bayesian approach including
two levels for measuring the posterior of the specified model.
Fig. 3 shows the block diagram of the hierarchical brain
connectivity analysis used in this study. In the first level of the
hierarchy, a group of DCMs was created for each experimental
condition. Each member of the group DCM represents the
brain connectivity of one subject. Then, the parameters of the
models associated with a specific experimental condition were
estimated using the contrast between observed FRPs in that

Fig. 2: The model specified as a prior to investigate effective
connectivity among regions of interest during face and body
odour processing. O, P, T, M, F refer to superior occipital, su-
perior parietal, superior temporal, superior motor and inferior
frontal respectively.

condition and the control condition. Equation (1) shows the
mathematical representation of the analysis performed in the
first level [9]:

ż = f(z,U, θ(1))

Yi = Γi(z, θ
(1)
i ) +W1λi + ϵ

(1)
i .

(1)

The first line of (1) explains the variation of neural activity
in the brain regions ż as a function of neural activity of brain
areas involved in the network z, inputs (i.e stimuli) U and
network’s parameters θ(1). In the second line, Yi represents
the data observed from subject i, Γi(z, θ

(1)
i ) indicates the first

level DCM trying to interpret observed data using parameters
θ
(1)
i and neural activity in the brain regions z, W1λi models

uninteresting components and ϵ
(1)
i denotes the residual noises

obtained in the first level of the analysis. We generated three
groups of DCMs (i.e. the colourful blocks in Fig.3) associated
with three experimental conditions to study how emotional
human body odours modulate face processing in the brain.
The fully connected model proposed in 2 was used as prior
and contrast of ERPs observed in experimental and control
conditions were used as observations. In the 1st level of
connectivity analysis, the posterior values of the parameters

Fig. 3: Block diagram of brain connectivity analysis.



were estimated using the priors, observed data and Variational
Laplace [23].

In the second level of the hierarchy, we performed Para-
metric Empirical Bayes (PEB) to estimate the average and
the main effects of conditions [10]. Equation (2) explains the
theory behind PEB enabling us to investigate our hypotheses
about brain connectivity [17]:

θ11
θ21

...
θn1

...
θ1m
θ2m

...
θnm



(1)

=
[
x1 x2 · · · xk

]

β1

β2

...
βk


(2)

+ ϵ(2) (2)

In (2), θ(1) is a matrix where each row represents the pa-
rameters estimated for each subject and each experimental
condition in level one. For example, θ2m is a row vector
that refers to the parameters estimated for the subject 2 who
participated in condition m. In PEB, these parameters can be
modelled by General Linear Model (GLM) using a design
matrix X. Columns of the design matrix encode the hypotheses
of interest such as the mean effect of one specific factor or
group differences across conditions. In (2), β(2) is a matrix
whose rows represent the second-level parameters. Each row
of β(2) is associated with one column of X. For example, β2

includes parameters explaining the hypothesis encoded by x2.
Finally, ϵ(2) represents the additive noise.

We investigated the average and the main effects of body
odours on brain connectivity by generating a design matrix
including four columns. The first column of the design matrix
(i.e. x1) was a column of ones and encoded the mean effect of
all conditions. The corresponding parameter can be interpreted
as the overall effects of neutral face and body odours on brain
connectivity. We used a combination of zeros and ones to
encode the additive effects of emotional human body odours
when the brain is involved in neutral face processing. Fig. 4
shows the schematic illustration of the design matrix utilised in
our study. Since we were interested in the modulatory effects
of the experimental conditions, θ(1) in (2) included only the
parameters representing modulation in the first level DCMs.
Having the parameters estimated in the first level θ(1) and
the specified design matrix X, the second level parameters
θ(2) can be calculated using (2). We inspected the quality of
the model inversion (i.e. parameter estimation) by evaluating
the free energy of the models in the first and second levels
[23], [24]. Parameter estimation in the second level was then
followed by the Bayesian model comparison (BMC) and the
Bayesian model reduction (BMR). This stage led to identifying
the parameters offering the most accurate and less complex
interpretation of observed data [24], [25]. In the next section,
the results obtained by our study are presented.

III. RESULTS

A. Face related potentials

Fig. 5 represents the average power of brain potentials
evoked by face stimuli over the scalp in each olfactory condi-
tion. The results revealed that the amplitude of brain responses
was dominant in the frontal and occipital EEG electrodes.
It is also observed that the fearful body odour increased the
amplitude of brain responses. Fig. 6 shows the FRP waveforms
measured by P3, P4 and FC6 in three experimental and
their complementary control conditions. The measured FRPs
included P100, N170 and P300. We conducted ANOVA to
inspect the influence of emotional body odours on the FRP
components. We used (pvalue = 0.05) and FDR correction for
multiple comparisons. The statistical analysis revealed some
significant differences between the FRPs measured during
experimental conditions (i.e. emotional human body dour)
and control conditions (i.e. clean air). Time intervals with
significant differences are shown by grey colour in Fig. 6.
Inspecting the results indicated that significant differences
among the measured FRPs happened in different time intervals
across the scalp.

B. Brain connectivity

The results presented in this section explain the underlying
brain process producing the observed FRPs. Fig. 7 shows the
brain networks involved in each experimental condition. Fig. 7
represents only the connections that were modulated by the
experimental factors. The numerical value of the networks’
parameters, estimated by PEB, is written on each brain con-
nection and indicates the strength of connectivity modulation
due to applying specific experimental condition. Positive and
negative values represent excitation and inhibition respectively.
Fig. 7(a) provides a schematic illustration of the parameters
corresponding to the first column of the design matrix. The
main objective of this column was to encode the average
modulation effects of all the factors on effective connectivity.
The average effects of all factors can be interpreted as the
baseline of connectivity. Fig. 7(b-d) explains the main effect
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Fig. 4: Between subjects design matrix including 4 covariates.
Rows 1-30, 31-60 and 61-90 are associated with the group
DCMs estimated for happy, fearful and neutral body odours
respectively. Columns one to four encode the i) average effect
of all odours and the main effects of ii) happy iii) fearful, and
iv)neutral body odours respectively.



of each emotional body odour on brain connectivity. The
parameters of the networks shown by Fig. 7(b-d) are associated
with columns 2−4 of the design matrix. These columns encode
the main effects of each body odour on brain connections.
As seen in Fig. 7(a), common effects of all factors led
to modulating 10 brain connections. Fig. 7(b-d), shows the
connectivity pathway that was modulated by happy, fearful
and neutral body odours. Comparing Figs. 7(a-d) indicated
that applying happy and fearful body odours modulated more
brain connections compared to neutral body odour. In addition,
the strength of modulation by happy and fearful body odour
conditions was significantly higher than neutral body odour.
According to the Figs. 7(b-c), fearful and happy body odours
modulated the superior motor cortex significantly. This can
be supposed as the influencing effect of the emotional body
odours trying to tempt the subject to attribute the emotion to
the presented face through pressing the button. In addition,
the obtained results revealed that the connection between the
superior parietal and inferior frontal was modulated by all
three body odours. Comparing the parameter values measured
for this connection show that the strength of modulation in
fearful and happy body odour conditions was remarkably
stronger than in neutral body odour condition.

IV. DISCUSSION

In this preliminary study, we investigated the effects of
emotional body odours on the neural processing of neutral
face images. In our study, EEG was used to measure the
brain responses evoked by face processing when subjects were
exposed to different odours. Measuring FRPs revealed face
related components such as P100 and N170. The obtained
evoked potentials have also been reported in a paper that
explored a similar EEG experiment [20]. We also observed
a strong late positive potential component in most of the

Fig. 5: average power of brain responses to face stimuli
observed in (a) air, (b) fearful body odour, (c) happy body
odour and (d) neutral body odour conditions. .
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Fig. 6: Comparison of ERP waveforms measured in air con-
dition and (a) fearful body odour, (b) happy body odour and
(c) neutral body odour conditions. Time “0” in the figures
indicates the face presenting onset. The grey bars indicate the
time slots that a significant difference was observed between
the ERPs measured in experimental and control conditions.

channels. Analysis performed in [20] also led to obtaining
strong late positive potential due to using emotional body
odours and neutral face images simultaneously. The measured
scalp maps indicated strong brain responses in the areas that
were in line with the previous relevant studies [6]–[8]. We
measured the modulation of brain responses by comparing
i) FRPs and ii) effective connectivity acquired in different
olfactory conditions. In all the comparisons, the air condition
was considered as the baseline. Comparing the FRPs revealed
that the emotional body odours induced some changes in the



(a) (b)
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Fig. 7: Pathway of effective connectivity underlying neutral
face processing in (a) all olfactory, (b) fearful body odour,
(c) happy body odour and (d) neutral body odour conditions.
Reported values represent the effect of modulation resulted
from the corresponding olfactory conditions. O, P, T, M, F
refer to superior occipital, superior parietal, superior temporal,
superior motor and inferior frontal respectively.

evoked responses. The results of group effective connectivity
also led to revealing a more specific connectivity pattern
underlying emotional body odour processing. The outcome of
our connectivity analysis showed that fearful and happy body
odours modulated brain connections remarkably. It is observed
that fearful and happy body odours strongly modulated the
connection among the superior occipital, superior temporal,
superior parietal and inferior frontal. According to the relevant
literature, all these brain areas play key roles in face, emotion
and odour processing [21], [22]. Although our preliminary
study revealed that emotional human body odours modulated
face processing, further investigation will be needed to test the
robustness of these results. This can be obtained by increasing
the number of subjects and using a more comprehensive design
matrix for the PEB analysis.
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