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We propose a new threshold selection method for nonparametric estimation of the extremal

index of stochastic processes. The discrepancy method was proposed as a data-driven smooth-

ing tool for estimation of a probability density function. Now it is modified to select a thresh-

old parameter of an extremal index estimator. A modification of the discrepancy statistic

based on the Cramér-von Mises-Smirnov statistic ω2 is calculated by k largest order statis-

tics instead of an entire sample. Its asymptotic distribution as k → ∞ is proved to coincide

with the ω2-distribution. Its quantiles are used as discrepancy values. The convergence rate of

an extremal index estimate coupled with the discrepancy method is derived. The discrepancy

method is used as an automatic threshold selection for the intervals and K−gaps estimators.

It may be applied to other estimators of the extremal index. The performance of our method

is evaluated by simulated and real data examples.

Keywords: Cramér-von Mises-Smirnov statistic; Discrepancy method; Extremal index;

Nonparametric estimation; Threshold selection.

AMS Subject Classification: 62G32

1. Introduction

Let {Xi}i=1,...,n be a sample of random variables (r.v.s) from a strictly stationary time

series with cumulative distribution function (cdf) F (x). By Leadbetter et al. (1983) the

stationary sequence {Xn}n≥1 is said to have the extremal index θ ∈ (0, 1] if for each

0 < τ < ∞ there is a sequence of real numbers un = un(τ) such that it holds

lim
n→∞

n(1− F (un)) = τ, lim
n→∞

P{Mn ≤ un} = e−τθ,

where Mn = max{X1, ..., Xn}. The extremal index reflects a cluster structure of an un-

derlying sequence or its local dependence. For stationary sequences θ = 1 when mixing

∗Corresponding author. Email: nat.markovich@gmail.com

1

Page 1 of 23

URL: https://mc.manuscriptcentral.com/gnst  Email: GNST-peerreview@journals.tandf.co.uk

Journal of Nonparametric Statistics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

MainDocument

conditions D(un) and D′(un) hold (Leadbetter et al. 1983); in particular, it holds if

X1, ..., Xn are independent.

Nonparametric estimators of θ require usually the choice of a threshold u and/or a

declustering parameter. The well-known blocks and runs estimators of θ require u and

the block size b or the number of consecutive observations r running below u to separate

two consecutive clusters (Beirlant et al. 2004). A bias-corrected modification of the blocks

estimator in Drees (2011) informs how to avoid the threshold selection by providing a

rather stable plot of the extremal index estimates against u with some remaining un-

certainty. In Sun and Samorodnitsky (2019) the multilevel blocks estimator is proposed

where a sequence of increasing levels and a weight function have to be defined. The slid-

ing blocks estimator has asymptotic variance smaller than the disjoint blocks estimator

(Robert et al. 2009b) and both of them require the selection of a pair (u, b). The cycles

estimator proposed by Ferreira and Ferreira (2018) needs both u and the cycle size s as

parameters. The intervals estimator of θ by Ferro and Segers (2003) and the estimators

introduced by Robert (2009b) require the choice of u. The K-gaps estimator is another

threshold-based one (Süveges and Davison 2010).

One of the high quantiles of the sample {Xi}i=1,...,n is taken usually as u or u is selected

visually corresponding to a stability interval of the plot of some estimate θ̂(u) against u.

Following Süveges and Davison (2010), a list of pairs (u,K) is selected by the Information

Matrix Test (IMT) in Fukutome et al. (2015). Then u is selected from such a pair that

corresponds to the largest number of clusters of exceedances separated by more than K

non-exceedances. The semiparametric maxima estimators depend on the block size only

(Berghaus and Bücher 2018; Northrop 2015).

The objective of this paper is to propose a new nonparametric method based on a dis-

crepancy statistic to find the threshold u. The latter statistic is built by the largest order

statistics of normalized interexceedance times. We aim to find a limit distribution of the

discrepancy statistic and to prove the consistency and the rate of convergence of extremal

index estimates with u selected by the discrepancy method. The calculation algorithm

and the comparison with other estimators of the extremal index will be presented.

The so-called discrepancy method was proposed in Markovich (1989) and Vapnik et al.

(1992) as a data-driven smoothing tool for a probability density function (pdf) estima-

tion by i.i.d. data. We aim to extend this method for extremal index estimation. The

idea was to find an unknown parameter h of the pdf as a solution of the discrepancy

equation

ρ(F̂h, Fn) = δ.

Here, F̂h(x) =
∫ x
−∞ f̂h(t)dt holds, f̂h(t) is some pdf estimate, δ is a discrepancy value of

the estimation of F (x) by the empirical distribution function Fn(x), i.e. δ = ρ(F, Fn).

ρ(·, ·) is a nonnegative (loss) fuction in the space of cdf’s. We will focus on the Cramér-von

2
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Mises-Smirnov (C-M-S) statistic

ω2
n = n

∫ ∞

−∞
(Fn(x)− F (x))2 dF (x) (1)

as ρ(Fn, F ). Since δ is usually unknown, quantiles of its limit distribution may be pro-

posed as δ. The latter limit distribution of the C-M-S statistic (denote it by A1) is

invariant regarding F and rather complicated (Bolshev and Smirnov 1965; Markovich

2007). For applications the tuning parameter h was proposed in Markovich (1989) as a

solution of the equation

ω̂2
n(h) = 0.05.

Here,

ω̂2
n(h) =

n∑
i=1

(
F̂h(Xi,n)−

i− 0.5

n

)2

+
1

12n
(2)

was calculated by the order statistics X1,n ≤ ... ≤ Xn,n of the sample {Xi}i=1,...,n, the

value 0.05 corresponds to the mode of A1 and thus, the maximum likelihood value of

A1 was found from tables (see, e.g., Bolshev and Smirnov 1965) as δ.1 To estimate the

extremal index we replace F̂h(Xi,n) in (2) by the exponential distribution model of nor-

malized interexceedance times {Yi}i=1,...,L, L = L(u) derived in Ferro and Segers (2003)

and use in the sum only k largest order statistics of the latter sample.

The paper is organized as follows. In Section 2 related work is recalled. In Section 3 a

modification of the C-M-S statistic denoted as ω̃2
L(θ) is introduced. The limit distribution

of ω̃2
L(θ) built on independent observations is proved to coincide with the limit distribu-

tion of ω2
n (Theorem 3.1). The convergence of ω̃2

L(θ̂) distribution to A1 is derived when

the difference
√
mn(θ̂− θ) has a nondegenerate distribution (Theorem 3.2), where mn is

some sequence relating to k and L. In Theorem 3.3 the consistency and the inconsistency

conditions for the normalized statistic ω̃2
L(θ̂) are given. The rate of convergence of ex-

tremal index estimates with u selected by the discrepancy method is derived in Corollary

3.4. The choice of parameter k, the number of the largest order statistics, used for ω̃2
L

calculation for samples of moderate sizes is discussed. An algorithm and a simulation

study of the discrepancy method based on the normalized statistic ω̃2
L(θ̂) are given in

Section 4. An application of the method to real data examples is provided in Section 5.

Proofs can be found in Markovich and Rodionov (2022) and in a supplementary material

file.

1The connection between (1) and (2) can be found in Markovich (2007), p.81.
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2. Important mathematical results

Our results are based on Lemmas 2.2.3, 3.4.1 by de Haan and Ferreira (2006) concerning

the limit distributions of the order statistics and Theorem 1 by Ferro and Segers (2003).

Here and further, we denote for brevity a sequence of positive integers {kn} as k.

Definition 1 (Ferro and Segers 2003) For real u and integers 1 ≤ k ≤ l, let Fk,l(u) be

the σ-field generated by the events {Xi > u}, k ≤ i ≤ l. Define the mixing coefficients

αn,q(u),

αn,q(u) = max
1≤k≤n−q

sup |P (B|A)− P (B)|,

where the supremum is taken over all A ∈ F1,k(u) with P (A) > 0 and B ∈ Fk+q,n(u)

and k, q are positive integers.

In Ferro and Segers (2003) a r.v. T (u) equal in distribution to

min{j ≥ 1 : Xj+1 > u} given X1 > u

is considered. Theorem 1 by Ferro and Segers (2003) states that

Y (un) = F (un)T (un) →d Tθ =

{
η, with probability θ,

0, with probability 1− θ,

where η is exponentially distributed with mean θ−1. The zero asymptotic interexceedance

times (the intracluster times) imply the times between the consecutive exceedances of the

same cluster. The positive asymptotic interexceedance times are the inter-cluster times.

→d denotes convergence in distribution. Taking the exceedance times 1 ≤ S1 < ... <

SNu
≤ n, the observed interexceedance times are Ti = Si+1 − Si for i = 1, ..., Nu − 1,

where Nu =
∑n

i=1 1{Xi > u} is the number of observations exceeding a predetermined

high threshold u.2 Hereinafter we write L ≡ L(u) = Nu − 1.

The intuition for declustering of a sample is given in Ferro and Segers (2003). One

can assume that the largest C − 1 = ⌊θL⌋ interexceedance times are approximately

independent inter-cluster times. The larger u corresponds to the larger interexceedance

times whose number L ≡ L(u) may be small. It leads to a larger variance of the estimates

based on {Ti(u)}.
The intervals estimator is defined as (Ferro and Segers 2003),

θ̂n(u) =
{min(1, θ̂1n(u)), if max{Ti : 1 ≤ i ≤ L} ≤ 2,

min(1, θ̂2n(u)), if max{Ti : 1 ≤ i ≤ L} > 2,
(3)

2Theoretically, events {Ti = 1} are allowed. In practice, such cases related to single inter-arrival times between

consecutive exceedances are meaningless.
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where

θ̂1n(u) =
2(
∑L

i=1 Ti)
2

L
∑L

i=1 T
2
i

, θ̂2n(u) =
2(
∑L

i=1(Ti − 1))2

L
∑L

i=1(Ti − 1)(Ti − 2)
.

The K-gaps estimator proposed in Süveges and Davison (2010) is obtained by the max-

imum likelihood method using the model by Ferro and Segers (2003)

P{F (un)T (un) > t} → θ exp(−θt), n → ∞. (4)

and assuming that the K-gaps observations are independent. The K-gaps

S(un)
(K) = (max (T (un)−K, 0)), K = 0, 1, 2, ...

are obtained by truncation of the interexceedance times by the run parameter K. The

normalized K-gaps F (un)S(un)
(K) have the same limiting mixture law (4) according to

Theorem 2.1 in Süveges and Davison (2010). The K-gaps estimator has the following

form

θ̂K = 0.5
(
(a+ b)/c+ 1−

√
((a+ b)/c+ 1)2 − 4b/c

)
, (5)

with a = L−NC , b = 2NC , c =
∑L

i=1 F (un)S(un)
(K)
i . NC is the number of non-zero K-

gaps. The K-gaps estimator (5) is consistent and asymptotically normal as n → ∞. Due

to possible nonstationarity and violation of independence at extreme levels, K and u are

to be selected by a misspecification test. The iterative weighted least squares estimator of

Süveges (2007) explores the interexceedance times with K = 1. The automatic selection

of an optimal pair (u,K) is proposed in Fukutome et al. (2015) by a choice of pairs for

which values of the statistic of the information matrix test (the IMT) are less than 0.05.

The test works satisfactorily when the number of exceedances is not less than 80.

The intervals estimator is derived to be consistent for m-dependent processes (Ferro

and Segers 2003). Asymptotic normality property
√
mn(θ̂n(u)−θ) →d N(0, V ) as n → ∞

is derived for several extremal index estimators and different values of variance V . In

most cases mn is proportional or asymptotically proportional to n/rn. Below rn, un and

τ have the same meaning as in Theorem 1 by Ferro and Segers (2003). First, mn =

nF (un) holds for the blocks and runs estimators in Weissman and Novak (1998), where

F (un) = τ/rn(1+o(1)); mn = L(un) is the number of interexceedance times {Ti(un)} for

the intervals estimator in Robert (2009a), where L(un) is asymptotically equivalent to

τn/rn in probability, see below; mn = n/rn is taken for the multilevel blocks estimator

in Sun and Samorodnitsky (2018), where rnF (usn) → τs and s ∈ {1, ...,m} is the number

of levels {usn}; mn = n/rn is used for the disjoint and sliding blocks estimators (Robert

2009a); mn = kn is taken for the disjoint and sliding blocks estimators by Berghaus and

Bücher (2018) and Northrop (2015), where kn is a number of blocks of length bn such

5
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that kn = o(b2n) holds as n → ∞. The latter results provide examples for the possible

choice of mn in assumption (10). It also relates to Remark 1.

3. Main results: ω2-distribution of the modified Cramér-von

Mises-Smirnov statistic

Using the largest order statistics of the sample {Yi = (Nu/n)Ti} let us rewrite (2) in the

following form

ω̂2
L(u) =

L∑
i=L−k+1

(
1− θ exp(−Yi,Lθ)−

i− 0.5

L

)2

+
1

12L
(6)

and investigate its limit distribution. Note that L = L(un) is a sequence of r.v.s converg-

ing in probability to infinity such that rnL(un)/n → τ in probability, where the sequence

of thresholds un = un(τ) and the sequence rn were introduced in Theorem 1 by Ferro

and Segers (2003).

According to Martynov (1978), Smirnov (1952) the limit distribution of the C-M-S statis-

tic (1) (or, equivalently ω2
n = n

∫ 1
0 (Fn(t)− t)2 dt) coincides with the distribution of

Ω =

∫ 1

0
B2(t)dt,

B(t) is a Brownian bridge on [0, 1], i.e. the Gaussian random process with zero mean and

the covariance function R(s, t) = min(s, t)− st, s, t ∈ [0, 1]. Thus, the statistic (6), built

by k largest order statistics only, tends to 0 for k = o(L) as n → ∞, since the interval

over which we integrate B2(t) tends to an empty set. Thus, (6) should be modified to

have a non-degenerate limit distribution. Let us consider the modification of (6)

ω̃2
L(θ) =

1

(1− tk)2
· (7)

·
L∑

i=L−k+1

(
1− θ exp(−Yi,Lθ)− tk −

i− (L− k)− 0.5

k
(1− tk)

)2

+
1

12k
,

where tk = 1− θ exp(−YL−k,Lθ). Let us explain in more detail why we need such modifi-

cation. It follows from Theorem 1 by Ferro and Segers (2003) that there are a probability

θ of asymptotic positive interexceedance times (the inter-cluster times) and a probability

1 − θ of zero asymptotic interexceedance times (the intra-cluster times). Moreover, the

inter-cluster times are asymptotically independent exponential with mean 1/θ. Thus, one

should built the statistic on only inter-cluster times to be able to employ the asymptotic

independence property.

6
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3.1. Modified Cramér-von Mises-Smirnov statistic for known θ

In this section we consider the following auxiliary statistic

ω2
k(θ) =

L∑
i=L−k+1

(
Zi,L − ZL−k,L

1− ZL−k,L
− i− (L− k)− 0.5

k

)2

+
1

12k
, (8)

where Zi,L = 1− θ exp(−T ∗
i,Lθ), T

∗
1,L ≤ . . . ≤ T ∗

L,L are order statistics of a sample {T ∗
i },

{T ∗
i } are independent copies of Tθ. We assume in this section that L is a non-random

sequence tending to infinity.

It follows from Theorem 1 by Ferro and Segers (2003) and Lemma 3.4.1 (de Haan

and Ferreira 2006), that the conditional distribution of the set of order statistics

{Zi,L}Li=L−k+1 given ZL−k,L = sk asymptotically agrees for lim supn→∞ k/L < θ with

the distribution of the set of order statistics {U∗
j,k}, j = i − (L − k), of an i.i.d. sample

{U∗
j } from the uniform distribution on [sk, 1]. The asymptotical distribution of ω2

k(θ) is

given in the next theorem.

Theorem 3.1 It holds

ω2
k(θ)

d→ ξ

for k → ∞, lim supn→∞ k/L < θ as n → ∞, where ξ obeys A1 distribution, the limit

distribution of the C-M-S statistic ω2
n.

3.2. Modified Cramér-von Mises-Smirnov statistic for unknown θ

Here, we check whether one can substitute θ by its estimate θ̂ in (7) and find the condi-

tions that should be imposed on θ̂ under which the limit distribution of ω̃2
L(θ̂) will be the

same as the limit distribution of ω2
k(θ). Recall again that the number of interexceedance

times L = L(un) is a sequence of r.v.s tending to +∞ as n → ∞ (Robert 2009a). In the

spirit of Theorem 3.2, Robert (2009a), the limit distribution of the following statistic

√
L

(
L∑
i=1

f(Yi)− Ef(Y1)

)

for some continuous f may not depend on a substitution of the set of r.v.s {T ∗
i }Li=1

appearing in (8) instead of {Yi}Li=1. Moreover, T ∗
i

d
= Tθ, i ∈ {1, . . . , L} and there is

a probability θ of the nonzero elements of this set that are independent exponentially

distributed with parameter θ. For these r.v.s Theorem 2.2.1, de Haan and Ferreira (2006)

implies that if k/L → 0 and k → ∞ as n → ∞, then

√
k(T ∗

L−k,L − ln(Lθ/k)/θ) = OP (1).

7
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In light of these remarks let us assume that there exists a sample of independent expo-

nentially distributed r.v.s {E(L)
i }li=1 with mean θ−1 for all large enough n such that

YL−k,L − E
(L)
l−k,l = oP

(
1√
k

)
(9)

if k/L → 0 and k → ∞ as n → ∞ in probability, where we denote l = ⌊θL⌋ and assume

k < l. Theorem 3.1 remains valid if T ∗
i,L, i ∈ {L − k, ..., L} in ω2

k(θ) are substituted by

E
(L)
i,l , i ∈ {l − k, ..., l}. This is possible due to condition lim supn→∞ k/L = 0 < θ. Thus,

with probability tending to one T ∗
L−k,L > 0 holds, and by Renyi’s representation (for

this argument see, e.g., the proof of Lemma 3.2.3, de Haan and Ferreira (2006)) we get

T ∗
L−i,L − T ∗

L−k,L =d E
(L)
l−i,l − E

(L)
l−k,l given T ∗

L−k,L > 0.

Theorem 3.2 Let the conditions of Theorem 1 by Ferro and Segers (2003) and the

condition (9) be fulfilled and the estimator of the extremal index θ̂ = θ̂n be such that

√
mn(θ̂n − θ)

d→ ζ, n → ∞, (10)

where the r.v. ζ has a nondegenerate distribution function H. Let us assume that the

sequence mn is such that

k

mn
= o(1) and

(lnL)2

mn
= o(1) (11)

in probability as n → ∞. Then

ω̃2
L(θ̂n)

d→ ξ ∼ A1

holds, where A1 is the limit distribution function of the C-M-S statistic.

Remark 1 For instance, ζ is normally distributed with mean zero and mn = O(n/rn)

(hence, mn = O(L) in probability) for the intervals, blocks and sliding blocks estimators

of the extremal index (Northrop (2015); Robert (2009a); Robert et al. (2009); Sun and

Samorodnitsky (2018)), see also the last paragraph in Section 2.

Remark 2 The replacement of o(1) byO(1) in (11) violates Theorem 3.2. The assumption

k = O(mn) may lead to the fact that the limit distribution of ω̃2
L(θ̂n) will differ from A1,

that is beyond the scope of our paper.

Theorem 3.3 Let the conditions of Theorem 1 by Ferro and Segers (2003) and (9) be

fulfilled. Assume that the sequence of estimates {θ̂n} is such that for some α ∈ [0, 1/2]

kαns
|θ̂ns

− θ| P→ +∞, if 0 < α ≤ 1/2,

|θ̂ns
− θ| > ε for some ε > 0, if α = 0

8
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holds for some ns → ∞, ns ∈ N, s ≥ 1, where k = kn = k(un), k = o(L) in probability.

Then for corresponding subsequence {Lns
} of the sequence {L}, L = L(un)

ω̃2
Lns

(θ̂ns
)/k1−2α

ns

P→ +∞

holds as n → ∞.

Remark 3 Theorem 3.3 implies that the non-consistency of the estimator θ̂n or the

consistency with a sufficiently slow rate leads to the non-consistency of ω̃2
Lns

(θ̂ns
) in a

sense that its limit distribution does not exist or the latter statistic tends to +∞. In case

that α ̸= 0 holds, the estimator θ̂n may be consistent but with the rate of convergence

slower than k−α
n . Hence, ω̃2

L(θ̂n) may be considered as a quality functional of θ̂n.

The consistency of the corresponding extremal index estimates follows from Theorem

3.3. The next corollary states, if the solutions of the discrepancy equation exist for each

n, then the consistency is fulfilled.

Corollary 3.4 Let the conditions of Theorem 1 by Ferro and Segers (2003) and (9)

be fulfilled. Let θ̂n(un) be an estimator of θ, k = k(un) = f(L(un), θ̂n(un)), where the

function f(x, y) is such that f(x, y) = o(x) and f(x, y) → ∞ as x → ∞ uniformly

for arbitrary y. Assume {ũn} be some sequence of solutions of the discrepancy equation,

such that every n corresponds to exactly one solution. Then θ̂n(ũn)
P→ θ and for arbitrary

ε > 0

k(ũn)
1/2−ε|θ̂n(ũn)− θ| P→ 0, n → ∞.

The proof of the corollary is based on a negation of the assertion of Theorem 3.3.

3.3. The choice of k

According to Theorem 3.2 the asymptotic distribution of ω̃2
L(θ̂n) does not depend on k.

The k-selection gives another viewpoint that using only the largest interexceedance times

screens out the smallest interexceedance times. It is helpful for the reasons discussed in

Ferro and Segers (2003) and is the motivation for introducing the tuning parameter K

in the K−gaps estimator of θ in Süveges and Davison (2010).

In practice, for each predetermined δ and u one may increase k until k ≤
min{θ̂0L(u), L(u)β}, 0 < β < 1, holds (θ̂0 is some pilot estimate of θ) and the dis-

crepancy equations have solutions, and select the largest one among such k’s. This

choice satisfies the assumptions of Theorem 3.2 but it is not unique. For instance, one

can select k = ⌊(lnL)2⌋. In the following simulation study we examine three choices:

k = ⌊min{θ̂0L(u),
√

L(u)}⌋, k = ⌊(lnL)2⌋ and k = ⌊θ̂0L(u)⌋.

9
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4. Simulation study

In our simulation study we focus on the threshold-based intervals andK−gaps estimators

and aim to show the advantages of the discrepancy method used to find the threshold

u for the latter estimators. The natural drawback of the intervals estimator is that it

requires a large sample size n to obtain a moderate size L(u) for a large u. The same

concerns the K-gaps estimator.

Algorithm 1 (1) Using Xn = {Xi}ni=1 and taking thresholds u corresponding to quan-

tile levels q ∈ {0.90, 0.905, ..., 0.995}, generate samples of the inter-exceedance times

{Ti(u)} and the normalized r.v.s

{Yi} = {Fn(u)Ti(u)} = {(Nu/n)Ti(u)}, i ∈ {1, 2, ..., L}, L = L(u),

where Nu is the number of exceedances over threshold u.

(2) For each u select k = ⌊θ̂0L⌋ (in case θ̂0 = 1, accept k = L−1), k = min{⌊θ̂0L⌋,
√
L}

or k = ⌊(lnL)2⌋, where the intervals estimator (3) may be selected as a pilot

estimator θ̂0 = θ̂0(u) with the same u as in Item 1.

(3) Use a sorted sample YL−k+1,L ≤ ... ≤ YL,L and find all levels u1, ..., ul among

considered quantiles (here, l is a random number) such that

|ω̃2
L(θ̂)− δ1| < ε, ε = 0.01, (12)

where

ω̃2
L(θ̂) =

k−1∑
i=0

(
1−

θ̂ exp(−YL−i,Lθ̂)

(1− t̂k)
− k − i− 0.5

k

)2

+
1

12k
= δ1, (13)

t̂k = 1 − θ̂ exp(−YL−k,Lθ̂), θ̂ = θ̂(u) is calculated by (3), and δ1 = 0.05 is a mode

of C-M-S statistic. If L < 40 we should replace ω̃2
L(θ̂) by

(ω̃2
L(θ̂))

′ =

(
ω̃2
L(θ̂)−

0.4

L
+

0.6

L2

)(
1 +

1

L

)
and use the same discrepancy value δ1 (Kobzar 2006, p.217; Stephens 1974). 3

(4) For each uj , j ∈ {1, ..., l} calculate θ̂(uj) and find

θ̂1 =
1

l

l∑
i=1

θ̂(ui), θ̂2 = θ̂(umin), θ̂3 = θ̂(umax) (14)

3The modification (ω̂2
n − 0.4/n + 0.6/n2)(1 + 1/n) of classical statistic (2) eliminates the dependence of the

percentage points of the C-M-S statistic on the sample size (Stephens 1974). For n > 40 it changes the statistic

on less than one percent. One can use the modification with regard to ω̃2
L(θ̂) for finite L due to the closeness of

its distribution to the limit distribution of the C-M-S statistic by Theorem 3.2.

10
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Figure 1. The left-hand side of (13) against quantile levels (cf. step 1) for the MM and MA(2) processes both

with extremal index 0.5 and sample size n = 5000.

as resulting estimates, where umin = min{u1, ..., ul}, umax = max{u1, ..., ul}.

The access to a GitHub project with computer Matlab and Python codes for our au-

tomatic threshold selection procedure is https://github.com/natmarkovich/discrepancy.

We take the intervals estimator (3) as θ̂0 since it requires only u as parameter. Using the

K−gaps estimator with the IMT method θ̂Kimt which is computationally costly and the

”plateau-finding” θ̂IA1 estimator as θ̂0 does not improve the results and therefore it is

not shown. The solution of (12) can be improved by using intermediate quantiles apart

of ones in Item 1 of the algorithm, but this may be computationally more costly, see

Figure 1.

Remark 4 For the K-gaps estimator the algorithm is the same, but instead of {Yi}
one should use the normalized K-gaps {F (u)S(u)

(K)
i } and K-gaps estimate as θ̂0 in

(13). Using {Yi} in (13) was also considered but showed worse efficiency, hence we do not

include these results to our simulation study. For each value of u one can examine different

values ofK, for instance,K ∈ {1, 2, ..., 20} can be taken, as in Fukutome et al. (2015). We

obtain a set of solutions (ui,Ki)
l
i=1 of (12) by the algorithm. Then, θ̂1 =

1
l

∑l
i=1 θ̂(ui,Ki).

Next, among the solutions (ui,Ki)
l
i=1 we select pairs with minimal value of u, denote it

by umin. Among the latter pairs (umin,Kij )
d
j=1 we select the pair with minimal value of

K. This pair we denote as (umin,Kmin) and then θ̂2 = θ̂(umin,Kmin). Finally, θ̂3 is equal

to θ̂(umax,Kmax), where the pair (umax,Kmax) is selected by similar way.

Remark 5 Since (12) may not be satisfied for considered quantiles and for given δ1, k

and K, we propose to use the inequality

ω̃2
L(θ̂) ≤ δ2 (15)

as an alternative to (12), where δ2 = 1.49 is the 99.98% quantile of the C-M-S statistic.

The discrepancy method is universal and any estimator depending on u can be cho-
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sen. In case of the free-threshold estimators (see, e.g., Northrop (2015), Berghaus and

Bücher (2018)) one can find a cluster identification parameter such as the block size by

the discrepancy method. Another way is to express the latter parameter in terms of u

and to apply the discrepancy method to determine u. For example, the block size can be

selected as b(u) = ⌊n/L(u)⌋. The simulation study examining free-threshold estimators

is out of scope of our paper.

Based on the further simulation study we recommend to use the K-gaps estimator cou-

pled with the discrepancy method (15) with k = ⌊θ̂0L⌋ and an accurate pilot estimate

θ̂0, and the statistic θ̂1.

4.1. Models

In our simulation study we consider the processes MM, ARMAX, AR(1), AR(2), MA(2)

and GARCH(1,1) with known values of θ. The simulation is repeated 1000 times with

the sample size n = 105 of initial measurements {X1, ..., Xn}. Big sample sizes may

lead, however, to moderate sample sizes L(u) of normalized inter-exceedance times

{Y1, ..., YL(u)}. We recall the definitions of the processes. The mth order MM process

is Xt = max0≤i≤m{αiZt−i}, t ∈ Z, where {αi} are constants with αi ≥ 0,
∑m

i=0 αi = 1,

and Zt are i.i.d. standard Fréchet distributed r.v.s with cdf F (x) = exp (−1/x), for x > 0.

The extremal index of this process is equal to θ = maxi{αi}, Ancona-Navarrete and Tawn

(2000). Then {Xt}t≥1 are standard Fréchet distributed. Values m = 3 and θ ∈ {0.5, 0.8}
corresponding to {αi}3i=0 = {0.5, 0.3, 0.15, 0.05} and {αi}3i=0 = {0.8, 0.1, 0.008, 0.02}, re-
spectively, are taken for our study.

The ARMAX process is determined as Xt = max{αXt−1, (1 − α)Zt}, t ∈ Z, where

0 ≤ α < 1, {Zt} are i.i.d standard Fréchet distributed r.v.s and P{Xt ≤ x} = exp (−1/x)

holds assuming X0 = Z0. The extremal index of the process was proven to be equal

θ = 1− α, Beirlant et al. (2004). P{Xt ≤ x} = exp(−1/x) holds assuming X0 = Z0. We

consider θ ∈ {0.25, 0.75}.
The positively correlated AR(1) process with uniform noise (ARu+) is defined by

Xj = (1/r)Xj−1 + ϵj , j ≥ 1 and X0 ∼ U(0, 1) with X0 independent of {ϵj}. Then
Xj ∼ U(0, 1) holds for all j ≥ 1. For a fixed integer r ≥ 2 let ϵn, n ≥ 1 be i.i.d.

r.v.s with P{ϵ1 = k/r} = 1/r, k ∈ {0, 1, . . . , r − 1}. The extremal index of ARu+

is θ = 1 − 1/r (Chernick et al. 1991). θ ∈ {0.5, 0.8} corresponding to r ∈ {2, 5} are

taken. The negatively correlated AR(1) process with uniform noise (ARu−) is defined by

Xj = −(1/r)Xj−1 + ϵj with similarly distributed {ϵj} but with support k ∈ {1, . . . , r}.
Its extremal index is θ = 1 − 1/r2 (Chernick et al. 1991). The same r’s were taken cor-

responding to θ ∈ {0.75, 0.96}.
We simulate the MA(2) process (Sun and Samorodnitsky 2019) Xi = pZi−2+qZi−1+Zi,

i ≥ 1, with p > 0, q < 1, and i.i.d. Pareto random variables Z−1, Z0, Z1, ... with P{Z0 >

x} = 1 if x < 1, and P{Z0 > x} = x−α if x ≥ 1, for some α > 0. The extremal index of
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the process is θ = (1 + pα + qα)−1. The cases α = 2, (p, q) = (1/
√
2, 1/

√
2), (1/

√
3, 1/

√
6)

with corresponding θ ∈ {1/2, 2/3} are considered. The distribution of the sum of weighted

i.i.d. Pareto r.v.s behaves like a Pareto distribution at the tail; one can find its exact

form in Ramsay (2008).

We consider also processes studied in (Ferreira 2018b; Northrop 2015; Süveges and Davi-

son 2010): the AR(1) process Xj = 0.7Xj−1 + ϵj , where {ϵj} are standard Cauchy

distributed and θ = 0.3 (ARc); the AR(2) process Xj = 0.95Xj−1−0.89Xj−2+ ϵj , where

{ϵj} are Pareto distributed with tail index 2 and θ = 0.25; and the GARCH(1, 1) process

Xj = σjϵj with σ2
j = α+λX2

j−1+βσ2
j−1, α = 10−6, β = 0.7, λ = 0.25, the i.i.d. sequence

of standard Gaussian r.v.s {ϵj}j≥1 and θ = 0.447 (see Laurini and Tawn 2012).

4.2. Notations

The sign ′−′ in the tables means that there are no solutions of the discrepancy equa-

tion. In the tables we investigate different choices of k for the intervals and K-gaps

estimators coupled with the discrepancy method. We study k = ⌊θ̂0L⌋ in Tables 1 and

2. Although k = ⌊min(θ̂0L,
√
L)⌋ and k = ⌊(lnL)2⌋) were studied too, the results were

generally worse. Therefore they are not represented. In Tables 1 and 2 the statistics

(14) corresponding to the intervals estimates coupled with the discrepancy method (12)

are denoted by {θ̂i}, i ∈ {1, 2, 3}. The K−gaps estimates with pairs (u,K) selected by

(12) are denoted by θ̂Kdis
i , i ∈ {1, 2, 3}, and with IMT-selected pairs (u,K) by θ̂Kimt.

Statistics (14) relating to the intervals and K−gaps estimators and corresponding to

solutions of the discrepancy inequality (15) are marked by asterisks in all tables. The

intervals estimate with the threshold u selected by the ”plateau-finding” algorithm A1

by Ferreira (2018a) is denoted by θ̂IA1. This algorithm seems to be the best one for the

intervals estimator among other algorithms proposed in Ferreira (2018a) according to

the provided simulation study. Applying this algorithm we use the bandwidth d = [wn]

with w = 0.25 and compute the moving average of 2d+ 1 “successive points” of θ̂. The

value w = 0.005 used in Ferreira (2018a) demonstrates slightly worse accuracy uniformly

for all processes and we do not show it in Tables 1 and 2.

The values given in bold and italic bold correspond to the first and second best perfor-

mances.

4.3. Conclusions

We propose to select a threshold of the threshold-based intervals and K−gaps estimators

as a solution of the ω2 discrepancy equation, where the discrepancy value is equal to the

mode of the ω2-distribution, i.e. to its most likelihood value.

On the first view, the intervals estimator does not require another parameter to be speci-

fied apart of the threshold. The intervals estimator coupled with the discrepancy method
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Figure 2. The best RMSE and Bias for the intervals estimator (’Intdis’) and K-gaps (’Kdis’) estimators with

threshold u selected by (12) with the discrepancy equation (13) and the corresponding inequality (15), and for the

K-gaps estimator with u selected by the test IMT (’Kimt’) and the intervals estimator with the ”plateau-finding”

algorithm A1 to select u (’IntA1’) against the number of processes related to the column labels in Tables 1 and

2, and enumerated from left to right as in the tables for sample size n = 105 (the upper row) and n = 5000 (the

lower row).

works in the same way as the K−gaps estimator. An additional regularization parameter

such as the moving window size for the ”plateau-finding” algorithm A1 (Ferreira 2018a)

or the number k of the largest order statistics is required to choose the threshold anyway.

It is shown in our paper that there is a benefit in choosing k jointly with a threshold.

This follows from the algorithm in Section 4 where k depends on L(u).

It is proposed in Ferro and Segers (2003) to select the largest C − 1 = ⌊θL(u)⌋ inter-

exceedance times which are approximately independent, Robert (2009a). We follow a

similar way, i.e. k = ⌊θ̂0L⌋ is used as one of the choices of k.

Using of θ̂Kimt and θ̂IA1 estimators as θ̂0 does not improve the RMSE obtained by using

the intervals estimator as θ̂0.

The discrepancy method is competitive with other threshold choices such as the IMT

and ”plateau-finding” algorithms and it improves substantially the existing intervals and

K−gaps estimates coupled with the mentioned adjustment methods. Figure 2 corre-

sponding to Tables 1 and 2 shows that the K-gaps estimator works better, if u is selected

by the discrepancy method but not by the IMT method. According to our simulation

study the K-gaps estimator coupled with the IMT method demonstrates a slow conver-

gence as the sample size increases. The IMT method decreases the bias of the K−gaps
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Figure 3. The best RMSE and Bias for the intervals estimator (left column) and K-gaps estimator (right column)

obtained by the Algorithm with (12) and (13) notated as ’Intdiseq’ and ’Kdiseq’, and with the inequality (15)

notated as ’Intdisineq’ and ’Kdisineq’ against the number of processes related to the column labels in Tables 1

and 2 for sample size n = 105.

estimates for smaller sample n = 5000, see Figure 2. However, the K−gaps estimate cou-

pled with the discrepancy method provide mostly either better or comparable RMSEs

than the IMT. The IMT method requires more computation time due to an exhaus-

tive search among pairs (u,K). Generally, the K-gaps estimator works better than the

intervals estimator both coupled with the discrepancy method. The intervals estimator

coupled with the algorithm A1 provides the RMSE similar to the discrepancy method

coupled with both intervals and K-gaps estimates only for MM and ARMAX processes,

see Figure 2.

The discrepancy inequality (15) can be applied when the solutions of the (12) do not

exist among the considered quantiles for given k and K. This may slightly improve the

RMSE and the absolute bias of both intervals and K-gaps estimates in comparison with

the usage of (12), see Figure 3. This property holds due to a larger number of solutions.

Figure 4 aims to compare the impact of the choice of k. It shows that the use of

k = ⌊min(θ̂0L,
√
L)⌋ and k = ⌊(lnL)2⌋ (both satisfying the assumptions of Theorem

3.2) provides similar values of the best RMSE, but k = ⌊θ̂0L⌋ provides the best accuracy
among these three choices.

Figure 5 aims to find the best statistic among introduced in (14). Ratios

{RMSE(θj)/mini∈{1,2,3}RMSE(θi)}, j ∈ {1, 2, 3} are compared. One may conclude

that θ̂1 provides consistently better accuracy than θ̂2 and θ̂3.
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Figure 4. Ratios R1/R3 and R2/R3 of the best RMSE for the intervals estimator (left column) and K-gaps

estimator (right column) obtained by the Algorithm with (12) and the equation (13) notated as ’Intdiseq’ and

’Kdiseq’, and with the inequality (15) notated as ’Intdisineq’ and ’Kdisineq’ against the number of processes

related to the column labels in Table 1: The R1/R3 corresponds to the best results in Table 1 divided to those

best with k = ⌊min(θ̂0L,
√
L)⌋, and the R2/R3 - to those best RMSE with k = ⌊min(θ̂0L,

√
L)⌋ divided to those

best with k = ⌊(lnL)2⌋, respectively, for sample size n = 105.

The impact of the tail heaviness on the discrepancy method accuracy remains an open

problem. Intuitively, the heaviness of distribution tail may impact on the rate of conver-

gence of the exceedance point process to a compound Poisson process and hence, on the

convergence of discrepancy statistic distribution to A1, the limit distribution of C-M-S

statistic.

5. Application to real data

5.1. Daily maximum temperatures in Uccle, Belgium

Following Ferreira (2018a) we consider two data sets of daily maximum temperatures

(in 0.1 degrees Celsius) in July in Uccle (Belgium), from 1833 to 1999 and from 1900 to

1999 with sample sizes n ∈ {5177, 3100}, respectively, Figure 6. The data are available

at ”http : //lstat.kuleuven.be/Wiley/Data/ecad00045TX.txt”. The extremal index of

the smaller sample was shown to be ranged between 0.49 and 0.56 in Beirlant et al.

(2004); an application of bias-reduced version of the Nandagopalan’s runs estimator in
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Figure 5. Ratios of the RMSEs RMSE(θ̂i)/mini(RMSE(θ̂i)) corresponding to estimates {θ̂i}, i ∈ {1, 2, 3} in

(14) for the intervals estimator (left column) and the K-gaps estimator (right column) obtained by the Algorithm

with (15) against the number of processes related to the column labels in Table 1: The upper figures correspond to

k = ⌊θ̂0L⌋ in Table 1, the middle figures to k = ⌊min(θ̂0L,
√
L)⌋ and the lower figures to k = ⌊(lnL)2⌋ for sample

size n = 105.

Ferreira (2018a) gave the values 0.41 and 0.57; and an application of the wide range of

estimators gave the values from 0.10 to 0.57 ibid. We apply the intervals and K−gaps

estimators coupled with the discrepancy method based on Algorithm 4.1. The K−gaps

estimator coupling with the IMT method and the intervals estimator with “plateau-

finding” algorithm A1 with ω = 0.3 were also applied here and in the next example. ’Kdis’

and ’Intdis’ are calculated for k = ⌊sL⌋, where s was taken equal to the pilot intervals

estimate θ̂0 for each threshold value u or to values {0.51, 0.56} for n ∈ {3100, 5177},
respectively, based on ’Kimt’ estimates and previous estimation of θ provided in Beirlant
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Figure 6. Daily maximum temperatures in July in Uccle, Belgium with sample sizes n = 5177 (left) and n = 3100

(middle); dewpoint temperatures at station Dhahran, Saudi Arabia with sample size n = 13866 (right).

et al. (2004). The discrepancy inequality method (15) is used. One may trust more θ̂∗1 as

well as ’Kdis’ estimate since they provide better results on the simulation. The results

are shown in Table 3.

5.2. Dewpoint temperatures at station Dhahran, Saudi Arabia

We use the data corresponding to Figure S18 in Raymond et al. (2020) and kindly

provided by the authors, which represent daily maximum dewpoint temperatures at

station Dhahran, Saudi Arabia, Figure 6. This station is among several selected stations

where a wet-bulb temperature (TW) has exceeded TW = 33oC at least 5 times. The

dates span from 1 Jan 1979 to 31 Dec 2017. The sample size is equal to n = 13866 due

to missing observations. As above it is suggested to trust more θ̂∗1 for ’Kdis’ estimate.

The estimated values of θ are shown in Table 4.
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Annales de l’Institut Henri Poincaré - Probabilités et Statistiques, 54(2), 587–605.

Ferro, C. A. T., and Segers, J. (2003), ’Inference for Clusters of Extreme Values’, Journal of the

Royal Statistical Society Series B., 65, 545–556.
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Table 1. The root mean squared error (k = ⌊θ̂0L⌋), θ̂0 is a pilot intervals estimate.

RMSE MM ARMAX ARu+ ARu− MA(2) ARc AR(2) GARCH

·104/θ 0.5 0.8 0.25 0.75 0.5 0.8 0.75 0.96 0.5 2/3 0.3 0.25 0.447

n = 105

θ̂1 147 215 159 211 230 887 287 383 199 400 - 305 -

θ̂2 146 213 158 211 230 889 287 384 201 402 - 305 -

θ̂3 154 222 164 215 235 886 287 383 203 400 - 305 -

θ̂∗1 103 160 89 151 292 928 516 328 229 542 17 400 413

θ̂∗2 123 156 99 151 410 1070 690 354 324 745 155 420 405

θ̂∗3 354 442 294 425 413 957 516 351 336 467 67 443 470

θ̂Kdis
1 133 204 145 190 195 772 209 349 141 423 - 390 375

θ̂Kdis
2 777 844 648 940 799 777 208 1396 799 420 - 519 382

θ̂Kdis
3 895 702 651 821 398 763 207 1115 927 637 - 477 389

θ̂Kdis∗
1 136 264 100 237 150 631 220 105 229 390 12 394 464

θ̂Kdis∗
2 127 226 70 207 249 788 5189 404 152 1944 34 1231 3929

θ̂Kdis∗
3 652 897 238 1013 690 1300 963 345 798 958 75 353 573

θ̂Kimt 217 569 69 498 173 844 2501 401 309 466 33 3630 4028

θ̂IA1 116 122 95 113 447 1193 1756 399 387 977 233 693 580

n = 5000

θ̂1 565 938 506 818 783 1431 1364 394 533 816 - 900 1497

θ̂2 557 913 476 787 748 1401 1337 396 537 810 - 897 1497

θ̂3 633 1013 620 903 879 1490 1416 394 593 850 - 910 1497

θ̂∗1 359 496 350 464 715 1294 1276 315 352 760 606 835 955

θ̂∗2 352 466 291 450 808 1587 1666 395 557 1179 422 794 870

θ̂∗3 1635 1564 1377 1652 1902 1644 1754 713 1505 1656 1455 1610 2036

θ̂Kdis
1 480 917 496 772 787 1186 1820 427 406 807 - 1690 1877

θ̂Kdis
2 1525 1880 982 1793 1836 1863 2672 2981 1218 2020 - 1855 2929

θ̂Kdis
3 1624 1993 1286 1815 1692 1686 2348 1775 1924 2349 - 1737 2337

θ̂Kdis∗
1 320 605 299 507 453 592 641 213 404 754 72 1528 1491

θ̂Kdis∗
2 252 548 199 487 535 866 2529 423 335 488 25 3684 3787

θ̂Kdis∗
3 824 1007 931 871 1086 927 916 555 714 929 2321 1106 1324

θ̂Kimt 247 588 188 525 293 869 2518 418 325 474 25 3680 3900

θ̂IA1 385 513 319 478 694 1388 1985 394 514 1114 676 980 1077
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Table 2. The absolute bias (k = ⌊θ̂0L⌋), θ̂0 is a pilot intervals estimate.

|Bias| MM ARMAX ARu+ ARu− MA(2) ARc AR(2)GARCH

·104/θ 0.5 0.8 0.25 0.75 0.5 0.8 0.75 0.96 0.5 2/3 0.3 0.25 0.447

n = 105

θ̂1 18 2.515 20 21 142 872 203 380 132 333 - 217 -

θ̂2 16 2.498 16 20 142 874 203 381 134 335 - 217 -

θ̂3 20 8.680 24 21 141 870 203 379 131 331 - 217 -

θ̂∗1 29 6.723 28 14 259 915 469 313 200 513 17 354 184

θ̂∗2 73 43 72 55 396 1064 669 336 300 719 155 386 198

θ̂∗3 11 42 66 63 132 858 254 253 62 261 67 320 170

θ̂Kdis
1 24 66 18 43 29 757 48 341 60 383 - 323 14

θ̂Kdis
2 133 138 172 145 93 763 44 175 161 380 - 284 79

θ̂Kdis
3 188 133 181 135 1.395 747 50 185 234 423 - 271 92

θ̂Kdis∗
1 103 212 40 194 30 620 43 90 217 368 12 364 346

θ̂Kdis∗
2 115 204 51 190 56 786 3497 404 137 448 34 1085 3020

θ̂Kdis∗
3 225 488 34 485 141 136 306 321 359 636 75 222 249

θ̂Kimt 0.148 567 54 496 165 843 2501 401 306 462 33 3627 4027

θ̂IA1 82 45 64 54 436 1187 1752 399 378 972 233 687 563

n = 5000

θ̂1 144 336 100 255 339 1284 851 373 46 242 - 345 11

θ̂2 103 290 54 205 317 1245 811 376 8.581 265 - 345 11

θ̂3 185 391 148 305 360 1322 891 370 81 221 - 344 11

θ̂∗1 99 142 109 112 560 1236 1150 272 170 631 606 665 382

θ̂∗2 82 14 51 35 681 1534 1574 385 450 1094 422 636 378

θ̂∗3 812 779 719 754 992 1192 1021 114 735 658 1455 1047 842

θ̂Kdis
1 16 218 58 98 115 1048 1260 356 41 109 - 1186 1254

θ̂Kdis
2 437 158 290 269 454 727 926 421 305 332 - 853 379

θ̂Kdis
3 467 165 467 238 341 838 858 80 715 564 - 635 154

θ̂Kdis∗
1 169 343 34 309 108 480 467 135 343 680 72 1458 1342

θ̂Kdis∗
2 192 492 43 443 145 852 2529 423 290 429 25 3320 3781

θ̂Kdis∗
3 129 146 295 101 304 534 157 110 25 306 2321 582 241

θ̂Kimt 2.636 4.447 3.4483.5985.1241.9881.836 1.642 2.544 5.3311.4922.527 7.127

θ̂IA1 36 29 31 20 523 1301 1919 385 361 1033 676 884 876
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Table 3. Extremal index estimates for Uccle data.

n Kimt IntA1 Intdis Kdis

s = θ̂0 s = 0.51 s = θ̂0 s = 0.51

3100 0.5133 0.4625 θ̂∗1 0.5329 0.5741 0.5670 0.5879

θ̂∗2 0.4199 0.4637 0.5232 0.5232

θ̂∗3 0.9575 0.9575 0.7244 0.7244

s = θ̂0 s = 0.56 s = θ̂0 s = 0.56

5177 0.5695 0.4392 θ̂∗1 0.4655 0.4837 0.5632 0.6251

θ̂∗2 0.4184 0.4919 0.5285 0.5662

θ̂∗3 0.5618 0.5618 0.7024 0.7024

Table 4. Extremal index estimates for dewpoint temperatures data.

n Kimt IntA1 Intdis Kdis

k = ⌊θ̂0L⌋
13866 0.4753 0.1541 θ̂∗1 0.2489 0.3178

θ̂∗2 0.2003 0.1975

θ̂∗3 0.4092 0.5607
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