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We consider two classes of groups, denoted JΓ and MΓ, defined by presentations 
in which each defining relator involves exactly two generators, and so are examples 
of simple Pride groups. (For MΓ the relators are Baumslag-Solitar relators.) These 
presentations are, in turn, defined in terms of a non-trivial, simple directed graph Γ
whose arcs are labelled by integers. When Γ is a directed triangle the groups JΓ, MΓ
coincide with groups considered by Johnson and by Mennicke, respectively. When 
the arc labels are all equal the groups form families of so-called digraph groups. We 
show that if Γ is a non-trivial, strongly connected tournament then the groups JΓ
are finite, metabelian, of rank equal to the order of Γ and we show that the groups 
MΓ are finite and, subject to a condition on the arc labels, are of rank equal to the 
order of Γ.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

We consider two classes of groups JΓ, MΓ defined as follows. Let Γ be a non-trivial, simple directed graph 
(i.e. a directed graph with more than one vertex and without loops or multiple arcs), with vertex set V (Γ)
and arc set A(Γ), where each arc [u, v] ∈ A(Γ) (from a vertex u to a vertex v) is labelled by an even integer 
r[u,v] (for JΓ) or an integer r[u,v] ≥ 2 (for MΓ), and define

JΓ = 〈xv (v ∈ V (Γ)) | x−1
v xuxv = x

r[u,v]−2
v x−1

u x
r[u,v]+2
v ([u, v] ∈ A(Γ))〉,

MΓ = 〈xv (v ∈ V (Γ)) | x−1
v xuxv = x

r[u,v]
u ([u, v] ∈ A(Γ))〉.
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Our interest in these groups is threefold: as simple Pride groups [24]; as generalizations of groups introduced 
by Johnson [13] and by Mennicke [19]; and, when the arc labels are equal, as so-called digraph groups [7].

A simple Pride group is defined to be a group given by a presentation in which each defining relation 
involves exactly two generators [24,18], and so JΓ, MΓ are examples of such groups. (Note that ‘simple’ in 
this context does not mean that the group has no nontrivial proper normal subgroups; the terminology arises 
because these groups form a special class of Pride groups that can be defined in terms of simple graphs [18].) 
A directed triangle [u, v, w] is the directed graph with V (Γ) = {u, v, w} and A(Γ) = {[u, v], [v, w], [w, u]}. 
If Γ is a directed triangle then JΓ is the Johnson group introduced in [13] (following Wamsley [26] who 
considered the case where the arc labels are all equal to 2) and MΓ is the Mennicke group introduced in 
[19].

If Λ is a directed graph with vertex set V (Λ) and arc set A(Λ), and R(x, y) is an element of the free 
group with basis {x, y} then the group

GΛ(R) = 〈xv (v ∈ V (Λ)) | R(xu, xv) ([u, v] ∈ A(Λ))〉 (1)

is called a digraph group [7]. If Λ is a directed cycle then the group GΛ(R) is an example of a cyclically 
presented group and the presentation (1) is a cyclic presentation [14, page 95]. Thus if Γ is a simple digraph 
in which each arc label r[u,v] is equal to a fixed integer r then JΓ is the digraph group GΓ(xy−r−1xy−r+1) and 
MΓ is the digraph group GΓ(xyx−ry−1). Noting that the relators of MΓ are all Baumslag-Solitar relators 
[4], we observe the following: if Γ is a digraph consisting of an arc [u, v] then MΓ is the (solvable) Baumslag-
Solitar group BS(1, r[u,v]); if Γ is a directed triangle [u, v, w] then MΓ is the triangle of Baumslag-Solitar 
groups, denoted G(1, r[u,v]; 1, r[v,w]; 1, r[w,u]) in [3]; and if Γ is a directed 4-cycle in which each arc is labelled 
2 then MΓ is the Higman group [11].

As we discuss below, in most cases the Johnson and Mennicke groups provide families of groups that are 
finite and of rank 3, a property that is rare amongst deficiency zero groups. Examples of simple Pride groups 
and digraph groups that are finite and of rank at least 3 are similarly rare, and the Johnson groups and 
Mennicke groups (of rank 3) are principal examples of such groups. The results of [23,8,9,3] provide further 
examples of finite simple Pride groups of rank 3 (and deficiency zero), but we are not aware of any other 
results concerning finite digraph groups of rank 3. In this article we generalize results concerning finiteness 
of the Johnson and Mennicke groups to give families of simple Pride groups and of digraph groups that are 
finite and of each rank at least 3.

Recall that the order of a digraph is the number of vertices it has, a tournament is a simple directed graph 
in which each pair of vertices is connected by exactly one arc, and a digraph is strongly connected if for each 
pair of vertices u, v ∈ V (Γ) there is a directed path from u to v; in particular, the trivial digraph and the 
directed triangle are strongly connected tournaments and if a non-trivial tournament is strongly connected 
then it has order at least 3. Almost all tournaments are strongly connected and there is a strongly connected 
tournament of each order greater than 2 [20], [21, Chapters 2 and 3], [28]. Every vertex of a non-trivial, 
strongly connected tournament is a vertex of some directed triangle [21, Theorem 3]. A group is metabelian
if its derived subgroup is abelian, and the rank of a group G is the minimum cardinality of a generating set 
for G.

To state our theorem concerning the groups JΓ we introduce the following notation: given vertices u, v, w
of a digraph Γ that form a directed triangle [u, v, w] whose arcs [u, v], [v, w], [w, u] are labelled by even 
integers r[u,v], r[v,w], r[w,u] define

Θ(u, v, w) = |8r[w,u](r[u,v] − 1)(r[v,w] − 1)(r[w,u] − 1)(r[u,v]r[v,w]r[w,u] − 1)|

(compare [14, Equation (10), page 94] or the corresponding expression concerning the order of x in [13, page 
60]); note that Θ(u, v, w) �= Θ(v, w, u) in general. For each vertex u ∈ V (Γ) set
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θ(u) = gcd{Θ(u, v, w) | [u, v, w] is a directed triangle of Γ}.

Note that if Γ is a strongly connected tournament then since each vertex is a vertex of some directed triangle, 
and each r[u,v] is even, we have 0 < θ(u) < ∞ for each u ∈ V (Γ). It is straightforward to show that if JΓ
is finite then Γ is a non-trivial tournament (see Lemma 2.2). As a partial converse, we show that if Γ is a 
strongly connected tournament then JΓ is finite.

Theorem A. Let Γ be a non-trivial, strongly connected tournament where each arc [u, v] is labelled by an 
even integer r[u,v]. Then JΓ is a finite, metabelian, group, with rank(JΓ) = rank(Jab

Γ ) = |V (Γ)|, whose order 
divides 

∏
u∈V (Γ) θ(u). More precisely, if HΓ is the subgroup of JΓ generated by {x2

v | v ∈ V (Γ)}, then HΓ is 
an abelian, normal, subgroup of JΓ, whose order divides 

∏
u∈V (Γ)(θ(u)/2), with JΓ/HΓ elementary abelian 

of order 2|V (Γ)|.

The ‘strongly connected’ hypothesis cannot be directly removed from Theorem A since, without it, there 
are examples where JΓ is infinite, as well as examples where JΓ is finite. For instance, a computation in 
GAP [10] shows that if Λ is the tournament with arc set A(Λ) = {[2, 1], [3, 1], [4, 1], [3, 2], [4, 2], [3, 4]}, where 
each arc is labelled 2 then the second derived quotient of J = JΛ is the group J ′/J ′′ ∼= Z2 ⊕ Z4 ⊕ Z2, and 
so J is infinite; whereas, if the arc [3, 2] is replaced by the arc [2, 3] then J is finite, metabelian, of order 
214 · 7.

To state our theorem concerning the groups MΓ we introduce the following notation: given vertices u, v, w
of a digraph Γ that form a directed triangle [u, v, w] whose arcs [u, v], [v, w], [w, u] are labelled by integers 
r[u,v], r[v,w], r[w,u] define

Φ(u, v, w) = (r[u,v] − 1)2(rr[v,w]−1
[u,v] − 1)

(compare the expression y(b−1)2(bc−1−1) = 1 from [15, page 279]); note that Φ(u, v, w) �= Φ(v, w, u) in general. 
For each vertex u ∈ V (Γ) set

φ(u) = gcd{Φ(u, v, w) | [u, v, w] is a directed triangle of Γ}. (2)

Note that if Γ is a strongly connected tournament then since (as observed above) each vertex is a vertex of 
some directed triangle, if each r[u,v] ≥ 2 then 0 < φ(u) < ∞ for each u ∈ V (Γ). It is straightforward to show 
that if gcd{r[u,v]−1 | [u, v] ∈ A(Γ)} > 1 and MΓ is finite then Γ is a non-trivial tournament (see Lemma 3.1). 
As a partial converse, Theorem B considers the case when Γ is a strongly connected tournament.

Theorem B. Let Γ be a non-trivial, strongly connected tournament where each arc [u, v] is labelled by an 
integer r[u,v] ≥ 2. Then MΓ is a finite group of order at most

2|V (Γ)| ·
∏

u∈V (Γ)

φ(u).

Moreover, if gcd{r[u,v] − 1 | [u, v] ∈ A(Γ)} > 1 then rank(MΓ) = rank(Mab
Γ ) = |V (Γ)|.

The ‘gcd’ hypothesis cannot be directly removed from Theorem B. For example, if Γ is the directed 
triangle with vertex set u, v, w and r[u,v] = 3, r[v,w] = 2, r[w,u] = 2, then MΓ ∼= S3 (the symmetric group) 
so 1 = rank(Mab

Γ ) < rank(MΓ) < |V (Γ)| = 3 (see also [1, Section (e)], which obtains this group by 
setting r[u,v] = 2, r[v,w] = 2, r[w,u] = −1). Moreover, the ‘strongly connected’ hypothesis cannot be directly 
removed from Theorem B since, without it, there are examples where MΓ is infinite, as well as examples 
where MΓ is finite. For instance, a computation in GAP shows that if Λ is the tournament with arc set 
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A(Λ) = {[1, 2], [1, 3], [1, 4], [2, 4], [3, 2], [4, 3]} where each arc is labelled 3, then MΓ is finite of order 214, 
whereas if Γ has a sink then MΓ is infinite by Lemma 3.1.

As immediate corollaries to Theorems A, B we have:

Corollary A1 ([13, Lemma], [14, Proposition 7.3]). Let Γ be a directed triangle [u, v, w] where the arcs are 
labelled by even integers a, b, c. Then JΓ is a finite, metabelian, group with rank(JΓ) = rank(Jab

Γ ) = 3, whose 
order divides |512abc(a −1)3(b −1)3(c −1)3(abc −1)3|. More precisely, if HΓ is the subgroup of JΓ generated 
by {x2

u, x
2
v, x

2
w}, then HΓ is an abelian, normal, subgroup of JΓ, of order at most |64abc(a − 1)3(b − 1)3(c −

1)3(abc − 1)3|, with JΓ/HΓ elementary abelian of order 8.

It was further shown in [13] (see also [14, Exercise 9.15]) that (in the setting of Corollary A1) JΓ is 
nilpotent and of order 256|abc(abc − 1)|.

Corollary B1 ([19,25,15,2,12]). Let Γ be a directed triangle where the arcs are labelled by integers a, b, c ≥ 2. 
Then MΓ is a finite group; moreover, if gcd{a − 1, b − 1, c − 1} > 1 then rank(MΓ) = rank(Mab

Γ ) = 3.

In more detail (where Γ is a directed triangle), Mennicke [19] showed that if a = b = c ≥ 2 then MΓ
is finite; Wamsley and MacDonald [27, Theorem 8.1] showed that if |a| �= 1, |b| �= 1, |c| �= 1 then MΓ is 
finite and solvable; Schenkman [25, Theorem 1] showed that if a, b, c ≥ 2 then MΓ is finite; Johnson and 
Robertson [15, Section 3] showed that if a, b, c ≥ 2 then MΓ is finite and solvable of derived length at most 
3, giving an upper bound for the order (which is the bound given by Theorem B), and they observe that 
if gcd{a − 1, b − 1, c − 1} > 1 then MΓ has rank 3. Albar and Shuaibi [2] and Jabara [12] gave improved 
bounds and further information about the structure of MΓ. It is reasonable to expect that, for arbitrary 
tournaments, more information about the groups MΓ can be obtained using methods from these references 
(in particular, see Remark 3.4). However, since our goal is to provide classes of simple Pride groups and 
digraph groups that are finite and of arbitrary rank, with the order and structure of the groups being of 
secondary importance, we have not sought to do this.

As mentioned above, finite digraph groups of rank 3 considered in the literature appear to be limited 
to the groups in Corollaries A1, B1. Examples of finite digraph groups of rank 2 are provided by finite, 
non-cyclic groups defined by 2-generator cyclic presentations; a survey of such groups can be found in [15, 
Section 5] and they include the binary polyhedral groups < 2, 2, 2 > [6, Section 1.7], MacDonald’s groups 
Mac(a, a) [17,22], and the Fibonacci groups F (2s +1, 2) (s ≥ 1) [16, Theorem 1(iii)]. Finite digraph groups 
of rank 1 (i.e. finite cyclic groups) can be found in [24, Theorem 3] (see also [5, Lemma 3.4]), [7, Theorem 
A]. In the immediate Corollaries A2, B2, below, we specialise Theorems A, B to the digraph group situation 
and show that there exist finite digraph groups of arbitrary rank at least 3 (noting that there is a strongly 
connected tournament of each order at least 3). We believe these to be the first examples of finite digraph 
groups of rank greater than 3.

Corollary A2. Let Λ be a non-trivial, strongly connected tournament and let r be an even integer. Then 
the digraph group G = GΛ(xy−r−1xy−r+1) is a finite, metabelian, group with rank(G) = rank(Gab) =
|V (Γ)| whose order divides 

(
8r(r − 1)3(r3 − 1)

)|V (Λ)|. More precisely, if H is the subgroup of G generated by 

{x2
v | v ∈ V (Λ)}, then H is an abelian, normal, subgroup of G, whose order divides 

(
4r(r − 1)3(r3 − 1)

)|V (Λ)|, 
with G/H elementary abelian of order 2|V (Λ)|.

Corollary B2. Let r ≥ 3 and let Λ be a non-trivial, strongly connected tournament. Then the digraph group 
G = GΛ(xyx−ry−1) is a finite group with rank(G) = rank(Gab) = |V (Γ)| and of order at most

2|V (Λ)| ·
(
(r − 1)2(rr−1 − 1)

)|V (Λ)|
.
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If r = 1 in Corollary B2 then GΛ(xyx−ry−1) ∼= Z|V (Λ)| and if r = 2 then the argument of [11, Section 
3] (due to Hirsch), applied to each directed triangle of G = GΛ(xyx−ry−1), shows that each generator is 
trivial, and hence G is trivial.

2. The groups JΓ

We first record the following result.

Lemma 2.1. For any non-trivial digraph Γ, rank(JΓ) = rank(Jab
Γ ) = |V (Γ)|.

Proof. The group JΓ maps onto its abelianisation Jab
Γ which, by adjoining relators x2

v for each v ∈ V (Γ), 
maps onto Z|V (Γ)|

2 of rank |V (Γ)|. Hence rank(JΓ) ≥ rank(Jab
Γ ) ≥ |V (Γ)|, and from the definition of JΓ we 

have rank(JΓ) ≤ |V (Γ)|, so the result follows. �
Now observe:

Lemma 2.2. Let Γ be a non-trivial, simple digraph where each arc [u, v] ∈ A(Γ) is labelled by an integer 
r[u,v]. If JΓ is finite then Γ is a non-trivial tournament.

Proof. Suppose that Γ is not a tournament. Then Γ has at least two vertices and there is a pair of vertices 
w1, w2 ∈ V (Γ) that are not joined by an arc. Adjoining relators xu to the defining presentation of JΓ for all 
u �= w1, w2 and adjoining the relators x2

w1
, x2

w2
shows that JΓ has the infinite quotient 〈xw1 , xw2 | x2

w1
, x2

w2
〉 ∼=

Z2 ∗ Z2. �
Lemma 2.3. Let Γ be a non-trivial tournament where each arc [u, v] is labelled by an even integer r[u,v], let 
HΓ be the subgroup of JΓ generated by {x2

v | v ∈ V (Γ)}. Then HΓ is an abelian, normal, subgroup of JΓ and 
JΓ/HΓ is elementary abelian of order 2|V (Γ)|.

Proof. Let [u, v] ∈ A(Γ). As shown in [13, page 59] (or [14, pages 93–94]), it follows from the defining 
relation that involves xu, xv (and no other defining relation) that xux

2
v = x2

vxu (so x2
ux

2
v = x2

vx
2
u and 

x−1
u x2

vxu = x2
v ∈ HΓ) and that x−1

v x2
uxv = x−2

u x
4r[u,v]
v ∈ HΓ. Since Γ is a tournament, for each pair of 

vertices u, v ∈ V (Γ) either [u, v] or [v, u] ∈ A(Γ) so HΓ is abelian and x−1
u x2

vxu ∈ HΓ and x−1
v x2

uxv ∈ HΓ, 
so HΓ is a normal subgroup of JΓ. The quotient JΓ/HΓ is obtained by adjoining the relators x2

u (u ∈ V (Γ)) 
to the defining presentation for JΓ. Therefore, since each integer r[u,v] is even, we obtain

JΓ/HΓ = 〈xv (v ∈ V (Γ)) | x2
v (v ∈ V (Γ)), x−1

v xuxv = x−1
u ([u, v] ∈ A(Γ))〉

= 〈xv (v ∈ V (Γ)) | x2
v (v ∈ V (Γ))〉ab

∼= Z|V (Γ)|
2 . �

We also need:

Lemma 2.4 ([13, pages 59–60], [14, pages 93–94]). Let Γ be a non-trivial, simple digraph where each arc 
[u, v] is labelled by an even integer r[u,v]. If u is a vertex of a directed triangle [u, v, w] then xΘ(u,v,w)

u = 1
in JΓ.

We are now in a position to prove Theorem A; our proof is a generalization of the argument in [13].

Proof of Theorem A. Observe first that the statement concerning ranks follows from Lemma 2.1. By 
Lemma 2.3 we have |JΓ| = 2|V (Γ)| · |HΓ|. Moreover, by Lemma 2.3, HΓ is an abelian, normal, subgroup 
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of JΓ, generated by {x2
u | u ∈ V (Γ)}. Therefore there is an epimorphism ⊕u∈V (Γ)Z|x2

u| → HΓ (where |x2
u|

denotes the order of x2
u), and so the order of HΓ divides 

∏
u∈V (Γ) |x2

u|. By Lemma 2.4 if u ∈ V (Γ) then 

x
Θ(u,v,w)
u = 1 in JΓ for each directed triangle [u, v, w] in Γ. Therefore xθ(u)

u = 1, so the order of xu divides 
θ(u), and hence the order of x2

u divides θ(u)/2 so |HΓ| divides 
∏

u∈V (Γ) θ(u)/2. Thus |JΓ| = 2|V (Γ)| · |HΓ|
divides 2|V (Γ)| ·

∏
u∈V (Γ) θ(u)/2 =

∏
u∈V (Γ) θ(u), as required. �

3. The groups MΓ

First observe:

Lemma 3.1. Let Γ be a non-trivial, simple digraph where each arc [u, v] ∈ A(Γ) is labelled by an integer r[u,v]
≥ 1 and suppose gcd{r[u,v] − 1 | [u, v] ∈ A(Γ)} > 1. If MΓ is finite then Γ is a tournament without sinks.

Proof. Suppose that Γ is not a tournament and let d = gcd{r[u,v] − 1 | [u, v] ∈ A(Γ)} > 1. Then Γ has a 
pair of distinct vertices w1, w2 ∈ V (Γ) that are not joined by an arc. Adjoining the relators xd

w1
, xd

w2
and 

the relators xu for all u �= w1, w2 to the defining presentation of MΓ shows that MΓ has the infinite quotient 
〈xw1 , xw2 | xd

w1
, xd

w2
〉 ∼= Zd ∗ Zd, so MΓ is infinite. Suppose then that Γ is a tournament with a sink, t, 

say. Adjoining relators xu for all u ∈ V (Γ) where u �= t shows that MΓ maps onto 〈xt | 〉 ∼= Z, so MΓ is 
infinite. �
Lemma 3.2. The abelianisation Mab

Γ is isomorphic to

⊕u∗∈V (Γ)Zgcd{r[u∗,v]−1 | [u∗,v]∈A(Γ)}.

Hence if gcd{r[u,v] − 1 | [u, v] ∈ A(Γ)} > 1 then rank(MΓ) = rank(Mab
Γ ) = |V (Γ)|.

Proof. The abelianisation

Mab
Γ = 〈xu∗ (u∗ ∈ V (Γ)) | xr[u∗,v]−1

u∗ ([u∗, v] ∈ A(Γ))〉ab

= 〈xu∗ (u∗ ∈ V (Γ)) | xgcd{r[u∗,v]−1 | [u∗,v]∈A(Γ)}
u∗ (u∗ ∈ V (Γ))〉ab

∼= ⊕u∗∈V (Γ)Zgcd{r[u∗,v]−1 | [u∗,v]∈A(Γ)}.

Suppose that d = gcd{r[u,v] − 1 | [u, v] ∈ A(Γ)} > 1. Then since d divides gcd{r[u∗,v]−1 | [u∗, v] ∈ A(Γ)}
for all u∗ ∈ V (Γ) the abelianisation Mab

Γ maps onto ⊕u∈V (Γ)Zd = Z|V (Γ)|
d of rank |V (Γ)| and, since (by the 

definition of MΓ) rank(MΓ) ≤ |V (Γ)|, the result follows. �
Note that Lemma 3.2 implies that if Γ has a sink then MΓ is infinite.

Lemma 3.3 ([15, pages 278–279]). Let Γ be a non-trivial digraph where each arc [u, v] is labelled by an integer 
r[u,v] ≥ 2. If u is a vertex of a directed triangle [u, v, w] then xΦ(u,v,w)

u = 1 in MΓ.

Remark 3.4. An improved version of Lemma 3.3 was obtained in [2] (see also [12, Lemma 2]). Given vertices 
u, v, w of a digraph Γ that form a directed triangle [u, v, w] whose arcs [u, v], [v, w], [w, u] are labelled by 
even integers r[u,v], r[v,w], r[w,u] ≥ 2 define

Φ̃(u, v, w) = (rr[v,w]−1
[u,v] − 1)gcd{Φ̃1(u, v, w), Φ̃2(u, v, w), Φ̃3(u, v, w), Φ̃4(u, v, w)}
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where Φ̃1, Φ̃2, Φ̃3, Φ̃4 are analogous to the quantities Kj1, Kj2, Kj3, Kj4 defined in [2, Theorem 1] (for ex-
ample Φ̃1(u, v, w) = (r[w,u] − 1)(r[v,w] − 1), Φ̃2(u, v, w) = (r[u,v] − 1)2, the formulae for Φ̃3, Φ̃4 being more 

complicated). Then [2, Corollary 1] states that xΦ̃(u,v,w)
u = 1 in MΓ and it was shown in [2, Remark 4] that 

this gives a stronger result than Lemma 3.3. Therefore, if Φ is replaced by Φ̃ in (2) we obtain an improved 
bound on the order in Theorem B.

In the next lemma (and in the proof of Theorem B) we will use the following notation. Given elements 
a, b ∈ G, if ab = bsat for some s, t ∈ Z we write a → b (or b ← a) to denote that we can “pull a through 
b”; if a → b and a ← b we write a ↔ b. Therefore if [u, v] ∈ A(Γ) then the relation xuxv = xvx

r[u,v]
u holds 

in MΓ, and so xu → xv. Conversely, we now show that if [u, v] ∈ A(Γ) and xv has finite order in MΓ then 
xv → xu. Our argument is essentially that given in [23, page 1293].

Lemma 3.5. Let Γ be a non-trivial digraph where each arc [u, v] is labelled by an integer r[u,v] and suppose 
xv has finite order in MΓ. Then xv → xu in MΓ.

Proof. Suppose xv has order P < ∞ in MΓ. Repeated applications of the relation x−1
v xuxv = x

r[u,v]
u give 

x−P
v xux

P
v = x

rP[u,v]
u . Therefore x

rP[u,v]−1
u = e (where e is the identity of MΓ) and so xu has finite order, Q, say, 

which divides rP[u,v]−1, and so is coprime to r[u,v]. Thus there exists r̄[u,v] ∈ Z such that r[u,v]r̄[u,v] ≡ 1 mod Q. 
Raising the defining relation of MΓ that involves xu, xv to the power r̄[u,v] gives (x−1

v xuxv)r̄[u,v] = x
r[u,v]r̄[u,v]
u ; 

that is, x−1
v x

r̄[u,v]
u xv = xu or xvxu = x

r̄[u,v]
u xv so xv → xu. �

We are now in a position to prove Theorem B; our proof is a generalization of the argument in [15].

Proof of Theorem B. Observe first that the statement concerning the ranks follows from Lemma 3.2.
Since Γ is a non-trivial, strongly connected tournament, each vertex u ∈ V (Γ) is in some directed triangle, 

so by Lemma 3.3 x
Φ(u,v,w)
u = 1 in MΓ for each directed triangle [u, v, w] in Γ. Thus xφ(u)

u = 1 in MΓ for 
all u ∈ V , so each generator has finite order. Therefore, by Lemma 3.5, if [u, v] ∈ A(Γ) then xu ↔ xv, and 
since Γ is a tournament xu ↔ xv for all u, v ∈ V (Γ). Writing V (Γ) = {1, 2, . . . , n}, each element of MΓ can 
therefore be written in the form xα1

1 xα2
2 . . . xαn

n where 0 ≤ αv < φ(v) (1 ≤ v < n). Hence |MΓ| ≤
∏

v∈V φ(v), 
as required. �
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