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Abstract
Data augmentation (DA) has attracted consid-001
erable attention as an alternative for collecting002
more data without additional human annotation003
efforts, particularly in low-resource, sensitive,004
and class-imbalanced tasks. However, the ma-005
jority of current approaches are designed for the006
general domain with often balanced data, while007
in specific tasks like content moderation, the008
data is often with a skewed distribution. The sit-009
uation is further exacerbated by data sensitivity,010
making it unlikely or costly to obtain additional011
human annotations. To fill this research gap,012
our paper presents a lexical-based imbalanced013
data augmentation (LIDA) approach for con-014
tent moderation. LIDA is an easy-to-implement015
and explainable DA method that utilizes sen-016
sitive lexicons and randomly inserts sensitive017
lexicons into negative samples for converting018
them into positive ones. In this way, LIDA019
can achieve a balanced dataset for avoiding020
skewed distribution problems. We validate our021
model on two datasets, namely Wiki-TOX and022
Wiki-ATT, to show the superior performance023
of our proposed algorithm compared to other024
rule-based data augmentation baselines, and025
p-values are presented to demonstrate its effec-026
tiveness and stability.027

1 Introduction028

Cyberbullying and harassment have become sig-029

nificant concerns, as they have a negative impact030

on users who are exposed to inappropriate user-031

generated content in various forms, such as vio-032

lent, disturbing, depressive, or fraudulent materials.033

These experiences can ultimately lead to detrimen-034

tal effects on their mental health (Patel et al., 2007;035

Sedgwick et al., 2019). Hence, content modera-036

tion holds both significant business and research037

value for online mental and social communities038

(McManus et al., 2016).039

With the ever-growing volume of online content,040

automatic moderation has emerged as a promis-041

ing approach for content moderation, essentially042

serving as a subtask within text classification 043

(Matamoros-Fernández and Farkas, 2021). Similar 044

to other text classification tasks (Xiang et al., 2021), 045

the effectiveness of content moderation largely de- 046

pends on the quality and quantity of training data. 047

However, content moderation is typically domain- 048

specific, which is challenging in creating a gold- 049

standard dataset that requires considerable domain 050

expertise and resources. To overcome this chal- 051

lenge, data augmentation (DA) has been proposed 052

as a solution to increase the diversity and quantity 053

of training data without the need for additional data 054

collection or annotation. The data augmentation 055

approach has the potential to enhance the perfor- 056

mance and generalizability of content moderation 057

models (Feng et al., 2021). 058

To our knowledge, existing efforts on DA mostly 059

focus on the general-domain text classification 060

tasks (Karimi et al., 2021; Ren et al., 2021; Xi- 061

ang et al., 2021; Yoo et al., 2021). Studies of DA in 062

content moderation are lacking, especially for the 063

moderation related to toxic and abusive messages 064

(Ibrahim et al., 2018). Unlike general-domain 065

text classification tasks such as sentiment analysis, 066

these tasks are often challenged by a skewed data 067

distribution among different categories. For exam- 068

ple, prior studies suggested that the average pro- 069

portion of examples in the negative category (e.g., 070

the contents following Twitter community rules 071

without hate/racism/sexism information) among a 072

sample of seven Twitter datasets was over 80% 073

(Zhang and Luo, 2019). 074

In content moderation, techniques based on rules 075

and lexical features have been widely used (Feng 076

et al., 2021). However, leveraging lexical features 077

for DA in content moderation is rarely investigated. 078

That leaves a research gap we can incorporate the 079

existing lexicons to augment text data for modera- 080

tion (Koufakou et al., 2020; Xiang et al., 2021). 081

This paper proposes an easy-to-implement yet 082

effective DA approach for automatic content mod- 083
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Figure 1: A sample for the process of LIDA. We insert sensitive words, WTF and baster (orange blocks), into the
original negative sample (green blocks) to convert it to positive. Negative samples refer to the samples that pass the
moderation, and positive samples mean the samples that fail the moderation.

eration. Different from prior approaches that heav-084

ily depend on large word lists (Koufakou et al.,085

2020), we randomly select sensitive words from a086

104-word lexicon collected from Wiktionary 1 and087

Hatebase 2, and insert the words into the original088

negative samples to convert them into positive ones.089

Via leveraging the lexical knowledge and features,090

we can obtain relatively balanced data without soft091

labels (Kwon and Lee, 2022; Shorten et al., 2021).092

Specifically, as shown in Figure 1, we randomly093

select two sensitive words, WTF and baster, from094

our wordlist and insert them into a negative sam-095

ple "You have crossed a line here", via which this096

sentence is converted into positive. Regardless of097

where we incorporate the lexical features within098

the original sentence, the resulting sentence would099

become a positive sample that should be eliminated100

due to the inability of sensitive words to pass mod-101

eration. Intuitively, our proposed LIDA algorithm102

has the capability to transform negative samples103

into positive ones for the purpose of data augmen-104

tation.105

Content Warning. This article contains exam-106

ples of hateful and abusive language. All examples107

are taken from Wikitionary 1 and Hatebase 2 to108

illustrate its composition.109

2 Related Work110

Current DA methods could be roughly classified111

into two categories: rule-based data augmentation,112

and generative model-based data augmentation.113

2.1 Rule-Based DA114

The rule-based DA approaches typically operate115

on words, phrases, or sequences in the original116

1https://en.wiktionary.org/wiki/Category:
English_swear_words

2https://hatebase.org/

data, such as swap, deletion, insertion and replace- 117

ment. Wei and Zou (2019) proposed the Easy Data 118

Augmentation (EDA) method which provides four 119

operations on a given sentence, 1) randomly select- 120

ing n words to be replaced by their synonyms; 2) 121

inserting synonyms of random words in random 122

positions; 3) swapping two words, and 4) deleting 123

a word randomly with probability p. In contrast to 124

EDA that based on word operations, which might 125

change the labels of augmented data, Karimi et al. 126

(2021) introduced An Easier Data Augmentation 127

(AEDA) which only inserts punctuation marks into 128

the original data. Therefore, it preserves class la- 129

bels invariant. Additionally, building up a learn- 130

able and compositional paradigm for DA is another 131

outstanding rule-based mix DA technique, such 132

as Text AutoAugment (TAA) (Ren et al., 2021). 133

Morevoer, Xiang et al. (2021) introduced an ap- 134

proach making use of the part-of-speech (POS) 135

focused lexical substitution for data augmentation 136

(PLSDA). They exploited POS information to iden- 137

tify words to be replaced and investigate different 138

augmentation strategies to find semantically related 139

substitutions based on synonyms on WordNet. Nev- 140

ertheless, the mentioned rule-based methods can- 141

not obtain balanced datasets via data augmentation. 142

Consequently, these DA approaches are limited in 143

handling imbalanced data. 144

To overcome the limitations of imbalanced data, 145

our proposed method obtains fairly balanced data 146

by inserting lexical features into the raw negative 147

data to convert negative cases into positive ones. 148

Meanwhile, our approach does not depend on soft 149

label predictions. 150

2.2 Generative-Based DA 151

Generative-based DA approaches usually employ 152

large-scale language models (LLMs) to synthesize 153
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new augmented samples based on the original data154

(Anaby-Tavor et al., 2020; Yoo et al., 2021; Dai155

et al., 2023; Bayer et al., 2023; Xie et al., 2017).156

Anaby-Tavor et al. (2020) built a data augmentation157

pipeline based on generative pre-training (GPT)158

(Radford et al., 2018) with limited labeled data,159

and then filtered the augmented data on a classi-160

fier trained on the original data. Using a similar161

GPT-based model, Yoo et al. (2021) mixed real162

samples to synthesize realistic text samples via163

GPT-3 (Brown et al., 2020), and leveraged tex-164

tual perturbations and knowledge distillation from165

pre-trained transformer-based language models to166

predict soft-labels. Inspired by the recent success167

of ChatGPT, which demonstrated improved lan-168

guage comprehension abilities, Dai et al. (2023)169

proposed a text data augmentation approach based170

on ChatGPT (named AugGPT). AugGPT rephrases171

each sentence in the training samples into multi-172

ple conceptually similar but semantically different173

samples. The augmented samples can then be used174

in downstream model training.175

Although generative DA methods have the ad-176

vantage of synthesizing diverse and fluent aug-177

mented samples, they tend to suffer from the high178

cost of pre-training and inference. Most impor-179

tantly these approaches would heavily rely on pre-180

dicted soft labels for data augmentation.181

From rule-based manipulations to generative182

models, an ideal DA strategy should be as simple183

as to implement while being able to boost model184

performance, given the purpose of DA is to provide185

alternatives for gathering additional data. Most186

studies trade off between the two of these (Feng187

et al., 2021).188

3 Methodology189

3.1 Lexical Features190

Firstly, we randomly collect English swear words191

from Wikitionary 1 and hate words from Hatebase192
2, which is a collaborative, regionalized repository193

of multilingual hate speech, developed in partner-194

ship between the Dark Data Project 3 and The Sen-195

tinel Project 4. We collect a total of 140 words196

in this step. Secondly, two doctoral students who197

are native speakers of English review and filter the198

wordlist. Since the ambiguity of sensitive words199

would affect the performance of our model (e.g.,200

northern monkey). We discuss and analyze the201

3https://darkdataproject.org/
4https://thesentinelproject.org/

lexical ambiguity and insertion strategy in Section 202

5.4. Finally, we get 104 sensitive words (see Ap- 203

pendix B for the detailed word list). 204

3.2 LIDA Method 205

We present LIDA method in Algorithm 1. In our 206

model, a raw training sentence is represented as 207

s = [w1, w2, ..., wi, ..., wl], where wi is the ith 208

word or token and l is the length of a sentence. 209

Supposing that there are M training samples, in- 210

cluding numbers of N negative samples and P 211

positive samples, we then set up augmentation pro- 212

portion t as a hyperparameter, in order to avoid 213

augmenting with too much noise. Utilizing data 214

noise could be an effective technique for DA since 215

operations like insertion have the potential to dis- 216

rupt the original sentence order, leading to informa- 217

tion loss, the introduction of noise, and even label 218

changes (Kumar et al., 2020). For example, Karimi 219

et al. (2021) used a method that either by replac- 220

ing words selected from the uni-gram frequency 221

distribution or by inserting the underscore charac- 222

ter as a placeholder. However, adding too much 223

noise could mislead the model and affect the per- 224

formance. Thereby, augmentation proportion t is a 225

crucial hyper-parameter of our proposed algorithm. 226

For each loop, we randomly generate d of 1, 2, 227

or 3 as the number of lexical features [LF ] selected 228

from the lexicon. The operation can be written as: 229

[LF ]d=1,2,3 = select(d). (1) 230

Parameter d plays a significant role in LIDA (as 231

shown in Section 5.4), to avoid word ambiguities. 232

Finally, [LF ]d=1,2,3 is inserted into a negative sen- 233

tence s to return a positive sentence s′: 234

s′ = insert([LF ]d=1,2,3, s) (2) 235

We combine the augmented data s′ and origi- 236

nal data s as the new training set. Since sensitive 237

words violate the policies of the content moder- 238

ation community, it is reasonable to assume that 239

negative samples would be converted into positive 240

ones after adding these words. 241

3.3 Content Moderation Pipeline 242

Following data augmentation, we acquire a bal- 243

anced dataset. Subsequently, both the augmented 244

and original data can be utilized for downstream 245

model training purposes. Specifically, we show 246

the pipeline for content moderation using BERT 247

3

https://darkdataproject.org/
https://thesentinelproject.org/


Algorithm 1: LIDA Algorithm
Input: Number of training samples M , including number of negative samples N and positive

samples P .
Output: augmented positive sample s′. Totally,number of negative samples N and positive

samples P + ⌊N ∗ t⌋
Initialize augmentation proportion t
for i = 1 to P + ⌊N ∗ t⌋ do

d = 1 or 2, or 3
[LF ]d=1,2,3 = select(d)
s′ = insert([LF ]d=1,2,3, s)

end
Return s′

with LIDA. Firstly, we leverage LIDA for data aug-248

mentation to obtain balanced augmented data. To249

perform content moderation using BERT, the pro-250

cess involves data preprocessing, where the text is251

tokenized and converted into BERT input format.252

Next, a BERT model is built by adding additional253

layers on top of the pre-trained BERT model, in-254

cluding a pooling layer and fully connected layers255

for classification. We fine-tune the model using the256

augmented data, optimizing it with a chosen loss257

function and optimizer. Finally, the trained model258

can be used for inference by preprocessing new259

text data and passing it through the model to obtain260

predictions for content moderation. Our model can261

apply to all mainstream classification methods.262

4 Experiments263

We introduce our benchmark datasets and selected264

baselines in this section. The experiment settings265

are shown in Appendix A.266

4.1 Benchmark Datasets267

We conduct experiments on two public datasets,268

Wikipedia Toxic 5 and Wikipedia Personal Attack269

datasets 6 from Wikipedia Talk dataset (Wulczyn270

et al., 2017). These datasets contain human annota-271

tions for toxic and personal attack behaviour.272

We model the tasks in both datasets as binary273

classification, named after Wiki-TOX and Wiki-274

ATT. Table 1 shows the basic information of the275

two datasets. Compared with (Karimi et al., 2021;276

Wei and Zou, 2019) whose experiment used bal-277

anced datasets, the positive samples in these two278

5https://www.kaggle.com/competitions/
jigsaw-toxic-comment-classification-challenge/
data

6https://www.kaggle.com/datasets/jigsaw-team/
wikipedia-talk-labels-personal-attacks

datasets constitute approximately 10.1% and 7.5% 279

individually. 280

Wiki-ATT. The Wikipedia Personal Attacks 281

dataset (Wulczyn et al., 2017) is a subset of the 282

Wikipedia Comment Corpus, containing 63M com- 283

ments from English discussion pages and articles 284

during 2004-2015. Each comment was annotated 285

and identified as personal attacks by at least 10 286

workers. The dataset comprises five classes: quot- 287

ing attack, recipient attack, third-party attack, other 288

attack, and no attack. While quoting, recipient, 289

third-party, and other attacks are different types of 290

attacks, they are still considered attacks. There- 291

fore, we combine the four categories as positive 292

and consider the no-attack category as negative. 293

Wiki-TOX. Wulczyn et al. (Wulczyn et al., 294

2017) presented the toxic comment dataset, which 295

is widely used for toxic detection (Bodapati et al.) 296

and Kaggle competition founded by Jigsaw and 297

Google. The dataset comprises seven classes of 298

comments, namely toxic, severe toxic, obscene, 299

threat, insult, and identity hate. Among these 300

classes, the six types of comments displaying any 301

form of toxicity are regarded as positive samples, 302

whereas comments lacking any such characteristics 303

are categorized as negative. 304

4.2 Selected Baselines 305

We selected three groups of baselines to validate 306

our proposed LIDA method. 307

In the first group of baseline, we compare LIDA 308

with three neural networks with no augmentation, 309

which are Convolutional Neural Network (CNN) 310

(Kim, 2014), Recurrent Neural Network (RNN) 311

(Liu et al., 2016) and BERT (base, cased version) 312

(Devlin et al., 2019). Glove vectors (300 dimen- 313

sions)(Pennington et al., 2014) are used as pre- 314

trained weights for the embedding layer in CNN. 315
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Data Train Val Test

Total N P Total N P Total N P Total N P

Wiki-TOX 159,495 143,346 16,149 139,495 125,413 14,082 10,000 8,966 1,034 10,000 8,967 1,033
WIKI-ATT 115,864 107,190 8,674 95,864 88,762 7,102 10,000 9,218 782 10,000 9,210 790

Table 1: The statistics of Wiki-TOX and Wiki-ATT. Train, Val and Test represent the training set, validation set and
test set respectively. N and P refer to the number of negative and positive samples.

For RNN, we choose a simple LSTM model, which316

consists of one layer with 128 hidden units and ran-317

dom initialization weights for the embedding layer.318

In the second group of baselines, we compare319

LIDA with several related rule-based methods and320

generative-based text data augmentation methods321

that have been published in recent peer reviewed322

conferences and journals.323

• Easy Data Augmentation (EDA) (Wei and324

Zou, 2019). Given a training sample, EDA325

randomly employs four operations: 1)ran-326

domly selecting n words to be replaced by327

their synonyms; 2) choosing a synonym of328

a random word and inserting it in a random329

position, repeating it n times; 3) swapping the330

positions of two words, repeating it n times;331

and 4) randomly deleting a word with proba-332

bility p. According to the recommendations333

presented in the paper, we set up the propor-334

tion of words to be edited to 0.05 7.335

• An Easier Data Augmentation (AEDA)336

(Karimi et al., 2021) is a method that offers337

a simpler approach to data augmentation by338

randomly inserting punctuations into the orig-339

inal text. Since rule-based approaches rely340

on the hyperparameters (Ren et al., 2021), we341

set the punctuation ratio to 0.3 based on the342

implementation of AEDA 8.343

Additionally, our group 3 baselines include the344

recently popular used GPT3 model for data aug-345

mentation. GPT3Mix (Yoo et al., 2021) mixes346

real samples to synthesize realistic text samples347

via GPT3 (Brown et al., 2020), and leverages tex-348

tual perturbations and knowledge distillation from349

pre-trained transformer-based language models to350

predict soft labels.351

7https://github.com/jasonwei20/eda_nlp
8https://github.com/akkarimi/aeda_nlp/blob/

master/code/aeda.py

5 Results and Analysis 352

In this section, we show the main results and 353

compare to original DNN models, ruled-based 354

and generative-based baselines in Section 5.1, 5.2, 355

5.3, respectively. In Section 5.4, we conduct two 356

groups of ablation experiments for discussing and 357

analysing the effect of augmentation proportion and 358

insertion strategy of our proposed LIDA method. 359

5.1 Compare to original DNN models 360

LIDA and baselines are evaluated both on Wiki- 361

TOX and Wiki-ATT. The overall performance is 362

measured by F1-score and AUC. The statistical 363

significance and stability of the experimental out- 364

comes are ensured by employing the p-value testing 365

approach. 366

Compared with the vanilla models without data 367

augmentation, Table 2 shows that LIDA gives a per- 368

formance boost in F1-score and AUC for all models 369

on both two datasets. On average, LIDA gets 4.62, 370

2.55, and 6.13 F1-score improvement on the three 371

models, respectively. Significantly, the p-values 372

are less than 0.05 for the three models, indicating 373

that models trained with our method significantly 374

outperform those without augmentation. 375

5.2 Compare to Rule-Based Baselines 376

Since LIDA technique is inherently a rule-based 377

DA technique, it is particularly important to com- 378

pare it with other rule-based methods. Table 3 379

shows that LIDA outperforms EDA on average by 380

3.40 (F1-score) and 2.67 (AUC) on Wiki-TOX and 381

by 2.67 (F1-score) and 1.40 (AUC) on Wiki-ATT. 382

Similarly, compared with AEDA, our algorithm 383

demonstrates an average improvement of 1.17 (F1- 384

score) and 2.66 (AUC) on Wiki-TOX and 2.15 385

(F1-score) and 1.10 (AUC) on Wiki-ATT. Table 386

4 reports the P-values of LIDA against EDA and 387

AEDA on three models, and statistically confirms 388

that our method outperforms the two rule-based 389

approaches (all values are less than 0.05). Notably, 390

the results are particularly promising for content 391

moderation, as the task requires the ability to de- 392
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Datasets Models No Aug LIDA Improvement P-Value

F1 AUC F1 AUC F1 AUC F1 AUC

Wiki-TOX
CNN 65.67 75.99 72.38 82.11 6.71 6.12 0.0000 0.0000
RNN 36.84 61.26 38.52 66.06 1.68 4.80 0.0000 0.0000
BERT 75.59 88.95 83.65 91.57 8.06 2.62 0.0000 0.0082

Wiki-ATT
CNN 69.02 79.26 71.54 81.44 2.52 2.18 0.0066 0.0175
RNN 43.30 64.16 46.51 67.10 3.21 2.94 0.0000 0.0000
BERT 76.82 89.04 81.02 91.20 4.20 2.16 0.0001 0.0051

Average
CNN 67.34 77.62 71.96 81.77 4.62 4.15 - -
RNN 40.07 62.71 42.52 66.58 2.45 3.87 - -
BERT 76.20 88.99 82.33 91.38 6.13 2.39 - -

Table 2: Compare LIDA to no augmentation. All experiments have been conducted 10 times and we obtained the
averages of 10 times as results. "-" denotes the case where no results are available.

tect as much harmful content as possible and avoid393

false negatives.394

We also observe that the performance improve-395

ment of our algorithm on RNN is lower than that396

on CNN and BERT. This observation may be at-397

tributed to the simplicity of the RNN model used398

in our study (see Section 4.2), which lacks the399

pre-trained vectors necessary for leveraging word400

information. In light of the structure of the RNN401

model we selected, the LIDA technique does not402

result in a significant improvement in the model’s403

performance compared to CNN and BERT. This404

finding suggests that the effectiveness of DA tech-405

niques in improving model performance is closely406

associated with the model’s structure and complex-407

ity, which is also reflected in the significant impact408

of pre-trained word vectors on performance.409

5.3 Compare to Generative-Based Baseline410

To assess the effectiveness and efficiency of our411

proposed rule-based data augmentation algorithm,412

we conduct comparisons not only with other rule-413

based baselines, but also with a state-of-the-art414

generative-based model, GPT3Mix (Yoo et al.,415

2021). Since GPT3Mix has the capability to synthe-416

size diverse and fluent augmented samples owing417

to the power of large-scale pre-trained language418

models, it shows a significant improvement in per-419

formance over LIDA on CNN, RNN, and BERT,420

as discussed in Related Work (Section 2) and pre-421

sented in Table 5.422

However, GPT3Mix suffers from the heavy cost423

of pre-training and fine-tuning. GPT-based mod-424

els commonly require computing resources and425

Models Wiki-TOX Wiki-ATT

F1 AUC F1 AUC

CNN 65.67 75.99 69.02 79.26
+EDA 68.08 78.04 69.17 79.71
+AEDA 71.12 79.66 69.41 79.89
+LIDA 72.38 82.11 71.54 81.44

RNN 36.84 61.26 43.30 64.16
+EDA 37.04 61.40 44.38 65.45
+AEDA 37.86 61.83 45.24 65.91
+LIDA 38.52 66.06 46.51 67.10

BERT 75.59 88.95 76.82 89.04
+EDA 79.22 89.62 77.51 90.39
+AEDA 82.05 90.28 77.97 90.64
+LIDA 83.65 91.57 81.02 91.20

Table 3: Compare to rule-based baselines. overall per-
formance is measured by F1 and AUC. F1: F1-score,
AUC: Area Under the Receiver Operating Characteris-
tics (AUC-ROC). All experiments have been conducted
10 times and we got the averages of 10 times as results.

consume more time to fine-tune for downstream 426

tasks. For example, GPT-3 has 175 billion parame- 427

ters trained on 45 TB corpus (Brown et al., 2020). 428

Even fine-tuning GPT3Mix requires considerably 429

more time than EDA, AEDA, and LIDA. 430

Therefore, it is meaningful and feasible to sac- 431

rifice a small portion of performance in exchange 432

for a more efficient and economical DA method. 433

5.4 Ablation studies 434

Effect of Augmentation Proportion. The impact 435

of augmentation proportion is analyzed in the con- 436
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Wiki-TOX Wiki-ATT

F1 AUC F1 AUC

CNN
EDA 0.0000 0.0000 0.0127 0.0713

AEDA 0.0398 0.0055 0.0455 0.0376

RNN
EDA 0.0004 0.0000 0.0031 0.0022

AEDA 0.0331 0.0000 0.0277 0.0075

BERT
EDA 0.0000 0.0017 0.0024 0.0087

AEDA 0.0018 0.0192 0.0013 0.0206

Table 4: P-values are presented between LIDA with EDA and AEDA.We run the experiments in 10 times. They can
demonstrate the performance of our algorithm statistically.

Datasets Models GPT3Mix LIDA Improvement

F1 AUC F1 AUC F1 AUC

Wiki-TOX
CNN 74.48 83.98 72.38 82.11 -2.10 -1.87
RNN 38.94 66.39 38.52 66.06 -0.42 -0.33
BERT 86.32 94.53 83.65 91.57 -2.67 -2.96

Wiki-ATT
CNN 72.94 83.30 71.54 81.44 -1.40 -1.86
RNN 47.03 67.73 46.51 67.10 -0.52 -0.63
BERT 84.28 93.11 81.02 91.20 -3.26 -1.91

Average
CNN 73.71 83.64 71.96 81.77 -1.75 -1.87
RNN 42.99 67.06 42.52 66.58 -0.47 -0.48
BERT 85.30 93.82 82.33 91.38 -2.97 -2.44

Table 5: A Comparison between the Performance of LIDA and GPT3Mix on Wiki-TOX and Wiki-ATT.

text of Wiki-TOX for CNN and LSTM models. It is437

noted that the augmentation ratio is a critical param-438

eter, given insertion strategies and other parameters.439

Figure 2 illustrates that the optimal augmentation440

ratio is typically within the [50,60] interval. While441

an exact interval for augmentation proportion has442

yet to be determined, the findings demonstrate that443

the augmentation ratio is a critical hyperparameter.444

Effect of Insertion Strategy. We conduct a445

comparison of three insertion strategies, specifi-446

cally, d = 1, d = 2, and d = 1, 2, 3. Our find-447

ings, presented in Table 6, indicate that different448

strategies significantly impact the models’ perfor-449

mance. Notably, when d = 1, the models achieve450

the poorest results. One possible explanation for451

this outcome is the presence of ambiguous words,452

such as “northern monkey”. It is used in the south453

of England as a slang word, relating to the sup-454

posed stupidity and lack of sophistication of those455

in the north of the country. In some cases, this456

has been adopted in the north of England, with a457

pub in Leeds even taking the name “The Northern458

Monkey”. When used to attack northerners, north- 459

ern monkey is a hate word, which can be inserted 460

into the raw sentence to convert it from negative 461

to positive. However, in a general context, it also 462

means the monkeys which live in the north. To mit- 463

igate this issue, we propose a random combination 464

insertion strategy that can help reduce the influence 465

of the ambiguity at a phrase-level. 466

6 Conclusion 467

In this paper, we present a simple but effective DA 468

method called lexical-based imbalanced data aug- 469

mentation (LIDA) for content moderation. LIDA 470

leverages lexical features to transform negative 471

samples into positive samples, thereby obtaining 472

balanced data without soft labels or human anno- 473

tation. Experiments show that LIDA can substan- 474

tially improve the generalization ability of models 475

as well as alleviate a burden of human annotation. 476

We evaluate our model on benchmark moderation 477

tasks. The results show our algorithm outperforms 478

7
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Figure 2: Explore augmentation proportion on Wiki-TOX dataset.

CNN RNN BERT

F1 AUC F1 AUC F1 AUC

d=1 65.79 79.79 37.49 65.62 80.81 86.22
d=2 70.81 81.22 37.36 66.09 81.89 88.33

d=1, 2, 3 72.38 82.11 38.52 66.06 83.65 91.57

Table 6: Results of different insertion strategies on Wiki-TOX. d denotes the number of lexical features that are
inserted into the original sample.

other rule-based baselines, and the statistical anal-479

ysis with p-values indicates the effectiveness and480

stability of the LIDA method. Thus, our method481

can be a competitive alternative to the rule-based so-482

lution for augmenting imbalanced data. Although,483

our model shows inferior performances compared484

with the generative-based DA methods based on485

large-scale language models, considering the cost486

of computational resources, explain-ability issues,487

and data privacy problems, the rule-based methods488

like LIDA can still find its position in automatic489

moderation given its low computational cost, high490

performance, and the ability to leverage human491

moderation knowledge.492

7 Limitations493

Although our proposed algorithm outperforms rule-494

based data augmentation algorithms EDA and495

ADEA, this study has some limitations as below:496

• The utilization of large-scale pre-trained lan-497

guage models endows GPT3Mix with the ca-498

pability of generating a vast array of fluent499

and diverse augmented samples, leading to su-500

perior performance in comparison to our pro-501

posed method. Nevertheless, it is noteworthy502

that GPT3Mix incurs a substantial computa-503

tional burden due to the intensive nature of its 504

pre-training and fine-tuning processes. 505

• The findings demonstrate that the augmenta- 506

tion ratio is a critical hyperparameter, with 507

LIDA being sensitive to it. However, an exact 508

interval for augmentation proportion has yet 509

to be determined. 510

• Moreover, as mentioned in Section 5.4, lex- 511

ical features such as “northern monkey” sig- 512

nificantly affect the performance of our pro- 513

posed method. The performance of LIDA is 514

influenced by the choice of lexicons and the 515

corresponding insertion strategy. However, it 516

is noted that using appropriate lexicons has 517

the potential to enhance the performance even 518

further. 519

• Currently, our proposed algorithm can be used 520

for binary classification tasks only. For multi- 521

classification tasks, we need to collect and 522

create a multi-category sensitive lexicon, e.g., 523

toxic, obscene, threat, insult and identity hate. 524

And then using LIDA to insert these sensi- 525

tive words into the corresponding labelled sen- 526

tence for data augmentation. 527
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A Experiment Settings673

We adopt the Adam optimizer (Kingma and Ba,674

2014) along with a linear learning rate scheduler675

with a warm-up ratio of 0.05. The experiments676

are conducted on RTX 6000 GPU (24G Memory)677

and GTX 3090 GPU (24G Memory). For each ex-678

perimental task, each model run 10 times and the679

average values are taken as the result. Moreover,680

the p-values have been considered to prove and ver-681

ify the reliability and stability of the experimental682

results.683

B Sensitive Wordlist684

ID Sources Words685

001 Wikitionary arse686

002 Wikitionary ass687

003 Wikitionary asshole 688

004 Wikitionary bastard 689

005 Wikitionary bitch 690

006 Wikitionary bollocks 691

007 Wikitionary brotherfucker 692

008 Wikitionary bugger 693

009 Wikitionary bullshit 694

010 Wikitionary child-fucker 695

011 Wikitionary Christ on a bike 696

012 Wikitionary Christ on a cracker 697

013 Wikitionary cocksucker 698

014 Wikitionary crap 699

015 Wikitionary cunt 700

016 Wikitionary damn 701

017 Wikitionary effing 702

018 Wikitionary fatherfucker 703

019 Wikitionary frigger 704

020 Wikitionary fuck 705

021 Wikitionary goddamn 706

022 Wikitionary godsdamn 707

023 Wikitionary hell 708

024 Wikitionary holy shit 709

025 Wikitionary horseshit 710

026 Wikitionary in shit 711

027 Wikitionary Jesus Christ 712

028 Wikitionary Jesus fuck 713

029 Wikitionary Jesus H. Christ 714

030 Wikitionary Jesus Harold Christ 715

031 Wikitionary Jesus wept 716

032 Wikitionary Jesus, Mary and Joseph 717

033 Wikitionary Judas Priest 718

034 Wikitionary motherfucker 719

035 Wikitionary nigga 720

036 Wikitionary piss 721

037 Wikitionary prick 722

038 Wikitionary shit 723

039 Wikitionary shit ass 724

040 Wikitionary sisterfucker 725

041 Wikitionary slut 726

042 Wikitionary son of a bitch 727

043 Wikitionary son of a whore 728

044 Wikitionary sweet Jesus 729

045 Wikitionary twat 730

046 Hatebase buttfucker 731

047 Hatebase assplay 732

048 Hatebase sucker 733

049 Hatebase homophobic slurs 734

050 Hatebase nerdiness 735

051 Hatebase putz 736

052 Hatebase ass-rape 737

053 Hatebase ponce 738
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054 Hatebase narcism739

055 Hatebase muthafucker740

056 Hatebase dastardliness741

057 Hatebase african-negros742

058 Hatebase virgin743

059 Hatebase arsehole744

060 Hatebase crook745

061 Hatebase self-destruction746

062 Hatebase self-annihilation747

063 Hatebase vestal748

064 Hatebase pervert749

065 Hatebase self harm750

066 Hatebase slay751

067 Hatebase felon752

068 Hatebase virgo the virgin753

069 Hatebase outrage754

070 Hatebase self injury755

071 Hatebase shoot down756

072 Hatebase whoreson757

073 Hatebase ill-treat758

074 Hatebase terrorist759

075 Hatebase bastard760

076 Hatebase blackguard761

077 Hatebase maltreat762

078 Hatebase ill-usage763

079 Hatebase mistreat764

080 Hatebase suicide765

081 Hatebase dickhead766

082 Hatebase maltreatment767

083 Hatebase virginal768

084 Hatebase prick769

085 Hatebase shit770

086 Hatebase ravish771

087 Hatebase rape772

088 Hatebase ill-use773

089 Hatebase slaying774

090 Hatebase sexually assault775

091 Hatebase violate776

092 Hatebase cocksucker777

093 Hatebase wtf778

094 Hatebase self loathe779

095 Hatebase gay780

096 Hatebase lesbian781

097 Hatebase terrorist782

098 Hatebase murder783

099 Hatebase assault784

100 Hatebase kill785

101 Hatebase robbery786

102 Hatebase dumbcunt787

103 Hatebase topless788

104 Hatebase dickdipper789
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