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Abstract
Wildlife monitoring for open populations can be performed using a number of
different survey methods. Each survey method gives rise to a type of data and, in
the last five decades, a large number of associated statistical models have been
developed for analyzing these data. Although thesemodels have been parameter-
ized and fitted using different approaches, they have all been designed to either
model the pattern with which individuals enter and/or exit the population, or
to estimate the population size by accounting for the corresponding observation
process, or both. However, existing approaches rely on a predefinedmodel struc-
ture and complexity, either by assuming that parameters linked to the entry and
exit pattern (EEP) are specific to sampling occasions, or by employing parametric
curves to describe the EEP. Instead, we propose a novel Bayesian nonparametric
framework for modeling EEPs based on the Polya tree (PT) prior for densities.
Our Bayesian nonparametric approach avoids overfitting when inferring EEPs,
while simultaneously allowing more flexibility than is possible using paramet-
ric curves. Finally, we introduce the replicate PT prior for defining classes of
models for these data allowing us to impose constraints on the EEPs, when
required. We demonstrate our new approach using capture–recapture, count,
and ring-recovery data for two different case studies.

KEYWORDS
Bayesian nonparametrics, capture–recapture, count data, Polya tree, ring recovery, statistical
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1 INTRODUCTION

In recent years, there has been an increased interest in
monitoring wildlife populations due to the ongoing effects
of climate change and habitat destruction. However, such
monitoring is challenging because we cannot observe all
animals present in the wild. Therefore, statistical mod-
els need to be employed to infer population sizes (Royle,
2004), migration (Pledger et al., 2009), phenological
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(Dennis et al., 2017), survival (McCrea et al., 2013), or
entry and exit patterns (EEPs) (Matechou et al., 2016) from
ecological data at one or more sites.
Although these models are developed for data collected

using different sampling protocols, they all focus on the
estimation of the EEPs of populations, where entry can
correspond to arrival/birth, exit to departure/death, and
corresponding length of stay (LOS) to retention/survival
at the site. These existing methods either assume that
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parameters related to EEPs are completely unconstrained,
requiring two parameters to be estimated for each sam-
pling occasion, one for entry and one for exit (Lyons et al.,
2016; Pledger et al., 2009), or use parametric curves to
constrain entry (Matechou et al., 2014) and exit (Jimenez-
Muñoz et al., 2019; McCrea et al., 2013) patterns. However,
in the former case, the model can be overparameterized
and difficult to interpret, whereas in the latter case, the
degree of smoothness is predefined and hence the model
may not be flexible enough.
In recent years, Bayesian nonparametric (BNP) ecolog-

ical models have been developed as an option for flexibly
modeling EEPs without making parametric assumptions.
An attractive feature of BNP models is that they can be
defined such that the prior predictive distribution (or,
equivalently, the prior mean) is given by a parametric
distribution, referred to as the centering distribution. By
centering a BNP model over a parametric distribution,
we obtain a posterior distribution that is a compromise
between a fully unconstrained model and the parametric
model used to specify the centering distribution. In par-
ticular, models have been built using the Dirichlet Process
mixture prior (Lo, 1984) (see, e.g., Diana et al., 2020; Ford
et al., 2015; Matechou & Caron, 2017), and the Polya tree
(PT) prior (Ferguson, 1974; Lavine, 1994) (see, e.g., Diana
et al., 2018). The Dirichlet process mixture defines a prior
for a distribution as an infinite mixture, whereas the PT
prior is constructed by recursively assigning probability
mass to sequences of nested partitions of the sample space,
which follow a tree structure.
In ecological surveys, data are typically collected at dis-

crete observation times, referred to as sampling occasions,
and every pair of consecutive sampling occasions defines
an interval, during which individuals may enter or exit the
study area. No data are available between sampling occa-
sions, which suggests that EEPs should be modeled on the
grid defined by the sampling occasions. In this paper, we
develop a general framework for modeling EEPs based on
the PT prior using this grid, extending the approach of
Diana et al. (2018). The use of the PT allows us to build a
model directly on the distributions of EEPs, with minimal
parametric assumptions on the shape of these distribu-
tions. Additionally, as we demonstrate in this paper, the
PT prior can lead to positive correlation between consec-
utive entry (exit) intervals (Lavine, 1994). This results in a
smoother EEP than unconstrainedmodels with the degree
of smoothness informed by the data instead of being pre-
defined by parametric curves. Our proposed PT approach
leads to more efficient inference methods compared to
existing BNP approaches based on Dirichlet process mix-
tures, which introduce individual entry and exit times as
continuous latent variables in Markov chain Monte Carlo
(MCMC) samplers. Instead, with our PT approach, only
the number of individuals in each cell of the grid needs to

be inferred, which means that the number of latent vari-
ables grows with the number of sampling occasions and
not with the number of individuals in the population.
Finally, we introduce the replicate PT (RPT) framework,

which allows us to impose constraints on the parame-
ters of the entry (exit) process as required, by replicating
parts of the tree. These constraints are similar to those
typically employed in ecological models, such as con-
straining the distribution of LOS to be the same for all
entry times, leading to more parsimonious models with
interesting ecological interpretation. For example, we use
the RPT to assume age-dependence when modeling the
LOS distribution in the context of ring-recovery (RR) data
and to assume time-dependence when modeling the exit
distribution in the context of capture–recapture (CR) data.
We demonstrate our novel framework using two differ-

ent case studies. The first considers the estimation of EEPs
of Eurasian Spoonbills (Platalea leucorodia) using a joint
model of CR and count data collected on the same popu-
lation. The second considers the estimation of age-specific
survival rates using RR data of a population of mallards
(Anas platyrhynchos), where only some of the birds are of
known age, and demonstrates the advantage of the PT in
modeling survival from sparse data, without resorting to
the use of parametric curves.
The paper is structured in the following way. In

Section 2, we describe themain features of the PT prior and
use a time-to-event example as an illustration of univariate
partitions. In Section 3, we introduce the RPT and use it
to define constrained versions of the time-to-event exam-
ple. In Section 4, we define bivariate partitions, whereas
in Section 5, we summarize the Diana et al. (2018) model,
we define the joint model for CR data and count data and
themodel for RR data. Themodels are demonstrated using
two case studies in Section 6, whereas Section 7 concludes
the paper and introduces some potential future directions.

2 THE POLYA TREE PRIOR

The PT prior is a nonparametric prior for a probabil-
ity distribution 𝐺 with sample space Ω. The PT has two
parameter sets: the first is a sequence of nested partitions
Π of the sample space Ω, whereas the second parame-
ter, 𝛼, is a sequence of positive numbers associated with
each set of each partition. The partition at the first level,
𝜋1, is obtained by splitting the sample space into two sets,
{𝐵0, 𝐵1}. Subsequently, to build the partition at the second
level, 𝜋2, each set 𝐵𝑖 is split into two sets, {𝐵𝑖0, 𝐵𝑖1}, next
each set 𝐵𝑖𝑗 is split into the sets {𝐵𝑖𝑗0, 𝐵𝑖𝑗1}, and so on.
The PT recursively assigns a prior to 𝐺(𝐵) for all 𝐵’s in

the sequence of partitions according to the following pro-
cedure. By defining 𝜖1 … 𝜖𝑚 as a generic sequence of 0s and
1s, with𝑚 ∈ ℕ+, and𝐵𝜖1…𝜖𝑚 as the corresponding set of the
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partition, the randommass associated with 𝐵𝜖1…𝜖𝑚 is given
by

𝐺(𝐵𝜖1…𝜖𝑚) = 𝑉𝜖1…𝜖𝑚
𝐺(𝐵𝜖1…𝜖𝑚−1

) =

𝑚∏
𝑖=1

𝑉𝜖1…𝜖𝑖
, (1)

where 𝑉𝜖1…𝜖𝑖0
∼ Beta(𝛼𝜖1…𝜖𝑖0, 𝛼𝜖1…𝜖𝑖1) and 𝑉𝜖1…𝜖𝑖1

= 1 −

𝑉𝜖1…𝜖𝑖0
. It follows that, if 𝑦 ∼ 𝐺 where 𝐺 ∼ PT, then ℙ(𝑦 ∈

𝐵𝜖1…𝜖𝑚 |𝑦 ∈ 𝐵𝜖1…𝜖𝑚−1
) =

𝐺(𝐵𝜖1…𝜖𝑚 )

𝐺(𝐵𝜖1…𝜖𝑚−1
)
= 𝑉𝜖1…𝜖𝑚

, so that each

𝑉𝜖1…𝜖𝑚
is the conditional probability of 𝑦 falling in set

𝐵𝜖1…𝜖𝑚 given that 𝑦 falls in the set𝐵𝜖1…𝜖𝑚−1
or the proportion

of 𝐺(𝐵𝜖1…𝜖𝑚−1
) allocated to 𝐺(𝐵𝜖1…𝜖𝑚). We note that in the

case of nondyadic splits, that is, in the case where each set
is split intomore than two sets, the PT can be defined anal-
ogously by replacing the Beta distributions with Dirichlet
distributions. In its standard form, the PT is defined for
an infinite sequence of partitions. However, in this paper,
we assume a PT prior for the distributions of EPPs, which
cannot be inferred at a resolution finer than the times of
observation, that is, at the timeswhen the𝐾 sampling occa-
sions take place, 𝑡1, … , 𝑡𝐾 , hence in what follows we only
define finite partitions.
The partition can be chosen according to the specific

application. For example, suppose that we are interested
in the distribution of continuous time-to-event data but
only observe events at times 𝑡1, … , 𝑡𝐾 ∈ ℝ, that is, we only
know in which of the intervals (0, 𝑡1], … , (𝑡𝐾,∞) the event
occurred. In this case, using an idea similar to Lavine
(1994), we can build a partition by splitting the sample
space Ω = (0,∞) into 𝐵0 = (0, 𝑡1] and 𝐵1 = (𝑡1,∞) at
the first level, with 𝐵1 further split into 𝐵10 = (𝑡1, 𝑡2] and
𝐵11 = (𝑡2,∞) at the second level, and so on, until at the last
level 𝐵𝟏𝐾−1 = (𝑡𝐾−1,∞) is split into 𝐵𝟏𝐾−10 = (𝑡𝐾−1, 𝑡𝐾] and
𝐵𝟏𝐾−11 = (𝑡𝐾,∞) where 𝟏𝑗 = (1, … , 1

⏟⏟⏟
𝑗 times

). In this way, the PT

assigns a prior for the masses of the sets (0, 𝑡1], (𝑡1, 𝑡2], … ,
(𝑡𝐾,∞). The structure of the tree allows us to define a sim-
pler notation for the 𝑉’s so that 𝑉𝑗 = ℙ(𝑥 ∈ 𝐵𝟏𝑗0|𝑥 ∈ 𝐵𝟏𝑗 )

(and by convention,𝑉0 = ℙ(𝑥 ∈ (0, 𝑡1])). Hence, for exam-
ple, ℙ(𝑥 ∈ 𝐵110) = ℙ(𝑥 ∈ 𝐵1)ℙ(𝑥 ∈ 𝐵11|𝑥 ∈ 𝐵1)ℙ(𝑥 ∈

𝐵110|𝑥 ∈ 𝐵11) = (1 − 𝑉0)(1 − 𝑉1)𝑉2. A representation
of the scheme is shown in Figure 1 and we refer to this
partition scheme as the forward partition. Examples of
samples from a forward partition are shown in Figure S1
of the Supporting Information.
The PT can be centered on any distribution 𝐺0 in the

sense that, for every set 𝐵 of the partition, 𝔼[𝐺(𝐵)] =
𝐺0(𝐵). This is achieved by setting the 𝛼s in definition (1)
such that

𝛼𝜖1…𝜖𝑖0

𝛼𝜖1…𝜖𝑖0 + 𝛼𝜖1…𝜖𝑖1
= 𝔼[𝑉𝜖1…𝜖𝑖0

] =
𝐺0(𝐵𝜖1…𝜖𝑖0)

𝐺0(𝐵𝜖1…𝜖𝑖 )
,

for all 𝜖1 … 𝜖𝑖 . We note that this defines the 𝛼s only up to
proportionality, as the proportionality constant is defined
by the variance around the centering distribution. In the
case above of time-to-event data and a forward partition,
the 𝛼𝑠 are defined such that 𝛼0

𝛼0+𝛼1
= 𝔼[𝑉0] =

𝐺0((0,𝑡1])

𝐺0([0,∞))
,

𝛼10

𝛼10+𝛼11
= 𝔼[𝑉1] =

𝐺0((𝑡1,𝑡2])

𝐺0((𝑡1,∞))
, and so on. For example, if a

Weibull(𝜆, 𝑘) distribution is taken as the centering distri-
bution, as in the case of the RR case study presented in

Section 5.3, then 𝐺0((𝑎, 𝑏]) = 𝑒
−(

𝑎

𝜆
)𝑘
− 𝑒

−(
𝑏

𝜆
)𝑘 , and 𝛼0

𝛼0+𝛼1
=

1 − 𝑒
−(

𝑡1

𝜆
)𝑘 , 𝛼10

𝛼10+𝛼11
= 𝑒

−(
𝑡1

𝜆
)𝑘
− 𝑒

−(
𝑡2

𝜆
)𝑘 , and so on.

The following proposition, proven in the Supporting
Information, is useful for understanding how the choice
of partition affects the smoothness of a sample from a PT.

Proposition 1. Let 𝐺 be a sample from a PT using
the forward partition, where 𝑉𝑖 ∼ Beta(𝛼𝑖, 𝛼𝑖) and let 𝑌𝑖 =

𝐺([𝑡𝑖, 𝑡𝑖+1)). If 𝛼𝑖 is an increasing sequence of positive
numbers, it follows that Cor(𝑌𝑖, 𝑌𝑖+1) < Cor(𝑌𝑖+1, 𝑌𝑖+2).

Proposition 1 shows that if the distributions of the ran-
domvariables (RVs)𝑉0, 𝑉1,… have parameterswhose sum
is not decreasing, the correlation between the masses of
adjacent intervals increases for intervals corresponding to
later times or, equivalently, that the distribution of the 𝑉’s
becomes smoother toward the right tail. This is the case
for the forward partition, defined above. Conversely, we
can assume that the distribution of the 𝑉𝑠 is smoother in
the left tail, by reversing the order of the split so that 𝐵0 =
[𝑡𝐾,∞) and 𝐵1 = (0, 𝑡𝐾) at the first level, 𝐵10 = [𝑡𝐾−1, 𝑡𝐾)

and 𝐵11 = (0, 𝑡𝐾−1) at the second level, and so on. We term
this partition scheme the backward partition.
For ease of reference, we list below the univariate parti-

tions onwhichwe are going to rely for the rest of the paper.
In all cases, the partition is defined using the observa-
tion times 𝑡1, … , 𝑡𝐾 . We note that by convention, we define
𝑡0 = 0 and 𝑡𝐾+1 = ∞.

∙ Forward partition: this partition corresponds to the idea
of Lavine (1994), with the first split defined using 𝑡1 and
the last using 𝑡𝐾 .

∙ Backward partition: this partition is analogous to the for-
ward partition but now the first split is defined using 𝑡𝐾
and the last using 𝑡1.

∙ Uniform partition: this partition is built in a single step
by splitting using all the observation times simultane-
ously. That is, Ω is split into (𝐵0, … , 𝐵𝐾), where 𝐵𝑖 =

(𝑡𝑖, 𝑡𝑖+1], resulting in a tree that has a single level. Since
this split is not dyadic, themasses are assigned according
to a 𝐾-dimensional Dirichlet distribution with parame-
ters 𝛼 𝐺0(𝐵0), … , 𝛼 𝐺0(𝐵𝐾). We note that, in contrast to
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2174 DIANA et al.

F IGURE 1 Sequence of splits (left) and structure (right) of the partition for the time-to-event data example. The random variable
assigning the ratio of the masses of two sets for each branch is represented on the left branch. The mass assigned to the set in each right
branch is always one minus the mass assigned to the set in the corresponding left branch.

the forward and backward partitions, the uniform parti-
tion imposes a negative correlation between the masses
of any two intervals, which can be useful in situations
where entry and/or exit patterns are not expected to be
smooth.

2.1 Example: Time-to-event

In this section, we demonstrate how to apply the PT prior
to the estimation of survival probabilities using time-to-
event data. We assume that each individual is followed
starting at a corresponding time in {𝑡1, … , 𝑡𝐾}, referred to
as time of first observation (TFO), when they are of age 1,
until their death, which is observed at a subsequent time.
A common modeling approach is to assume that indi-

viduals of age 𝑎 at time 𝑡𝑗 remain alive until time 𝑡𝑗+1 with
probability 𝜙𝑗,𝑎. To formulate this approach in a PT frame-
work, we first arrange all the followed individuals in a
set of vectors 𝐧𝑘 = (𝑛𝑘

1
, … , 𝑛𝑘

𝐾−𝑘+1
), where 𝑛𝑘

𝑗
indicates the

number of individuals with TFO equal to 𝑡𝑘 andwith death
in the interval (𝑡𝑘+𝑗−1, 𝑡𝑘+𝑗), that is, observed at time 𝑡𝑘+𝑗 .
Next, we assume a distribution 𝐺𝑘 on the time of death of
the individuals belonging to vector 𝐧𝑘. The sample space
for 𝐺𝑘 is Ω𝑘 = (𝑡𝑘,∞), as time of death is left truncated
by the TFO for each individual. We assume independent
PT priors for the 𝐺𝑘’s, with partition taken to be the for-
ward partition, according to which the sample space Ω𝑘 is
split into 𝐵𝑘

0
= (𝑡𝑘, 𝑡𝑘+1] and 𝐵𝑘1 = (𝑡𝑘+1,∞), next 𝐵𝑘

1
is fur-

ther split into 𝐵𝑘
10
= (𝑡𝑘+1, 𝑡𝑘+2] and 𝐵𝑘

11
= (𝑡𝑘+2,∞), and

so on. The last level of the partition corresponds to the
sets (𝑡𝑘, 𝑡𝑘+1], … , (𝑡𝐾,∞), and hence, the PT prior for 𝐺𝑘

defines a prior for the probability that death occurs in each
of these intervals. We note that the 𝐾 partitions have dif-
ferent depths, as for individuals with TFO equal to 𝑡𝑘, the
partition is built only for 𝐾 − 𝑘 levels.
In this example, each 𝐺𝑘 is defined by 𝑉𝑘

0
, … , 𝑉𝑘

𝐾−𝑘−1
,

where 𝑉𝑘
𝑗
=

𝐺𝑘(𝐵𝟏𝑗0)

𝐺𝑘(𝐵𝟏𝑗 )
. Therefore, 𝑉𝑘

𝑗
corresponds to the

probability that an individual with TFO 𝑡𝑘 is not present
at time 𝑡𝑘+𝑗+1 conditional on being present at time 𝑡𝑘+𝑗 ,
that is, 𝑉𝑘

𝑗
= 1 − 𝜙𝑘+𝑗,𝑗+1. Finally, if 𝑚𝑘 is the number of

individuals with TFO 𝑡𝑘, the model for vector 𝐧𝑘 is given
by

𝑛𝑘
1
∼ Bin

(
𝑚𝑘,𝑉

𝑘
0

)
,

𝑛𝑘
𝑗
∼ Bin

(
𝑚𝑘 −

𝑗−1∑
𝑙=1

𝑛𝑘
𝑙
, 𝑉𝑘

𝑗−1

)
, 𝑗 = 2, … , 𝐾 − 𝑘. (2)

3 REPLICATE PT

In the example discussed in Section 2.1, the parameters
𝑉𝑘
𝑗
belong to independent PTs and hence the probability

of survival varies freely by time and age. To build sim-
pler models, we need to reduce the number of parameters
by introducing constraints on the 𝑉𝑘

𝑗
’s within our RPT

framework. For example, the number of parameters can
be reduced by assuming that the probability of survival
is either age-dependent or time-dependent, which is stan-
dard practice in the ecology literature, leading to a more
parsimonious model.
In the PT framework, assumptions of this kind can eas-

ily be incorporated into the model by sharing RVs across
different PTs or, in otherwords, via “replicating” tree struc-
tures across different trees. This idea will also be useful
laterwhen definingmodels for CR andRRdata, andhence,
we formalize it with the following definition. For sim-
plicity, we provide the definition for two trees but it is
straightforward to extend it to multiple trees.
Let Σ be a rule to generate a sequence of partitions from

an initial seed set. For example, the rule Σ can correspond
to the forward partition. Let 𝐺1 and 𝐺2 be distributions
having PT priors with partition Π1 and Π2, respectively,
with 𝑉1 and 𝑉2 the sets of RVs corresponding to 𝐺1 and
𝐺2, respectively, where 𝑉𝑙

𝜖,0
=

𝐺𝑙(𝐵𝜖0)

𝐺𝑙(𝐵𝜖)
as defined in Sec-

tion 2. We say that 𝐺1 and 𝐺2 have an RPT structure across
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DIANA et al. 2175

two sets 𝐵1𝜖 ∈ Π1 and 𝐵2𝜖′ ∈ Π2 if the following constraints
hold:

∙ The partitions of the trees starting from 𝐵1𝜖 and 𝐵2𝜖′ are
generated according to the same ruleΣ, although the two
partitions could be stopped after a different number of
steps;

∙ For all 𝜖1, … , 𝜖𝑚 , 𝑉1
𝜖𝜖1…𝜖𝑚

= 𝑉2
𝜖′𝜖1…𝜖𝑚

.

The first condition states that the partitions of the trees
starting from 𝐵1𝜖 and 𝐵2𝜖′ are the same (even if they might
not have the same depth), whereas the second states that
the RVs in the two trees are the same.We note that the def-
inition can also be used with 𝐵1𝜖 ∈ Π1 and 𝐵1

𝜖′
∈ Π1 that

allows sharing across the same tree.
We can use the RPT to impose different constraints on

the probability of survival for the time-to-event example of
Section 2.1, which we list below.

∙ Unconstrained case: The most general case is obtained
by assuming that all the 𝑉𝑘

𝑗
are different. In this case,

the probability of survival varies by age and by time
and no replicate structure is assumed (Figure S4 of the
Supporting Information).

∙ Age-dependent case: 𝜙⋅,𝑎 ≡ 𝜙𝑎 ⇒ 𝑉𝑘
𝑗
≡ 𝑉𝑗 ∀𝑘. This is

equivalent to assuming that 𝐺𝑘 ≡ 𝐺 ∀𝑘. In the RPT
framework, this is equivalent to requiring that the 𝐺𝑘

have a replicate structure across the sets Ω1,… ,Ω𝐾

(Figure S2 of the Supporting Information).
∙ Time-dependent case: 𝜙𝑗,⋅ ≡ 𝜙𝑗 ⇒ 𝑉𝑘

𝑗
≡ 𝑉𝑘+𝑗 . This is

equivalent to assuming that the distribution of 𝐺𝑘(𝑥) is
the same as the distribution of𝐺𝑘−1(𝑥|𝑥 ∈ 𝐵𝑘−1,1) ∀𝑘. In
the RPT framework, this is obtained assuming a repli-
cate structure across the pairs of trees with seed sets:Ω2

and 𝐵1
1
, Ω3 and 𝐵21, Ω4 and 𝐵31, and so on (Figure S3 of

the Supporting Information).
∙ Constant case: 𝜙𝑗,𝑎 ≡ 𝜙 ⇒ 𝑉𝑘

𝑗
≡ 𝑉 ∀𝑘, 𝑗. This is equiva-

lent to assuming that the probability of survival is always
constant. In this case, all the trees collapse to a single RV.

We note that employing constraints of the type induced
by the RPT structure gives rise to models that assume
independence between exit/LOS and TFO. This idea is
extended further in Section 5. For ease of exposition, in
all the case studies shown later, we only consider the most
commonly employed constraint in each case.However, dif-
ferent RPT structures can be employed to assume different
constraints as required.

4 BIVARIATE PARTITIONS

To define joint models for entry and exit, or entry and
LOS, we need to introduce partitions for distributions on

ℝ2. These partitions can be built sequentially using the
schemes described in Section 2.
A useful bivariate partition can be constructed by first

applying the forward partition in one dimension (entry)
and next the backward partition in the other dimension
(exit), as shown in Figure 2. We call this the entry and exit
partition, and we give a formal definition in Section 3.1 of
the Supporting Information. This partition is useful when
we expect the entry pattern to be less smooth in the left
tail compared to the right, with the opposite being true
for the exit pattern. Examples of this EEP are stopover
sites (Matechou et al., 2013) or breeding sites (Diana et al.,
2020), where most individuals enter at the start of the
study period and exit at the end, with entry and exit tak-
ing place in waves, and hence the entry (exit) pattern being
more spiky at the start (end) and smoother at the end
(start).
The entry and exit partition allows us to elicit prior

information on the entry and exit distributions. However,
in some cases, prior information is available on the LOS
distribution instead. For eliciting a prior on the LOS dis-
tribution, we define a bivariate partition based on the
forward partition, by first splitting the sample space with
respect to the LOS and then with respect to the entry inter-
vals. We describe how to construct this partition in the
following paragraph.
First, we split the sample space into the set𝐵0 = {(𝑥, 𝑦) ∶

𝑡𝑘 < 𝑥 < 𝑦 < 𝑡𝑘+1 ∀𝑘}, consisting of the individuals exiting
immediately after entry and the set 𝐵0 = {(𝑥, 𝑦) ∶ 𝑡𝑘 < 𝑥 <

𝑡𝑘+1 ≤ 𝑦 ∀𝑘}, consisting of the remainder of the individu-
als (Level 1 of Figure 3). Next, we split 𝐵0 into the set 𝐵1 =
{(𝑥, 𝑦) ∶ 𝑡𝑘 < 𝑥 < 𝑡𝑘+1 < 𝑦 < 𝑡𝑘+2 ∀𝑘} of individuals stay-
ing for only one interval and the set𝐵1 = {(𝑥, 𝑦) ∶ 𝑡𝑘 < 𝑥 <

𝑡𝑘+1, 𝑦 ≥ 𝑡𝑘+2 ∀𝑘} of individuals remaining for more than
one interval (Level 2 of Figure 3). The process is repeated𝐾
times for the remaining observation times. Next, each set
is split according to the entry intervals using the uniform
partition. This partition is termed entry and LOS partition
and an application is presented in Section 5.3.

5 ECOLOGICALMODELS

In this section, we define ecological models for count, CR
and RR data. These data are collected according to differ-
ent survey methods, which are all prone to false-negative
observation errors, and hence, not every individual that is
present on a sampling occasion will be observed on that
occasion. Therefore, each individual has a latent presence
history, which is a vector with entries equal to 1 on sam-
pling occasions when the individual was present and 0
otherwise. The observation process for each survey type
is defined conditional on these latent presence histories.
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2176 DIANA et al.

F IGURE 2 Entry and exit partition. Partition of a PT prior for a distribution defined on {(𝑥, 𝑦) ∶ (𝑥, 𝑦) ∈ ℝ2, 𝑦 > 𝑥}, built by first using
the forward partition and next using the backward partition. The first 𝐾 steps are performed using the forward partition in the entry
dimension, and the next 𝐾 steps using the backward partition in the exit dimension. The shaded area represents the region excluded from the
sample space, because departure is left truncated by arrival. The ticks on the x and y-axes represent the sampling occasions.

F IGURE 3 Entry and LOS partition. Partition of a PT prior for a distribution defined on {(𝑥, 𝑦) ∶ (𝑥, 𝑦) ∈ ℝ2, 𝑦 > 𝑥} built using the entry
and LOS partition. The first 𝐾 levels are built splitting according to the LOS, whereas the 𝐾 + 1th split is performed according to the entry
dimension. The shaded area represents the region excluded from the sample space, because departure is left truncated by arrival. The ticks on
the x and y-axes represent the sampling occasions.

Hence, in this section, we extend the ideas introduced in
Section 2.1, where the time-to-event was observed for each
individual, to modeling ecological data where the entry
and exit times for each individual, as well as the size of
the population, are unobservable. Therefore, within this
framework, we infer the number of individuals in each cell
of the grid defined in Section 4, and as a result also infer the
population size.

5.1 Example: Count data model

In this section, we briefly summarize the model of Diana
et al. (2018) developed for count data as an illustration of
the entry and exit partition for modeling ecological data.
Count data are collected by visiting the site and simply
detecting a number of individuals, without attempting to
uniquely identify them. The data can be summarized in
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a vector (𝐶1, … , 𝐶𝐾), where 𝐶𝑘 denotes the number of
individuals detected on sampling occasion 𝑘.
The latent presence histories can be summarized in a

matrix {𝑛𝑓𝑙}𝑓,𝑙=0,…,𝐾 , where 𝑛𝑓𝑙 is the number of individ-
uals with entry interval (𝑡𝑓, 𝑡𝑓+1) and exit interval (𝑡𝑙, 𝑡𝑙+1).
The number of individuals available for detection on sam-
pling occasion 𝑘, 𝑁𝑘, is readily available from the matrix
𝑛𝑓𝑙 since 𝑁𝑘 =

∑𝐾

𝑙=𝑘

∑𝑘−1

𝑓=0
𝑛𝑓𝑙. Assuming that each indi-

vidual can be detected with probability 𝑝 independently
of the other individuals, the observation process can be
expressed as 𝐶𝑘 ∼ Bin(𝑁𝑘, 𝑝), 𝑘 = 1,… , 𝐾.
A prior distribution is defined on the probability 𝜔𝑓𝑙

that an individual belongs to cell 𝑛𝑓𝑙 using a PT prior
distribution with the entry and exit bivariate partition of
Section 4. We define 𝑋 and 𝑌 to be the entry and exit time
and let𝑉𝑖 = ℙ(𝑋 ∈ (𝑡𝑖, 𝑡𝑖+1]|𝑋 ∈ (𝑡𝑖,∞)), for 𝑖 = 0, … , 𝐾 −

1, and 𝑊𝑖
𝑗
= ℙ(𝑌 ∈ (𝑡𝐾−𝑗, 𝑡𝐾−𝑗+1]|𝑌 ∈ (𝑡𝑖, 𝑡𝐾−𝑗+1], 𝑋 ∈

(𝑡𝑖, 𝑡𝑖+1]), for 𝑗 = 0,… , 𝐾 − 𝑖 − 1. The probabilities 𝜔𝑓𝑙 can
be obtained as a product of𝑉’s and𝑊’s as in definition (1).
For example,𝜔23 is equal to (1 − 𝑉0)𝑉1(1 −𝑊2

0
)𝑊2

1
, where

the first two terms represent the probability of entering in
(𝑡2, 𝑡3] and the last two terms represent the probability of
exiting in (𝑡3, 𝑡4] conditional on entering in (𝑡2, 𝑡3].
Assuming a Poisson(𝜔) prior distribution on the popu-

lation size 𝑁, with 𝑁 =
∑𝐾

𝑓=1

∑𝐾

𝑙=1
𝑛𝑓𝑙, the model can be

summarized as

𝑛𝑓𝑙|𝜔𝑓𝑙 𝑖𝑛𝑑.∼ Poisson(𝜔 × 𝜔𝑓𝑙), {𝜔𝑓𝑙}𝑓,𝑙=0,…,𝐾 ∼ PT(Π, 𝛼),

where the expression on the right summarizes the prior
distribution assumed for 𝜔𝑓𝑙 through the 𝑉’s and𝑊’s.

5.2 Capture–recapture

In this section, we demonstrate how to adapt the model
for count data described in the previous section to CR
data using an RPT. In the case of CR data, on each sam-
pling occasion, a number of individuals are caught, and
newly caught individuals are uniquely marked. If 𝐷 is
the total number of captured individuals, the captures
can be summarized in a 𝐷 × 𝐾 matrix, 𝐻, where 𝐻𝑖𝑘 is
1 if the 𝑖th individual was captured on sampling occa-
sion 𝑘 and 0 otherwise. Each row of the matrix is called
a capture history.
To represent the latent presence histories in this case, we

define the set of matrices {𝐧𝑘} = {𝑛𝑘
𝑓𝑙
}𝑓=1,…,𝐾+1,𝑙=1,…,𝐾+1,

where 𝑛𝑘
𝑓𝑙
denotes the number of individuals with first

possible capture at time 𝑡𝑓 , first capture at time 𝑡𝑘 and
last possible capture at time 𝑡𝑙 (clearly, 𝑛𝑘𝑓𝑙 = 0 for 𝑓 >

𝑘). For 𝑘 = 0, we define 𝐧0 as the matrix containing the
individuals never captured. The likelihood of the individ-

uals with first capture on sampling occasion 𝑘 can be
written explicitly given 𝐧𝑘 (Section 4 of the Supporting
Information).
We denote by𝐷𝑘 the sum of the elements in eachmatrix

𝐧𝑘, and we note that 𝐷𝑘 is known for 𝑘 ≠ 0, as it is equal
to the number of individuals with first capture at time 𝑡𝑘,
whereas 𝐷0 is unknown, as it is equal to the number of
individuals never captured. Finally, the population size,𝑁,
is obtained as𝑁 =

∑𝐾

𝑘=0
𝐷𝑘. For eachmatrix 𝐧𝑘, we define

a distribution 𝐺𝑘 on the probabilities 𝜔𝑘
𝑓𝑙
of an individ-

ual belonging to each cell of the matrix {𝑛𝑘
𝑓𝑙
}. Assuming

a Poisson(𝜔) prior distribution on 𝑁, the model can be
written as

𝑛𝑘
𝑓𝑙
∼ Multinomial(𝐷𝑘, 𝜔

𝑘
𝑓𝑙
), 𝐷0 +

𝐾∑
𝑘=1

𝐷𝑘 ∼ Poisson(𝜔).

We assume a PT prior for each 𝐺𝑘 using the bivariate
entry and exit partition of Section 4.Wemake two assump-
tions on the probabilities 𝜔𝑘

𝑓𝑙
, which will be employed

using specific RPT structures. First, we assume that the
entry and exit distribution is the same for individuals
first captured on different sampling occasions. However,
we note that each matrix is defined on a different sam-
ple space, as 𝐧𝑘 is defined for 𝑓 ≤ 𝑘, 𝑙 > 𝑘, as individuals
in the 𝑘th matrix have to enter before the 𝑘th sampling
occasion and exit after. A representation of one matrix
is shown in Figure S5 of the Supporting Information.
Therefore, we assume that the hazards of the distribu-
tions 𝐺𝑘 are the same, that is, if 𝑋 and 𝑌 are the entry
and exit time of an individual first captured on sampling
occasion 𝑘, the RVs 𝑉𝑘

𝑖
= ℙ(𝑋 ∈ (𝑡𝑖, 𝑡𝑖+1]|𝑋 ∈ (𝑡𝑖,∞)),

𝑖 = 0, … , 𝑘 − 1, and (𝑊𝑖
𝑗
)(𝑘) = ℙ(𝑌 ∈ (𝑡𝐾−𝑗, 𝑡𝐾−𝑗+1]|𝑌 ∈

(𝑡𝑖, 𝑡𝐾−𝑗+1], 𝑋 ∈ (𝑡𝑖, 𝑡𝑖+1]), 𝑗 = 0,… , 𝐾 − 𝑘, are the same for
all 𝑘.
We also make the assumption that the exit distribu-

tion is time-dependent, in the sense that the exit interval
of an individual does not depend on their entry interval,
in a similar way to Section 3. This is achieved by impos-
ing a RPT structure for each distribution 𝐺𝑘 across the
sets 𝐵0 = {(𝑥, 𝑦) ∶ 𝑥 ≤ 𝑡1}, 𝐵1 = {(𝑥, 𝑦) ∶ 𝑡1 < 𝑥 ≤ 𝑡2}, … ,
𝐵𝑘−1 = {(𝑥, 𝑦) ∶ 𝑡𝑘−1 < 𝑥 ≤ 𝑡𝑘} (see level 𝐾 of Figure 2 for
a visual representation of the sets). With reference to the
notation of𝑉 and𝑊 introduced in Section 5.1, this is equiv-
alent to assuming that𝑊𝑖

𝑗
≡ 𝑊𝑗 . This assumption leads to

a substantial reduction in the number of parameters but
can be relaxed if required by not employing the RPT struc-
ture leading to different set of variables𝑊𝑖

𝑗
, 𝑗 = 0,… , 𝐾 −

𝑘, for each time of entry 𝑖 = 0, … , 𝐾.
We note that an alternative approach to write the

likelihood explicitly is to model the entry and exit inter-
vals of each individual, as opposed to using the grid
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approach. This alternative approach is useful when the
number of captured individuals is low compared to the
number of sampling occasions, because it can lead to a
reduced number of latent variables. This is the case for
the case study considered in this paper, because there
are only 40 marked individuals and eight sampling occa-
sions. Section 5 of the Supporting Information presents
the expression for the number of latent variables in
each case.

5.3 Ring recovery

According to the RR protocol, individuals are captured
and marked each year and, after being marked, they can
be recovered soon after they die. The data are summa-
rized in an upper-triangular 𝐾 × 𝐾 matrix, 𝑅, where cell
(𝑖, 𝑗) denotes the number of individuals marked in year 𝑖
and recovered dead in year 𝑗, and in a vector (𝑚1, … ,𝑚𝐾)

where𝑚𝑘 denotes the total number of individuals marked
in year 𝑘. In the following, to be consistent with the nota-
tion used in the previous section, we will refer to the years
as sampling occasions.
Similarly to the CR case, to jointly model EEPs, we

work with a set of matrices 𝐧𝑘 = {𝑛𝑘
𝑓𝑙
}, where in this case,

𝑛𝑘
𝑓𝑙
represents the latent number of individuals marked

on sampling occasion 𝑘 that were present in the popula-
tion for 𝑓 sampling occasions before being marked and
remained for 𝑙 sampling occasions after being marked.
We assume that individuals could have entered the pop-
ulation for up to 𝑈 sampling occasions before they were
marked and could have stayed for up to 𝑈 sampling occa-
sions after being marked, which is equivalent to assuming
that the dimension of each matrix 𝐧𝑘 is (𝑈 + 1) × (𝑈 + 1).
We have made this assumption of symmetry for simplicity.
The choice of 𝑈 is not critical as 𝑈 is only used to fix the
dimension of the grid and serves as an upper bound for the
lifespan of the individuals. Therefore, as long as 𝑈 is suf-
ficiently larger than the lifespan of the individual, results
are not sensitive to this choice.
We assume that an individual is recovered on the sam-

pling occasion immediately following the interval inwhich
they died with probability 𝜆 (and that the individual can-
not be subsequently recovered). The number of individuals
marked at time 𝑡𝑘 that can be recovered at time 𝑡𝑘+𝑗 can be
obtained by the matrix 𝑛𝑘

𝑓𝑙
as

∑𝑈

𝑓=0
𝑛𝑘
𝑓𝑗
by summing over

the different entry times. Hence, the number of individuals
marked at time 𝑡𝑘 and recovered dead at time 𝑡𝑘+𝑗, 𝑅𝑘,𝑘+𝑗,
is distributed as Binomial(

∑𝑈

𝑓=0
𝑛𝑘
𝑓𝑗
, 𝜆).

We assume a PT prior for the probabilities𝜔𝑘
𝑓𝑙
of an indi-

vidual belonging to the cell 𝑛𝑘
𝑓𝑙
, with partition taken to

be the entry and LOS partition built in Section 4, and we

define as 𝐺𝑘 the distribution of the probabilities of each
cell for the matrix 𝐧𝑘.
According to the entry and LOS partition, first, the sam-

ple space is split into𝐵0 and𝐵0 (Level 1 of Figure 4), that is,
the individuals staying for 0 sampling occasions and those
staying for more than 0. Next, 𝐵0 is split into 𝐵1 and 𝐵1
(Level 2 of Figure 4), that is, the individuals staying for
1 sampling occasion and staying for more than 1, and so
on, for 2𝑈 levels. The first 2𝑈 steps split the sample space
according to the LOS. Similarly to Section 2.1, we define as
𝑉𝑘
𝑗
the probability that an individual marked on sampling

occasion 𝑘 dies after 𝑗 + 1 sampling occasions conditional
on being alive for 𝑗 sampling occasions after 𝑘. Therefore,

𝑉𝑘
𝑗
=

𝐺𝑘(𝐵𝑗)

𝐺𝑘(𝐵𝑗−1)
(with 𝐵−1 = Ω).

At the latest level (level 2𝑈 of Figure 4), we use the uni-
form partition to split each diagonal according to the entry
(or exit) intervals. To perform this step, we generate a set
of RVs (𝑊𝑘

0
, … ,𝑊𝑘

𝑈
) ∼ Dirichlet(𝛼0, … , 𝛼𝑈) and we assign

the masses of diagonal 𝑗, (𝐵𝑗0, … , 𝐵𝑗𝑗), proportionally to
𝑊𝑘

0
,… ,𝑊𝑘

𝑈
, that is, as

𝐺(𝐵𝑗𝑖) = 𝐺(𝐵𝑗)

⎧⎪⎨⎪⎩
𝑊𝑘

𝑖

𝑊𝑘
0
+⋯+𝑊𝑘

𝑗

𝑖 = 0, … , 𝑗 𝑗 = 0,… ,𝑈

𝑊𝑘
𝑖+𝑗−𝑈

𝑊𝑘
𝑗−𝑈

+⋯+𝑊𝑘
𝑈

𝑖 = 0, … , 2𝑈 − 𝑗 𝑗 = 𝑈 + 1,… , 2𝑈.

The RVs𝑊𝑘
𝑗
can be interpreted as the relative probabilities

of entering in each interval previous to the time ofmarking.
Similarly to the CR case in Section 5.2, an assumption

needs to be made about how the RVs𝑊𝑘
𝑗
, 𝑗 = 1,… , 𝐾 vary

across the time of marking 𝑘. In the case of RR data, we
cannot model the process by which individuals are first
caught but instead only the recruitment of marked indi-
viduals. Hence, we choose to make the assumption that
regardless of the time of marking, individuals of unknown
age are equally likely to have entered 𝑙, 𝑙 = 0, … ,𝑈, inter-
vals before being marked. This is equivalent to assuming
that the proportion of marked individuals of each age
group is constant for each sampling occasion, in a similar
way toMcCrea et al. (2013). This assumption is imposed by
assuming that𝑊𝑘

𝑗
≡ 𝑊𝑗 , 𝑘 = 1,… , 𝐾.

The second assumption we make is that the survival
probability is age-dependent, that is, the probability of
an individual surviving until the next sampling occasion
depends only on the age of the individual and not on the
sampling occasion the individual wasmarked. If we define
Ω𝑘 to be the sample space of the distribution 𝐺𝑘 mod-
eling the individuals marked at time 𝑡𝑘, this assumption
can be achieved by assuming for 𝐺1,… , 𝐺𝐾 an RPT across
Ω1,… ,Ω𝐾 . This forces the probabilities 𝜔𝑘

𝑓𝑙
to be the same

for each 𝑘, that is, 𝜔𝑘
𝑓𝑙

≡ 𝜔𝑓𝑙. This is equivalent to assum-
ing that 𝑉𝑘

𝑗
≡ 𝑉𝑗 or, similarly to the time-to-event model,
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F IGURE 4 Partition of the PT in the case of ring-recovery data for the matrix 𝐧𝑘 corresponding to the individuals marked at time 𝑡𝑘 . The
sample space is split into the set of individuals staying for less than one sampling occasion, 𝐵0, and the set of individuals staying for more than
one sampling occasion, 𝐵1. After this process is repeated for 2𝑈 sampling occasions, each set is split according to the entry intervals.

if 𝜙𝑗,𝑎 is the probability of an individual of age 𝑎 that is
present at time 𝑡𝑗 to remain until the following sampling
occasion, that 𝜙𝑗,𝑎 ≡ 𝜙𝑎. Because of this assumption, the
posterior distributions on the survival probabilities are the
same for each time of marking.
Assuming also a Beta prior for the recovery probability

𝜆, the model can be summarized as

𝑅𝑘,𝑘+𝑗 ∼ Binomial

(
𝑈∑
𝑓=0

𝑛𝑘
𝑓𝑗
, 𝜆

)
, 𝑛𝑘

𝑓𝑙
∼ Multinomial(𝑚𝑘, 𝜔𝑓𝑙)

{𝜔𝑓𝑙} ∼ PT(Π, 𝛼), 𝜆 ∼ Beta(𝑎0, 𝑏0). (3)

We show an application of this model in Section 6.2.

6 CASE STUDIES

6.1 Capture–recapture and count data

We jointly apply the models of Section 5.1 and 5.2 to
a count and a CR dataset, respectively, collected on a
population of Eurasian Spoonbills (Platalea leucorodia)
in the southern Po delta, in North-East Italy. Birds are
captured as chicks in previous years and are uniquely
marked. The CR dataset is collected by resighting adult
birds through photographs obtained using camera traps
and by visiting their nests on eight separate sampling occa-
sions. No attempt is made to mark new adult individuals
and instead only previously marked individuals can be

resighted. In addition, unmarked birds are detected on
each sampling occasion. In this case, since there are fewer
than 40 resighted individuals, we perform inference on
the marked individuals resighted by modeling explicitly
their individual entry and exit intervals, as mentioned in
Section 5.2.
As opposed to the model described in Section 5.2, we

have two different populations of individuals, the ones
already marked and the unmarked, and hence, we have
to modify the model that has been introduced before. We
model the marked individuals resighted by introducing
the variables (𝑡𝑖

1
, 𝑡𝑖
2
), where 𝑡𝑖

1
and 𝑡𝑖

2
are the entry and

exit interval of the 𝑖thmarked individual resighted, respec-
tively, whereas themarked individuals never resighted and
the unmarked individuals are summarized in twomatrices
{𝑛𝑀

𝑓𝑙
} and {𝑛𝑈

𝑓𝑙
}, respectively, where similarly to the count

data model of Section 5.1, cell (𝑓, 𝑙), corresponds to the
number of individuals first available for capture at time
𝑡𝑓 and last available at time 𝑡𝑙. We assume the same dis-
tribution on the entry and exit intervals of marked and
unmarked birds.
The number of marked birds, 𝑁𝑀 , and the number

of unmarked birds, 𝑁𝑈 , are assigned two Poisson prior
distributions, 𝑁𝑀 ∼ Poisson(𝜔𝑀) and 𝑁𝑈 ∼ Poisson(𝜔𝑈),
respectively. The model for 𝑛𝑀

𝑓𝑙
and 𝑛𝑈

𝑓𝑙
can therefore be

summarized as

{
𝑛𝑀
𝑓𝑙
∼ Poisson(𝜔𝑀 × 𝜔𝑓𝑙)

𝑛𝑈
𝑓𝑙
∼ Poisson(𝜔𝑈 × 𝜔𝑓𝑙)

. We assume

that each marked individual can be resighted with proba-
bility 𝑝𝑅 by visiting its nest and through camera traps with
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F IGURE 5 (A) Posterior mean of the cumulative distribution function of entry intervals (dashed line) and exit intervals (solid line), with
confidence bars showing the 95% posterior credible intervals. The shaded areas show the central 95% probability interval of the prior
distributions. The ticks on the 𝑥-axis represent the sampling occasions. The ticks on the 𝑥-axis represent the sampling occasions. (B) Posterior
summaries of population sizes of marked (𝑁𝑀) and unmarked (𝑁𝑈) individuals, and resighting probabilities in the nest (𝑝𝐶) and using
camera traps (𝑝𝑅)

probability 𝑝𝐶 . As the unmarked birds are also detected
through camera traps, we assume that they can be detected
with the same probability 𝑝𝑅 of resighting an already
marked bird. We note that this is a realistic, but also nec-
essary, assumption in this case, as otherwise the counts
do not include enough information to separately esti-
mate the population size 𝑁𝑈 of unmarked birds and the
probability of resighting an unmarked bird, 𝑝𝑅, if that is
different to marked birds. In Diana et al. (2018), this iden-
tifiability issue was overcome by employing informative
prior distributions.
We choose a uniform prior distribution for the resight-

ing probabilities and a Gamma prior distribution with
mean 50 and variance 4000 for the intensities 𝜔𝑀 and
𝜔𝑈 of the two population sizes. The entry and exit distri-
butions are centered on Laplace distributions Lap(𝜇1, 𝜆1)
and Lap(𝜇2, 𝜆2) respectively, where 𝜇1 ∼ N(𝑡1, 302), 𝜇2 ∼
N(𝑡4, 302) and 𝜆𝑖 ∼ Gamma(𝑎𝜆, 𝑏𝜆), such that 𝔼[𝜆𝑖] = 20

and Var[𝜆𝑖] = 80, where days are the unit of measure. The
resulting prior distributions on the entry and exit distri-
butions are shown in Figure 5(A). Inference is performed
using an MCMC algorithm by sampling from the poste-
rior distribution of the individual entry and exit intervals
(𝑡𝑖
1
, 𝑡𝑖
2
), the twomatrices {𝑛𝑀

𝑓𝑙
} and {𝑛𝑈

𝑓𝑙
}, as well as the prob-

abilities 𝜔𝑖𝑗 of the PT and the resighting probabilities. The
Markov chain Monte Carlo (MCMC) scheme is described
in Section 6.1 of the Supporting Information.

The posterior means of the entry and exit cumulative
distribution functions (CDFs) are shown in Figure 5(A).
The CDF of the exit distribution suggests that individu-
als exit the area throughout the study period and, since
it does not reach 1 at the end of the study period, that
some birds remain at the site using the colony as a roost.
Similarly, the CDF of the entry intervals is at around
0.4 at the start of the study, suggesting that a large
proportion of birds are present at the site when sam-
pling starts, with over 80% of birds estimated to have
arrived by the second sampling occasion toward the end of
April.
The posterior distributions of the two population sizes

and resighting probabilities are shown in Figure 5(B). The
camera trap resight probability, 𝑝𝐶 , is slightly lower than
the resight probability through nest visits, 𝑝𝑅, because
cameras are pointed toward the nest, where it is unlikely
to see floaters and prospectors. The difference between
the population sizes of marked and unmarked birds is
due to the fact that not all the chicks are marked each
year, and out of those marked, only a small propor-
tion return to breed as adults. In fact, local recruitment
rate is thought to be around 0.12, whereas the propor-
tion of immigrants on total number of recruits ranges
from 0.49 to 0.83 (Tenan et al., 2017). Further details
regarding the MCMC runs are given in the Supporting
Information.
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6.2 Ring recovery

We apply the model for RR defined in Section 5.3
to a dataset collected in Minnesota, USA. A total
of 100, 127 female mallards (Anas platyrhynchos) were
banded throughout the course of the study, which lasted
51 years. Marking occurs from July to September, while
recoveries occur during the hunting season immediately
following marking, from September to January. Newly
caught individuals can be recognized as juveniles if their
age is less than 1 year at the time of capture and as adults
otherwise. Therefore, individuals caught as juveniles are
of known age at year of death. The entry and exit of the
individuals correspond in this case to births and deaths,
whereas the sampling occasions correspond to years.
We summarize the data in two 𝐾 × 𝐾 matrices, 𝑅𝐴 and

𝑅𝐽 , for adults and juveniles, respectively. The total num-
ber of juveniles and adults marked in sampling occasion 𝑘,
are denoted by 𝑚𝐽

𝑘
and 𝑚𝐴

𝑘
, respectively. The first row of

the matrix 𝐧𝑘, {𝑛𝑘
0𝑙
}𝑙=0,…,𝑈 , consists of the juveniles, and its

sum is thus equal to𝑚𝐽
𝑘
, whereas the rows from 2 to𝑈 + 1

consist of the individuals marked as adults, and their sum
is equal to 𝑚𝐴

𝑘
. We center the PT over a Weibull distribu-

tion 𝑊(𝜆, 𝑘), with additional Gamma priors on 𝜆 and 𝑘.
Assuming a Beta prior for the recovery probability, 𝜆, the
model can be summarized as

𝑅𝐽
𝑘,𝑘+𝑙

∼ Binomial
(
𝑛𝑘
0𝑙
, 𝜆
)
, 𝑅𝐴

𝑘,𝑘+𝑙
∼ Binomial

(
𝑈∑
𝑓=1

𝑛𝑘
𝑓𝑙
, 𝜆

)
,

𝑛𝑘
0𝑙
∼ Multinomial

(
𝑚𝐽

𝑘
, 𝜔0𝑙

)
, {𝑛𝑘

𝑓𝑙
}𝑓>0 ∼ Multinomial

(
𝑚𝐴

𝑘
, 𝜔𝑓𝑙

)
,

{𝜔𝑓𝑙} ∼ PT(Π, {𝛼𝜆𝑊,𝑘𝑊
}), 𝜆 ∼ Beta(𝑎0, 𝑏0),

𝜆𝑊 ∼ N
(
𝜆0𝑊, 𝜎

2
𝜆𝑊

)
, 𝑘𝑊 ∼ N

(
𝑘0𝑊, 𝜎

2
𝑘𝑊

)
. (4)

The first row of matrix 𝑛𝑘
𝑓𝑙
contributes to the recoveries 𝑅𝑦

for the juveniles and the rest of the matrix contributes to
the recoveries 𝑅𝑎 of the adults.
We perform inference by updating the randommatrices

𝑛𝑘
𝑓𝑙
, the probabilities 𝜔𝑓𝑙 and the recovery probability 𝜆.

Details of the MCMC sampler are presented in Section 6.2
of the Supporting Information.
We assume 𝜆0

𝑊
= 𝑘0

𝑊
= 1 and 𝜎2

𝜆𝑊
= 𝜎2

𝑘𝑊
= 0.5. This

prior reflects an uninformative prior distribution on the
hazard, as it can be seen in Figure S6 of the Supporting
Information. Moreover, we assume a Beta(1,1) prior dis-
tribution for the recovery probability 𝜆 and we set the
upper bound 𝑈 on the age of the individuals to 18, which
is a conservative upper bound because no individual was
recovered after 14 years of being marked. We compare this
approach with a nonparametric unconstrained approach,
where uniform prior distributions are assigned on the

F IGURE 6 Case study on mallards. 95% posterior credible
intervals of the probabilities 𝜙𝑗 of surviving to age 𝑗 + 1 conditional
on being alive at age 𝑗 for the unconstrained PT model (gray) and
PT with Weibull centering distribution (black)

masses in each split of the PT (which is equivalent to
𝛼𝜖1,…,𝜖𝑚 = 1).
The posterior mean of the hazards is presented in

Figure 6. The overall trend agrees with the general pattern
observed for bird populations, with survival being lower in
very young and older ages. A similar pattern was observed
by McCrea et al. (2013) when analyzing RR data for mal-
lards (Anas platyrhynchos) and by Jimenez-Muñoz et al.
(2019) for blackbirds (Turdus merula), but we note here
that we have not employed a parametric curve to enforce
this pattern, and instead it has been completely driven
by the data. We also show the results obtained using the
unconstrained approach described above. As can be seen,
the estimates for older ages for themodel using theWeibull
centering distribution are smoother, with narrower cred-
ible intervals and avoid boundaries, typically seen as a
result of data sparseness at older ages, a result with fur-
ther highlights the benefit of a BNP model centered on a
parametric distribution. Finally, the posterior mean of the
recovery probability is equal to 0.123 (95%PCI: 0.121–0.125),
which is in line with findings of similar studies (McCrea
et al., 2012). Further details regarding the MCMC runs are
given in the Supporting Information.

7 CONCLUSION

We introduced a framework for defining models for eco-
logical data on open populations based on the PT prior.
The advantage of this framework is that a wide variety of
assumptions can bemade on themodel structure by chang-
ing the tree structure, as a result of the flexibility of the PT.
We have applied our framework to different types of com-
monly collected ecological data, such as CR, RR, and count
data. We have also introduced the RPT, which allows us to
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place constraints on the model parameters, such as age-
dependent survival probabilities or time-dependent exit
probabilities. This assumption follows from the use of spe-
cific RPT structures that imply posterior independence of
the entry and exit or LOS distributions, and can be relaxed
by removing the RPT structure, which, however, results in
a large number of unrestricted parameters to estimate.
It is easy to extend the model to other protocols, as, for

example, removal data (Matechou et al., 2016; Otis et al.,
1978). Removal data are collected by repeatedly visiting the
site and removing all caught individuals. In this case, an
approach similar to CR and RR can be employed, with
the time of exit known for the removed individuals and
unknown number of individuals not removed by the end
of the study.
The RPT, which assumes that RVs are the same across

different trees, represents the strongest form of sharing as
it assumes complete pooling of the RV across the different
trees. This implies particular forms of association between
entry and exit or entry and LOS. Alternatively, it is pos-
sible to assume intermediate forms of sharing, which are
between complete pooling and no sharing at all, by consid-
ering a hierarchical prior among the different trees. This
form of sharing can be achieved by using a Hierarchical
PT (Christensen & Ma, 2020) and defining the model by
centering the PT in each group over a common PT prior.
An alternative definition is to use a logistic PT (Jara &
Hanson, 2011), which makes use of the logistic normal in
place of the Beta distributions. These models make weaker
assumptions and so have the potential to learn more about
the association between entry and exit or entry and LOS.
The use of the logistic normal PT gives interesting hints for
further extensions. For example, by taking advantage of the
normal structure, it is possible to define regression mod-
els or time-series models, with the possibility of using the
Polya-Gamma scheme (Polson et al., 2013) for a conjugate
scheme for inference.
In our modeling framework, different ecological

assumptions correspond to different trees or changes in
the dependence structure of the RVs on the tree. The
question of evaluating evidence in favor of different
assumptions can be addressed using standard Bayesian
model selection methods. For example, model selection
can be performed by evaluating the evidence of each
model by using Bayes factors. Alternatively, as a change
in the ecological assumption entails a change in the
structure of the trees, model selection can be performed
by employing an additional prior on these different tree
structures and computing the posterior of the structure of
trees as part of the parameter space.
Our modeling framework also provides an alternative

approach to inferring population size, compared to, for
example, N-mixture models for count data (Royle, 2004)

and data-augmentation approaches for CR and related
data (Royle & Dorazio, 2012), which does not rely on speci-
fying an upper bound for the population size and, as it does
not infer individual entry and exit times, is also efficient for
large populations.
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