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Abstract 

Learning distinguishable features from raw EEG signals is crucial for accurate classification of motor imagery (MI) tasks. 

To incorporate spatial relationships between EEG sources, we developed a feature set based on an EEG graph. In this graph, 

EEG channels represent the nodes, with power spectral density (PSD) features defining their properties, and the edges 

preserving the spatial information. We designed an EEG based graph self-attention network (EGSAN) to learn low-

dimensional embedding vector for EEG graph, which can be used as distinguishable features for motor imagery task 

classification. We evaluated our EGSAN model on two publicly available MI EEG datasets, each containing different types 

of motor imagery tasks. Our experiments demonstrate that our proposed model effectively extracts distinguishable features 

from EEG graphs, achieving significantly higher classification accuracies than existing state-of-the-art methods. 

 
Keywords: Motor imagery (MI), electroencephalogram (EEG), feature learning, graph representation, self-attention 

1. Introduction 

Brain-Computer Interface (BCIs) can provide an alternative communication pathway without the need for 

any muscle and peripheral nerve activation(Wolpaw, 2007). The BCI technology has been applied in many 

fields, such as, but not limited to, medical rehabilitation, medical diagnosis, military applications (Kotchetkov 

et al., 2010), gaming (Wang et al., 2019), intelligent applications control (Tang et al., 2018) and driving 

assistance (Jafarifarmand and Badamchizadeh, 2019). 
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Motor imagery (MI) is a classic paradigm used in building BCI systems, in which the participant imagines a 

movement and the brain activity related to this imagined movement is identified and translated into a control 

action (Pfurtscheller and Neuper, 2001). MI-based BCI systems have exhibited significant performance for 

stroke rehabilitation and for assisting patients with movement disorders (Ang et al., 2015). When people imagine 

their body movements without any actual movement, two phenomena of energy change occur in the 

sensorimotor regions of the contralateral hemisphere and ipsilateral hemisphere in the brain (Pfurtscheller and 

Neuper, 1997). These phenomena are called the event-related synchronization (ERS) and event-related 

desynchronization (ERD) respectively (Neuper et al., 2006). Building a BCI system includes signal acquisition, 

preprocessing, feature extraction, and feature classification. Learning distinguishable features and selecting 

suitable classifiers are key steps in the development of MI-based BCI systems, and the correct extraction and 

classification of features can significantly improve performance. 

Within MI-BCI systems the power spectral density (PSD) is, arguably, the most popular feature used for 

motor imagery classification(Demuru et al., 2020). In many BCI systems, extraction of the PSD features is 

usually combined with the channel selection method (Jin et al., 2019), because not all EEG channels can provide 

distinguishable information in terms of PSD features. However, the drawback of the traditional PSD feature set 

is that it ignores the structure and spatial information available in the EEG(Sun et al., 2021a). Consequently, the 

wide-spread use of this feature extraction method may neglect considerable distinguishable information 

available within raw EEG data (Sun et al., 2021b). 

Machine learning and deep learning technologies have been wildly used in the motor imagery classification 

tasks. Common spatial pattern (CSP) (Pfurtscheller and Neuper, 2001) is a traditional feature extraction method, 

which maximize the covariance of the EEG from two kinds of motor imagery tasks. Filter bank common spatial 

pattern (FBCSP) is an improvement of CSP algorithm by splitting the EEG data with different frequency band 

and selecting feature with mutual information (Ang et al., 2008). Convolutional neural networks (CNNs) are 

capable of extracting features from raw EEG signals in both the temporal and frequency domains. Several CNN-

based models for feature extraction, such as EEGNet (Lawhern et al., 2018), ETRCNN(Xu et al., 2020), EEG-

Inception (Zhang et al., 2021), and others, have been proposed and achieved good performance in motor imagery 

classification tasks. However, most of these models do not consider the physical position information of EEG 

channels, which is also important for improving the classification accuracy. 

A graph can be used to present structural information about a dataset via nodes and edges, and can be used 

to describe features extracted from raw EEG signals (Stefano Filho et al., 2018). When used to describe EEG 

data the EEG channels are defined by graph nodes, while the edges within the graph are often used to represent 

a measure of functional or effective connectivity between EEG channels (Xu et al., 2014). Graph neural 

networks (GNNs) can be used to extract features from EEG-based graphs and improve the classification 

performance of MI-BCI systems(Jin et al., 2021). Most of the GNNs used for BCIs only focus on the structural 

information of EEG graphs and ignore the properties of the nodes, but we consider both the nodes’ properties 

and the structural characteristics of the graphs in this study. We used the PSD features extracted from individual 

EEG channels as the properties of the nodes and redesigned the EEG graph as the input to the graph neural 

networks. We focused on exploring effective feature learning framework to extract distinguish features for 

commonly used classifiers in the BCI field: support vector machines (SVMs) and logistic regression classifiers. 

Moreover, to train a model for motor imagery classification, a substantial amount of accurately labeled 

training data is required. However, during the data collection process, missing labels may occur due to software 

or hardware malfunctions. To address this issue, we propose a feature extraction framework capable of 

extracting features from EEG signals in the absence of label information. 

This paper makes three significant contributions. First, we introduce a novel EEG-based graph that incorporates 

both node properties and structural information derived from the EEG channels. Node properties are defined 

using PSD features, and edges are defined based on channel position. Second, we propose a feature extraction 
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model called the EEG Graph Self-Attention Network (EGSAN), which can extract distinguishable features from 

EEG-based graphs. Third, we apply an unsupervised feature extraction strategy to the networks in an experiment 

setting that considers the unlabeled condition. 

2. Method 

2.1. Graph Representation 

We define a graph 𝒢 = (𝑉, 𝐸), where {𝑣𝑖|𝑣𝑖 ∈ 𝑉} and {𝑒𝑖𝑗|𝑒𝑖𝑗 ∈ 𝐸} represent the set of nodes 𝑣𝑖 and the set 

of edges 𝑒𝑖𝑗  between node 𝑣𝑖  and 𝑣𝑗 , respectively. The adjacency matrix 𝑎𝑖𝑗 ∈ 𝐴 ∈ ℝ𝑛×𝑛  can describe the 

topological structure of a graph with 𝑛  nodes. Additionally, we define 𝑝𝑣𝑖
∈ 𝑃 ∈ ℝ𝑛×𝑑  to represent the 

properties of each node 𝑣𝑖, where 𝑑 denotes the dimension of the node attributes. Consequently, a graph 𝒢 =
(𝑉, 𝐸) can also be described as 𝒢 = (𝐴, 𝑃). According to the adjacency matrix A, we can define a set 𝒩𝑣 of 

neighbors for each node 𝑣 ∈ 𝑉 . Figure 1 depicts the structure of the EEG-based graph, showcasing the 

corresponding adjacency matrix and the properties of a simple graph consisting of five nodes. The different 

colors represent nodes with distinct properties. The adjacency matrix, denoted as A, has a dimension of (5 × 5). 

𝑃 represents the node properties, with a dimension of (5 × 𝑑), where 𝑑 refers to the dimension of properties. 

In the case of EEG, the recording electrodes can be seen as the nodes, but the edges of graph are defined by 

the spatial position of electrodes. 

Figure 1.  Graph data with adjacency matrix and properties. 

 

Figure 2.  An example graph structure of 22 EEG electrode channels. 
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2.2. From EEG to Graph 

In this study, we establish a brain graph to capture the characteristics of EEG signals during motor imagery 

tasks. The nodes of the graph correspond to EEG channels obtained from an electrode array, while the edges 

represent the physical distances between neighboring channel pairs. We assume that each node is connected to 

its immediate neighbors, defined as those channels with a one-step distance. Figure 2 illustrates the EEG 

electrode array and the corresponding EEG-based graph with 22 nodes. As depicted on the left side of Figure 2, 

each node can have a maximum of eight neighbors. For instance, electrode Cz has eight neighboring nodes 

(FC1, FC2, C1, C2, FCz, CPz, CP1, and CP2). On the right side of Figure 2, the 22 nodes of the EEG-based 

graph are color-coded to represent their distinct properties. During each trial of a motor imagery experiment, 

we calculate the power spectral density (PSD) of each EEG channel using the Welch spectrogram method. These 

resulting PSD values are then used to define the properties of the nodes. By utilizing the EEG graph, we can 

capture the PSD characteristics of electrodes while retaining the spatial information through the graph edges. 

2.3. EEG based Graph Self-Attention Networks 

Extracting suitable features plays a significant role in classification tasks. In order to classify the different 

motor imagery tasks, we need to extract the feature from the EEG graph, which can be sent to classifier to get 

the final classification result. In the process of experiment, the labels may be absent because of the equipment 

broken or negligence of technician, we only get some motor imagery EEG data without label. It is meaningful 

to design a unsupervised feature learning model to solute this situation. In this study we designed a feature 

learning model to extract feature from EEG based graph with unsupervised training. 

Graph embedding is a popular technique used for extracting feature from graph, it can learn low-dimensional 

vector representations for graphs. Graph neural networks (GNNs) have become an essential method for graph 

embedding, which use an aggregation function and a graph pooling function to obtain graph vector 

representation (Ying et al., 2018). In general, the GNNs update the node feature vector by transforming and 

aggregating the feature vector of neighboring nodes with an aggregation function. The resulting graph 

embedding can be obtained after a graph pooling function. GNN based methods have excellent performance on 

graph feature extraction and classification tasks. 

The self-attention mechanism in transformers (Vaswani et al., 2017)  has been widely used across domains 

such as natural language processing and computer vision, and has been shown to improve the performance of 

graph neural network (GNN) models when used to build aggregation functions (Nguyen et al., 2022). In this 

study, we propose applying self-attention to calculate attention coefficients between nodes in EEG graphs, 

which can capture synergistic characteristics among different channels during motor imagery tasks. Our novel 

approach utilizes GNNs with self-attention to extract features from EEG graphs for motor imagery classification 

tasks. To enhance the feature extraction process, we introduce an advanced EEG graph self-attention network 

(EGSAN), composed of a self-attention module, a recurrent transition module, residual connections, and layer 

normalization modules. 

Given a graph 𝒢 = (𝑉, 𝐸), and set of neighbors 𝒩𝑣 for each node 𝑣 ∈ 𝑉. The set {𝒩𝑣 ∪ 𝑣} is the input to the 

graph transformer self-attention network. For each training batch, we sample a different neighbor set for node 

𝑣. For the structure of the EGSAN, we consider using multiple layers stacked on top of each other to improve 

the node embedding. Given a node 𝑣 ∈ 𝑉, the embedding of 𝑣 in the 𝑘-th layer can be obtained by a novel 

transformer based aggregation function as: 

 

𝑝𝑣
(𝑘)

= 𝑇𝑟𝑎𝑛𝑠𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛(𝑝𝑢
(𝑘−1)

)                                                                                                             (1) 
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where 𝑢 ∈ {𝒩𝑣 ∪ 𝑣}. The 𝑇𝑟𝑎𝑛𝑠𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 function can be divided to two parts as: 

 

 
Figure 3.  Example of applying the EGSAN model to a five node graph. 

𝑥𝑢
(𝑘)

= 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (𝑝𝑢
(𝑘−1)

+ 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑝𝑢
(𝑘−1)

))                                                                                     (2) 

 

𝑝𝑣
(𝑘)

= 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (𝑥𝑢
(𝑘)

+ 𝑅𝑒𝑇𝑟𝑎𝑛𝑠(𝑥𝑢
(𝑘)

))                                                                                              (3) 

 

where 𝑝𝑢
(𝑘)

∈ ℝ𝑑. 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 is layer normalization function, which can be used to normalize the inputs 

across feature dimensions to stabilize the network, to make gradients smoother, and to decrease the training 

time. The term 𝑅𝑒𝑇𝑟𝑎𝑛𝑠(. ) denotes a multiple layer perceptron network with two fully connected layers as: 

 

𝑅𝑒𝑇𝑟𝑎𝑛𝑠(𝑥𝑢
(𝑘)

) = 𝑊2
(𝑘)

𝑅𝑒𝑙𝑢(𝑊1
(𝑘)

𝑥𝑢
(𝑘)

+ 𝑏1
(𝑘)

) + 𝑏2
(𝑘)

                                                                                            

(4) 
 

where 𝑊1
(𝑘)

∈ ℝ𝑠×𝑑 and 𝑊2
(𝑘)

∈ ℝ𝑑×𝑠 are weight matrices, and 𝑏1
(𝑘)

 and 𝑏2
(𝑘)

 are bias parameters. The term 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(. ) denotes a self-attention neural network as:  

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑝𝑢
(𝑘−1)

) = ∑ 𝛼
𝑢,𝑢′
(𝑘)

(𝑉(𝑘)𝑝
𝑢′
(𝑘−1)

)𝑢′𝜖{𝒩𝑣∪𝑣}                                                                                       (5) 

 

where 𝑉(𝑘) ∈ ℝ𝑑×𝑑 is a value-projection weight matrix. The term 𝛼𝑢,𝑢′ is an attention coefficient calculated 

by the softmax function and dot products between nodes 𝑢 and 𝑢′ 

 

𝛼
𝑢,𝑢′
(𝑘)

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
(𝑄(𝑘)𝑝𝑢

(𝑘−1)
)

𝑇
(𝐾𝑘)𝑝

𝑢′
(𝑘−1)

√𝑑
)                                                                                                     (6) 

 

where 𝑄(𝑘) ∈ ℝ𝑑×𝑑 is the query-projection matric and 𝐾𝑘 ∈ ℝ𝑑×𝑑 is the key-projection matrix. The features 

extracted by the 𝑘-th layer of all nodes in a graph can be described as: 
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𝑃(𝑘) = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝒩𝑣∪𝑣(𝑃(𝑘−1)𝑄(𝑘), 𝑃(𝑘−1)𝐾(𝑘), 𝑃(𝑘−1)𝑉(𝑘) )                                                                        (7) 

 

Specially, 𝑝𝑣
(0)

∈ ℝ𝑑 is the feature vector of node 𝑣. We concatenate the feature vectors across the layers to 

obtain the node embedding 𝒆𝑣 of the node 𝑣 as: 

 

𝒆𝑣 = [𝑝𝑣
(1)

; 𝑝𝑣
(2)

; … ; 𝑝𝑣
(𝐾)

]                                                                                                                                (8) 

 

In this paper, we train the feature learning frame without any labels. This approach is suitable for the situation 

where there are insufficient class labels available. We assume a final embedding 𝒇𝑣 for each node 𝑣, and the 

similarity between 𝒇𝑣 and 𝒆𝑣 should be higher than the similarity between 𝒆𝑣 and the final embedding of the 

other nodes. The aim of this setting is to let the graph neural network identify and discriminate the sub-graph 

structural characteristics within each graph and remember the differences of structural characteristics among 

the graphs. We used the sampled soft-max loss function(Jean et al., 2014) as: 

 

ℒ(𝑣) = − 𝑙𝑜𝑔
𝑒𝑥𝑝(𝒇𝑣

⊺𝒆𝑣)

∑ 𝑒𝑥𝑝(𝒇𝑣′
⊺𝒆𝑣)𝑣′𝜖𝑉′

                                                                                                                        (9) 

 

where 𝑉′  is a subset sampled from {∪ 𝑉𝑚}𝑚=1
𝑀 . The final embedding 𝒇𝑣  is learned implicitly as model 

parameters. The graph embedding 𝒆𝒢 is obtained by summing all the final embeddings 𝒇𝑣 of nodes 𝑣 in the 

graph 𝒢. The whole process of the graph embedding is presented in Algorithm 1. To illustrate our EGSAN 

model, we give an example of applying the EGSAN model to a single graph with five nodes. The detailed 

process of node final embedding and graph embedding can be found in the figure 3. 

 
Algorithm 1:Graph embedding with EGSAN 

for 𝑘 = 0, … , 𝐾 − 1 do 

   for 𝑣 ∈ 𝑉 do 

      Sample 𝒩𝑣 for 𝑣 

      ∀𝑢 ∈ {𝒩𝑣 ∪ 𝑣} 

      𝑥𝑢
(𝑘)

← 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (𝑝𝑢
(𝑘−1)

+ 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑝𝑢
(𝑘−1)

)) 

      𝑝𝑣
(𝑘)

← 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (𝑥𝑢
(𝑘)

+ 𝑅𝑒𝑇𝑟𝑎𝑛𝑠(𝑥𝑢
(𝑘)

)) 

𝒆𝑣 ← [𝑝𝑣
(1)

; 𝑝𝑣
(2)

; … ; 𝑝𝑣
(𝐾)

] 

𝒇𝑣 ← 𝒆𝑣 

𝒆𝒢 ← ∑ 𝒇𝑣
𝑣∈𝑉

 

2.4. Classification 

The EGSAN model is designed solely for feature extraction, and as such, the obtained features must be 

classified using a separate classifier to obtain the classification results. To this end, we employed a support 

vector machine (SVM) classifier, a commonly used algorithm in motor imagery tasks, to classify the graph 

embedding 𝒆𝒢, which serves as the extracted feature from the graph. Our SVM classifier was built with a linear 

kernel and utilized a one-versus-rest (OVR) strategy for multi-class classification. 
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2.5. Whole experiment framework 

Figure 4 depicts the comprehensive experimental framework, which encompasses several steps. First, the 

power spectral density of each channel is computed to derive node properties, and EEG signals are transformed 

into graph data. The graph data is represented by an adjacency matrix along with node properties. Next, the 

resulting graph data is fed into the EGSAN model to extract features and generate graph embeddings. These 

graph embeddings are subsequently utilized as input for a SVM classifier, facilitating the classification process. 

 

 
Figure 4. The entire experiment framework. 

3. Experiments 

In this section, we describe our experiments on two publicly available MI EEG datasets that are commonly 

used in EEG MI classification to evaluate the effectiveness of our proposed feature learning method. 

3.1. Dataset 1 

The first dataset we used to evaluate our model is the GinaDB dataset (Cho et al., 2017), which was recorded 

from 52 healthy participants. Among the participants, 33 are male and the rest are female. All participants gave 

written informed consent to collect information on brain signals and the dataset was approved by the 

Institutional Review Board of Gwangju Institute of Science and Technology. Every participant was required to 

perform two kinds of motor imagery tasks (left and right-hand motor imagery). The EEG signals were recorded 

by 64 Ag/AgCl active electrodes, which were placed according to the international 10-10 system. Each 

participant performed 100 or 120 trials of every kind of MI task, and all EEG signals were recorded with a 

sampling rate of 512Hz. The data set can be download from the website: http://gigadb.org/dataset/100295. 

3.2. Dateset 2 

The second dataset we used to evaluate our model is the BCI competition Ⅳ Dataset Ⅱa (Naeem et al., 

2006), which consists of EEG recorded from nine healthy participants. The participants were right-handed, had 

normal or corrected-to-normal vision and were paid for participating in the experiments. The EEG signals were 

recorded via 22 electrodes with a sampling rate of 250Hz and band-pass filtered between 0.5Hz and 100Hz. 

Each participant was required to perform four kinds of motor imagery tasks according to visual cues. The four 

kinds of MI tasks are left-hand MI, right-hand MI, both feet MI, and tongue MI. Each participant performed 

288 trials in total, and the proportion among different MI tasks is balanced. The data set can be download from 

the website: http://www.bbci.de/competition/iv /. 
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3.3. Data processing 

All EEG data taken from the two datasets were band-pass filtered using a fifth-order Butterworth filter from 

0.5Hz to 30Hz. According to the characteristic of the paradigm, we use different time windows for different 

datasets. For dataset 1, we took a 2 seconds time window from 0.5s after the cue presentation time until 2.5s 

after the cue presentation time, then we took the mean-subtraction process for every trial data. To  get useful 

signal of motor imagery task and limit the size of the graph, we only used 18 channels near to the motor cortex 

(FC1, FC2, FC3, FC6, Cz, C1, C2, C3, C4, C5, C6, CPz, CP1, CP2, CP3, CP4, CP5, and CP6). For dataset 2, 

we took a 3 seconds time window from 0.5s after the cue presentation time until 3.5s after the cue presentation 

time, and all 22 channels were used. 

The EEG signal of each trial were converted to one graph, with the number of nodes equal to the number of 

channels used. We used the sum of PSD calculated from α and β frequency bands from each of the EEG channels 

as the node properties, and the shape of nodes initial properties is (𝑛 × 1) the 𝑛 represents the number of EEG 

channels. 

3.4. Model setting 

We vary the number of 𝐾 of EGSAN layers in {1,2,3}. We set the number of neighbors to 6, set the hidden 

size in 𝑅𝑒𝑇𝑟𝑎𝑛𝑠(. ) to 1024, and the batch size is set to 5. We apply the Adam optimizer to train our EGSAN 

and select Adam initial learning rate lr = 0.005. We run up 50 epochs to evaluate our EGSAN.  

4. Results 

4.1. Label limited experiment 

To evaluate the feature extraction model EGSAN, we conducted experiments considering different label-

lacking conditions. In this section, we assumed a scenario where motor imagery EEG data had a limited number 

of labels. We transformed all EEG data into graph data and applied the EGSAN model to extract features 

through an unsupervised feature learning process. Subsequently, we constructed an SVM classifier using a 

restricted amount of labeled data, varying the proportion of correctly labeled data from 10% to 90% across five 

different ratios. For instance, when only 10% of the data had accurate labels and 90% lacked labels, only 10% 

of the extracted features from the EEG data with correct labels were employed for training the SVM classifier, 

while the remaining 90% without labels were utilized as test data. 

Figure 5. Classification accuracy of dataset1 with different label proportion 

Jo
ur

na
l P

re
-p

ro
of



 Author name / Journal of Neuroscience Methods 00 (2012) 000–000 9 

We evaluated our EGSAN model using classification accuracy as the evaluation metric for the binary 

classification task on dataset 1. As shown in figure 5, even with only 10% labeled data, the SVM classifier 

achieved more than 90% classification accuracy. Furthermore, the trendline shows that as the proportion of 

labeled data increased, the classifier's performance improved. 

We evaluate the performance of our EGSAN model on the multiple classification task using dataset 2, using 

kappa value and classification accuracy as the evaluation metric. The advantage of kappa value in this context 

is that it provides a standardized measure of inter-classifier agreement that takes into account the complexities 

of the task, including the possibility of class imbalance and varying levels of complexity among the classes. As 

shown in figure 6, even with only 10% labeled data, the SVM classifier achieved more than 86% classification 

accuracy and 0.8 kappa value. Furthermore, as the proportion of labeled data increased, the kappa value and 

classification accuracy improved. 

The experiments in figure 5 and 6 demonstrate that EGSAN can extract distinguishable features from motor 

imagery EEG signals through an unsupervised feature learning process. Therefore, EGSAN is well-suited for 

offline data analysis of motor imagery tasks under label-limited conditions. 

Figure 6. Classification accuracy and kappa value of dataset 2 with different label proportion 

4.2. Comparable experiment 

We conducted experiments to compare the effectiveness of our EGSAN model with other recently proposed 

models for extracting distinguishable features from EEG signals. In this section, we initially partitioned the data 

into a training set (90%) and a test set (10%). During the training phase, our EGSAN model was trained for 50 

epochs exclusively on the training data, deviating from the label-limited experimental setup. Additionally, we 

trained an SVM classifier using the training data. Once both the EGSAN model and SVM classifier were fully 

trained, we evaluated their performance on the test data using classification accuracy and kappa value as 

performance metrics. To assess the performance of our model, we applied it to binary motor imagery (MI) tasks 

(dataset 1) and four-class MI tasks (dataset 2). We used the same datasets to compare our model with the 

following other models proposed in recent papers: 

1) CSP+SVM: (Wang et al., 2006) A baseline algorithm that combined common spatial patterns with SVM 

classifier for binary motor imagery classification. CSP algorithm is the traditional feature extraction method 

in MI tasks. 

2) OPTICAL:(Kumar et al., 2019) This is predictor model, which consists of CSP feature extraction module 

and a long-short memory (LSTM) neural network to classify the motor imagery tasks. 

3) VMD+LR: (Sadiq et al., 2021) The approach utilizes both the Variational Mode Decomposition method 

and the Linear Regression (LR) feature selection method. 
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4) STR: (Rodrigues et al., 2019)  This is a space-time recurrence-based (STR) alternative for estimating EEG 

brain functional connectivity used in motor imagery tasks, which takes into account the recurrence density 

between pairwise electrodes over a time window. 

5) SICR-EEGNet: (Jeon et al., 2021) A deep neural network that learns subject-invariant and class-relevant 

representation via mutual information estimation among features in different levels for BCI tasks in an end 

to end manner. But in this paper, the SICR-EEGNet was compared in the subject specific experiment setting. 

6) KCS-FCnet: (García-Murillo et al., 2023)  The Kernel Cross-Spectral Functional Connectivity Network 

(KCS-FCnet) method employs a single 1D-convolutional neural network to extract temporal-frequency 

features from raw EEG data, along with a cross-spectral Gaussian kernel connectivity layer that models 

functional relationships among channels. 

7) CNN+LSTM: (Zhang et al., 2019) This method includes a one-versus-rest FBCSP module, for pre-

extracting features from MI EEG signals, and a hybrid deep neural network based on a convolutional neural 

network (CNN) and LSTM to learn spatial and temporal features. 

8) DSCNN: (Ma et al., 2022) A shallow double-branch network, which has two different branches to extract 

more abundant features related to motor imagery signals. 

9) ETRCNN: (Xu et al., 2020) A novel EEG topographical representation energy calculation method for 

learning EEG patterns of brain activities using a CNN 

10) EEG-TCNet: (Ingolfsson et al., 2020)  A temporal convolutional network with a low memory foot-print 

and low computational complexity that means it can be realized in resource-limited devices. 

11) EEG-Inception: (Zhang et al., 2021) An end-to-end model built on the backbone of the inception-time 

network. It takes the raw EEG signals as its input. 
12) AMSI-EEGNet: (Riyad et al., 2021) The input of this model can be sampled at different sampling 

frequencies, allowing to extract features thar are specific to each scale. Each scale are processed with an 

auxiliary convolutional blocks that have different hyperparameters but with the same structure. The multi-

scale features can be used by the main network with aggregate function for motor imagery classification. 

13) DST: (Razi et al., 2019) A novel classifier fusion module by employing Dempster-Shafer theory, which 

can solve the problem that the traditional CSP algorithm is not suitable for multi-class classification. 

14) Mcnn: (Amin et al., 2019) A multi-layer CNNs method for fusing CNNs, which utilizes different 

convolutional layers to capture the spatial and temporal feature from EEG signal. 

15) MKSSP: (Galindo-Noreña et al., 2020) A method named Multiple Kernel Stein Spatial Patterns maps EEG 

signal into low-dimensional covariance matrices preserving the nonlinear channel relationships, and stein 

kernel provides a parameterized similarity metric for covariance matric. 

We compare these 15 models with our EGSAN+SVM method. 

4.3. Binary MI Classification  

 In the comparable experiment, Figure 7 illustrates the classification accuracy of each participant in dataset 

1 using the EGSAN+SVM model. Different colors indicate varying ranges of classification accuracy. Upon 

examining individual performance, it is evident that our proposed method performs exceptionally well on 

dataset 1, with all participants achieving over 75% accuracy, thus ensuring the feasibility of the motor imagery 

BCI system. Specifically, five participants achieved more than 90% classification accuracy (represented by the 

orange color), while 31 participants achieved classification accuracy between 85% and 90% (represented by the 

yellow color). Fifteen participants achieved classification accuracy ranging from 80% to 85% (represented by 

the blue color), and only one participant achieved below 80%. These results demonstrate the effectiveness of 

our proposed EGSAN model in extracting distinguishable features from graph data converted from EEG signals 

in binary motor imagery classification tasks. 
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Figure 7. Classification Accuracy of dataset 1 in the comparable experiment with EGSAN+SVM. 

Table 1 summarizes the mean classification accuracy of comparable traditional machine learning or deep 

learning methods for MI classification on dataset 1. Results indicate that the baseline CSP+SVM method 

achieved only 60% accuracy, while hybrid models based on CNNs, such as OPTICAL, improved accuracy to 

68.89%. Both STR and KCS-FCnet extract features by calculating functional connectivity between pairwise 

electrodes, achieving an accuracy of 76%. The best method among the comparable ones is VMD+LR, with 

85.02% classification accuracy. However, our proposed EGSAN model with an SVM classifier achieved 

86.21% classification accuracy, surpassing VMD+LR by 1.19%. The last line of Table 1 shows the pair-test 

result, indicating that our proposed EGSAN+SVM is significantly (p<0.05) superior to other methods except 

the VMD+LR method. 

Table 1 The mean classification accuracy of dataset 1 with different methods 

Method CSP+SVM OPTICAL STR SICR_EEGNet VMD+LR KCS-FCnet EGSAN+SVM 

Mean 60.68% 68.89% 76.00% 76.60% 85.02% 76.40% 86.21% 

Std ±15.74% ±9.36 ±12.00% ±12.48% ±7.29% ±11.30 ±2.88% 

p-value <0.05 <0.05 <0.05 <0.05 0.27 <0.05 - 

 

Our proposed model outperforms the aforementioned excellent models in terms of classification accuracy. 

Additionally, the standard deviation of our proposed models is lower, indicating stronger robustness than the 

other models. These results demonstrate that our proposed models are highly competitive in comparison to these 

models. 
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4.4. Multi-class MI classification 

To evaluate the performance of our proposed feature learning framework on multi-class MI classification 

tasks, we applied our models to dataset 2. Table 2 presents a comparison between the performance of our 

proposed models and that of competing models for four-class MI EEG signal decoding tasks, using the kappa 

value as the evaluation metric for multi-class classification performance. Our proposed EGSAN+SVM method 

achieved an excellent average kappa value of 0.862 ± 0.02 (Mean ± std), outperforming most models. Among 

the nine participants, four (S2, S4, S5, S9) obtained the highest kappa value with our proposed models, while 

the remaining five obtained the highest kappa values with various competing methods. We conducted paired t-

tests for the competing methods and the p-values obtained are displayed in the last column of Table 2. The p-

values for most competing methods (DST, AMSI-EEGNet, Mcnn) are less than 0.05, indicating that 

EGSAN+SVM significantly outperforms these methods, while the p-values for the other methods indicate that 

our proposed EGSAN+SVM method competes closely with them. 

Table 2 Multi-class classification performance comparison of different methods applied on dataset 2 (Kappa value) 

Figure 8. The classification accuracy of dataset 2 with different models. 

Method S1 S2 S3 S4 S5 S6 S7 S8 S9 Mean±std p-value 

CNN-LSTM 0.85 0.54 0.87 0.78 0.77 0.66 0.95 0.83 0.90 0.794±0.13 0.1493 

ETRCNN 0.84 0.66 0.88 0.76 0.57 0.89 0.81 0.89 0.91 0.801±0.12 0.2266 

DSCNN 0.90 0.63 0.93 0.75 0.72 0.60 0.94 0.86 0.84 0.797±0.13 0.1854 

DST 0.78 0.59 0.85 0.72 0.67 0.57 0.81 0.86 0.88 0.748±0.12 0.0261 

EEG-inception 0.75 0.72 0.92 0.74 0.73 0.70 0.89 0.88 0.86 0.799±0.09 0.0981 

EEG-TCNet 0.86 0.63 0.97 0.68 0.78 0.61 0.91 0.82 0.80 0.784±0.12 0.1269 

AMSI-EEGNet 0.79 0.40 0.86 0.60 0.55 0.49 0.92 0.80 0.74 0.680±0.18 0.0212 

Mcnn 0.87 0.51 0.86 0.62 0.50 0.30 0.88 0.78 0.76 0.680±0.20 0.0270 

CBN+SVM 0.69 0.51 0.87 0.85 0.78 0.42 0.54 0.97 0.45 0.676±0.20 0.0351 

MKSSP 0.90 0.66 0.89 0.72 0.83 0.68 0.90 0.89 0.87 0.816±0.10 0.2808 

EGTSN+SVM 0.82 0.86 0.86 0.95 0.86 0.82 0.91 0.77 0.91 0.862±0.02 - 
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Figure 8 presents the classification accuracies achieved by different competing methods. The symbol ‘×’ 

represents the mean value, and the ‘—’ represents the median line. Our methods perform better than ETRCNN, 

CNN-LSTM, DSCNN, EEG-Inception, Mcnn, AMSI-EEGNet, DST, and EEG-TCNet methods, with more than 

a 2% improvement in mean classification accuracy, as shown in Figure 8. Moreover, our proposed methods 

exhibit greater stability when decoding different participants, indicated by the smaller standard deviation in our 

results. 

Figure 9. Feature distribution of dataset 2. 

5. Discussion 

In this study, we propose EGSAN, a model designed to extract features from EEG-based graphs. EEG-based 

graphs utilize edges to preserve spatial information by establishing connections exclusively between 

neighboring nodes, effectively representing the relative positions of EEG channels. During feature embedding 

with EGSAN, only nodes connected by edges are aggregated, while nodes without edge connections are 

excluded from aggregation. The loss function employed in EGSAN differs from the traditional cross-entropy 

loss function. We utilize a sampled softmax loss function to optimize the hyperparameters of the EGSAN model, 
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which does not require the labels information of samples. The goal of this loss function is to guide EGSAN to 

recognize and distinguish the sub-graph structural information within each graph, leading to improve the 

classification accuracies. Consequently, the EGSAN model can effectively extract distinguishable features from 

EEG-based graphs without relying on labels, making it suitable for unsupervised learning conditions.  

5.1. Feature distribution 

We demonstrate the effectiveness of our proposed feature learning framework by applying t-distributed 

Stochastic Neighbor Embedding (t-SNE) (Van der Maaten and Hinton, 2008) to visualize the distribution of 

learned features. This reduces high-dimensional feature sets into lower dimensional projections for easy 

visualization. We applied the t-SNE method to the final graph embedding obtained by our EGSAN method, and 

the resulting feature distributions are presented in Figure 9. The figure clearly shows that the features extracted 

by our EGSAN method are easily distinguishable in most participants. Notably, left-hand motor imagery tasks 

were easier to distinguish than other motor imagery tasks, due to all participants being right-handed. However, 

the features of foot and tongue motor imagery tasks have overlapping ratios, as indicated in Figure 9, making 

them harder to distinguish. Overall, the distribution of features extracted by our EGSAN method confirms its 

ability to extract distinctive features from the graph data converted from raw EEG signals. 

Figure 10. Classification accuracy with different number of layer. 

5.2. Effect of the number of layers 

The number of layers is a crucial factor that determines the behavior of our EGSAN model. To investigate 

this, we conducted experiments using different numbers of layers and present the results in Figure 10, where 

each color represents the model's performance with different layer numbers. Considering the size of the graph 

data, we limited the maximum number of layers to three. As shown in Figure 8, the optimal number of layers 

for each participant varied. For example, participant '2' achieved the highest classification accuracy with one 

layer, while participant '5' obtained the best result with three layers. Although participants had different 

performances with different numbers of layers, our proposed EGSAN model was able to extract distinguishing 
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features using simple structures, as illustrated in Figure 10. The mean classification accuracy increased as the 

number of layers increased, but there was only a slight improvement in mean classification accuracy when the 

number of layers increased from two to three, indicating that the EGSAN model can achieve excellent 

performance with a simple structure. 

5.3. Future work 

In this study, we only focus on the subject-dependent scenario, we will try our best to apply transfer learning 

on the EGSAN model and aim to achieve few-shot learning on motor imagery classification tasks. Moreover, 

we will explore the performance of our EGSAN model in BCI systems with other paradigms such as P300, 

SSVEP, and emotion detection. All the experiments in this study are performed on offline data, in the future, 

we will incorporate our EGSAN model into a real-time BCI system in order to evaluate its performance in this 

scenario. 

6. Conclusion 

This study proposes a novel feature learning framework named EEG graph Self-attention network (EGSAN) 

that aims to improve motor imagery EEG classification performance. The input of our EGSAN model is graph 

data derived from raw EEG signals, wherein the nodes are defined by EEG channels, and the node properties 

are PSD features extracted from individual channels. The structure of the graph retains the spatial information 

from the raw EEG channels. Our EGSAN model uses a graph embedding and self-attention mechanism to 

extract attentive features from EEG-based graphs. In our experiments, we consider the un-labelled scenario and 

apply an unsupervised feature learning strategy, the features learned by EGSAN can be classified by SVM 

classifiers. The experiment results demonstrate how our EGSAN model can extract distinguishable features and 

outperform than other state of art models. Our EGSAN model has the potential to improve the performance of 

BCI. 
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Graphical abstract 

 

 
 

Highlights  

 

⚫ A novel EEG-based graph representation contained node and structure information.  

⚫ Proposed EGSAN model to extract distinguish features from EEG-based graph. 

⚫ Unsupervised feature learning strategy to the network optimal processing.  

⚫ The EGSAN model can be applied on label limited dataset. 
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