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Abstract

Lesions in the brain resulting from traumatic injuries or strokes can evolve into speech dysfunction in undiagnosed patients.
Employing ML-based tools to analyze the prosody or articulatory phonetics of human speech could be advantageous for early
screening of undetected brain injuries. Additionally, explaining the model’s decision-making process can support predictions and
take appropriate measures to improve patient voice quality. However, traditional ML methods relying on low-level descriptors
(LLDs) may sacrifice detailed temporal dynamics and other speech characteristics. Interpreting these descriptors can also be
challenging, requiring significant effort to understand feature relationships and suitable ranges. To address these limitations, this
research paper introduces xDMFCCs, a method that identifies interpretive discriminatory acoustic biomarkers from a single speech
utterance, providing local and global interpretations of deep learning models in speech applications. To validate this approach, it
was implemented to interpret a Convolutional Neural Network (CNN) trained on Mel-frequency Cepstral Coefficients (MFCC) for
the binary classification task to differentiate between patients from control vocalizations. The ConvNet achieved promising results
with a 75% f-score (75% recall, 76% precision), comparable to conventional machine learning baselines. What sets xDMFCCs
apart is its explanation through a 2D time-frequency representation that preserves the complete speech signal. This representation
offers a more transparent explanation for differentiating between patients and healthy controls, enhancing interpretability. This
advancement enables more detailed and compelling studies in speech acoustic traits of brain lesions. Furthermore, the findings
have significant implications for developing low-cost and rapid diagnostics of unnoticed brain lesions.
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1. Introduction

Traumatic brain injury (TBI) lesions is one of the major
global causes of mortality and disability [1]. The first line of
diagnostic is still and often expensive scanners [2] such as Mag-
netic Resonance Imaging (MRI) [3].

Simple measures denoting the rhythmic and intonation of the
audio can be directly extracted from the speech signals, such as
intensity (energy), gradient (pitch), and duration. Other stan-
dard audio features used in the analysis of the human voice are
fundamental frequency, jitter, shimmer, and Harmonic to Noise
Ratio (HRN). However, more conspicuous transformations of
audio have denoted remarkable success in speech recognition
tasks and other human audio analyses.

Mel-Frequency Ceptrals Coefficients (MFCCs) is a popular
feature extraction method that was widely used in speech recog-
nition systems [4]. MFCCS adjusts to the way humans perceive
the loudness and frequency of sound, making it more suitable
for speech analysis tasks than other general-purpose acoustic
attributes. A key to its success is that it can represent the filter
function of the human vocal apparatus, given that, in the source-
filter model of speech, MFCC represents the filter part (vocal
tract). The frequency response of the vocal tract is relatively
smooth, whereas the source of voiced speech can be modeled

as an impulse train. The result is that the vocal tract can be
estimated by the spectral envelope of a speech segment.

The cepstrum concept is important for the MFCC calcula-
tion. The cepstrum of a signal is the result of calculating the
Fourier transform of the spectrum of the signal studied on a
logarithmic scale. The cepstrum gives us information on the
rate of change of the different spectrum bands. According to
the filter/source model of voice production, linguistic and par-
alinguistic information is contained in the vocal tract transfer
function. In the cepstral domain, the influence of the vocal folds
(source) and the vocal tract (filter) on a signal can be separated
since low-frequency excitation and formant filtering of the vo-
cal tract are located in different regions of the cepstral domain.
To represent the human voice, the cepstrum is transformed us-
ing the melodic scale. The result of this transformation is the
MFCC.

While several Cepstral-based alternative techniques for
speech characterization exist, including CQCC (Constant Q
Cepstral Coefficients), LFCC (Linear Frequency Cepstral Coef-
ficients), CZT (Chirp Z-Transform based spectrum), and TECC
(Teager Energy Cepstral Coefficients), no compelling evidence
has emerged to establish the definitive superiority of any spe-
cific technique over the others. At best, research has shown that
certain types of characterizations excel in particular tasks com-
pared to others [5], [6], [7] [8]. The MFCC technique stands
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Table 1: Subject characteristics

Sex Num. Avg. age Std. age

Patients Male 8 47.86 8.41
Female 8 48.29 14.69

Control Male 9 46.67 15.26
Female 7 46.2 16.41

Total 32 47.22 13.39

out as the most extensively tested and widely employed method
for speech analysis. Considering its prevalence, it serves as an
optimal foundation for developing an explanatory method that
can be subsequently adapted to incorporate other characteriza-
tion methods represented with spectrograms.

broposal of a frugal auto-assessment of patients’ voice with
brain lesion via a simplistic speech utterance only.

Evidence of the major relevancy of MFCC features for classi-
fying patients with brain lesions versus healthy individuals.

A novel interpretative method, xDMFCCs, to discover acoustic
biomarkers within MFCCs audio features.

The rest of the paper is organized as follows: Section 2 connects
the presented work with past related work. Section 3 explains
the data collection approach and the pre-analysis performed and
describes xDMFCCs. Section 4 describes the benchmarks and
results of applying the methods described in the previous sec-
tion to the prosody data collected for brain disorders; Section 5
discusses clinical aspects and revises the impact of this work;
finally, Section 6 concludes.

2. Related work

In the study of brain injuries, different machine learning tech-
niques have been applied to analyze different sources of infor-
mation and build models that automate the diagnosis and esti-
mate the severity of the damage caused to people’s motor skills.
A well-studied source of information is Magnetic Resonance
Imaging (MRI) [9, 10] with successful results. Sometimes they
have considered interpreting the MRI images [11]. MRI can be
considered a gold-standard diagnostic; however, it is an expen-
sive modality of diagnosis that requires expensive specialized
equipment, facilities, and trained personal

One cognitive function often affected by brain injuries is
speech. Continuous monitoring of patients with this type of
injury requires long recovery periods with events that lead to
rehospitalization. In Ditthapron et al. [12], a study using full
speech from patients with traumatic brain injury (TBI) caused
by car accidents, falls, and runovers. The main objective of
the mentioned work is to solve the problem of the scarcity of
limited TBI voice data, exploring three Limited Learning Data
(LLD) methods (transfer, multitasking, and meta-learning).
The study demonstrated a considerable improvement in classi-
fication assessment metrics for patients with and without brain
injury. Nevertheless, several longitudinal time points were con-
sidered, and full speech. Another study also considered a sim-

ilar problem, but in this case, the approach was multimodal
speech and gait [13].

Several works have considered using an end-to-end convolu-
tional neural network (CNNs) that takes as input the transfor-
mation of audio signals into a spectrum [14, 15, 16, 17]. Several
works have identified that the Mel Frequency Cepstral Coeffi-
cients or MFCCs contain essential information to identify peo-
ple with a certain degree of depression [18, 19], even relevant
coefficients, but not the time of speech when they are more rele-
vant. However, most of these studies are applied to a population
of patients with ongoing mental health problems. Still, little is
known about recognition before this condition is triggered, for
instance, due to a prior TMI or a strong concussion. Also, from
the methodological standpoint, the computational prowess of
CNNs and MFCCs have not been proposed combined in this
type of application.

As discussed, although much effort has been dedicated to rec-
ognizing dysfunctional brain issues from speech cues, the noted
algorithms suffer from the following limitations and challenges:

(a) Most work focused on detecting depression when diag-
nosed, but none have target recognition of brain lesions
leading to depression, paving the way to early interven-
tion.

(b) Most of the considered inputs correspond to full speech
or multi-modal experiments, but little is known about us-
ing just short speech utterances for a more straightforward
diagnosis.

(c) Explainability of the models is often overlooked or limited
to mentioning a set of relevant features, but the biomarkers
within are not determined.

Understanding and interpreting acoustic features in speech is
a relevant issue for clinical practitioners.

For example, in a study aimed to detect unilateral vocal fold
paralysis (UVFP) from voice recordings [20], the authors en-
abled the comparison of acoustic features, using a custom al-
gorithm called Independence Factor to select a single feature
from sets with similar information. Using this approach, they
demonstrated the importance of checking for biases using ex-
plainable machine learning and clinician perceptual ratings. In
another study [21] the authors applied machine learning meth-
ods to distinguish between two prevalent vocal pathologies, vo-
cal cord polyp, and vocal cord paralysis. Acoustic and spec-
tral features were extracted and various classifiers were com-
pared using batched cross-validation. Explainable AI and fea-
ture interpretability analysis were conducted to identify impor-
tant features for clinical care and planning. Octave-based spec-
tral contrast and MFCCs 0 to 3 were identified as the most sig-
nificant features. A convolutional neural network (CNN) was
used to learn low-level speech descriptors for vowel classifica-
tion [22]. The modified Local Interpretable Model-agnostic Ex-
planations (LIME) method was employed to assess the impact
of spectrotemporal vowel variation on decisions and observe
temporal changes in depression likelihood. Using this analysis,
they found that vowel-based information is more important than
non-vowel segments in identifying depression. Therefore, the
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findings obtained through explainable machine learning con-
tribute to the development of interpretable decision-support
systems for mental health diagnosis and care by enabling clin-
icians to better understand fine-grained temporal changes in
speech data. In this paper, we worked on explaining the at-
tributes and models learned from them, with which doctors can
generate greater understanding and new knowledge.

3. Methods

3.1. Experiment and Collected Data

Data for this study come from a previous unpublished in-
vestigation that tested 32 individuals, of which 16 were pa-
tients with localized brain lesions in regions previously asso-
ciated with perception deficits [23, 24]. The Max-Planck In-
stitute approved the study for Human Cognitive and Brain Sci-
ence Ethical Review Board. Following the guidelines of the
Ethics Declaration of Helsinki, patient consent was sought be-
fore data collection began. Speech data were recorded from
patients with lesions in the basal ganglia (n = 8), orbitofrontal
cortex (n = 5), and anterior temporal lobe (n=3). These dys-
functions may have been caused for several reasons, including
stroke, intracerebral bleeding, or traumatic brain injury. These
three lesion sites were of particular interest given that the brain
regions affected have been reported to form part of a cognitive
paralinguistic network [25].

For all patients and controls with the same age and educa-
tion, prosody production data were recorded as part of a sponta-
neous production task (patients were instructed to say the word
”Anna” in a happy, sad or neutral way) or a modeled expression
task (patients were instructed to repeat the word ”Anna” after
it had been spoken by a trained actor in a happy, sad, or neu-
tral way). Each set of ”Anna” was repeated three times (with
6 Anna repetitions). Thus, each participant has a set of 18 files
per psychological condition (18 happy posed expressions and
18 happy, spontaneous expressions; same for sad and neutral).
The data was recorded using a high-quality microphone, saved
on a portable DAT recorder, and later digitized on a PC. For
complete details on the experimental procedure applied to these
data, see [26], who used the same paradigm but tested a differ-
ent patient group. Table 2 outlines the background characteris-
tics of our sample.

3.2. Proposed xDMFCCs method

The following few sections outline our approach: first, the
extraction of acoustic features from the raw sound recordings;
second, the methodology that was used to select the most in-
dicative feature; third, a method to explain the biomarkers
found in the sound voice to discriminate between patients and
control. A sketch of the processing steps of this analysis is pre-
sented in Figure 1.

3.2.1. Acoustic feature extraction
Acoustic features were automatically extracted from full au-

dio samples using the open-source tool Praat [27]. Praat is an
open-source software suite for speech analysis mostly used for

scientific research. A Praat script was programmed to iterate
through all audio recordings and obtain acoustic information. A
set of 72 low-level acoustic descriptors were extracted. This set
of acoustic attributes included various aspects of the voice that,
according to the literature, may be relevant for detecting mark-
ers related to acquired neurogenic voice disorders. This initial
set of attributes included 17 prosodic attributes, 21 voice quality
attributes, 17 articulatory attributes, and 17 spectral attributes.
Prosodic attributes included nine statistics obtained from the
pitch contour extracted using the autocorrelation method and
eight statistics related to the intensity contour in dB. Voice qual-
ity attributes included three pulse-related attributes (fraction of
locally unvoiced frames, number of voice breaks, and degree of
voice breaks), five jitter-related statistics, six shimmer-related
statistics, seven measures related to harmonicity and its rela-
tionship with noise. Articulatory attributes included 12 statis-
tics related to formants 1 to 4, five attributes related to LTAS
(Long-Term Average Spectrum) of the spectral envelope of the
voiced parts. Finally, the spectral attributes included five at-
tributes related to statistical measures of the spectrum (skew-
ness, kurtosis, standard deviation, centroid), 12 related to spec-
tral balances obtained through frequency band energy differ-
ences and ratios.

Additionally, MFCCs were also contemplated for this study.
To compute this set of features, the Python package Librosa
was employed. Our script was programmed to extract MFCCs
in a sampling rate of 22050 Hz, 12 Mel filters to extract 12
MFCCs coefficients, an FFT window length of 2048, and a hop
length of 512. To improve performance, both first-order and
second-order derivatives were also contemplated. Afterward,
descriptive statistics (mean, std, min, max, as well as 25, 50,
and 75 percentiles) of the MFCCs, their delta, and the double
delta of each sample were calculated. Overall, this method’s
whole feature extraction process adds up to 323 features.

3.2.2. Feature importance evaluation for brain-injury patient
recognition

For the feature evaluation, we employed non-linear Predic-
tor Importance estimation via Random Forest. A random for-
est (RF) classifier was applied to tackle the binary classifica-
tion problem and discriminate between patient and control au-
dio samples. RF permits analyzing the non-linear multivariate
association among features that permits the observation classi-
fication. This is performed by calculating the Gini index, which
measures the impurity level at each node split of the three [28].
The more the Gini index decrease at each node split accounting
for a specific feature, the more important this later feature is.

The Random Forest classifier was trained with acoustic fea-
tures extracted with Praat. For our data splitting strategy,
we emphasized avoiding filtering information from our train-
ing set to our validation set. For this reason, we adopt a
leave-one-speaker-out scheme with the aim of training speaker-
independent models. Moreover, speech samples spoken by
males were segregated from female speaker samples given by
the significant difference between the feature domain of speech
signals. Taking this into account, optimal parameters for the fe-
male and male speaker-independent models were found using
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Figure 1: Ordered schema of the computational framework pipeline of the presented work.

grid search, providing fair results in both sets.

3.2.3. xDMFCCs: Explaining Neural-Network reasoning on
MFCCs

To provide a more conclusive explanation, we proposed a
global interpretable approach based on MFCCs and Convolu-
tional Neural Networks to expand LIME image explainer capa-
bilities [29]. Since the original LIME implementation is local in
scope and supports the explanation of models with text, image,
and tabular data, it is required to adapt the algorithm to work
with audio data and provide a global explanation of the deep
learning model for our speech application. Our method draws
inspiration from the work proposed by Mishra et al. [30], which
presented 3 different techniques to explain the decision process
of algorithms trained to solve music content analysis tasks.

This sophisticated technique highlights the most significant
regions based on their time and frequency locations that further
determine the class to which an audio sample belongs. Conse-
quently, a less intuitive explanation of the range of features has
now been transformed into a more visual interpretation.

To begin with, phoneme start and end times are essential to
relate the temporal component of the explanatory region to the
emitted utterance. We took advantage of EasyAlign [31] plugin
features to detect when a speaker starts and finishes producing
each phonetic sound of the name ”Anna”.

As an additional pre-processing step, a homogeneous time
duration is required. Therefore, audio samples longer than 1
second were clipped, while shorter samples were zero padded
on the right side (see Figure 2). Then, the MFCCs transform
was conducted with the same parameters as the Random Forest
approach but added an additional component to the analysis.
This combination of parameters, coupled with the uniform time
duration, returns for each audio sample a two-dimensional array
with the shape of 13 MFCCs and 44 frames.

As for the deep learning model, the architecture consists of
three convolutional blocks formed by a convolutional layer,

Figure 2: Waveform and time-frequency representation of sample audio. The
utterance of each phoneme is highlighted in a different color.

max-pooling layer, and batch normalization, followed by two
fully connected and drop-out layers. More exactly, the first
block consists of a convolutional layer with 32 filters, a ker-
nel size of (2x2), a relu activation function with zero padding,
and a stride of (1x1) to keep the same size. It continues with a
max pooling layer with both pool size and strides of (2x2) with
no padding, followed by a batch normalization layer. For the
next block, we doubled the convolutional layer filters and let
the remaining components be similar to the first block. Next,
we define the third block as the first one, but the convolutional
layer without any padding. We then flatten the output of the
convolutional base to train two fully connected layers with the
relu activation function. The first one with 256 nodes, while 64
nodes have the latter. Each layer is followed by a drop-out layer
with rates of 0.5 and 0.4, respectively. Finally, the top layer was
declared with 2 nodes and a softmax activation function. The
features were normalized and fed into the network in batches of
32 samples, and the model was trained with a learning rate of
1e-4. This model’s results were comparable to those obtained
with a Random Forest classifier.

Once the black-box model has been trained, we can imple-
ment our xDMFCCs method to obtain a global explanation for
the CNN model, which relies on LIME for local interpretability
in the time-frequency domain on a subset of speech samples.
While we will provide a broad overview of local interpretabil-
ity here, we encourage readers to refer to the LIME article for a
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more detailed and comprehensive understanding.
For each correctly classified sample x ∈ Rm∗n in our test

set Xt f
i , a perturbed data set Z is generated. The appropri-

ate selection of the number of samples to perturb, N, varies
among the application and data dimensionality. Therefore, one
should consider the trade-off between speed and maintaining
explainability. In our case, we must get an explanation of ev-
ery correctly classified sample in our test set, which could be
time consuming if we select a large N value. Having experi-
mented with different values of N, we concluded that the setting
N = 1430 provided speed and consistent explanations for this
specific task. First, a segmentation function is applied to divide
the frequency and time axes of the original sample into 13 and
11 regular segments, respectively. For further reference, we de-
note the number of rows and columns (13, 11) in the frequency
and time domain as (m, n). As a result, an explanatory region
consists of 1 cepstral coefficient and 90 milliseconds in dura-
tion. These superpixel regions are treated as binary features.
By means of these features, an interpretable representation for
an image can be denoted as x′ ∈ {0, 1}d

′

. Thus, N perturbed
samples z′ ∈ {0, 1}d

′

are generated by randomly turning on and
off superpixels of x′ uniformly. This step of LIME is denoted
sample around and aims to build an interpretable model with a
synthetic data set in the vicinity of x to approximate the black-
box model.

Then, the black-box model f is used to predict these per-
turbed samples’ target variable f (z). Next, weights are com-
puted to measure the importance of each perturbation based on
their proximity with the original sample given by the kernel
function πz = exp(D(x, z)2/σ2), where D is the cosine distance
function and σ set as 0.25. Subsequently, LIME fits a weighted
Ridge regression model g with the data obtained in previous
steps to get the K most important components of the audio sam-
ple, where K = 5. At this stage, LIME takes advantage of Ridge
regression as a surrogate model to understand which variables
are the most important for a given sample by contrasting the
coefficients of the binary features.

For a global understanding of the model, we define signifi-
cant superpixels as ssp. We use P to represent the patient class
and C to describe the control class. Likewise, we denote the
representative counts for the patient class as CRP, while CRC
corresponds to the representative counts for the control class.
We collect all ssp from each explained instance and group them
accordingly into P or C based on their class. Afterwards, the
counts of each ssp in P and C are stored in one-dimensional
arrays, namely CRP and CRC, respectively, with a shape of
(1, m*n). Next, we reshape the CRP and CRC arrays into a
2D time-frequency representation with dimensions (m, n). This
transformation allows us to obtain a global interpretation of
the most representative biomarkers for the patient and control
classes.

Additionally, the phoneme time distribution was situated
above each chart to facilitate the temporal localization of the
utterance produced. If these 2D matrices of counts are visual-
ized as heat maps, lighter regions symbolize a significant cep-
stral component at a specific point in time-related to a particular
phoneme for most of the correctly classified samples for each

class. On the other hand, darker areas are not significant for
each category. To put it briefly, Algorithm 1 summarises the
steps taken to obtain the global explanation of the model. Over-
all, the collective significance of each cepstral component and
each temporal bin can be obtained by normalizing the count
values of the explanation provided by xDMFCC to range from
0 to 1 and summing all elements over the axis.

Algorithm 1 Global interpretation using xDMFCCs
1: P← {}
2: C ← {}
3: for all xi ∈ X, . . . do ▷ Get local interp. using LIME
4: Z ← {}
5: for i ∈ {1, 2, 3...,N} do
6: z′i ← sample around(x′i ) ▷ Synthetic sample
7: Z ← Z ∪ ⟨z′i , f (zi), πx(zi)⟩
8: end for
9: ssp← Ridge(Z,K) ▷ Get Top5 binary features

10: if f (xi) == patient then ▷ Save ssp based on class
11: P← P ∪ {ssp}
12: else
13: C ← C ∪ {ssp}
14: end if
15: end for
16: CRP← {}
17: CRC ← {}
18: for j ∈ {1, 2, 3..., d′} do ▷ Get counts of all regions
19: CRP← CRP ∪ sum(P == j)
20: CRC ← CRC ∪ sum(C == j)
21: end for
22: CRP← reshape(CRP,m, n) ▷ Reshape 1d to 2d array
23: CRC ← reshape(CRC,m, n)
24: return CRP,CRC

4. Results

In the next subsections, we will explain the resultant out-
come from the analysis and the interpretation of the potential
bio-markers as revealed by our proposed deep learning global
explainer, xDMFCCs.

4.1. Feature analysis

Following the procedure explained in section 3.2.2, we took
the set of most relevant features estimated by the estimation
of the importance of random forest (Figure 3). Additionally,
we employed Random Forest in conjunction with LIME which
relies on local surrogate models to shed light on the rationale
behind single predictions (Figure 4). Both feature approaches
agree that MFCC related features are of crucial significance for
this classification task. Therefore, we devoted greater efforts
to find even more insights from these descriptors. From the
distribution comparison in Figure 5 it can be seen that from a
univariate perspective (diagonal), it is not possible to determine
a suitable classification delimiter. However, in the multivariate
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Figure 3: Top 10 most relevant features of both male and female Random Forest classifiers.

combination of several features, it was possible to determine
some classification boundaries with the naked eye.

In particular, MFCC 1 demonstrated higher discriminability
when combined with other features, while MFCC 10 provided
a lesser degree of discriminatory power. The naming conven-
tion of MFCC, which stands for Mel Frequency Cepstral Co-
efficients, follows a numbering scheme where the coefficients
are indexed from 1 onward, starting with the zero-order coef-
ficient. Therefore, MFCC 1 represents the 0th coefficient, and
MFCC 10 corresponds to the 9th coefficient.

Likewise, using RF as a baseline method, the LIME approach
showed that MFCCs provided a high discriminative power. In
light of the evidence from this analysis, we agree that MFCCs
can encode prototypical discriminative patterns. Nevertheless,
MFCCs together form a time-based spectrogram, denoted Mel-
frequency cepstrum, which needs to be studied with spatial cor-
respondence according to both dimensions: 1) cepstral compo-
nent; 2) time point. For this endeavor, we subsequently used
the proposed xDMFCCs method.

Figure 4: LIME interpretation of Random Forest classifier that predicted a sam-
ple as patient with confidence of 83%.

4.2. Classification

As a comparison baseline, we employed both Random For-
est and Support Vector Machine classifiers. The classification
accuracy reported in Table 2 shows a competing f score of 0.75-
0.74 (max 1) in recognizing brain injury patients from healthy
controls. This is encouraging, given the simplicity of the in-
put given to the model. Specifically, we only provide an audio
signal corresponding to the speech of three phonemes. Some
classifiers are trained with male and female data independently,
as recommended in speech analysis works [32]. Within the
analysis, we found that recognition performance was similar
in both, with marginally better recognition performance in fe-
males. Models based on deep learning can transfer knowledge
learned from one sex to the other. Therefore, for training the
CNN, we train with males and subsequently fine-tune (transfer)
the model using the females’ training data. Recognition of a
dual CNN model (male + female) achieved similar performance
to that of the RF trained just with the male model, but in the for-
mer, training data from females were also used. True positives
for women and men reported 0.74 for both sexes. That means
an increase in performance with respect to the sex-specific clas-
sifier for men while it remains at the same accuracy levels for
women. From these results, we can intuit a superiority in the
deep learning model at decoding patterns that can be equally
discriminatory across the sexes.

4.3. Interpretation

The explainability of the biomarkers within the Mel-
frequency cepstrum was determined by the proposed xDM-
FCCs method. For each prediction of the test, the xDMFCCs
returned a map of coefficients based on the time domain; see
Figure 6. In particular, the most influential regions were iden-
tified, and these were used to compute a global map, merging
the results of each trial. This method is applied to the MFCCs
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Figure 5: Distribution comparison between patient and healthy control samples of most significant features obtained through LIME algorithm.

Table 2: Performance of models trained to address the binary classification task
of patients and healthy controls.

Model Sex model Acc Spec Prec Recall F-score
SVM Male 0.56 0.62 0.62 0.72 0.67
RF 0.68 0.71 0.71 0.79 0.75

SVM Female 0.72 0.73 0.73 0.70 0.72
RF 0.74 0.74 0.74 0.75 0.74

SVM
Male + Female

0.60 0.62 0.62 0.75 0.67
RF 0.63 0.65 0.65 0.69 0.67

CNN 0.73 0.75 0.76 0.75 0.75

as specified in Section 3.2.3, and the global, regional matrix is
computed. The result for these matrices is shown in Figure 7.
We have added the density of the location of the phonemes in
sync with the time dimension on top of the matrix for refer-
ence purposes. The most prominent biomarkers for identifying
a control speaker and a speaker with brain injury are shown
in the left and right matrices, respectively. In this figure, sev-
eral indicative patterns of their discriminatory speech can be
interpreted. The first two MFCCs are presented in the research
literature as indicators of the sharpness and clarity of speech
sounds. In fact, the first MFCC is usually referred to as the av-
erage power of the input speech signal, and the second MFCC
is the balance of the spectral energy distribution between the

lower and higher frequencies [33]. B. Zhen et al. [34] found
that MFCCs from 2 to 16 contain the most useful speaker infor-
mation and MFCCs from 1 to 12 contain the most useful speech
information.

According to the above interpretation of the coefficients, by
looking at their relevancy in Figure 7 with respect to time, we
can say that control individuals have a higher clarity on almost
all phonemes at an earlier time of speech on-set. xDMFCCs
reveals that healthy individuals are able to articulate the transi-
tion between the phonemes ”A” and ”NN” with a higher clar-
ity with respect to patients. Also, healthy subjects denoted a
larger number of discriminatory regions in the higher order co-
efficients (from 3 and above). Conversely, the temporal distri-
bution of the phones is different for the two groups; in individ-
uals with brain injury most clear common speech feature was
the late emission of the second phoneme “A” at approximately
half a second after the speech on-set. It is worth noting that
brain injury patients delayed the emission of the “A” phoneme,
which is a strong discriminatory feature. Patients speak at a
slower pace than control subjects, beginning their vocalizations
a little later and pronouncing their final syllables for longer, as
revealed by xDMFCCs.

It is worth noting that the numeric collective significance of
each MFCC (Table 3) for the sex-neutral model (female +male)
is the intersection of the MFCCs for males and females, respec-
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Figure 6: Explanation for a single control prediction where the 5 most influential regions are highlighted

tively. This intersection suggests again the highest discrimina-
tory information in the coefficients related to acoustic clarity.
However, this does not replicate the significance of the tempo-
ral bin (Table 4). Regarding patients, it can be observed that the
last part of the utterance can get longer (> t6).

5. Discussion

This study aimed to explore how deep learning can be used
to identify measurable biomarkers within MFCCs to help assess
speech production difficulties in patients with acquired brain in-
juries. The results show that MFCCs can successfully encode
prototypical acoustic patterns that allow one to discriminate be-
tween speech provided by healthy controls and individuals with
brain injuries. Specifically, findings highlight that speech from
speakers without brain injury is marked through higher clarity.

Early findings from stroke patients who displayed brain le-
sions in the right hemisphere revealed difficulties in expressing
their feelings through voice cues [35]. In particular, difficul-
ties in controlling pitch and intonation variation have been de-
scribed. Here, neither pitch nor intonation contour variables
contributed significantly to the success of the discrimination
model. However, current results add to existing evidence that
speech from patients with acquired brain damage displays pro-
totypical patterns that differentiate from healthy control speech
even in the absence of diagnosed depression or speech and lan-
guage disorders [36, 35]. Here, findings suggest that the effects
of localized lesions can be fairly subtle as indexed through vo-
cal clarity differences. Crucially, MFCCs have been linked to
detecting small variations in terms of articulatory movements
suggesting that the patient populations of interest here might
express psychological states less successfully because of insuf-
ficient control over articulators, leading to the perception of re-
duced sharpness or clarity of a sound [37]. The basal ganglia
have long been associated with motor movement disabilities in
language production [38], and patients with lesions in the basal

ganglia formed the largest subgroup of our patient population.
MFCCs findings from our sample are thus complementing the
existing literature.

The approach presented here has not only outlined that it
is possible to differentiate between patients with lesions and
healthy controls; it also shows promise in terms of helping clin-
icians diagnose neurogenic speech production problems in pa-
tients. This, in turn, can help to develop speech therapy ap-
proaches that aim to voice quality in patients better. In the ab-
sence of clear differences in pitch, loudness, or speech rate use
between groups, the current results can be taken as the first indi-
cators of how psychogenic expressions differ between groups.
In the future, the approach might also be used to aid in the di-
agnosis of strokes as it allows the detection of abnormalities in
speech pre-hospital admission.

Despite the limited number of subjects, the study employed
a rigorous validation methodology to ensure scientific validity.
The validation included appropriate controls, randomization
where applicable, and robust statistical analyses. These mea-
sures aimed to mitigate bias and provide a reliable evaluation of
trained models. While larger sample sizes are desirable to en-
hance generalizability, the contribution of this study lies in its
pioneering nature and the generation of a unique dataset serv-
ing as a springboard for future studies in the field. The small
sample size is acknowledged as a drawback, and future research
should aim to replicate these findings with larger and more di-
verse cohorts. Additionally, conducting long-term follow-up
studies can provide more robust and explainable brain lesion
classification models.

6. Conclusion

In the presented paper and for the first time to the authors’
knowledge, a single audio composed of three phonemes has
been used to diagnose and interpret the phonetic characteris-
tic of brain lesion patients at risk of developing mental illness.
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Figure 7: Interpretations provided by xDMFCCs. The heatmap on the left indicates significant regions for control samples, whereas the one on the right highlights
significant areas for patient samples.

Table 3: Collective significance of each MFCC feature
Sex Class MFCC 1 MFCC 2 MFCC 3 MFCC 4 MFCC 5 MFCC 6 MFCC 7 MFCC 8 MFCC 9 MFCC 10 MFCC 11 MFCC 12 MFCC 13 R

Female Control 0.210 0.184 0.094 0.107 0.098 0.058 0.066 0.045 0.045 0.053 0.015 0.012 0.006 r=0.83, p < 0.05Patient 0.286 0.086 0.110 0.089 0.092 0.029 0.083 0.065 0.050 0.038 0.047 0.008 0.008

Male Control 0.187 0.136 0.085 0.038 0.073 0.155 0.063 0.069 0.025 0.066 0.060 0.019 0.019 r=0.66, p < 0.05Patient 0.286 0.086 0.110 0.089 0.092 0.029 0.083 0.065 0.050 0.038 0.047 0.008 0.008

Male + Female Control 0.201 0.165 0.091 0.079 0.088 0.097 0.065 0.055 0.037 0.058 0.033 0.015 0.011 r=0.85, p < 0.05Patient 0.285 0.088 0.090 0.069 0.079 0.059 0.077 0.082 0.044 0.063 0.036 0.014 0.008

Upon determination of the relevancy of the extracted features,
it was found that the MFCCs yield a higher classification ability
among all extracted features (section 3.2.2).

We proposed the deep learning global explainer xDMFCCs
method, to diagnose and interpret the acoustic features of brain
lesion patients at risk of developing mental illness based on a
single audio composed of three phonemes, providing a novel
approach to early screening and diagnosis. The RF and SVM
classifiers achieved a competing F-score of 0.75 F-score in dis-
tinguishing brain injury patients from healthy controls. Both
male and female data were used for training, with slightly bet-
ter performance in females (0.75 F-score) than in males (0.74
F-score) using the RF algorithm. Recognition of a dual RF
model (male + female) achieved a lower performance (0.65 F-
score), but improved considerably when using CNN (0.75 F-
score). These results are very encouraging due to the difficulty
of the presented problem.

We highlighted the potential of speech analysis as a non-
invasive and cost-effective method for detecting brain injuries.

The value of the presented innovation is twofold: 1) a sim-
ple and low-cost method for early diagnosis of brain lesions
that can lead to mental illness; 2) an approach that can pro-
duce an interpretation of the most relevant MFFCs patterns that
support the classifier consider the time dimension, and there-
fore correlation with the particular phonemes. The second value
can be beneficial for empowering new neurogenic speech disor-

ders studies, as experts can know how to tune their experiments
based on the interpretation from xDMFCCs. This unique study,
with a sensitive clinical population, provides hopeful evidence
of a purely data-driven practical method whose result notably
matches observational evidence of previous works in the acous-
tic assessment of brain lesions. We hope that the adoption of the
proposed method in more extensive clinical trials will provide
further insight into the usefulness of this proposed method.

Although our study acknowledged the limitation of a small
sample size, it served as a pioneering effort. It generated a
unique dataset that can be used as a foundation for future stud-
ies in the field. Future research should aim to replicate these
findings with larger and more diverse cohorts, as well as con-
duct long-term follow-up studies to enhance the robustness and
explainability of brain lesion classification models.

These conclusions highlight the potential of deep learning
models and speech analysis in the early detection and diagnosis
of brain lesions, while also emphasizing the need for further
research and validation.
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