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Abstract
We review common situations in Bayesian latent variable models where the prior distribution that 
a researcher specifies differs from the prior distribution used during estimation. These situations 
can arise from the positive definite requirement on correlation matrices, from sign indeterminacy 
of factor loadings, and from order constraints on threshold parameters. The issue is especially 
problematic for reproducibility and for model checks that involve prior distributions, including 
prior predictive assessment and Bayes factors. In these cases, one might be assessing the wrong 
model, casting doubt on the relevance of the results. The most straightforward solution to the issue 
sometimes involves use of informative prior distributions. We explore other solutions and make 
recommendations for practice.

Keywords
Bayesian SEM, prior distributions, Bayesian psychometrics, Stan, blavaan

Bayesian latent variable models, including structural equation models and time series 
models, are becoming increasingly complex to accommodate the datasets that modern 
technology permits (e.g., Asparouhov et al., 2018; Bürkner, 2021; Depaoli et al., 2021; 
dos Santos et al., 2022; Driver et al., 2017; Enders et al., 2018; Garnier-Villarreal et al., 
2021; Haaf et al., 2020; Haaf & Rouder, 2023; Hoijtink & van de Schoot, 2018; Kaplan 
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et al., 2023; Keller & Enders, 2023; Levy & Enders, 2021; Magnus & Garnier-Villarreal, 
2022; Man & Culpepper, 2022; Miocević et al., 2021; Paganin et al., 2023; Rast et al., 
2022; Uanhoro, 2023a, 2023b; Ulitzsch et al., 2022; Van De Schoot et al., 2013; Van Erp 
& Browne, 2021; Wilcox et al., 2021; Zyphur et al., 2021). To ensure that these complex 
models are working correctly, it is important to fully understand the problematic issues 
that can arise in simpler Bayesian models with latent variables. We think that this 
understanding is not yet fully developed. For example, researchers often overlook the 
fact that multiple WAIC metrics are available for the same model, depending on whether 
or not one includes latent variables in the likelihood (Merkle et al., 2019). And recent 
evidence indicates that small-variance priors can mask misfit in other parts of the model 
(Jorgensen & Garnier-Villarreal, 2023). Continuing with the theme of problematic issues, 
the current paper discusses problems with prior distributions that are easy to overlook 
and that can lead to incorrect results and model summaries.

The issues that we consider here can generally be called opaque prior distributions. 
They involve the fact that, for some Bayesian models, the prior distribution that a 
researcher specifies is not the prior distribution that the estimation method actually uses. 
This happens because prior distributions are influenced by various details surrounding 
MCMC implementation, beyond the researcher’s specified prior. These issues are already 
known to many statisticians, but they have some unique manifestations in Bayesian 
psychometric models with latent variables. Further, these issues have not received much 
attention in the context of Bayesian psychometric modeling.

In psychometric models with latent variables, opaque prior distributions can arise 
from positive definite constraints associated with model covariance matrices, from sign 
indeterminacies in factor loadings, and from order constraints associated with threshold 
parameters. One example was considered by Ghosh and Dunson (2009), who describe 
a parameter expansion algorithm for estimating Bayesian factor analysis models. They 
developed a Gibbs sampler for an overparameterized model in which the factor loadings 
were not identified, then translated the unidentified parameters to identified parameters 
via postprocessing. Of interest here, they showed that the priors for the identified load
ings (obtained via postprocessing) differed from the priors for the unidentified loadings. 
We consider this example in more detail later.

Opaque prior distributions can cause a variety of problems. One way in which these 
problems arise is through recent studies where researchers seek to recommend the “best” 
prior distributions for various models. For example, specific prior distributions have been 
recommended for factor loadings and correlation parameters in confirmatory factor anal
ysis (Lüdtke et al., 2021; Ulitzsch et al., 2023), factor loadings and intercept parameters in 
item factor analysis with dichotomous indicators (Bainter, 2017), regression parameters 
in mediation models with latent variables (Miočević et al., 2021), covariance matrices in 
SEM (Liu et al., 2022; Van Zundert et al., 2022), random effect parameters in multilevel 
SEMs (Van Erp & Browne, 2021; Zitzmann et al., 2021), and variance parameters in 
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approximate measurement invariance modeling (Pokropek et al., 2020). However, as 
we will show, opaque priors imply that such recommendations can be specific to the 
software used. In other words, alternative software packages may implement the same 
model in a different way, leading to a different implied prior distribution even though the 
user always specified the same prior distribution.

We could also experience problems with metrics that explicitly involve evaluation of 
the prior, including Bayes factors (e.g., Heck et al., 2023; Kass & Raftery, 1995) and prior 
predictive checks (e.g., Vanpaemel, 2020). In both cases, if a researcher specifies a model 
with opaque prior distributions, then it is easy to use the wrong prior distributions to 
compute the metrics. Relatedly, some methods for verifying the accuracy of one’s MCMC 
algorithm involve generating data from prior distributions. If researchers use the wrong 
priors, then they may conclude that their MCMC algorithm is problematic even though it 
runs correctly, or vice versa.

The intent of this paper is to illustrate opaque prior distributions and to provide 
solutions for avoiding them. This can allow for reproducible results across software 
implementations, and it can lead to improved prior predictive assessments and other 
metrics. In the pages below, we show how opaque priors can arise from positive definite 
constraints, from sign indeterminacies, and from parameter order constraints. For each of 
these topics, we provide examples of the problem, discuss how the problem can lead to 
compounding problems in model assessment, and provide recommendations for avoiding 
the problem. Finally, we summarize and make general recommendations for practice.

Positive Definite Constraints
In Bayesian modeling, prior distributions for the covariance matrix often involve the in
verse-Wishart (IW) distribution due to its conditional conjugacy. However, the IW distri
bution can be problematic because it assumes the same amount of prior information for 
the entire covariance matrix. To overcome this challenge, various strategies have been 
suggested for separately specifying priors on the variance and correlation parameters 
underlying the covariance matrix (Barnard et al., 2000). These priors have been shown 
to perform better than the classical IW (Alvarez et al., 2014; Ariyo et al., 2022; Huang et 
al., 2013). However, things become more complicated for matrix dimensions of three or 
more, because certain restrictions must be imposed to ensure positive definiteness of the 
matrix (Barnard et al., 2000; Daniels & Kass, 1999; Huang et al., 2013; Hurtado Rúa et al., 
2015; Wei & Higgins, 2013).

The situation becomes even more complicated when the covariance matrix has 
model-imposed constraints, which can arise in SEMs with correlated residuals or with 
across-group equality constraints. In these models, we cannot impose an IW (or other 
prior) on the full covariance matrix because those priors will not respect the constraints 
imposed by the model. An easily-implemented approach is to place priors on individual 
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parameters within the covariance matrix (and we consider other approaches later). The 
problem is that, when we build a covariance matrix using these parameters, the resulting 
matrix will sometimes be non-positive definite. We elaborate below.

Illustration
An example comes from the popular “Political Democracy” model originally described 
by Bollen (1989), shown below in lavaan syntax (Rosseel, 2012). Intended to describe 
countries’ relationships between their levels of industrialization and democracy, the 
model contains four observed variables that are measured once during 1960 (y1, . . . , y4) 
and again during 1965 (y5, . . . , y8). The residuals of the 1960 variables are allowed to 
correlate with the residuals of the corresponding 1965 variables. Additionally, there exists 
a pair of similar variables collected during 1960 and again during 1965, leading to two 
more residual correlations. The full structure of the residual covariance matrix is shown 
in Figure 1.

As described earlier, we could elect to put a univariate prior distribution on each 
variance (or standard deviation or precision) in this matrix, and also on the six residual 
correlations that are not fixed to zero. But this is problematic because the univariate 
priors on correlations can yield non-positive definite correlation matrices. The specific 
problem that occurs depends on the software package. For example, JAGS will stop as 
soon as it encounters a correlation matrix that is not positive definite. This means that 
univariate priors on correlations cannot often be used. On the other hand, Stan will 
report that a non-positive definite matrix was encountered, reject it, and continue sam
pling. We are left with univariate priors that are collectively constrained to be positive 
definite. If we consider only the space of positive definite correlation matrices under 
these priors, then the priors are usually more informative than we originally specified. 
That is, the prior distributions are opaque: the analyst specifies a set of priors that are 
different from the implied prior distributions, which must obey the constraint of positive 
definiteness.

Figure 1

Political Democracy Model, Structure of Residual Covariance Matrix With Free Parameters Marked by ×.
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model <- '
 # measurement model
  ind60 =˜ x1 + x2 + x3
  dem60 =˜ y1 + a*y2 + b*y3 + c*y4
  dem65 =˜ y5 + a*y6 + b*y7 + c*y8
 # regressions
  dem60 ˜ ind60
  dem65 ˜ ind60 + dem60
 # residual correlations
  y1 ˜˜ y5
  y2 ˜˜ y4 + y6
  y3 ˜˜ y7
  y4 ˜˜ y8
  y6 ˜˜ y8
'

How can we characterize the implied prior distributions? We could simply generate 
thousands of correlation matrices from the prior, then discard matrices that are not 
positive definite, then visualize what is left. As an example of this, we specified a 
Uniform(−1, 1) prior for each free correlation in Figure 1. We then generated 100,000 
correlation matrices with the desired structure, discarding the 57,818 matrices that were 
not positive definite. Finally, we examined the distributions of the remaining matrices, 
with a histogram for a single correlation parameter appearing in Figure 2. We see that 
the resulting distribution is no longer uniform; it is approximately symmetric around 0, 
with more density near 0 than near −1 or 1. This is because our uniform priors did not 
account for the fact that correlation matrices must be positive definite.
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Figure 2

Bollen Model, Implied Prior Distribution of a Single Correlation Parameter After Accounting for Positive Definite 
Constraints

Positive Definiteness
To technically describe the positive definite constraint here, we can simultaneously 
permute the rows and columns of the correlation matrix to obtain a block diagonal 
matrix. A block diagonal matrix is useful because the determinant of the full matrix is 
the product of determinants of each individual block within the matrix. This allows us to 
examine whether or not the full matrix is positive definite, by working with submatrices 
of smaller dimension.

The Cuthill-McKee algorithm (Cuthill & McKee, 1969) allows us to automatically find 
an appropriate, block-diagonal permutation. After carrying out this algorithm (via the 
netprioR package; Schmich, 2022) and permuting the rows and columns, we arrive at 
the matrix in Figure 3. This shows that, to keep the full matrix positive definite, we 
only need to worry about the 4 × 4 block in the lower right that involves y2, y4, y6, 
and y8. The priors on the (y3, y7) and (y1, y5) correlations have no influence on the 
positive definiteness of the full matrix, because a 2 × 2 matrix is positive definite for 
any correlation in ( − 1, 1), so that we can safely put a uniform prior on each of those 
correlations.

After applying traditional rules for computing matrix determinants, we can express 
the determinant of the 4 × 4 block of correlations as

det (R(4 × 4)) = 1 + (r1r4 − r2r3)2 − ∑
i = 1

4 ri2 . (1)

This shows analytically how the positive definite constraint of our correlation matrix 
influences our univariate priors. The univariate priors are collectively constrained by 
the requirement that Equation (1) be greater than 0. For MCMC algorithms that sample 
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the correlations individually, each correlation is impacted by the current values of the 
other correlations. For example, if the current values of r1, r2, and r3 are .9. .1, and .1, 
respectively, then r4 must be less than .9 in order to maintain a positive definite matrix. 
But if the first three correlations assume different values, then it would be possible to 
observe values of r4 above.9.

Implications for Bayes Factors
To show how this issue becomes problematic for applied work, we consider the calcula
tion of Bayes factors using the Bollen model. Imagine that we wish to know whether the 
two residual correlations involving y2 are necessary. To address this question, we could 
compute a Bayes factor comparing a model that includes those two residual correlations, 
to a model without those residual correlations. A computationally-cheap way to do 
this is the Savage-Dickey method (Dickey & Lientz, 1970; Wagenmakers et al., 2010). 
This involves comparing the prior distributions of the two residual covariances to their 
posterior distributions, focusing on the point at which those covariances equal 0.

The Savage-Dickey method is slightly more complicated than usual because the 
two residual correlations in question influence the possible values that other residual 
correlations can take (due to positive definiteness). This changes the prior distributions 
on other residual correlations, as we move from a model with the two focal correlations 
freed to a model with the two focal correlations fixed. Heck (2019) discusses that, in such 
a situation, we need to supply a correction term to the usual Savage-Dickey calculation 
that accounts for the change in prior distributions (also see Verdinelli & Wasserman, 
1995).

If we ignore (or do not realize) all of the above and set Uniform priors on each 
individual correlation, then the prior density of the two focal correlations at 0 equals 
0.25. This corresponds to a log-density of −1.39. In contrast, the true joint prior density 

Figure 3

Political Democracy Model, Structure of Permuted Correlation Matrix With Free Parameters Marked by ×.
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on the two correlations of the full model (with the two focal correlations free, respect
ing the positive definite constraint) can be approximated using the positive definite 
correlation matrices that we randomly generated earlier. This approximations involves 
a density estimation method from the ks package in R (Duong, 2022). Our approximate 
joint density at 0 is now 0.46, corresponding to a log-density of −0.78. And we have an 
additional correction term to account for the fact that the priors for the y4–y8 and for 
the y6–y8 correlations are impacted by whether or not the y2 residual correlations are 
fixed to 0.

These evaluations lead to two separate Bayes factors for the model with correlations, 
relative to the model without correlations. Using our incorrect priors that do not account 
for positive definite constraints, we obtain a log-Bayes factor of 4.66 in favor of the mod
el with correlations. Using our priors that do account for positive definite constraints, 
along with the correction from Heck (2019), we obtain a log-Bayes factor of 5.54 in 
favor of the model with correlations. Both of these Bayes factors provide support for the 
model with correlations, but possibly at different levels of evidence. For example, if we 
subscribe to the rules of thumb offered by Kass and Raftery (1995), then these two Bayes 
factors lead us to conclude “strong” evidence using the incorrect prior calculation, and 
“very strong” evidence using the correct calculation.

We agree with you, the reader, that these cutoffs are arbitrary and that the Bayes 
factors do not differ by very much. But the point is that the Bayes factor systematically 
differ depending on how we compute prior densities. These differences will sometimes 
lead to different substantive conclusions in practice, with the easier computation (i.e., 
ignoring the positive definite constraint) being incorrect.

Solutions
While it was straightforward to visualize implied prior distributions in the Bollen model, 
the process becomes inefficient for correlation matrices whose dimension is larger than 
3 or 4. For such correlation matrices, few of the randomly-generated matrices will be 
positive definite, and it will take a long time to obtain a sufficient number of positive 
definite matrices to describe the implied prior. Additionally, every unique structure of 
correlation matrix will have a unique positive definite constraint, similar to the one from 
Equation (1). So we desire more general solutions that do not involve random generation 
of correlation matrices. We describe three solutions below that differ in complexity and 
in the extent to which they fully solve the problem.

Informative Priors

The simplest, partial solution is to maintain the univariate priors on individual corre
lations, but make those priors informative around 0. For example, instead of placing 
Uniform priors on the correlations, we might use Beta distributed priors. The Beta 
distribution is typically defined for the interval (0, 1), but we can transform it so that 
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the interval ( − 1, 1) is supported (and note that the Uniform is a special case of the 
Beta). To make this distribution more informative around 0, we can increase the value 
of both shape hyperparameters, for example Beta(5, 5). The implied prior distributions 
will then be closer to what the user specifies, because these informative priors will 
more often lead to positive definite correlation matrices. But this is not a full solution 
because, even with informative priors, we may still encounter non-positive definite 
correlation matrices. And it is not straightforward to predict when or how often this will 
happen. Additionally, depending on one’s application, certain informative priors may be 
inappropriate.

Priors on Cholesky Decomposition

A more general solution to this problem comes from putting priors on the Cholesky 
decomposition of the correlation matrix, which is related to the Ghosh et al. (2021) 
approach for time series models. The Cholesky decomposition is advantageous because, 
to ensure that the correlation matrix stays positive definite, we only have to ensure that 
the diagonal elements of the Cholesky decomposition are positive.

For the Political Democracy model, the 4 × 4 covariance matrix from the bottom right 
corner of Figure 3 has a Cholesky decomposition with structure

c11
c21 c22
c31 −c21c31/c22 c33
0 c42 c43 c44

, (2)

where the entries {c11, c22, c33, c44} are constrained to be positive, while {c21, c31, c42, c43} are 
unconstrained. Additionally, the entry in row 3, column 2 is fully determined by other 
entries. If we place gamma priors (say) on the diagonal entries and normal priors on 
the remaining c variates, we can maintain the desired structure of the covariance matrix 
while also maintaining positive definiteness.

A disadvantage of this approach is that the entries of the Cholesky decomposition 
do not necessarily have intuitive interpretations, so that it is difficult to set informative 
priors. Each diagonal entry is related to the portion of the corresponding variable’s 
variance that cannot be accounted for by variables that occur further to the left of the 
matrix. Each off-diagonal entry is related to a partial correlation conditioned on variables 
further to the left of the matrix (see Joe, 2006; Lewandowski et al., 2009; Pourahmadi et 
al., 2007). This implies that the order of the variables matters. A further difficulty is that 
there does not appear to be an automatic way to obtain a Cholesky structure, like that of 
Equation (2), for arbitrarily-structured covariance matrices.
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Combining LKJ with Informative Priors

A final solution was recently described in a blog post by Martin (2021) and can be 
implemented in Stan. This solution involves use of a prior distribution that is the product 
of (i) a Lewandowski-Kurowicka-Joe (LKJ) prior (Lewandowski et al., 2009) on the full 
correlation matrix, and (ii) informative priors on individual entries of the correlation 
matrix. The resulting prior inherits the positive definiteness from (i) while also inheriting 
the informativeness from (ii). At the moment, it is not clear that this approach can 
be used to fix individual entries of the correlation matrix; instead, Martin (2021) recom
mends highly-informative priors around the fixed value that is desired (similar to the 
notion of “approximate zeros” in a factor loading matrix). The highly-informative priors 
may be sufficient to replace some hard constraints, but they may also sometimes cause 
problems with convergence of the MCMC chains.

Sign Indeterminacies
We now turn to a problem that is more specific to SEM: sign indeterminacies of loading 
parameters. It is well known that, if we change the signs of all loadings, the SEM 
likelihood (usually) stays the same. To avoid this issue, SEM software typically “prefers” 
positive loadings through various aspects of implementation. First, for both Bayesian 
and frequentist models, the loadings’ starting values are often set to positive numbers. 
Additionally, if a single loading is fixed for identification, it is almost always fixed to +1. 
This often leads other loadings towards positive values.

Especially when using software like JAGS or Stan, researchers commonly fix the 
latent variance to 1 and place truncated normal priors on the factor loadings, where the 
distributions are truncated from below at 0 (e.g., Curtis, 2010). This forces all loadings 
to be positive and resolves sign indeterminacies in the model. But this solution is prob
lematic because it does not allow for indicators with “bad” loadings (whose posterior 
distributions overlap with zero), and it does not allow for reversed indicators (whose 
valence is opposite that of other indicators). Peeters (2012) shows that, to achieve param
eter identification of the likelihood, only one loading per latent variable must be sign 
restricted (with the latent variance being fixed to 1). Thus, fixing the signs of all loadings 
is overly restrictive from a parameter identification standpoint.

When a single loading per factor is fixed to 1 for identification, we should not need 
to fix the signs of any other loadings. If we instead fix the latent variance to 1 for 
identification, then an improved solution (over fixing all signs to positive) is to employ 
relabeling algorithms (e.g., Erosheva & Curtis, 2017). Under this approach, we allow 
factor loadings to flip between positive and negative values during MCMC estimation. 
Then, after model estimation, we change the signs of loadings depending upon the signs 
of some focal loading parameters (and, if the model includes factor correlations or factor 
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regressions, we also may need to change those signs). This strategy leads to positive 
loading values, while allowing for the possibility that some loadings are negative.

The relabeling algorithms’ preferences for positive loadings can conflict with reseach
ers’ desires to use noninformative prior distributions for the loadings (say, Normal with 
a mean of 0 and a large variance). That is, the software’s preference for positive loadings 
conflicts with the noninformative prior distributions, which state that both positive and 
negative loadings are equally likely. More generally, factor loadings are influenced by 
the model identification constraints (e.g., Bollen et al., 2022). To set meaningful prior 
distributions on factor loadings, researchers need to consider the specific identification 
constraints that will be used.

Illustration
To illustrate the interaction between sign indeterminacy and prior distributions, it is 
sufficient to consider the usual confirmatory factor model that is fit to the Holzinger and 
Swineford (1939) data. We suspect that most people reading this far know the dataset, 
which contains scores on various tests of mental ability. We are focusing on the 3-factor 
model that is traditionally fit to the version of the data from lavaan (Rosseel, 2012), 
where each factor is associated with 3 observed variables.

The Holzinger-Swineford factor model has five types of model parameters: intercepts, 
loadings, factor standard deviations, factor correlations, and residual standard deviations. 
We assign true (“population”) values to all these parameters. Intercepts receive true 
values of 0, factor standard deviations receive true values of 1, factor correlations receive 
true values of 0, and residual standard deviations receive true values of 1. Finally and 
importantly, loadings receive true values of −1.

Using these true values, we generated a dataset of 1,000 observations and re-fit the 
3-factor model back to the data (where true values were treated as unknown). We used 
common, non-informative priors for the parameters of the estimated model, which are 
currently the defaults in blavaan (Merkle et al., 2021; Merkle & Rosseel, 2018).

Intercept ∼ N(0, 1000)
Loading ∼ N(0, 100)

Latent covariance matrix ∼ LKJ(1)
Residual SD ∼ Gamma(1, .5),

where the Normal distributions are parameterized with variances, and where the LKJ 
prior is placed on the entire latent covariance matrix at once and respects the positive 
definite constraints described earlier. To identify the model, we fixed each latent variance 
to 1. In this case, blavaan uses a relabeling algorithm to handle sign indeterminacy. The 
estimation had three chains, 500 warmup samples per chain, and 1,000 posterior samples 
per chain.

Opaque Priors 238

Methodology
2023, Vol. 19(3), 228–255
https://doi.org/10.5964/meth.11167

https://www.psychopen.eu/


The resulting posterior distributions of the loadings appear in Figure 4. These distri
butions are centered near +1, with the distributions being fully on the positive side 
of the space. So we have a situation where the true loading values were −1, we used 
noninformative priors that exhibit little influence on the posterior, and the posterior 
distributions of loading values are nowhere near the true values.

Figure 4

Estimated Posterior Distributions of Loadings, Holzinger-Swineford 3-Factor Model

At this point, readers might object that this just illustrates sign indeterminacy. And 
posterior inferences about factor loadings are not generally impacted here. But the exam
ple highlights that, for loadings, a noninformative prior centered at 0 usually ignores 
the identification constraint that was chosen. That is, when employing noninformative 
priors, we are usually attempting to say that we have no idea about the loadings’ values, 
or to avoid influencing the results of the model estimation. But the prior ignores the 
fact that (i) we typically fix a loading to be positive for identification, and (ii) observed 
variables are usually positively correlated, so that we can expect other loadings to be 
positive. So our original priors, which were intended to be noninformative, may actually 
state that an implausible part of the parameter space is plausible (also see Gelman et 
al., 2017; Seaman et al., 2012). Further, as mentioned earlier, the prior distribution of 
relabelled factor loadings generally differs from the prior distribution of un-relabelled 
factor loadings, which can impact post-estimation computations that rely on evaluation 
of the prior.
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Implications for MCMC Validation
Sign indeterminacy also complicates MCMC algorithm validation, which is used to 
ensure that MCMC samplers are working correctly. The MCMC validation process is 
difficult even without sign indeterminacy, because randomness is inherent in MCMC 
sampling. This means that we cannot simply examine whether the posterior means and 
standard deviations match other samplers to many decimal places. While it is possible 
to obtain analytic posterior distributions for certain models, analytic results are the 
exception instead of the rule for models estimated via MCMC.

Simulation-Based Calibration (SBC; Modrák et al., 2022; Talts et al., 2018) is an MCMC 
validation method that has received recent attention and implementation. Given a model 
of interest (including likelihood and priors), simulation-based calibration can be descri
bed in four steps:

1. Generate many sets of parameter values from the prior distribution.
2. For each set of parameters from Step 1, generate an artificial dataset.
3. Fit the model of interest to each artificial dataset from Step 2.
4. Examine whether the resulting posterior distributions look like the prior 

distribution.

If the MCMC sampler is working correctly, then the posteriors from Step 3 should 
look like the priors from which we started. We can graphically examine this idea by 
comparing the posterior means from Step 3 to the parameter values from Step 1; we 
should see an identity line when plotting the parameter values against the posterior 
means.

Using the same model from the previous section, we used the SBC package (Kim et 
al., 2022) to conduct simulation-based calibration under two sets of priors, with 1000 
simulated data sets each. Set 1 was exactly the same as the noninformative priors from 
the previous section. Set 2 was also similar to the previous section, differing only in the 
priors for the loadings: instead of Normal(0, 100), the priors for loadings were Normal(1, 
1/16) (where the second number is a variance). This is an informative prior reflecting the 
belief that all loadings should be similar to one another (recall that a single loading is 
being fixed to 1 for identification).

Results for the Set 1 and Set 2 priors are shown in Figure 5 and Figure 6, respectively. 
In both figures, the parameter values simulated from the prior are on the x-axis, and 
the posterior means estimated from the artificial data are on the y-axis. Each panel 
represents a factor loading (there are 6 free loadings in the model). Each point represents 
a replication, and “correct” MCMC algorithms should lead to points that are crowded 
around the blue diagonal line.

Figure 5 shows that, for noninformative priors on factor loadings, the points follow a 
V or an X pattern. The V pattern occurs for loadings that are constrained to be positive 
during estimation, while the X pattern occurs for the remaining loadings. This means 
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that the estimation algorithm often recovers the true parameter value, but it also often 
flips the sign of the parameter value. While this is not a problem if we realize the sign 
indeterminacy issue, it is easy to overlook in the context of simulation-based calibration. 
For example, typical SBC summaries involve cumulative distributions, which would lead 
us to conclude that there are problems with the MCMC algorithm, and which would not 
provide clear clues about sign indeterminacy. See Merkle et al. (2021) for some discussion 
of similar analyses.

Figure 6, on the other hand, is closer to what we would hope to see from a correct 
MCMC algorithm. In this figure, the points generally form a cloud around the blue diago
nal line, implying that the posterior means match the parameter values that generated 
the data (note that the axis limits have changed, as compared to the previous figure). The 
informative priors on factor loadings work similarly to use of truncated normal priors, 
where the signs of the loadings were generally restricted to be positive. But informative 
priors differ from the truncated normals in that they allow for the possibility of negative 
loadings.

Figure 5

Prior Parameter Values Versus Posterior Means for N(0,100) Priors on Loadings
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Solutions
If researchers are aware of how their software handles sign indeterminacy, then they can 
potentially avoid the issues described here and successfully employ noninformative prior 
distributions. Barring that, we advise researchers to explicitly consider the loadings’ 
expected signs when setting prior distributions. In many models, we expect that all the 
observed variables corresponding to a factor will have the same direction of relationship 
with that factor. Additionally, a single loading is often set to 1 for identification. In a 
situation like this, it is often reasonable to place priors on the free loadings that have a 
mean of 1 and a standard deviation of, say, .5. These priors look very informative at first 
glance, as compared to, say, a Normal prior with a mean of 0 and a variance of 10,000. 
But the suggested priors better represent what the researcher knows about the signs of 
the loadings, combined with the fact that some loadings are being fixed to 1.

Instead of fixing a single loading to 1 for identification, researchers may fix the latent 
variance to 1. In this case, as described by Peeters (2012), one loading per latent variable 
must be constrained to be positive (or negative) in order to achieve identification. If that 
loading has a Normal prior whose support includes the negative (positive) reals, then we 

Figure 6

Prior Parameter Values Versus Posterior Means for N(1, 1
16 ) Priors on Loadings
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again face a conflict where our stated prior is not the implied prior. The implied prior 
for the sign-constrained loading may become truncated normal or truncated t, depending 
on other details of the MCMC implementation (see Ghosh & Dunson, 2009), while the 
priors on remaining loadings are as stated. While a truncated distribution arises from 
the identification constraint here, we think that truncated priors on all loadings should 
be avoided, because they prevent the loadings’ posterior distributions from overlapping 
with zero. The relabeling strategies described by Erosheva and Curtis (2017) should be 
preferred.

There are alternative prior distributions that avoid the issue and/or that make it 
easier to specify informative prior distributions, though they are not readily available in 
popular software. Graves and Merkle (2022) studied prior distributions on ratios of factor 
loadings, as well as prior specification under effect coding (Little et al., 2006). Ratios of 
loadings avoid the sign-switching issue (e.g., the ratio of two negative loadings remains 
positive), and effect coding can make it easier to specify informative prior distributions. 
Additionally, in the case of exploratory factor analysis, Heaps (2022) recently proposed 
a prior distribution for the common factor covariance matrix. That is, factor analysis 
models typically imply a covariance matrix of the form ΛΛ′ + Ψ, where Λ is the factor 
loading matrix with many fewer columns than rows. Heaps (2022) proposes to place a 
matrix normal prior on ΛΛ′, which encodes researcher knowledge about shared variation 
in the observed variables. The term ΛΛ′ remains invariant across factor loadings’ signs 
and rotations, so it avoids the issues described here. The proposed priors can also 
shrink sets of loadings towards zero, which is similar to confirmatory factor analysis. It 
remains to be seen how this prior could be translated to more general SEMs, where the 
model-implied covariance matrix becomes more complex.

Order Constraints
Finally, we describe prior distributions for order-constrained parameters, which are com
monly seen in SEMs for ordinal variables with more than two categories. For these 
models, there exist threshold parameters that chop each underlying continuous variable 
into observed, ordered categories. The threshold parameters must be ordered so that they 
correspond to the ordering of the observed variables. For example, the lowest threshold 
chops off the lowest category, the second threshold chops off the bottom two categories, 
and so on.

The prior distributions for threshold parameters are often opaque, because the priors 
that researchers specify often have no order constraints. This is commonly done to 
improve the software’s ease of use: researchers are accustomed to setting univariate 
Normal priors on individual parameters, and the priors with order constraints typically 
do not have simple forms. But the software always imposes order constraints here, which 
changes the prior distribution in various manners. Researchers often do not realize 
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that anything happened, which may be especially problematic when setting informative 
priors.

Example
Say that a researcher fits a factor analysis model to a set of 4-category ordinal variables, 
and that she specifies a Normal(0,5) prior on all threshold parameters in the model. 
Because there are four categories per variable, we require three order-constrained thresh
olds per variable. We wish to know what these priors look like, after accounting for the 
order constraints.

We consider two ways that we could translate Normal(0,5) priors to three ordered 
parameters (also see Padgett et al., 2023). First, we could imagine drawing three sepa
rate variates from the normal distribution, then ordering the variates to obtain ordered 
thresholds. Second, we could imagine drawing the first (lowest) threshold from a Nor
mal(0,5), then adding a Lognormal(0,5) variate to that threshold in order to obtain the 
second threshold. Once we have obtained the second threshold, we could add another 
Lognormal variate to obtain the third threshold. Lognormal variables can only take 
positive values, so we are guaranteed to have an ordered set of thresholds under this 
approach.

For both of these translations, the threshold parameters’ prior distributions differ 
from the Normal(0,5) distribution that the researcher originally declared. We expand on 
this point below, separately for the two methods.

Reordering

When we draw three values from the Normal distribution and then order them, the act 
of ordering influences the resulting prior distributions. The specific distributions can 
be described via statistical theory on order statistics. For our example, the Normal(0,5) 
priors translate into the following probability density functions (pdfs) for individual 
thresholds:

p(g1) = 3 × ϕ(g1/5) × [1 − Φ(g1/5)]2

p(g2) = 6 × ϕ(g2/5) × Φ(g2/5) × [1 − Φ(g1/5)]
p(g3) = 3 × ϕ(g2/5) × Φ(g2/5)2,

where ϕ() is the standard normal pdf and Φ() is the standard normal cdf. These dis
tributions are visualized in Figure 7, with the Normal(0,5) distribution overlayed for 
comparison. The figure shows that the prior for the lower threshold (g1) is centered 
below 0, while the prior for the upper threshold (g3) is centered above 0. None of the 
three distributions matches the Normal(0,5), despite the fact that the researcher declared 
a Normal(0,5) prior for all three parameters.
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Figure 7

Priors of Threshold Parameters Whose Stated Priors are Normal(0,5), as Implied by Order Constraints

Lognormals

The blavaan package uses the lognormal approach mentioned previously. The Nor
mal(0,5) prior goes on the lowest threshold parameter per item. Then, Normal(0,5) priors 
are placed on log-differences between subsequent parameters. For example, considering 
the three thresholds from the example, we would have

g1 ∼ Normal(0, 5)
log(g2 − g1) ∼ Normal(0, 5)
log(g3 − g2) ∼ Normal(0, 5),

where we could alternatively say that the differences between thresholds follow Lognor
mal priors.

Just like the previous section, the above priors can be translated to priors on individu
al thresholds. It is obvious that the prior for g1 continues to be the stated prior, which 
is Normal(0,5). But the priors for g2 and g3 involve the sum of a normal distribution and 
Lognormal distribution(s). The resulting distributions can be written as

p(g2) = −∞

g2

ϕ((g1 − μ)/σ) × logN(g2 − g1, μ, σ)∂g1

p(g3) = −∞

g3

−∞

g2

ϕ((g1 − μ)/σ) × logN(g2 − g1, μ, σ) × logN(g3 − g2, μ, σ)∂g1∂g2,

where logN(x, μ, σ) is the density function of the Lognormal distribution with mean μ
and standard deviation σ (both on the log scale), evaluated at x.

While the priors for g2 and g3 do not have nice forms, we can numerically approxi
mate the integrals to visualize them. These distributions are shown in Figure 8, which is 
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arranged similarly to Figure 7. As stated before, the lowest threshold, g1, has the stated 
Normal(0,5) distribution. The peaks of the distributions of the remaining thresholds are 
closer to that of g1, as compared to the distributions in Figure 7. The distributions of 
g2 and g3 are also skewed to the right, reflecting the fact that we are adding a positive 
variate to the distribution of g1.

Figure 8

Priors of Threshold Parameters Whose Stated Priors are Normal(0,5), as Implied by Placing Priors on Log-
Differences

Solution
Unlike the previous issues with positive definite constraints and sign constraints, re
searchers do not have to consider changing their priors in order to address order 
constraints. The main solution is to be aware of the fact that, if one places univariate 
prior distributions on a set of order-constrained parameters, then some translation will 
take place to ensure that the parameters are ordered correctly. And this translation will 
influence the implied prior distribution of each parameter. It is worthwhile to understand 
how this is handled by one’s software, especially for prior predictive assessments, Bayes 
factor calculation, and simulation-based calibration methods.
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General Discussion
In this paper, we considered the idea of opaque prior distributions in Bayesian models 
with latent variables, where model estimation and prior specification interact to poten
tially yield unexpected results. The problem arises from the fact that software implemen
tations must respect various model constraints, while researchers’ prior specifications do 
not always respect the same constraints. This leads researchers to declare one set of prior 
distributions, which can imply a different set of prior distributions depending on the 
software implementation. The issue is particularly problematic for software verification, 
for comparing model results across different pieces of software, and for computing 
metrics that explictly involve evaluation of the prior distribution.

The three issues that we considered were (i) positive definite constraints on mod
el covariance matrices; (ii) sign indeterminacy and constraints used to identify model 
parameters (typically factor loadings); and (iii) order constraints on subsets of model pa
rameters (typically thresholds/intercepts). These issues occur with different frequencies, 
with (ii) and (iii) occurring more often than (i). To expand on this, issue (iii) occurs 
for most models that have ordinal variables with more than two categories, issue (ii) 
occurs for most measurement models (with free loadings), and issue (i) occurs for models 
with residual covariances, or other combinations of fixed and free covariances. We could 
have a worst-case scenario, such as a multiple group model with ordinal variables and 
across-group parameter constraints, where all three issues occur at once.

To avoid problems associated with opaque priors, we offer the following recommen
dations for practice:

1. If one’s model involves covariance matrices without parameter constraints, use a 
single prior for the full covariance (or correlation) matrix (LKJ, inverse Wishart, etc).

2. If one’s model involves a covariance matrix with parameter constraints, consider 
putting a prior on the Cholesky decomposition, or use matrix identities to see 
whether the full matrix can be broken into blocks that are easier to handle. If these 
are unavailable, use informative priors on the correlations that place more density 
close to 0.

3. For factor loadings, consider the expected direction of the relationship between each 
observed variable and the corresponding latent variable(s), along with the loading 
identification constraints. Use priors that place most density in this expected 
direction.

4. Be aware of how order constraints influence priors for thresholds, especially if one is 
doing model assessments that directly involve prior evaluation.

Out of these recommendations, the priors on constrained covariance matrices are most 
difficult to handle. Future work could make it easier for researchers to place reasonable 
priors on constrained covariance matrices.

Merkle, Ariyo, Winter, & Garnier-Villarreal 247

Methodology
2023, Vol. 19(3), 228–255
https://doi.org/10.5964/meth.11167

https://www.psychopen.eu/


Importantly, the issue of opaque priors does not mean that all results associated 
with affected models are wrong. In the presence of opaque priors, we can still obtain 
accurate posterior summaries, including model information criteria (like WAIC and LOO) 
and some fit indices (e.g., Garnier-Villarreal & Jorgensen, 2020). On the other hand, 
the prior distributions that researchers describe in their papers may be incorrect, as 
will prior predictive checks and other model summaries that directly rely on prior 
distribution evaluation, such as Bayes factors. Researchers should especially be careful 
about applying Bayes factor computation strategies (e.g., Gronau et al., 2020) to latent 
variable models, to ensure that they are evaluating the correct priors.

Opaque priors are vaguely similar to applied modeling of ordinal variables (e.g., 
Bürkner & Vuorre, 2019; Liddell & Kruschke, 2018), where researchers ignore the fact 
that they have ordinal variables, treat them as continuous, and sometimes obtain reason
able results. Similarly, researchers can ignore the fact that they have opaque priors, esti
mate their model, and sometimes obtain reasonable results. In both cases, it is difficult to 
predict exactly when the results will be reasonable and when they will not. And ignoring 
the issues do not make them disappear.

We conclude by considering that some non-Bayesian researchers may find this paper 
appealing, because they can use it to justify phrases like “Bayesian methods are difficult 
to use.” We agree that priors present extra complications that do not exist for other 
methods, but we find the extra complications to be worthwhile. In our experience, 
wrestling with prior distributions can lead to a deeper, more sober understanding of 
one’s model and how it interacts with data. This understanding might be achieved via 
other, non-Bayesian routes, but it will require the time and effort that Bayesians devote 
to prior distributions.
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