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Abstract

This survey article has two components. The first part gives a gentle

introduction to Serre’s notion of G-complete reducibility, where G is a

connected reductive algebraic group defined over an algebraically closed

field. The second part concerns consequences of this theory when G is

simple of exceptional type, specifically its role in elucidating the sub-

group structure of G. The latter subject has a history going back about

sixty years. We give an overview of what is known, up to the present

day. We also take the opportunity to offer several corrections to the

literature.
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Introduction

Let G be an affine algebraic group over an algebraically closed field k

of characteristic p ≥ 0. In this article we will only be interested in the

case that G is smooth, connected and reductive. Except in one or two

places, the subgroups of G encountered in this article will be smooth,

and thus we think of G as a variety as per [49], rather than adopting the

scheme-theoretic language of [84]. In any case, we may assume that G

is a subgroup of some general linear group defined by the vanishing of

some polynomials in the matrix entries—more specifically by a radical

ideal. Throughout, all vector spaces, representations and general linear

groups will be of finite dimension.

The idea of G-complete reducibility is due to J-P. Serre [101]. It gen-

eralises the property of a representation ρ : H → G = GL(V ) of a group

H being completely reducible, by restating the definition in terms of

the relationship between the subgroup ρ(H) ⊆ G and the parabolic sub-

groups of G. In this way, the same property can be formulated when G is

any connected reductive algebraic group and H is one of its subgroups.

The notion of G-complete reducibility appears in many unexpected

places, by virtue of the links it offers between representation theory,

group theory, algebraic geometry and geometric invariant theory. For

the purposes of this article, it offers the cleanest language to talk about

the subgroup structure of G.

Unless otherwise mentioned, we only consider closed subgroups of G—

those cut out from G by polynomial equations. A linear algebraic group

is unipotent if it is isomorphic to a subgroup of the upper unitriangular

matrices in GL(V ) for some V . As the rank of G grows, one sees that

it quickly becomes impossible to say very much about the unipotent

subgroups of G, in much the same way that finite p-groups become

unmanageable. The same problem arises when H is allowed to have a

non-trivial normal connected unipotent subgroup. Therefore we focus

on those subgroups H of G which do not contain a non-trivial normal

connected unipotent subgroup; in other words H is reductive. Reductive

subgroups are also interesting from a geometric perspective, as they are

precisely those subgroups H such that the coset space G/H is affine [93].

Next, a subgroup H ⊆ GL(V ) is the same thing as a faithful rep-

resentation of H. Since we do not want to consider the representation

theory of all finite groups, we will assume that H is connected. Further

still, a connected reductive group H takes the form H = D(H) · R(H)

where R(H) is a central torus of H and D(H) is the semisimple derived
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subgroup of H. It would be unenlightening to enumerate all tori in G

which commute with D(H), and so:

we assume that H is semisimple.

This is still not enough in general to attempt a classification, unless

p = 0. For, in positive characteristic a non-trivial semisimple group has a

rich theory of indecomposable modules and it seems hopeless to classify

all possibilities; therefore one cannot classify all the subgroups of GL(V )

with dimV unbounded.

On a more sanguine note: since irreducible representations of H are

classified by their highest weight, the completely reducible representa-

tions correspond to lists of such weights. If p = 0 then all representa-

tions are completely reducible and Weyl’s dimension formula gives the

dimensions of the irreducible factors, so listing semisimple subgroups of

G = GL(V ) reduces to straightforward combinatorics with roots sys-

tems and weights. In positive characteristic, understanding subgroups

acting completely reducibly means understanding the dimensions of ir-

reducible modules. This is a hard problem. The most recent progress on

this problem is due to Williamson and his collaborators—for example,

see [95]—but regrettably there is no clear description for the dimensions

of the irreducible H-modules in all characteristics, unless the rank of H

is small.

But now suppose that we bound the rank of G; more specifically take

G to be simple of exceptional type, so that the rank of G is at most

8. Then there is a realistic prospect of understanding the poset of con-

jugacy classes of semisimple subgroups of G in all characteristics: any

semisimple subgroup H ⊆ G also has rank at most 8.

Main Problem. Let G be a simple algebraic group of exceptional type.

Describe the poset of conjugacy classes of semisimple subgroups of G.

Such a project naturally divides along lines prescribed by G-complete

reducibility, which we explain in §1.4. With this in mind, our purpose is

twofold:

(i) We introduce G-complete reducibility and the links it provides be-

tween representation theory, geometric invariant theory and group

theory. We will be light on technical details, but aim to impart the

flavour of the techniques and the most important results.

(ii) We discuss the current state of affairs in describing semisimple sub-

groups of the exceptional algebraic groups. We start with a historical
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overview and then collate the principal results from across the liter-

ature. We also correct some errors and omissions that have arisen in

this study. Significantly, we update the table in [108]; see Table 2.3.

Prerequisite knowledge

This is an article about linear algebraic groups over algebraically closed

fields and so a healthy knowledge of such groups would be appropriate.

Most of the results here do not require a scheme-theoretic background,

and for these one of [49, 103, 17] would suffice. A particularly accessi-

ble overview of the theory surrounding parabolic subgroups, their Levi

factors and associated combinatorics can be found in [78]. Our use of

representation theory will not frequently stray far from the classifica-

tion of irreducible modules by highest weight, which can be found in

these same references. Occasionally a discussion of cohomology takes us

into the world of [55]; though we will typically content ourselves with

pointing out references to deeper material when appropriate. At points,

knowledge of the theory of finite-dimensional complex Lie algebras would

be helpful, as covered for example in [50, 39].

Notation

We will mostly introduce relevant notation as needed. Dynkin diagrams

and conventions on roots will be as in [22]. Actions will always be on the

left; thus conjugation will be written gh = ghg−1. In keeping with this,

a group G which decomposes into a semidirect product of a normal sub-

group N with a complement H will be written N ⋊H ∼= G = NH, since

then (n, h)(m, k) = (nhm,hk) maps to nhmhk under this isomorphism.

As mentioned, our algebraic groups are all varieties over algebraically

closed fields, and can be thought of as subgroups of an ambient group

GL(V ) for some finite-dimensional vector space V . The identity compo-

nent of an algebraic group G is denoted G◦, and G/G◦ is the (finite)

component group.

Structure of the paper

The structure of the paper is as follows. In Part I, §§1.1–1.2 motivate

the theory of G-complete reducibility as the natural generalisation of

the representation-theoretic notion. This includes a sufficient overview
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of reductive algebraic groups to state the fundamental definition (Defini-

tion 1.3) and discuss the most useful tools for our applications. In §1.4 we
describe a strategy for classifying subgroups of reductive groups, which

arises naturally from the dichotomy between subgroups of G which are

G-completely reducible, and those which are not.

In Part II we turn to the particular problem of understanding semisim-

ple subgroups of exceptional simple algebraic groups. We begin with a

brief historical overview of results in characteristic zero (essentially due

to Dynkin) and their translation to positive characteristic (largely due

to Seitz and his collaborators), before delving into the current state of

the art, and the application of the strategy described in Part I. Finally,

in §2.4 we discuss further ongoing research directions in the area.



Part I. G-complete reducibility

1.1 Complete reducibility

Almost the first result one encounters in group representation theory

is Maschke’s Theorem: Given a finite group H and a finite-dimensional

CH-module V , or equivalently a representation H → GL(V ), every H-

submodule (i.e. H-stable subspace) U ⊆ V admits an H-stable comple-

ment U ′, so that V ∼= U⊕U ′ asH-modules. The proof proceeds by taking

a vector-space direct sum V = U0⊕U and averaging the projection map

ϕ : V → V/U0 = U over H to form the H-module homomorphism

V → U, v 7→ 1

|H|
∑
h∈H

hϕ(h−1v)

whose kernel is then the required submodule U ′. An identical proof works

over any field k (in fact, over any commutative ring) in which the or-

der |H| is invertible, in particular Maschke’s theorem holds whenever

char k is sufficiently large relative to |H|. The analogous result (a con-

sequence of the Peter–Weyl theorem) holds for unitary representations

of connected compact topological groups, in particular for compact real

Lie groups. Further still, given a complex semisimple Lie group, its Lie

algebra is obtained by complexifying the (real) Lie algebra of a compact

real Lie group – and the finite-dimensional representations of all these

objects are essentially the same (this is Weyl’s unitarian trick [119, §5]∗).
For a direct approach to semisimple complex Lie algebras, one can also

follow [39, C.15].

These are some examples of module categories which are completely

reducible or semisimple. For a module of finite dimension over a field,

repeated decomposition into submodules expresses it as a direct sum of

∗ For an accessible overview in English, see [111]
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irreducible modules, i.e. non-zero modules having no proper, non-zero

submodules. So when all modules are completely reducible, understand-

ing the category amounts to understanding the irreducible modules.

Complete reducibility is certainly not ubiquitous, however. A common

example is the following representation of the group of integers under

addition:

Z → GL2(C); n 7→
(
1 n

0 1

)
,

whose image stabilises a unique 1-dimensional subspace, spanned by
(
1
0

)
,

which admits no complementary Z-submodule. Performing a reduction

modulo a prime p produces a cyclic group of order p acting on a mod-

ule over a field of characteristic p, which again fails to be completely

reducible.∗

This formulation of complete reducibility places the focus on the act-

ing group H. One could equally decide to fix the target of the represen-

tation and ask:

Given a finite-dimensional vector space V , for which subgroups H of G =
GL(V ) is V a completely reducible H-module?

This is now a question about the subgroup structure of G. It may also

be more tractable, since H is either trivial or has a faithful module of

dimension at most dimV , which puts limitations on H. Moreover, this

reformulation can be put in purely group-theoretic terms. Recall that a

parabolic subgroup P of GL(V ) is the stabiliser of a flag of subspaces

V = V0 ⊃ V1 ⊃ · · · ⊃ Vr = {0}.

(See for example [78, Proposition 12.13].) One sees from this that the

maximal (proper) parabolic subgroups are stabilisers of (proper, non-

zero) subspaces, so a subgroup H ⊆ GL(V ) acts irreducibly if and only

if H is contained in no proper parabolic subgroup, and H is completely

reducible if and only if: whenever H stabilises a flag of subspaces Vi as

above, H stabilises an opposite flag

V =W0 ⊃W1 ⊃ · · · ⊃Wr = {0}.

where V = Vi ⊕Wr−i as H-modules for all i. In other words, whenever

H is contained in a parabolic subgroup of GL(V ), it is also contained

in an opposite parabolic subgroup P− of G. The subgroup of P acting

∗ Note that the condition of Maschke’s theorem is violated, since the characteristic
p of the field divides |Z/p| = p.
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trivially on each quotient Vi/Vi+1 is upper unitriangular according to an

appropriate basis, and is therefore a unipotent group. Indeed this turns

out to be the largest normal connected unipotent subgroup of P , i.e. its

unipotent radical Ru(P ). The intersection L := P ∩ P− turns out to be

a reductive complement to Ru(P ) in P , in other words a Levi subgroup.

In GL(V ), if P corresponds to a flag as above then Levi subgroups of

P are stabilisers of vector-space direct-sum decompositions giving that

flag as intermediate sums. That is, a decomposition V = U1 ⊕ · · · ⊕ Ur,

where Vi = Ui+1 ⊕ Ui+2 ⊕ · · · ⊕ Ur for each i, corresponds to the Levi

factor GL(U1) × . . . × GL(Ur). By change of basis, one sees that Levi

subgroups of a fixed P are all conjugate (even by elements of Ru(P )), so

that a choice of basis in which the Vi and Wi are spanned by standard

basis vectors leads to the following picture:


∗ ∗ · · · ∗

0 ∗
. . .

...
...

. . .
. . . ∗

0 · · · 0 ∗


︸ ︷︷ ︸

P

∼=


In1 ∗ · · · ∗

0 In2

. . .
...

...
. . .

. . . ∗
0 · · · 0 Inr


︸ ︷︷ ︸

Ru(P )

⋊


∗ 0 · · · 0

0 ∗
. . .

...
...

. . .
. . . 0

0 · · · 0 ∗


︸ ︷︷ ︸

L

1.2 Reductive algebraic groups

The above discussion generalises at once to other groups with an ap-

propriate notion of parabolic subgroup and Levi subgroup; in particular

when G is a reductive algebraic group. The formal definition in this case

is that a subgroup P of G is parabolic if G/P is a projective variety.

However, a more useful characterisation for us can be given using the

structure theory of reductive groups, which we now outline.

Amongst connected linear algebraic groups, the simple objects are by

definition those which are non-abelian and have no non-trivial proper

connected normal subgroups. Such groups are determined up to isogeny—

i.e. a homomorphism with a finite kernel—by the algebraically closed

field k and one of the Dynkin diagrams below, which are divided into

those of classical type An (n ≥ 1), Bn (n ≥ 2), Cn (n ≥ 3), Dn (n ≥ 4),

and those of exceptional type E6, E7, E8, F4 or G2.
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An

1 2 3 n− 1 n

Bn

1 2 n− 1 n

Cn

1 2 n− 1 n

Dn

1 2
n− 2

n− 1

n

En

(n = 6, 7, 8)
1

2

3 4 5 n

F4

1 2 3 4

G2

1 2

We also need to mention the additive group of the field k, often denoted

Ga, and the multiplicative group k∗, denoted Gm. Since our groups are

varieties over an algebraically closed field, it follows that groups with

a subnormal series whose successive quotients are all Ga coincide with

connected unipotent groups. Similarly, linear algebraic groups with a

composition series whose quotients are isomorphic to Gm are precisely

direct products Gr
m for some r, and are called tori. It is then a theo-

rem that a a connected soluble linear algebraic group is the semidirect

product of a connected unipotent group and a torus.

Tori play an important role in the structure theory of reductive groups.

All maximal tori in a linear algebraic group are conjugate to one another,

and their dimension is called the rank of the group. This is the number n

of nodes in the Dynkin diagram when G is simple. For a maximal torus

T of G, we let W (G) = NG(T )/T be the Weyl group of G with respect

to T .

The simply-connected groups of type An–Dn are respectively SLn+1,

Spin2n+1, Sp2n and Spin2n, and from these one obtains the others as
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quotients with finite kernels. For our purposes there is often no harm

in working with SLn+1, SOn and Sp2n which have more accessible de-

scriptions in terms of the natural module and its quadratic or symplectic

form.

A linear algebraic group G contains a unique maximal connected nor-

mal soluble subgroup R(G), the radical of G, containing the unique

maximal connected normal unipotent subgroup Ru(G) of G, the unipo-

tent radical. Then G is called:

· reductive if Ru(G) is trivial; this is equivalent to G
◦ being an almost-

direct product∗ of simple algebraic groups and a torus.

· semisimple if G is connected and R(G) is trivial; this is equivalent to

G being an almost-direct product of simple algebraic groups.

For any linear algebraic group G, the quotient G/Ru(G) is reductive

and if G is connected then G/R(G) is semisimple.

From now on letG be connected. We are interested in finite-dimensional

rational representations of G, which can be identified with homomor-

phisms G → GL(V ) of algebraic groups. One easy case to describe is

when G = Gm. The irreducible representations of Gm are 1-dimensional;

if V = ⟨v⟩ is one such, then x · v = xrv for some r ∈ Z and so corre-

sponds with a homomorphism x 7→ xr of Gm to Gm. Even better, Gm

always acts completely reducibly, so that a representation up to isomor-

phism is identified with a list of integers. More generally if G = T is a

torus T ∼= Gm × · · · × Gm, then an irreducible representation V is still

1-dimensional, determined up to isomorphism by the action

(x1, . . . , xs) · v = xr11 · · ·xrss v,

which identifies with an element λ ∈ Hom(T,Gm) =: X(T ); then λ

is called a weight of T . (We often identify λ with the corresponding

1-dimensional representation.) Since T acts completely reducibly, a rep-

resentation for T is simply a list of its weights.

Taking inspiration from the theory of Lie groups, one can construct

a Lie algebra g = Lie(G) from G which affords a representation of G

through an adjoint action. Since maximal tori in G are conjugate, the

collection of weights of a maximal torus T on Lie(G) does not depend

on the choice of T . The zero weight-space is Lie(T ), and when G is

reductive, the non-zero weights are called roots and form the root system

which is denoted Φ = Φ(G,T ). Also by the conjugacy of maximal tori,

∗ commuting product of normal subgroups, with pairwise finite intersections
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the isomorphism type of the Weyl group W (G) is independent of T , and

W (G) acts naturally on X(T ) and Φ(G,T ).

A reductive group G has a maximal connected soluble subgroup B

called a Borel subgroup which by Borel’s fixed point theorem is unique

up to conjugacy in G. This decomposes as B = US, where U = Ru(B)

is a maximal connected unipotent subgroup of G, and S is a maximal

torus of G. When S = T ⊆ B, the set of roots Φ(B, T ) contains exactly

half the elements of Φ(G,T ) and defines a positive system Φ+ ⊂ Φ.

Moreover, Φ has a base of simple roots ∆: a minimal subset of Φ+ from

which all elements of Φ+ are obtained as non-negative integer sums. We

call |∆| the semisimple rank of G. One can define a scalar product (the

Killing form) on the R-linear span of the roots; the Dynkin diagram of

G then encodes the resulting lengths and relative angles of the simple

roots.

Within X(T ) we single out the dominant weights, X(T )+, which

are those having non-negative inner product with each positive root.

If λ ∈ X(T )+ then we identify λ with the corresponding 1-dimensional

T -module. Composing with the map B → B/U ∼= T , we get a B-module

λ. One can define an induced module H0(λ) := IndGB(λ) in the category

of rational G-modules. Since G/B is projective, this module has finite

dimension, and can be viewed as a reduction modulo p of the irreducible

module LC(λ) for the complex Lie algebra gC, so the weights of IndGB(λ)

are given by Weyl’s character formula. If we define L(λ) to be the socle

of IndGB(λ) then it turns out to be simple, with λ as its highest weight.

These turn out to be all the irreducible modules: [55, II.2.4].∗

Parabolic subgroups P of G can now be characterised as follows: P is

any subgroup containing a Borel subgroup. Fixing B ⊆ P it turns out

that Φ(P, T ) is an enlargement of Φ(B, T ) obtained by a suitable choice

of simple roots ∆′ ⊆ ∆ and taking the smallest additively-closed subset

of Φ(G,T ) containing Φ(B, T ) and −∆′. If r is the semisimple rank

of G, then there are 2r non-conjugate parabolic subgroups containing

a given Borel subgroup B; these correspond to the possible subsets of

nodes in the Dynkin diagram. The remaining parabolic subgroups are

all conjugate to one of these under the action of G.

Just as we saw in GL(V ), a parabolic subgroup admits a Levi decom-

position P = Ru(P ) ⋊ L, where L is a reductive group called a Levi

subgroup of P ; all such Levi subgroups are conjugate by elements of

Ru(P ). If one insists that T ⊆ L then L is unique, and the Levi decom-

∗ Another reduction modulo p gives the Weyl module V (λ), which has L(λ) as its
head.
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position can be seen at the level of roots. If P corresponds to ∆′ then

the roots arising as sums of roots contained in ∆′ ∪ −∆′ give those of

Φ(L, T ); their complement in Φ(P, T ) are the roots in Ru(P ).

Example 1.1. Let G be simple of type F4. Elementary root system

combinatorics (see e.g. [51, §2.10]) tell us that G has 48 roots (hence

24 positive roots). If we pick the two middle nodes of the Dynkin di-

agram of G (cf. page 7), the corresponding roots and their negatives

generate a subsystem of type B2, which has 8 roots. So in the corre-

sponding parabolic subgroup P = Ru(P )L of G, the derived subgroup

of L will be simple of type B2, which has dimension 10 (8 roots, plus

a 2-dimensional maximal torus). The connected centre of L will be a

2-dimensional torus since L contains a maximal torus of G, which has

rank 4. Finally, counting positive roots in G and L, the unipotent radical

Ru(P ) has dimension 24− 4 = 20.

In fact, much of the structure of Ru(P ) as an L-group can also be

quickly deduced from the root system. We will return to this in §1.4.3.

The following result [18, Theorem 2.5] is fundamental in our study

and will henceforth be called the Borel–Tits theorem.

Theorem 1.2 (Borel–Tits). Let G be a connected reductive algebraic

group, and let X be a unipotent subgroup of G. Then there exists a

(canonically-defined) parabolic subgroup P of G such that X ⊆ Ru(P ).

This implies in particular that a maximal subgroup of a reductive

group G is either reductive or parabolic. And a maximal connected sub-

group of a semisimple group G is either semisimple or parabolic.

1.3 G-complete reducibility

At last, we come to the central definition.

Definition 1.3 ([101, p. 19], [102, §3.2.1]). Let G be a connected re-

ductive algebraic group over the algebraically closed field k.

A subgroupH ofG is calledG-completely reducible (G-cr) if, whenever

H is contained in a parabolic subgroup P of G, there exists a Levi

subgroup L of P with H ⊆ L. Similarly, H is called G-irreducible (G-irr)

if H is contained in no proper parabolic subgroup of G; it is G-reducible

if it is not G-irr. Lastly H is G-indecomposable if H is in no proper Levi

subgroup of G and G-decomposable otherwise.
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Remarks 1.4.

(i) An abstract subgroup H of G and its Zariski closure are contained

in precisely the same closed subgroups of G, in particular, the same

parabolic subgroups and Levi subgroups thereof. Therefore H is G-cr

if and only if its Zariski closure is, so it does no harm to work only

with closed subgroups.

(ii) For disconnected groups G, one can define R-parabolic and R-Levi

subgroups of G in terms of limits of certain morphisms. These coincide

with parabolic and Levi subgroups when G is connected, hence G-

complete reducibility and many results here generalise to disconnected

groups. A full discussion is beyond the scope of this article; we direct

the reader to [11, §6] for a thorough overview.

Many general results in the representation theory of groups can be

viewed as cases of statements about G-complete reducibility, when G is

specialised to GL(V ). We now collect some of these.

1.3.1 Characteristic criteria for complete reducibility

Jantzen proved in [54] that if H is connected reductive and V is an H-

module with dimV ≤ p then V is completely reducible; this bound was

improved by McNinch in [80]. A more general statement is:

Theorem 1.5. Let G be a connected reductive algebraic group over k

of characteristic p ≥ 0 and let H be a connected subgroup of G. If H is

G-cr then H is reductive. Conversely, if H is reductive and either p = 0

or p is greater than the ranks of all simple factors of G, then H is G-cr.

The implication ‘G-cr ⇒ reductive’ follows from the Borel–Tits theo-

rem: one can construct a parabolic subgroup P containing H such that

Ru(H) ⊆ Ru(P ). Thus if Ru(H) is non-trivial then H is in no Levi

subgroup of P .

The ‘reductive ⇒ G-cr’ direction can be deduced from Jantzen’s or

McNinch’s result if G is simple and classical. The exceptional case, tack-

led in [63], relies on a careful study of the 1-cohomology arising from the

conjugation action of subgroups of parabolics on unipotent radicals. We

discuss this technique in more detail in §2.3, where we explain how one

can find non-G-cr subgroups, when they exist.

Given the result for G simple, the general case follows in short or-

der, since parabolic subgroups and Levi subgroups in G are commuting
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products of the central torus Z(G)◦ with parabolic and Levi subgroups

of the simple factors of G.

One of Serre’s initial motivations for studying G-complete reducibility

was in studying complete reducibility of representations. Specifically, the

starting point for Serre’s lectures [101] is the observation of Chevalley

[26] that in characteristic 0, tensor products of completely reducible

modules for an arbitrary group are again completely reducible. This

fails in positive characteristic, however Serre observed [99] that it does

hold when the characteristic is large relative to the dimension of the

modules in question, and he then began asking questions of the form: If

a tensor product (or symmetric power, or alternating power) of modules

is completely reducible, must the initial module(s) also be completely

reducible? Or conversely? The answer [100] depends naturally on certain

congruence conditions on the characteristic. See §2.4.1 for more on this.

In a related vein, in [102, §5.2], for a reductive group G with a finite-

dimensional G-module V , Serre defines an invariant n(V ) in terms of

the weights of G on V ; he then proves that if the characteristic is larger

than n(V ) and the identity component of the kernel of G→ GL(V ) is a

torus, then H ⊆ G is G-cr if and only if V is a completely reducible H-

module [102, Theorem 5.4]. Thus in sufficiently large characteristic, G-

complete reducibility can indeed be detected on the level of G-modules.

If V = Lie(G) is the adjoint module then n(V ) = 2hG − 2, where hG is

the Coxeter number of G. Note that this bound is typically much larger

than that given in Theorem 1.5.

1.3.2 Equivalence with strong reductivity

A major result in complete reducibility generalises the idea that a com-

pletely reducible module is the direct sum of a unique list of simple ones.

In place of the simple summands of a module, the focus is on the Levi

subgroup stabilising the decomposition.

Theorem 1.6 ([11, Corollary 3.5]). For a subgroup H of a connected

reductive algebraic group G, the following are equivalent.

(i) H is G-cr;

(ii) H is CG(S)-irr for some maximal torus S of CG(H);

(iii) for every parabolic subgroup P of G which is minimal with respect to

containing H, the subgroup H is L-irr for some Levi subgroup L of P ;

(iv) there exists a parabolic subgroup P of G which is minimal with respect

to containing H, such that H is L-irr for some Levi subgroup L of P .
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In the prototype setting G = GL(V ), if V = V1 ⊕ · · · ⊕ Vr is a decom-

position of V into irreducible H-modules then the torus S in (ii) consists

of all elements inducing scalars on each summands Vi, and CG(S) is the

direct product of the subgroups GL(Vi).

Remark 1.7. Levi subgroups of G are precisely the centralisers of sub-

tori of G, and moreover all maximal tori in any linear algebraic group

are conjugates of one another. In particular all maximal tori of CG(H)

are CG(H)-conjugate, and it follows that their centralisers, which are

those Levi subgroups of G that are minimal subject to containing H,

are also conjugate to one another by elements of CG(H), and the ranks

of their centres equal the rank of CG(H). For the same reason, if H is

CG(S)-irr for some maximal torus S of CG(H), it is in fact CG(S)-irr

for all such S.

Subgroups satisfying (ii) in Theorem 1.6 were termed strongly reduc-

tive by Richardson [94, Def. 16.1]. Richardson studied strongly reductive

subgroups from a geometric viewpoint, centred around the following re-

sult.

Theorem 1.8 ([94, §16]). Suppose that H is the Zariski closure of a

finitely-generated subgroup ⟨h1, . . . , hn⟩ of G. Then H is G-cr (resp. G-

irr) if and only if the orbit G·(h1, . . . , hn) is Zariski closed in Gn (resp. a

stable point of Gn).

Remarks 1.9.

(i) This theorem is a lynchpin of the results in [11] and subsequent work.

It relies on some geometry and geometric invariant theory which we

omit; we direct the reader to [94] and [11].

(ii) In geometric invariant theory, a stable point of a G-variety is a point

whose G-orbit is closed and whose stabiliser is a finite extension of

the kernel of the action. Thus when G acts on Gn by simultaneous

conjugation, a stable point is one whose orbit is closed and whose

centraliser is a finite extension of the centre Z(G).

(iii) One can drop the hypothesis that H is the closure of a finitely gen-

erated subgroup—one need only pick a sufficiently large n-tuple so

that H and the elements of the n-tuple generate the same associative

subalgebra of End(V ) for some faithful representation G → GL(V );

this is always possible for dimension reasons. Such an n-tuple is called

a generic tuple [10, Def. 2.5].
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A highlight of what can be proved through this approach is the fol-

lowing theorem.

Theorem 1.10 ([11]). Let G be a connected reductive algebraic group

and H be a G-cr subgroup of G.

(i) If N ◁H then N is G-cr.

(ii) The subgroups NG(H) and CG(H) are G-cr. More generally, if K is

a subgroup of G with

HCG(H)◦ ⊆ K ⊆ NG(H),

then K is G-cr.

In particular, a subgroup X ⊆ G is G-cr if and only if NG(X) is G-cr.

Part (i) generalises Clifford’s theorem in representation theory: a com-

pletely reducible module for a group remains completely reducible upon

restriction to a normal subgroup. Part (ii) gives a converse to this, and

inspires the following question:

If H is a commuting product H = AB, where A and B are G-cr, must H also
be G-cr?

By (ii) the answer is yes if A = CG(B) and B = CG(A). The answer is

also positive when the characteristic is large enough:

Theorem 1.11 ([12, Theorem 1.3]). Let G be a connected reductive

algebraic group in characteristic p ≥ 0 and let A and B be commuting

G-cr subgroups of G such that either p = 0; or p > 3; or p = 3 and G

has no simple factors of exceptional type. Then AB is also G-cr.

The proof in [12] involves some case-by-case arguments depending on

the Lie type of G, although a uniform argument is also possible if one is

willing to relax the bound on the characteristic [83, Proposition. 40].

Remark 1.12. To date, the authors are not aware of a reductive group

G and a pair of commuting G-cr subgroups A and B (connected or

otherwise) whose product AB is non-G-cr when p = 3. It is therefore

plausible that the above theorem holds whenever p ̸= 2. Such examples

do however exist when p = 2, cf. [12, Ex. 5.3].

One powerful feature of G-complete reducibility is that one can allow

the group G to change under various constructions. For instance, in [11]

it is shown that if G = G1 ×G2 is a direct product of reductive groups

then H ⊆ G is G-cr or G-irr if and only if both images under projection

to a factor Gi are Gi-cr (resp. Gi-irr). Similarly, taking a quotient by a
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normal subgroup N sends G-cr subgroups to (G/N)-cr subgroups, and

the converse also holds if N◦ is a torus.

The following result is useful in what follows. Recall that a linear alge-

braic group S is called linearly reductive if all its rational representations

are completely reducible. In characteristic 0 this is equivalent to S be-

ing reductive, whereas in positive characteristic this means that S◦ is a

torus and the order of the finite group |S/S◦| is coprime to p.

Theorem 1.13 ([11, Lemma 2.6, Corollary 3.21]). Let S be a linearly

reductive subgroup of a connected reductive algebraic group G. Then S

is G-cr, and if H = CG(S)
◦ then a subgroup of H is H-cr if and only if

it is G-cr.

In the particular case that S is a torus, CG(S) is a Levi subgroup of G

and the result in this case was first proved in [102, Proposition 3.2]; this

forms part of the proof of Theorem 1.6. The following corollary justifies

our focus on semisimple subgroups:

Corollary 1.14. Let G be connected reductive, H a subgroup of G and

S a subgroup of CG(H). Then H is G-cr if and only if HS is G-cr. In

particular, a connected reductive subgroup H of G is G-cr if and only if

its (semisimple) derived subgroup D(H) is G-cr.

Proof In characteristic 0, the subgroup H is G-cr if and only if it is

reductive (Theorem 1.5), which is the case if and only if HS is reductive.

In positive characteristic, using Theorem 1.13 we can replace G with

CG(S)
◦ so that S is central in G. Since S◦ is a torus, by the above

discussion the subgroups H and HS are each G-cr if and only if HS/S

is (G/S)-cr.

1.3.3 Separability, reductive pairs

A subgroup H of G is called separable if the Lie algebra Lie(CG(H))

coincides with the fixed-point space CLie(G)(H); the latter always con-

tains the former but can in general be larger.∗ If h ∈ Gn is a topological

generating tuple (or generic tuple) for H, and G acts on Gn by simulta-

neous conjugation, the statement is also equivalent to saying the orbit

map G → G · h is a separable morphism [17, Proposition 6.7], whence

the terminology. In GL(V ), all closed subgroups are separable, cf. [45,

Lemma 3.5]. For a general reductive group G, non-separable subgroups

∗ In scheme-theoretic language, this is equivalent to the centraliser CG(H) being a
smooth subgroup scheme of G.
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are always a low-characteristic phenomenon. Indeed, the main result of

[45] shows that the statement “all closed subgroups are separable” holds

if and only if the characteristic is 0 or pretty good for G. The latter is a

very mild condition - see [45, Definition 2.11] for the precise definition.

For instance if G is simple of exceptional type then a prime p is pretty

good for G unless p = 2 or 3, or G = E8 and p = 5.

Next, a pair (G,H) of reductive groups with H ⊆ G is called a re-

ductive pair [92] if Lie(H) is an H-module direct summand of Lie(G).∗

Again, (G,H) is always a reductive pair if the underlying characteris-

tic is large relative to G (for instance Lie(G) is a completely reducible

module for all reductive subgroups in sufficiently large characteristic).

The application of these two concepts to complete reducibility is now

as follows.

Theorem 1.15 ([11, Theorem 3.35, Corollary 3.36]). Let (G,M) be a

reductive pair and let H be a separable subgroup of G which is contained

in M . If H is G-cr then H is M -cr.

In particular, if (GL(V ),M) is a reductive pair and H ⊆ M acts

completely reducibly on V , then H is M -cr.

The proof in op. cit. is geometric, following [92]. If H corresponds to

(h1, . . . , hn) ∈ Gn, that is, if this is a generic tuple for H or if H is the

closure of ⟨h1, . . . , hn⟩, then under the given hypotheses it is shown that

the G-orbit O = G · h under simultaneous conjugacy splits into finitely

many Zariski-closed M -orbits in O ∩Mn. So if O is closed in Gn, then

the M -orbits on O ∩Mn are closed in Mn, which in turn implies that

H is M -cr.

1.3.4 G-complete reducibility in classical groups

In this section, we write G = Cl(V ) to mean that G is one of the groups

SL(V ), Sp(V ) or SO(V ), where V carries either the zero form or a non-

degenerate alternating or quadratic form, respectively. Then parabolic

subgroups of G are the stabilisers of flags of subspaces where the relevant

form vanishes, i.e. totally isotropic and totally singular subspaces (re-

spectively) when the form is non-degenerate, cf. [78, Proposition 12.13].

When the form is non-degenerate, two parabolic subgroups correspond-

ing to flags (Vi)i=1,...,r and (Wi)i=1,...,s are opposite if r = s and V is an

orthogonal direct sum Vi ⊥W⊥
i for each i, where W⊥

i is the annihilator

∗ While [92] introduces this only for connected groups, the concept and results
apply equally well for disconnected subgroups.
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of Wi relative to the alternating or quadratic form on V . Thus sufficient

understanding of the action of H on V tells us whether or not H is G-cr.

When G = SL(V ) we have seen that a subgroup of G is G-cr if and

only if it is completely reducible on V . By Theorem 1.13 this also holds

for classical groups G = Cl(V ) in characteristic not 2, since G is then

the centraliser in SL(V ) of an involutory outer automorphism.∗ In this

case, classifying all G-cr semisimple subgroups of G = Cl(V ) amounts to

understanding the dimensions and Frobenius–Schur indicators of all irre-

ducible modules of dimension at most dimV , for all semisimple groups.

The condition char k = p ̸= 2 is necessary to make these assertions.

If p ̸= 2 then recall that a quadratic form q gives rise to a symmetric

bilinear form B on V via

B(v, w) :=
1

2
(q(v + w)− q(v)− q(w)) ,

and q can be recovered from B via q(x) = B(x, x). If p = 2 then

B(v, w) := q(v + w) − q(v) − q(w) defines a symmetric bilinear form,

but B(x, x) = 0 so q can no longer be recovered. If B is non-degenerate

and B(v, w) ̸= 0 then B is also non-degenerate on ⟨v, w⟩⊥ and V must

have even dimension. Thus the bilinear form on the natural module for

SO2n+1 has a 1-dimensional radical, spanned by a non-singular vector

for q. For convenience, define the natural irreducible module for Cl(V ) to

be the largest non-trivial irreducible quotient of V ; this is V itself unless

p = 2 and G = SO(V ) ∼= SO2n+1, in which case it is the 2n-dimensional

quotient by the radical of the bilinear form.

The following example is attributed to M. Liebeck in [11, Example

3.45].

Example 1.16. Let char k = 2 and let H be a group preserving a

symplectic (resp. orthogonal) form on an irreducible module W . Let

V = W ⊥ W be an orthogonal direct sum. Then V has a unique non-

zero totally isotropic (resp. totally singular) H-submodule. Thus H is

GL(V )-cr but not Cl(V )-cr.

Proof By Schur’s lemma, each proper non-zero H-submodule of V is

the image of a diagonal embedding W → V by w 7→ (aw, bw) for [a :

b] ∈ P1(k). If B is an H-invariant non-degenerate alternating form onW

then B((aw, bw), (au, bu)) = (a2 + b2)B(w, u) = (a+ b)2B(w, u). This is

zero if and only if a = b. The orthogonal case is similar.

∗ As an alternative proof, when p ̸= 2 one can show that (GL(V ), G) is a reductive
pair; and since every subgroup is separable in GL(V ), Theorem 1.15 tells us that
every GL(V )-cr subgroup of G is G-cr.
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1.3.5 G-irreducibility in classical groups

By the characterisation of parabolic subgroups above, a subgroup of

G = Cl(V ) is G-irr if and only if it preserves no proper non-zero totally

isotropic (or totally singular) subspace. In more detail:

Proposition 1.17. Let G be a simple algebraic group of classical type

with V the natural irreducible G-module, and let H be a subgroup of G.

Then H is G-irr if and only if one of the following holds:

(i) G has type An and V is an irreducible H-module;

(ii) G has type Bn, Cn or Dn and V = V1 ⊥ . . . ⊥ Vk as H-modules, where

the Vi are non-degenerate, irreducible and pairwise inequivalent;

(iii) p = 2, G has type Dn and H fixes a non-singular vector v ∈ V ,

such that H is Gv-irr in the point stabiliser Gv and does not lie in a

subgroup of Gv of type Dn−1.

(See [75, Proposition 3.1] for a full proof.)

Remarks 1.18.

(a) In case (iii), the bilinear form preserved by G ∼= SO2n is alternating

when char k = 2, hence every 1-space is isotropic. Now Gv preserves

the space ⟨v⟩⊥ of codimension 1 in V , and as v is nonsingular, q is

non-degenerate on this space, so Gv
∼= SO2n−1 is simple of type Bn−1.

For more details, see for instance [57, Proposition 4.1.7].

(b) This proposition can be applied to any simple group of type A–D,

such as PSp2n or the half-spin groups of type Dn. For if G is simple

and classical then G is related to some Cl(V ) by a quotient or an

extension by a finite central subgroup—or if G is a half-spin group,

then one of each∗. If Z is such a finite central subgroup then as G is

connected and reductive, Z is contained in all maximal tori, hence in

all parabolic subgroups. It follows that a subgroup H of G is G-irr if

and only if its preimage HZ or quotient HZ/Z is G-irr. Furthermore

if char k = 2 then taking the quotient by the 1-dimensional radical of

the bilinear form induces an exceptional isogeny ψ : SO2n+1 → Sp2n
(more details on p. 23). In this case, ψ is bijective and it follows that

H ⊆ SO2n+1 is SO2n+1-cr if and only if ψ(H) is Sp2n-cr.

∗ In characteristic 2 or if G has type An with p | n+ 1, one must work with central
subgroup schemes, since the possibilities for G can be isomorphic as abstract
groups. However, this does not impact our discussion here.
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1.4 A strategy for classifying semisimple subgroups

We remind the reader that we wish to tackle the following:

Main Problem. Let G be a simple algebraic group of exceptional type.

Describe the poset of conjugacy classes of semisimple subgroups of G.

Just as in representation theory, where one may begin by studying irre-

ducible modules for a given object (immediately yielding the completely

reducible modules) and then considering extensions, one can stratify the

search for subgroups of G, beginning with G-cr subgroups and building

up from these to non-G-cr subgroups.

Suppose that we know the maximal connected subgroups of simple

groups up to a certain rank (such as 8), and let G be one of these simple

groups. Let H ⊆ G be semisimple and let M be a maximal connected

subgroup of G containing H. If M is reductive then M = D(M) ·Z(M)

and since H is perfect, we have H ⊆ D(M). Since D(M) is a central

product of simple groups of smaller dimension, we hope to know H by

induction on the dimension. The problem is that one may have H ⊂M

whereM is not reductive; this meansM = P is a parabolic subgroup by

the Borel–Tits theorem. So we would also like to know the semisimple

subgroups of P = QL. Since L is reductive of the same rank as G

we may again assume that we know its semisimple subgroups. But it

remains to find those semisimple subgroups of P which are not conjugate

to subgroups of L; in other words, the non-G-cr subgroups. Of course,

Theorem 1.5 tells us that such subgroups do not exist if char k is 0 or

large enough relative to the root system of G.

1.4.1 G-cr subgroups

To start, we need to know the G-conjugacy classes of G-cr semisimple

subgroups of G. Theorem 1.6 reduces our task to finding those which

are L-irr, as L varies over all Levi subgroups of G. Let {L1, . . . , Ls}
be a complete list of representatives of the G-conjugacy classes of Levi

subgroups. Then we can find all conjugacy classes of semisimple G-cr

subgroups at least once, by listing the Li-conjugacy classes of Li-irr

subgroups. The full analogue of the Jordan–Hölder theorem given below

says that this will give each G-class of G-cr subgroups exactly once. It

can be proven in various ways (cf. [25, Propositions 2.8.2, 2.8.3]) but the

cleanest is via geometric invariant theory [13, Theorem 5.8].

Lemma 1.19. Let H be a subgroup of the connected reductive group G,
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let P be minimal amongst parabolic subgroups of G containing H and

let π : P → P/Ru(P ) = L be the natural projection to a Levi subgroup

L. Then π(H) is L-irr, and the G-conjugacy classes of L and π(H) are

uniquely determined by the G-conjugacy class of H.

Moreover, H is G-cr if and only if H and π(H) are Ru(P )-conjugate.

As L contains a maximal torus of G, the group NG(L) is an extension

of L by a finite group: the part of the Weyl group of G which stabilises

the root system of L. Thus NG(L) may induce non-trivial conjugacy

between some simple factors of L. Such conjugacy is easy to describe.

cf. [78, Corollary 12.11]. In light of this, the key issue is to find the

D(L)-classes of D(L)-irr semisimple subgroups for each G-class of Levi

subgroup L; this includes the case that L = G.

Definition 1.20. For a connected reductive group G, let ConIrr(G)

denote the poset of G-classes of connected G-irr subgroups of G under

inclusion.

Suppose that [H] ∈ ConIrr(G). It follows from the Borel–Tits theorem

that H is reductive. Since it cannot centralise a non-central torus of G,

we get:

Lemma 1.21 ([69, Lemma 2.1], [11, Corollary 3.18]). Suppose G is

semisimple and let H be a G-irr connected subgroup. Then H is semisim-

ple and CG(H) is finite and linearly reductive.

Remark 1.22. Work of the third author and Liebeck in [70] classifies

those finite subgroups which can occur as centralisers of semisimple G-

irr subgroups for any simple algebraic group G.

As H is not contained in any proper parabolic subgroup of G, it must

be contained in some semisimple maximal connected subgroup M of

G. Moreover H is M -irr, since any proper parabolic subgroup of M

is contained in a proper parabolic subgroup of G, again by the Borel–

Tits theorem. When M is simple of classical type, one may determine

ConIrr(M) at once by use of Proposition 1.17. If instead M is simple of

exceptional type then induction on dimG yields ConIrr(M). For general

semisimple M , knowledge of ConIrr(Mi) for each simple factor Mi of

M yields ConIrr(M) (more on this shortly). Now, it can happen that

an M -irr subgroup H lies in a proper parabolic subgroup of G. We call

[H] ∈ ConIrr(M) a candidate and aim to decide which candidates are

actually G-irr. Also, a G-irr subgroup can be contained in more than one

semisimple maximal connected subgroup M . To detect this, we want to
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know when two candidates H1 ⊆ M1 and H2 ⊆ M2 are in the same

G-class.

Returning to the issue of finding ConIrr(M) whenM is not simple, the

parabolic subgroups of M are the products of parabolic subgroups of its

factors, so anyM -irr subgroup needs to project to anMi-irr subgroup of

each simple factorMi [115, Lemma 3.6]. As a partial converse, if for each

i we have anMi-irr subgroup Hi, then H1 . . . Hr ⊆M isM -irr; however,

these do not quite exhaust all theM -irr subgroups. To complete the list,

one must also discuss diagonal subgroups: Whenever M has one or more

simple factors of a given type, let Ĥ be the simply-connected simple

group of this type. Then Ĥ admits a homomorphism to M with non-

trivial projection to each simple factor of the of the appropriate type. By

definition, a diagonal subgroup is the commuting product of images of

such homomorphisms; this will beM -irr precisely when it has non-trivial

projection in every simple factor of M .

Example 1.23. Let M = M1M2 where the factors are simple of the

same type. Then M has a diagonal subgroup H with simply-connected

cover Ĥ. Then the composed maps Ĥ → H → Mi are isogenies. It fol-

lows that up toM -conjugacy, these compositions of powers of Frobenius

maps F (or their square roots in some very special cases) with auto-

morphisms which induce a symmetry of the Dynkin diagram of Ĥ. For

instance, if M has type A1A1 then, since the A1 Dynkin diagram has

trivial symmetry group, H corresponds to a pair of non-negative inte-

gers (r, s) and the map Ĥ → H is x 7→ (F r(x), F s(x)). Since H ∼= F (H)

we may assume rs = 0. For brevity, we use the notation A1 ↪→ A1A1

via (1[r], 1[s]) for these diagonal subgroups. See [117, Chapters 2,11] for

further discussion and notation.

To recap, our recipe is now to iterate through the maximal connected

subgroups M of G, collecting (semisimple) candidates H. We throw

away all those candidates which fall into a proper parabolic subgroup

of G, and then determine the poset ConIrr(G) by identifying conjugacy

amongst the remaining candidates.

The passage from G-irr semisimple subgroups to all G-cr semisimple

subgroups is now easy using Lemma 1.19. Suppose that H is D(L)-irr.

By the above remarks we can write down the D(L)-classes of D(L)-

irr subgroups; then from the lemma we need only establish conjugacy

amongst those classes by examining the action of the stabiliser of L in

the Weyl group of G.
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Remark 1.24. A related representation-theoretic question is to classify

triples (G,H, V ) where H ⊆ G and V is an irreducible G-module which

remains irreducible as an H-module. This property is strictly stronger

than G-irreducibility and has its own extensive literature, cf. [23] and

the references therein.

1.4.2 Non-G-cr subgroups

We now turn our attention to non-G-cr semisimple subgroups H (recall-

ing again that G is connected, reductive). Then H ⊆ P for some proper

parabolic subgroup P = QL with Q = Ru(P ) and we may assume P

is minimal subject to containing H. Let H̄ denote the image of H in

L under the projection π : P → L. Then by Lemma 1.19 H̄ is L-irr

(hence G-cr) and is not Ru(P )-conjugate to H. We may assume from

the previous section that we know H̄ up to conjugacy. To make further

progress, we use non-abelian cohomology, whose techniques are similar

to those employed in Galois cohomology.

Firstly, note that either π : H → H̄ is an isomorphism of algebraic

groups or a very special situation occurs, namely, p = 2 and H has

a simple factor SO2n+1 with image Sp2n in H̄, so that the differential

dπ : H → H̄ has a non-zero kernel.∗

Suppose for now that this special situation does not hold, so that H

and H̄ are isomorphic as algebraic groups and H is a complement to

Q in the semidirect product H̄. Any element of H can thus be written

uniquely as γ(h)h with h ∈ H̄, for some map γ : H̄ → Q which is a

morphism of varieties. The definition of the semidirect product implies

that γ satisfies a 1-cocycle condition; namely:

γ(gh) = γ(g)(g · γ(h)).

If H ′ is another complement to Q, corresponding to a map γ′, then H is

Q-conjugate to H ′ if and only if γ is related to γ′ via a coboundary; in

other words the Q-conjugacy classes of complements are given by classes

[γ] ∈ H1(H̄,Q). We leave the description of the precise relationship of

γ and γ′ to [106, §2], but note that since Q is typically non-abelian,

the set H1(H̄,Q) does not admit the structure of a group—rather, it is

only a pointed set, having a distinguished element corresponding to the

class of the trivial cocycle. In contrast, when Q has the structure of an

∗ On the level of schemes, H intersects Q non-trivially, giving rise to a non-zero
scheme-theoretic kernel. See [19] for the theory surrounding this map, or one of
[88, Lemma 2.2], [118], [37] for more concrete treatments.
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H̄-module—i.e. Q is a vector space on which H̄ acts linearly—then both

Q and H1(H̄,Q) are naturally k-vector spaces. In the latter case it can

be shown that H1(H̄,Q) is isomorphic to the first right-derived functor

(applied to Q) of the fixed point functor H0(H̄, ?) in the category of

rational G-modules. For more on this last point, see [55, I.4].

Example 1.25. By way of illustration, we list the semisimple subgroups

of G = SL3. There are four parabolic subgroups of G up to conjugacy,

respectively stabilising flags with submodule dimensions (3), (2, 1), (1, 2)

and (1, 1, 1). The first is G itself, the last is a Borel subgroup (whose

only reductive subgroups are tori) and the other two have G-conjugate

Levi subgroups GL2, one of which can be described as the image of the

embedding

GL2 → SL3, A 7→
(
A 0

0 det(A)−1

)
.

Of course G is G-irr; and if L is a Levi subgroup isomorphic to GL2

then D(L) ∼= SL2, which has no proper semisimple subgroups. If p ̸= 2,

then there is one further G-irr subgroup PGL2, embedded via the irre-

ducible adjoint action on its Lie algebra. These are all the G-cr semisim-

ple subgroups.

Suppose that H ⊆ G is semisimple and non-G-cr. By rank consider-

ations, H̄ is isomorphic to SL2, lying in a parabolic subgroup P = QL

with L ∼= GL2. It is easy to check that the conjugation action of H̄

on Q gives it the structure of the natural module L(1). This means

H1(H̄,Q) = 0, which rules out the existence of non-G-cr subgroups un-

less p = 2.

If p = 2, however, the action of SL2 on its Lie algebra and its dual

are not completely reducible: Both are indecomposable with two com-

position factors. The first is isomorphic to the Weyl module V (2) which

has L(2) in the head and L(0) in its socle; we denote this L(2)/L(0).

The second is upside down: H0(2) ∼= L(0)/L(2). This yields two non-

conjugate, non-G-cr subgroups PGL2, one in each of the two standard

parabolic subgroups of G.∗

Concluding, the subgroups above—G itself, the two derived Levi sub-

groups SL2, a G-irr subgroup PGL2 (when p ̸= 2) and two non-G-cr

subgroups PGL2 (when p = 2)—are now all the non-trivial semisimple

subgroups of G.

∗ In fact, this is the ‘special situation’ mentioned earlier, since H = SL2 is
abstractly isomorphic to its image PGL2 in G = SL3 = SL(Lie(SL2)).



1.4 A strategy for classifying semisimple subgroups 25

1.4.3 Abelian and non-abelian cohomology

Let G be a connected reductive group acting on a G-module V . To

mount a proper investigation of H1(G,V ), a scheme-theoretic treatment

such as [55] is essential. This is not least because one can make use of

the Lyndon–Hochschild–Serre spectral sequence

Eij
2 = Hi(G/N,Hj(N,V )) ⇒ Hi+j(G,V )

for calculations, where N is a normal subgroup scheme of G. In this

framework,N is allowed to be an infinitesimal subgroup scheme, the most

important example being the Frobenius kernel G1 := ker(G→ F (G)) of

G. At the level of points, G1 = {1}, but Lie(G1) = Lie(G) has far more

structure. We leave the interested reader to pursue this further, but give

some references: The first general investigation of H1(G,V ) using the

LHS spectral sequence applied to G1 ◁ G is probably that of Jantzen in

[53], which connects H1(G,L(λ)) with the structure of the Weyl module

V (λ). Other relevant papers are too numerous to mention, but some

highlights are [27], [15], [16], [86].

On the understanding that H1(H̄, V ) has been well-studied for V an

H̄-module, let us return to the calculation of H1(H̄,Q), where P = QL

is a parabolic subgroup of a reductive algebraic group G. The fact that

Q is connected, smooth and unipotent means that it admits a filtration

Q = Q0 ⊇ Q1 ⊇ · · · ⊇ Qn = 1

for some n, such that Qi ◁ Q and the subquotients Qi/Qi+1 admit the

structure of H̄-modules. The statement for general connected unipotent

groups Q can be found in [106, Theorem 3.3.5] and [82, Theorem C],

but one can be more explicit here since Q has a filtration by subgroups

Qi generated by root subgroups of G. Following [8], let P and L be a

standard parabolic and Levi subgroup, corresponding to a subset I of

the simple roots ∆ (which can be identified with nodes of the Dynkin

diagram of G). Then P is generated by a maximal torus and root sub-

groups Uα where α runs through positive roots, as well as negative roots

in I. Expressing each root α uniquely as

α =

(∑
αi∈I

ciαi

)
+

 ∑
αj∈∆\I

djαj

 ,

the roots in P are those with
∑
di ≥ 0; the roots occurring in L are

those with
∑
di = 0, and those in Q have

∑
di > 0. The quantity∑

dj is called the level of the root, and
∑
djαj is called its shape. For
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each i > 0, denote by Qi the subgroup generated by root subgroups of

level i; then the Chevalley commutator relations imply that each Qi is

normal in Q, and in fact Qi/Qi+1 is central in Q/Qi+1. Furthermore,

from knowledge of the root system of G, say by reference to [22], one

can write down explicitly the representations Qi/Qi+1 as Weyl modules

V (λ) for the Levi subgroup L.

Example 1.26. Recall that the Dynkin diagram of G2 is
1 2

. The

nodes represent the two simple roots which we denote by lists of coef-

ficients, with α1 = 10 and α2 = 01. The remaining positive roots, in

order of height, are 11, 21, 31, 32. Let P be the standard parabolic con-

taining the negative of α2, i.e. −01. Then a Levi factor L of P has roots

±01, and Ru(P ) has roots of three levels {11, 10}, {21} and {31, 32},
which one checks induce modules L(1), L(0), L(1) for the Levi subgroup

D(L) ∼= SL2.

Once the modules Qi/Qi+1 and cohomology groups H1(H̄,Qi/Qi+1)

are understood, one can take the direct sum V :=
⊕

H1(H̄,Qi/Qi+1)

and use this to approximate H1(H̄,Q). In fact, one can define a partial

map V → H1(H̄,Q), which turns out to be surjective, using a lifting

process we now describe. Given any short exact sequence of H̄-groups

1 → R→ Q→ S → 1

with R contained the centre of Q, there is an exact sequence of H̄-sets∗

1 →H0(H̄, R) → H0(H̄,Q) → H0(H̄, S)

δH̄→ H1(H̄, R) → H1(H̄,Q) → H1(H̄, S)
∆H̄→ H2(H̄, R).

(1.1)

Now, taking R = Qi/Qi+1 and S = Q/Qi for each i, one can use these

‘long’ exact sequences to lift elements of H1(H̄,Q/Qi) to elements of

H1(H̄,Q/Qi+1), eventually reaching H1(H̄,Q) itself, as long as we un-

derstand two issues:

(i) When is H1(H̄,Q/Qi) → H1(H̄,Q) not injective?

(ii) When is H1(H̄,Q/Qi) → H1(H̄,Q/Qi+1) not defined?

Question (i) asks whether δH̄ is non-zero. This happens precisely when

cocycle classes in H1(H̄, R) fuse inside H1(H̄,Q) due to conjugacy in-

duced by the fixed points SH̄ . Question (ii) asks whether ∆H̄ is non-zero.

∗ Here, an exact sequence of pointed sets means only that the image of each map
is the preimage of the distinguished element under the next.
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If so then cocycles in H1(H̄, S) are obstructed from lifting to cocycles in

H1(H̄,Q). In particular, this only happens when H2(H̄, R) ̸= 0.

In the end, this lifting process allows us to calculate H1(H̄,Q) com-

pletely. The matter is easy if we can show the maps δH̄ and ∆H̄ to be

zero. However, this is often not the case and one must resort to explicit

computations with cocycles; this is the approach taken in [107].



Part II. Subgroup structure of exceptional
algebraic groups

2.1 Maximal subgroups

Work on classifying maximal sub-objects of Lie type objects dates back

to Sophus Lie [61]. Taking inspiration from Galois’s work on univariate

polynomials, op. cit. develops ‘continuous transformation groups’—now

Lie groups—with a view to classifying differential equations in terms of

symmetries amongst their solutions. One builds up group actions from

primitive actions, corresponding to maximal subgroups, motivating Lie

to describe such subgroups. The same problem for finite groups was not

to be posed until a paper of Aschbacher and Scott [2] rather later, and

Lie concentrated on connected subgroups of connected Lie groups. Here,

the exp and log make this equivalent to finding maximal subalgebras

m of real Lie algebras g, and Lie solved the problem when dim g ≤ 3.

Otherwise the question lay dormant for another fifty years.

Using the Killing–Cartan–Weyl classification of finite-dimensional com-

plex simple Lie algebras, E. Dynkin solved Lie’s problem over C [38]. We

give a quick example—stolen from Seitz’s excellent tribute in op. cit.—

to illustrate his results. As is well-known, the complex 3-dimensional Lie

algebra sl2 has a unique irreducible representation of each degree up to

equivalence. This amounts to an embedding of sl2 into so2n−1 or sp2n,

where 2n − 1 or 2n respectively is the degree. Dynkin showed that for

n ≥ 2, the image of each of these embeddings is a maximal subalgebra,

with precisely one exception: when n = 7 and the exceptional Lie al-

gebra of type G2 has a self-dual 7-dimensional module, it occurs as a

(maximal) subalgebra of so7 and in turn contains the irreducible sl2 as a

maximal subalgebra. There is a remarkably short list of such situations.

Dynkin in effect classified the maximal subalgebras of the classical Lie

algebras sln+1, son and sp2n by classifying non-maximal ones which nev-
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ertheless act irreducibly on the natural modules for those algebras. A

key ingredient in Dynkin’s work was detailed information on the repre-

sentations of these Lie algebras, developed by Weyl and others, in terms

of the weights for their Cartan subalgebras.

Dealing with the Lie algebras of exceptional type required Dynkin

to adopt a more exhaustive approach. He first showed how to produce

all the semisimple subalgebras of g = Lie(G) containing a given Car-

tan subalgebra h, so-called regular subalgebras. Since root spaces are

1-dimensional, it follows that such a subalgebra will be the sum of h

and the root spaces corresponding to a subset Φ′ of the root system Φ

of G. Dynkin showed that one can find all regular subalgebras by iter-

atively extending the Dynkin diagram (adding a node corresponding to

the negative of the highest long root) and then deleting some nodes.

Example 2.27. Let Φ be an irreducible root system of type F4 with

roots labelled as in the following diagram.

1 2 3 4

Then the highest long root is α0 = 2α1 + 3α2 + 4α3 + 2α4. The only

simple root one can add to −α0 and still get a root is α1. Therefore, the

extended Dynkin diagram is:

1 2 3 40

The maximal subalgebras of maximal rank correspond to deleting a node

of this extended diagram corresponding to a simple root with prime

coefficient in the expression of α0: in our case, this is α1, α2 and α4.

Removing α1 gives a Dynkin diagram of type A1C3, removing α2 gives

type A2A2 and removing α4 gives type B4.

0 2 3 4

0 1 3 4

0 1 2 3

Non-semisimple subalgebras were described by a theorem of Moro-

zov∗ and the maximal ones are the maximal parabolics. This leaves

those maximal subalgebras which do not contain a Cartan subalgebra,

so-called S-subalgebras. Dynkin tackled those of type sl2 = ⟨e, f, h⟩ first,
∗ the precursor of Borel–Tits’ Theorem 1.2.
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associating to each class of these under the adjoint action of G a Dynkin

diagram with a label of 0, 1 or 2 above each node determining the con-

jugacy class of h. It turns out there is a unique conjugacy class of sl2-

subalgebras such that h is a regular element, i.e. the centraliser gh of h

in g is as small as possible, that is, gh is a Cartan subalgebra. The cor-

responding Dynkin diagram for this class of subalgebras has a 2 above

each node and it is usually maximal. From there, if sl3 is a subalgebra

of g, then one can look to build it up from its own regular sl2.

There are many reasons to extend this theory to positive characteris-

tic, not least because algebraic groups and their points over finite fields

give information about finite groups, for instance in furtherance of the

Aschbacher–Scott programme. Over several important monographs of

Seitz [97, 98], Liebeck–Seitz [67] and Testerman [113], Dynkin’s classifi-

cation is extended to describe the maximal subgroups of simple algebraic

groups over algebraically closed fields of positive characteristic.

Unfortunately, there is no space to do anything else but state the main

result in case when G is exceptional. In the following, conditions such

as p ≥ 13 also include the case p = 0. Note that H̃ denotes a subgroup

of type H whose root groups are generated by short roots of G.

Theorem 2.28 ([67, Corollary 2], [35, Theorem. 1]). Let G be a sim-

ple algebraic group of exceptional type in characteristic p and let M be

maximal amongst connected subgroups of G. Then M is either parabolic

or is G-conjugate to precisely one subgroup H in Table 2.1, where each

H denotes one G-conjugacy class of subgroups.

Table 2.1: The reductive maximal connected subgroups of excep-

tional algebraic groups.

G H

G2 A2, Ã2 (p = 3), A1Ã1, A1 (p ≥ 7)

F4 B4, C4 (p = 2), A1C3 (p ̸= 2), A1G2 (p ̸= 2), A2Ã2,

G2 (p = 7), A1 (p ≥ 13)

E6 A1A5, A
3
2, F4, C4 (p ̸= 2), A2G2, G2 (p ̸= 7; 2 classes),

A2 (p ≥ 5; 2 classes)

E7 A1D6, A2A5, A7, G2C3, A1F4, A1G2 (p ̸= 2), A2 (p ≥ 5),

A1A1 (p ≥ 5), A1 (p ≥ 17), A1 (p ≥ 19)

E8 D8, A1E7, A2E6, A8, A
2
4, G2F4, F4 (p = 3), B2 (p ≥ 5),

A1A2 (p ≥ 5), A1 (p ≥ 31), A1 (p ≥ 29), A1 (p ≥ 23)
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Remarks 2.29.

(i) As discussed in §1.2, the classes of parabolic subgroups are in bijection

with subsets of the simple roots ∆, and the maximal ones correspond

to subsets of size |∆| − 1.

(ii) In the caption of Table 2.1 we use the phrase reductive maximal

connected. By this mean we reductive subgroups which are maxi-

mal amongst connected subgroups. Similarly, in the caption to the

next table we say reductive maximal positive-dimensional to mean re-

ductive subgroups which are maximal amongst positive-dimensional

subgroups.

(iii) The subgroups of maximal rank can be enumerated using the Borel–

de-Siebenthal algorithm. This is a more general version of Dynkin’s

procedure for regular subalgebras, and includes some extra cases where

the Dynkin diagram has an edge of multiplicity p = char k. For ex-

ample if G is of type F4, then there is a maximal regular subgroup of

type C4. See [78, §13.2] for a complete explanation.

(iv) When G = E6 there are two classes of maximal subgroups of type

G2 (p ≥ 7) and A2 (p ≥ 5). The graph automorphism of G inter-

changes these two classes. See [114] for a proof of this and an explicit

construction of the maximal subgroups.

(v) The maximal subgroup of type F4 when G = E8 and p = 3 was

overlooked in [98] and subsequently missed in [67]. This was rectified

by Craven and the second two authors; more information can be found

in [35].

It is also natural to ask about non-connected maximal subgroups. For

example, finite subgroups of E8 remain unclassified. See §2.4.3 for a brief

description of the latest developments. However one can successfully

weaken ‘connected’ to ‘positive-dimensional’:

Theorem 2.30 ([67, Corollary 2]). Let G be a simple algebraic group

of exceptional type in characteristic p. Let M be a positive-dimensional

maximal subgroup of G. Then M is either parabolic or G-conjugate to

precisely one subgroup H as follows. Each isomorphism type of H de-

notes one G-conjugacy class of subgroups, and the notation Ti indicates

an i-dimensional torus.
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Table 2.2: The reductive maximal positive-dimensional subgroups

of exceptional algebraic groups.

G H

G2 A2.2, Ã2.2 (p = 3), A1Ã1, A1 (p ≥ 7)

F4 B4, D4.S3, C4 (p = 2), D̃4.S3 (p = 2), A1C3 (p ̸= 2),

A1G2 (p ̸= 2), (A2Ã2).2, G2 (p = 7), A1 (p ≥ 13)

E6 A1A5, (A
3
2).S3, (D4T2).S3, T6.W (E6), F4, C4 (p ̸= 2), A2G2,

G2 (p ̸= 7), A2.2 (p ≥ 5)

E7 A1D6, (A2A5).2, A7.2, (A
3
1D4).S3, (A

7
1).PSL3(2), (E6T1).2,

T7.W (E7), G2C3, A1F4, (2
2 ×D4).S3, A1G2 (p ̸= 2),

A2.2 (p ≥ 5), A1A1 (p ≥ 5), A1 (p ≥ 17), A1 (p ≥ 19)

E8 D8, A1E7, (A2E6).2, A8.2, (A
2
4).4, (D

2
4).(S3 × 2),

(A4
2).(GL2(3)), (A

8
1).AGL3(2), T8.W (E8), G2F4,

A1(G
2
2).2 (p ̸= 2), F4 (p = 3), B2 (p ≥ 5), A1A2 (p ≥ 5),

A1 (p ≥ 31), A1 (p ≥ 29), A1 (p ≥ 23), A1 × S5 (p ≥ 7)

Remark 2.31. The subgroup A2G2 < E6 is a maximal subgroup and its

presence above corrects a small mistake in [67, Table 1]. In loc. cit. it is

claimed that NE6
(A2G2) = (A2G2).2 with the outer involution acting as

a graph automorphism of the A2 factor. This is not possible as the action

of A2G2 on the 27-dimensional E6-module V27 is not self-dual. Instead,

it is the graph automorphism of E6 which induces an outer involution

on A2G2.

2.2 The connected G-irreducible subgroups

In light of §1.4.1 there are three things we need to determine ConIrr(G)

(Definition 1.20) for G a simple exceptional algebraic group.

(i) Determine the semisimple maximal connected subgroups of G;

(ii) Decide whether a candidate subgroup∗ is G-irr;

(iii) Decide whether two G-irr candidate subgroups are G-conjugate.

Since G is a simple exceptional algebraic group, (i) is immediate from

Theorem 2.28. We consider (ii) and (iii) in the next two sections.

∗ Recall that a candidate subgroup is an M -irr subgroup from a semisimple
maximal connected subgroup M .
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2.2.1 Testing candidate subgroups

Let H be an M -irr connected subgroup of G, where M is maximal

semisimple. We need to decide whether or not H is G-irr.

Proving that candidates are G-irr

If a candidate H is in fact contained in a parabolic subgroup P = QL

of G then we can consider the image π(H) in a Levi subgroup. The

action of H and π(H) on G-modules may differ but their composition

factors will always match.∗ Thus one way to prove that H is G-irr is

to show that its composition factors on some G-module do not match

those of any proper Levi subgroup of G. For instance, every proper Levi

subgroup of G has a trivial composition factor on the adjoint module

Lie(G), so a candidate is G-irr if it has no trivial composition factors on

Lie(G).

Proving that candidates are not G-irr

Now let H be a candidate subgroup which we believe is not G-irr. If H is

G-cr but not G-irr then H is contained in some proper Levi subgroup L

of G by Lemma 1.19, and thus CG(H) will contain the non-trivial torus

Z(L)◦. In this case, it is often easy to find a non-trivial torus commuting

with H and thus conclude that H is not G-irr.

The most difficult cases are when a candidateH turns out to be non-G-

cr (and thus not G-irr). Such cases are relatively rare: [117, Corollary 3]

classifies the non-G-cr connected subgroups which are M -irr for every

(and at least one) reductive maximal connected subgroup M in which

they are contained. There are two main methods used in [115, 116].

Briefly, one either

(1) directly shows that H is contained in a parabolic subgroup P ; or

(2) finds a non-G-cr subgroup Z ⊂ P and show that Z is contained in M

and conjugate to H.

One way to implement (1) is to exhibit a non-zero fixed point of H

on the adjoint module Lie(G). By [98, Lemma 1.3], this places H in

either a proper maximal-rank subgroup or a proper parabolic subgroup

of G, and one can use representation theory to prove that H is not

contained in a proper maximal-rank subgroup. Another way is to find a

unipotent subgroup of G normalised by H, since the Borel–Tits theorem

then places H in a proper parabolic subgroup. This is used in [115,

∗ see [115, Lemma 3.8] for the precise definition of match.
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Lemmas 7.9, 7.13], where calculations in Magma are used to construct

an ad-nilpotent subalgebra S ⊂ Lie(G) stabilised by a ‘large enough’

finite subgroup H(q) < H, where q = pr for some r > 0. It then follows

that H also stabilises S, and one checks that one can exponentiate S to

yield a unipotent subgroup normalised by H.

Method (2) is implemented in [115, Lemmas 6.3, 7.4]. Here one starts

with a candidate H contained in a semisimple maximal connected sub-

group M of maximal rank. One constructs the relevant non-G-cr sub-

group Z according to the recipe in §1.4.2, and then shows that Z ⊂M .

To establish the latter, one proves that any group acting with the same

composition factors as Z on the adjoint module of G fixes a non-zero

element of Lie(G). One then shows that Z does not fix any non-zero

nilpotent element; thus it fixes a non-zero semisimple element and is

contained in a maximal rank subgroup M ′, again by [98, Lemma 1.3].

This part is rather technical and requires the full classification of sta-

bilisers of nilpotent elements and their structure, as found in [68]. It

is however then possible to identify that M ′ = M and show that Z is

conjugate to H.

2.2.2 G-conjugacy

Once we know that two isomorphic candidates H1 and H2 are G-irr,

we must check whether they are G-conjugate. One easy test is to check

whether their composition factors on various G-modules agree. If so then

it turns out that, with a single exception, the two candidates are in fact

G-conjugate. The exception occurs when G = E8, p ̸= 3 and H1 and

H2 are simple of type A2, diagonally embedded in A2
2 ⊂ D2

4 ⊂ D8 ⊂ E8

via (10, 10[r]) and (10, 01[r]) respectively, with r ̸= 0. For more detail see

[117, Corollary 1] and its proof.

If H1 and H2 are not simple then it is usually straightforward to show

they are conjugate when they have the same composition factors on

Lie(G), by considering the centraliser of one of the simple factors.

Example 2.32. Let G = E8, let M1 be the maximal-rank subgroup

of type A1E7 and let M2 be the maximal-rank subgroup of type D8.

Take H1 = A2
1D6 ⊂ M1 and H2 = A2

1D6 ⊂ D8 = M2. Then H1 and

H2 are G-irr and G-conjugate. Indeed, taking Y to be one of the A1

factors of H2, we have H2 ⊂ Y CG(Y ) =M1, by appealing to [62, p.333,

Table 2]. As H1 is the only subgroup of type A2
1D6 contained in M1 up

to conjugacy, it is conjugate to H2.
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When the candidates are simple this process can be slightly more

involved. Often one of the candidates turns out to be the connected

centraliser in M or G of an involution, or of an element of order 3.

Example 2.33. Again let G = E8 and p ̸= 2. Take H = B4 ⊂ A8, with

H acting irreducibly on the natural 9-dimensional module for A8. Then

H is the centraliser in G of an involution t in the disconnected subgroup

A8.2. By calculating the trace of this involution on the adjoint module

for G and using [65, Proposition 1.2], we find that CG(t) = D8 and hence

H ⊂ D8. Similar calculations are carried out in [63, pp. 56–68].

2.2.3 Main results

We now present results classifying the G-cr semisimple subgroups of

exceptional algebraic groups. When p is large enough that all subgroups

of a given type are G-cr, the simple G-cr subgroups were classified in

[63, 60]. TheG-irr subgroups of type A1 were studied forG of exceptional

type except E8 in [1], and G-irr subgroups of G = G2, F4 are classified

in [105], [107], respectively. The reductions in §1.4.1 now allow us to

concentrate on semisimple, G-irr subgroups.

Theorem 2.34. Let G be a simple algebraic group of exceptional type

and let H be a G-irr connected subgroup of G. Then H is Aut(G)-

conjugate to exactly one subgroup in Tables [117, §11, Tables 1–5] and

each subgroup in the tables is G-irr.

This was proved in a sequence of papers [115, 116, 117]. The tables are

lengthy and we do not reproduce them here. The last of these papers,

specifically [117, §11, Tables 1A–5A], describes the poset structure of

ConIrr(G) and gives a detailed explanation of the tables. The tables

also provide the composition factors of each subgroup in ConIrr(G) on

both the minimal and adjoint module.

Example 2.35. When G = G2, the reductive maximal connected sub-

groups of G are:

A1Ã1, A2, Ã2 (p = 3), and A1 (p ≥ 7),

where Ã1 and Ã2 denote subgroups whose roots are short roots of G. A

group of type A1 has no proper irreducible connected subgroups, so this

requires no further consideration.

Take M1 = A1Ã1. Since the factors have the same type, there are

diagonal M -irr connected subgroups of type A1. As in Example 1.23,
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these are determined by non-negative integers r, s with rs = 0 and we

write Hr,s for such a subgroup. So ConIrr(M1) = {Hr,s | rs = 0}.
We now need to decide whether the members of ConIrr(M1) are G-

irr. If (r, s) ̸= (0, 0) or p > 3 then Hr,s acts on Lie(G) without trivial

composition factors, hence it is G-irr. When p = 3, the composition

factors of H0,0 on Lie(G) do not match those of a Levi subgroup and

so H0,0 is also G-irr. When p = 2, however, H0,0 is contained in an A1-

parabolic subgroup and is non-G-cr (appearing in Theorem 2.41). To see

that X := H0,0 is contained in a proper parabolic subgroup it suffices to

demonstrate that X stabilises a 1-space on the irreducible 6-dimensional

module LG(10), since by [71, Theorem B], G is transitive on 1-spaces

of LG(10) and the stabiliser of such a 1-space is a long root parabolic

subgroup. It remains to show that X is not conjugate to D(L) for some

Levi subgroup L (up to conjugacy, these are the two simple factors of

M). This can be done by calculating the action of X on LG(10), which

is T (2)+2 and then comparing it with the actions of the two subgroups

D(L) on LG(10), which are 12 + 02 and 12 + 2, respectively.

Now let M2 = A2. Applying Proposition 1.17, we find a single candi-

date, H, which has type A1 with p ̸= 2, and this acts irreducibly on the

adjoint 3-dimensional module L(2). We must check that H is G-irr. In

fact, one can show H is conjugate to H0,0 and thus G-irr. To see this,

note that NG(M2) = M2⟨t⟩, with t an involution inducing a graph au-

tomorphism on M2 [42, Table 4.3.1]. As L(2) is self-dual, one concludes

that H centralises t and hence H ⊂ CG(t) = M1. The only subgroups

of type A1 in M are its two simple factors and the subgroups Hr,s.

Since p ̸= 2, the composition factors of the action of these subgroups on

VG(10) distinguish them and we conclude that H is conjugate to H0,0.

The same method applies to Ã2 when p = 3 and one finds a single

candidate subgroup H of type A1, which turns out to be G-irr and

conjugate to H1,0.

We present this classification in Figure 2.1, with a straight line depict-

ing containment. This gives a small flavour of the additional information

in [117].

Remark 2.36. Further information about the G-reducible semisimple

G-cr subgroups can be found in [74]. In particular, the semisimple G-

reducible G-cr connected subgroups of G = F4 are classified and written

down explicitly in [75, §6.4], correcting [107, Corollary 5]. For each re-

ducible G-cr subgroup H, the socle series of the action of H on Lie(G) is
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G2

A2 A1Ã1 Ã2

(p = 3)
A1

(p ≥ 7)

A1 = H0,0

(p ̸= 2)
A1 = H1,0

(p = 3)
A1 = Hr,s

((r, s) ̸= (0, 0);
if p = 3 then (r, s) ̸= (1, 0))

Figure 2.1 The poset of G2-irr connected subgroups.

computed together with the centraliser CG(H)◦ (which is another G-cr

subgroup by Theorem 1.10).

2.3 Non-G-completely reducible subgroups

The method in §1.4.2 has been applied to classify the non-G-cr semisim-

ple subgroups of exceptional algebraic groups G in many cases. The

following is a more precise version of [63, Theorem 1]. It generalises

Theorem 1.5 for exceptional groups by ruling out certain non-G-cr sub-

groups of certain types even when p ≤ rank(G).

Theorem 2.37. Let G be a simple algebraic group of exceptional type

in characteristic p. Let X be an irreducible root system and let N(X,G)

be the set of primes defined by Table 2.3, e.g. N(B2, E8) = {2, 5}.
If H is a connected reductive subgroup of G and p /∈ N(X,G) whenever

H has a simple factor of type X, then H is G-cr. Conversely, whenever

p ∈ N(X,G), there exists a non-G-cr simple subgroup H of type X.

Remark 2.38. This corrects [108, Theorem 1], which had claimed the

existence of non-G-cr subgroups H of type G2 when p = 2 and G is of

type F4 or E6. We discuss this further in Example 2.40.

The result “p ̸∈ N(G,X) ⇒ all simple subgroups of type X are G-cr”

is largely proven in [63]. The strategy is to show that for each parabolic
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G = E8 E7 E6 F4 G2

X = A1 ≤ 7 ≤ 7 ≤ 5 ≤ 3 2
A2 ≤ 3 ≤ 3 ≤ 3 3
B2 5 2 2 2 2
G2 7 3 2 7 2
A3 2 2
B3 2 2 2 2
C3 3
B4 2

C4, D4 2 2

Table 2.3 Values of N(X,G).

subgroup P = QL and each L-irr subgroup X̄ < L, the levels of Q

restricted to X̄ have trivial 1-cohomology. In loc. cit. and [107] this is

accomplished by determining all modules V with H1(X̄, V ) ̸= 0 such

that dimV is small enough for V to potentially appear as an D(L)-

composition factor in the filtration of Q. For G of type E8, the largest di-

mension of such a D(L)-composition factor is 64, occurring when D(L) is

of type D7, which makes this a tractable problem. (See [108, Lemma 5.1]

for more information on the upper bounds on dimV .)

Example 2.39. We use results from §1.3.2 to exhibit a non-G-cr sub-

group of type A1 in G = E6 when p = 5. Here, G has a Levi subgroup

L with D(L) of type A5. It follows from Theorem 1.13 that any non-

L-cr subgroup is non-G-cr. So it suffices to find a non-L-cr subgroup

of type A1, which is equivalent to finding an indecomposable, reducible

6-dimensional module for SL2. To that end, if V ∼= L(1) is the natural

module for SL2 then the p-th symmetric power Sp(V ) is indecomposable

of dimension p+ 1 with two composition factors, L(p) and L(0).

The following is a delicate case of the proof that every simple subgroup

of type X is G-cr when p ̸∈ N(X,G); this corrects an error in [107].

Example 2.40. Let G = F4 and p = 2. We show that every subgroup of

type G2 is G-cr, and note that a similar but easier argument applies for

G = E6. The only proper Levi subgroups with a subgroup of type G2 are

those with derived subgroup B3 or C3. Write P = QL where D(L) = B3

and let H be the L-irr subgroup of type G2. In [107, Lemma 4.4.3] it

is claimed that H1(G2, Q) is 1-dimensional, which in turn relies on the

claim that an element of (Q/Q2)
H lifts to an element of QH . However,

this latter claim is false. To see this, note that QH ⊂ C := CG(H)◦.

Since H is G-cr, so is the subgroup C by Theorem 1.10 (ii), hence this is
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reductive and moreover has rank 1 since Z(L) is 1-dimensional, cf. Re-

mark 1.7.

By the Borel–de-Siebenthal algorithm, H ⊂ D(L) centralises the sub-

group Ã1 of G. Thus C has type A1, and has no 2-dimensional unipotent

subgroup, so dimQH ≤ 1. By restricting the D(L)-action on Q2 to H,

we find that Q2 ↓ H ∼= V (1, 0) = L(1, 0)/L(0, 0), where V (1, 0) is the

Weyl module of high weight (1, 0) with the trivial module L(0, 0) in

its socle. Thus QH
2

∼= k. As QH
2 ⊆ QH , we have equality by comparing

dimensions. Therefore, no non-trivial element of (Q/Q2)
H lifts to an ele-

ment of QH . From the exact sequence (1.1), it then follows that the map

H1(H,Q2) → H1(H,Q), which is surjective since H1(H,Q/Q2) = 0, is

the zero map. Thus H1(H,Q) = 0, so H gives rise to no non-G-cr sub-

groups in P . Applying the graph morphism of G now allows one to

conclude that the C3-parabolic also contains no non-G-cr subgroups of

type G2.

Moving on, let us assume p ∈ N(X,G). Then there exist non-G-cr

semisimple subgroups with a factor of type X, and we wish to classify

them all. The case G = G2 was settled by the second author in [105].

Since the classification is unusually short, we present it here. Recall that

G2 has semisimple maximal connected subgroups of type A1Ã1 and A2

(see Theorem 2.28).

Theorem 2.41. Let G be a simple algebraic group of type G2 in char-

acteristic p, and let H be a non-G-cr semisimple subgroup. Then p = 2,

H has type A1 and is G-conjugate to precisely one of Z1 and Z2 below.

(i) Z1 ⊂ A1Ã1 embedded diagonally via x 7→ (x, x);

(ii) Z2 ⊂ A2 embedded via V (2) ∼= L(2)/L(0).

This theorem exhibits an interesting feature: every non-G-cr subgroup

has a proper reductive overgroup in G. This is not true in general, and

we consider semisimple subgroups with no proper reductive overgroups

further in §2.3.1.
For the next result, recall that a prime p is called good for G if G

has type G2, F4, E6, E7 and p > 3, or if G has type E8 and p > 5;

otherwise p is called bad for G. The non-G-cr semisimple subgroups of

F4 were extensively studied by the second author in [107]; however the

paper contains a number of errors. These are systemically dealt with in

[40], from which we distil a headline result, presented together with the

classification of non-G-cr semisimple subgroups in good characteristic

due to the first and third authors [74].
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Theorem 2.42. Let G be a simple algebraic group of exceptional type

in characteristic p > 0 and let H be a non-G-cr semisimple subgroup of

G. Then one of the following holds:

(i) (G, p) = (G2, 2) and H is a subgroup Z1 or Z2 from Theorem 2.41;

(ii) (G, p) = (F4, 3) and H has type A2, A1A1 or ⋆A1;

(iii) (G, p) = (F4, 2) and H has type B3, B2,
⋆A1B2,

⋆A1A2 or ⋆An
1 with

n ≤ 3;

(iv) (G, p) = (E6, 5) and H has type A2
1 or A1;

(v) (G, p) = (E7, 5) and H has type A2A1, A
2
1 or A1;

(vi) (G, p) = (E7, 7) and H has type G2 or A1;

(vii) (G, p) = (E8, 7) and H has type A1G2, A
2
1 or A1;

(viii) G has type E6, E7 or E8 and p is bad for G.

Conversely, there is a non-G-cr semisimple subgroup of each type listed

and infinitely many conjugacy classes for those marked ⋆.

Case (viii) remains the subject of ongoing work of the first and third

authors.

Remark 2.43. When p is good for G, a non-G-cr semisimple subgroup

is G-conjugate to precisely one subgroup in [74, Tables 11–17] and con-

versely, each subgroup in those tables is non-G-cr. Furthermore, [74] also

provides the connected centraliser of each subgroup and the action on

minimal and adjoint modules.

2.3.1 Semisimple subgroups with no proper reductive

overgroups

To describe the poset of connected reductive groups, one needs to de-

scribe the maximal elements. If H is one such, then either: H is maximal

amongst all connected subgroups; or H has a non-trivial central torus S,

so that H = CG(S) is a Levi subgroup; or H is semisimple and non-G-cr.

Example 2.44. Let (G, p) = (E7, 7). We exhibit a non-G-cr subgroup

of type G2 which is maximal amongst proper reductive subgroups of

G. In fact, this is unique up to conjugacy (see [74, §6.1]). Let P = QL

be a parabolic subgroup of G, where the derived subgroup D(L) has

type E6. This has a maximal subgroup of type F4 which itself has a

maximal subgroup H̄ of type G2 when p = 7 (see Theorem 2.28 and

[114, Theorem 1(c)]). The subgroup H̄ turns out to be D(L)-irr ([115,

Theorem 1]). Now the unipotent radical Q is abelian, a 27-dimensional
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module for D(L), which implies thatQ is isomorphic to either LE6
(λ1) or

its dual LE6
(λ6). Moreover, Q ↓ H̄ = L(20)⊕L(00), and H1(H̄, L(20)) is

1-dimensional.∗ This implies that H1(H̄,Q) ∼= k. Furthermore, the torus

Z(L)◦ acts by scalars on Q, inducing conjugacy amongst the non-zero

elements of H1(H̄,Q) and it follows that there is a unique G-conjugacy

class [H] of non-G-cr subgroups of type G2 complementing Q in QH̄.

In [74, §10] it is proved that if V is the 56-dimensional module for

E7 then V ↓ H = T (20) ⊕ T (20) where T (20) = L(00)/L(20)/L(00) is

tilting, of high weight 20. It follows that any reductive overgroup of H

acts on V either indecomposably or with two indecomposable summands

of dimension dimT (20) = 28. Inspecting the maximal subgroups of G

and their actions on V , we see the only plausible maximal reductive con-

nected overgroup has type A7. But the only non-trivial 8-dimensional G2

modules are Frobenius twists of L(10)⊕L(00), and so any G2 subgroup

of A7 is contained in a Levi subgroup A6. But these act on V with four

indecomposable summands, which rules out A7 as a reductive overgroup

of H.

There are several more instances of non-G-cr semisimple subgroups

with no proper connected reductive overgroups, which are thus maxi-

mal amongst connected reductive subgroups of G. The following partial

result begins to extend Theorem 2.28 towards describing the classes of

maximal connected reductive subgroups. It can be deduced by combining

Theorem 2.28 and the main results of the references given for Theorem

2.42. Out of interest, we note here a geometric interpretation: Since re-

ductive subgroups of G correspond to affine coset spaces [93], a subgroup

H which is maximal amongst reductive subgroups corresponds to G/H

being minimal (with respect to G-quotients) amongst non-trivial affine

homogeneous G-spaces. Then H being maximal amongst connected re-

ductive subgroups meansG/H is minimal up to a finite-sheeted quotient.

Theorem 2.45. Let G be a simple algebraic group of exceptional type

in characteristic p, and let M be maximal amongst connected reductive

subgroups of G. Then one of the following holds:

(i) M is maximal amongst connected subgroups and is G-conjugate to

precisely one subgroup in Table 2.1;

(ii) M is a Levi subgroup, with (G,D(M)) = (E6, D5) or (E7, E6);

(iii) (G, p) = (F4, 3) and M is non-G-cr of type A1;

∗ This follows, for example, by a dimension-shifting argument [55, II.2.1(4)] with
the induced module H0(20) ∼= LG2

(00)/LG2
(20).
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(iv) (G, p) = (F4, 2) and M is non-G-cr of type B2 or A1A1;

(v) (G, p) = (E7, 7) and M is non-G-cr of type G2 (unique up to conju-

gacy);

(vi) G has type E6, E7 or E8 and p is bad for G.

Remark 2.46. Case (vi) will contain many conjugacy classes of sub-

groups. An interesting example is a class of subgroups of type A2 in

G = E8 which act on the adjoint module with indecomposable sum-

mands of dimension 240 and 8, which already precludes its containment

in a proper connected reductive subgroup.

2.4 Further directions and related problems

2.4.1 Hereditary subgroups

Recall from [102] and §1.3.1 that one of Serre’s reasons to formalise G-

complete reducibility was for the study of converse theorems. An archety-

pal question [102, §5.3, Remarque] is:

When does the exterior square of a module being semisimple imply

that the original module is semisimple?

This can be translated into G-complete reducibility as follows. Let

H be a semisimple algebraic group, V an H-module and suppose that

∧2(V ) is semisimple. The action of SL(V ) on ∧2(V ) furnishes inclusions

H̄ ⊆ M ⊆ G := SL(∧2(V )), where H̄ and M are the images in G of

the groups H and SL(V ), respectively. Then the question above asks

whether H being G-cr implies that H is M -cr.

Definition 2.47. Let M be a connected subgroup of a reductive group

G. We defineM to be G-ascending hereditary (G-ah) if, for all connected

subgroups H of M , if H is M -cr then H is G-cr. And M is defined to

be G-descending hereditary (G-dh) if, for all connected subgroups H of

M , if H is G-cr then H is M -cr. We define M to be G-hereditary if it is

both G-ah and G-dh.

Let G be a simple algebraic group with subgroups H ⊂ M . Theo-

rem 1.13 says that centralisers of linearly reductive subgroups of G, such

as Levi subgroups, are G-hereditary. Theorem 1.15 gives criteria for a

subgroup M to be G-dh. We have also seen examples of non-hereditary

subgroups. Theorem 2.41 shows that in G = G2, the subgroup H = Z1 is

M -irreducible forM = A1Ã1, but that H is non-G-cr; soM is non-G-ah.

The following example shows that non-G-dh subgroups also exist:
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Example 2.48. Let G = F4 and p = 2. Then G contains subgroups C4

and B4, which respectively contain subgroups D̃4 and D4, and these in

turn respectively contain simple subgroups H1 and H2 of type G2. The

simple module LC4(λ1) ↓ H1 = T (10), and the Weyl module VB4(λ1) ↓
H2 = T (10) ⊕ 00. These subgroups are swapped by the exceptional

isogeny of G. By Proposition 1.17, H1 is non-C4-cr and thus H2 is non-

B4-cr. However, in Example 2.40 we saw that every subgroup of type

G2 is G-cr. So H1 and H2 are examples of G-cr subgroups that are non-

M -cr in some reductive maximal subgroup M of G. Therefore, M is not

G-dh.

Given the plethora of results (§1.3.1, [11] and elsewhere) which guaran-

tee G-hereditary behaviour, it is natural to ask how often such behaviour

fails. Ongoing work of the first and third authors seeks more precise re-

sults in this vein. For instance, it is very uncommon for a subgroup H

in a reductive pair (G,H) (cf. p. 17) to be non-G-dh, in fact based on

empirical evidence the first and third authors speculate:

Conjecture 2.49. Let (G,H) be a reductive pair of algebraic groups in

characteristic p. If H is non-G-dh then p = 2.

2.4.2 Unipotent elements in exceptional algebraic

groups

Much effort has been spent studying unipotent elements in algebraic

groups. It is even non-trivial to show that there are finitely many unipo-

tent classes in the exceptional groups. There is an extensive literature on

this and the book [68] contains a comprehensive treatment. We mention

those results most closely related to subgroup structure.

For many applications it is useful to understand how an embedding

H → G fuses classes of unipotent elements. When H is a reductive

maximal connected subgroup this has been completely determined by

Lawther in [59] (supplemented by [35] for the newly-discovered maximal

subgroup of type F4 in E8 when p = 3).

One can flip this question and ask: given a unipotent element, what

are its overgroups? For example, regular unipotent elements are those

whose centralisers have the smallest possible dimension (the rank of G),

and these are all G-conjugate. Overgroups of regular unipotent elements

have been heavily studied, first of all by Saxl–Seitz in [96], classify-

ing the maximal positive-dimensional reductive subgroups containing a

regular unipotent element. Extending this to all positive-dimensional
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reductive subgroups containing a regular unipotent element is difficult.

Suppose that H is a subgroup of G containing a regular unipotent ele-

ment. Testerman–Zalesski [112, Thm. 1.2] provided a full classification

of the connected reductive subgroups containing a regular unipotent el-

ement. An important ingredient is to show that if H is connected then

it is G-irr. If instead H is only assumed to be positive-dimensional then

Malle–Testerman [79, Theorem 1] show that either H is G-irr or H◦ is

a torus; the latter case does in fact occur. Indicative of the narrative in

Part I, Bate–Martin–Röhrle in [14] were able to produce a uniform proof

of [112, Theorem 1.2] and [79, Theorem 1], and further generalisations to

disconnected groups, finite groups of Lie type and Lie algebras, without

intricate case-by-case considerations. A key ingredient in their proof was

the observation of Steinberg that regular unipotent elements normalise

a unique Borel subgroup of G.

2.4.3 Finite subgroups and groups of Lie type

Historically, one of the main motivations for studying maximal and then

reductive subgroups of exceptional algebraic groups was to deduce re-

sults for the exceptional finite groups of Lie type, see [66] for the work

up to the early 2000s. A related problem is to understand finite sub-

groups of the exceptional algebraic groups, whose study cannot employ

any of the techniques requiring connectedness of the subgroup. In at-

tempting to use the strategy of §1.4 for a simple algebraic group G of

exceptional type, the primary difficulty is in classifying G-irr subgroups,

since ad-hoc methods are required in place of uniform statements about

representations of reductive groups. A result of Borovik [21, Theorem 1]

quickly reduces one to studying almost-simple finite subgroups, and the

isomorphism types of finite simple subgroups have been enumerated by

Cohen, Griess, Serre, Wales and others (e.g. [28, 21, 20]) over the com-

plex numbers using character-theoretic methods, and by Liebeck and

Seitz [65] in positive characteristic.

In positive characteristic, it is essential to understand generic sub-

groups, i.e. finite groups of Lie type H(q) with embeddings H(q) → G

which factor through an inclusion H → G of algebraic groups. The main

result in this direction is due to Liebeck and Seitz [64], giving an explicit

bound on q (usually q > 9) ensuring that all embeddingsH(q) → G arise

in this fashion.

Further progress on non-generic subgroups has been made by the

first author [73] by comparing Brauer characters of finite simple groups
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with the Brauer traces of elements of exceptional algebraic groups G on

low-dimensional modules, which limits the composition factors of simple

groups acting on these modules. This carries sufficient information to

rule out G-irr subgroups, for instance a subgroup fixing a vector on

Lie(G) lies in the corresponding stabiliser, which is often parabolic. One

can also rule out the existence of non-G-cr subgroups: For instance, if a

subgroup is contained in a parabolic subgroup of some algebraic group

G, then it normalises the unipotent radical, and the Lie algebra of this

is a submodule of Lie(G). So if the subgroup has no composition factors

on Lie(G) with non-zero cohomology, the subgroup cannot have non-

zero cohomology in its action on the radical, so is G-cr. Craven [30] has

extended these techniques to also bring in Jordan block sizes of unipotent

elements of finite groups acting on the relevant modules, deriving still

stronger conditions and ruling out further subgroup types.

For maximal subgroups of finite groups of Lie type, there has been

considerable recent progress. The maximal subgroups of 2B2(q),
2F4(q),

3D4(q),
2G2(q) and G2(q) have been classified by Cooperstein, Kleid-

man, Malle, Suzuki [29, 56, 77]; leaving F4(q), E
ϵ
6(q), E7(q) and E8(q)

to consider. The maximal subgroups of these groups have been com-

pletely classified for some very small q (e.g. E7(2) in [9]) and there has

been considerable progress by Magaard [76] in the case F4(q) and As-

chbacher [3, 4, 5, 6] in the case E6(q). The most recent work has led to

a complete classification of the maximal subgroups of F4(q), E6(q) and
2E6(q) [31] and almost a complete classification for E7(q) [33]. This all

builds on previous work [34, 32, 30]. The maximal subgroups of E8(q)

are also a work in progress by Craven.

We round off our discussion here by mentioning one more way in which

G-complete reducibility applies to finite groups of Lie type: Namely,

through optimality. The details are somewhat technical (cf. [13, Def. 5.17]),

but a key point is: A non-G-cr subgroup H is contained in a canonical

parabolic subgroup of G, which is normalised by all automorphisms of G

which normalise H. Applying this to a Frobenius endomorphism F of G,

if H is a non-G-cr finite subgroup of some group of Lie type G(q) = GF ,

we get a method of constructing subgroups in between H and G(q),

namely, F -fixed points of the corresponding canonical parabolic sub-

group (cf. [72, Proposition 2.2] and [73, §4.1–4.2]).



46 Part II. Subgroup structure of exceptional algebraic groups

2.4.4 Variations of complete reducibility

Serre’s definition 1.3 admits generalisations in various directions. If G is

equipped with a Frobenius endomorphism F and one considers only F -

stable parabolic and Levi subgroups, one arrives at so called ‘F -complete

reducibility’ [48]. In another direction, as mentioned in the introduction,

G-complete reducibility generalises to disconnected reductive groups, if

one is willing to work instead with R-parabolic and R-Levi subgroups,

and many results in G-complete reducibility generalise at once (cf. [11,

§6]). The resulting geometric invariant theory is in fact the natural set-

ting in which to derive the most general results, only a handful of which

have been mentioned in the present article. Since one is now working

with collections of morphisms Gm → G, restricting these morphisms

to land in a subgroup K yields yet another generalisation, ‘G-complete

reducibility with respect to K’, and once again many natural results

extend immediately [43, 7].

Ultimately, one can view complete reducibility as a property of the

spherical building of G [102]. Here, opposite parabolics are opposite sim-

plices, and non-G-cr subgroups correspond to contractible subcomplexes;

omitting all details, we simply mention that recasting the above results

in terms of the building allows one to unite the various generalisations

above and derive yet stronger statements, e.g. [44], and even extend

to Euclidean buildings, Kac–Moody groups and other settings, see for

instance [36] and [24, §4.3].

2.4.5 Structure of the Lie algebra of exceptional

algebraic groups

Through the exponential and logarithm maps, classifying maximal con-

nected subgroups of a complex algebraic group G is equivalent to classi-

fying maximal subalgebras of Lie(G) and indeed Dynkin’s original work

is set in this context. It was noticed by Chevalley that any complex finite-

dimensional simple Lie algebra g has a Z-basis. This means there is an

integral form gZ from which one may build a Lie algebra gR := gZ ⊗Z R

over any commutative ring R. In particular, we may take R = k for k an

algebraically closed field of characteristic p > 0. There is typically more

than one Z-form available, leading to non-isomorphic Lie algebras over

k; Chevalley’s recipe gives the simply-connected form, i.e. gk ∼= Lie(G),

where G is the simply-connected algebraic group over k of the same type

([50, Chap. VII]).
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It is natural to ask about maximal subalgebras of g = gk and more

generally its subalgebra structure and their conjugacy under the adjoint

action of G. Motivation for this question also arises from viewing G as a

scheme. In that context, one gets a much wider collection of subgroups,

due to the presence of non-smooth subgroup schemes of G. At the most

extreme end, a subgroup H of G is infinitesimal if its only k-point is the

identity element. The most natural non-trivial example of an infinitesi-

mal subgroup is the first Frobenius kernel G1 of G; one may view this

as the functor from k-algebras to groups such such the A-points of G1

applied to a k-algebra A is the group G1(A) = {x ∈ G(A) | F (x) = 1},
where F is the (standard) Frobenius map on G.

Recall that a Lie algebra g is restricted if it is equipped with a [p]-map

x 7→ x[p] which is p-semilinear in k and satisfies ad(x[p])(y) = ad(x)p(y).

A subalgebra h ⊆ g is a p-subalgebra if it is closed under the [p]-map.

There is an equivalence between G1 and the Lie algebra g in the following

senses: Lie(G1) = g is a restricted Lie algebra; any finite-dimensional

restricted Lie algebra k is Lie(K) for a unique connected height-one group

scheme K; under this correspondence, any p-subalgebra h of g maps to a

unique subgroup H of G1; the finite-dimensional representation theory

of G1 is equivalent to the finite-dimensional restricted representation

theory of g. For more on this, see the article of Brion from this volume.

Moving from the smooth subgroups of G to the subalgebras of g in-

troduces many new and difficult problems. First, the classification of

simple Lie algebras in positive characteristic [91] is vastly more compli-

cated than that of the algebraic groups, and is only complete when p > 3.

Second, semisimple subalgebras are not the sums of simple Lie algebras,

or even closely related to them [110, §3.3]. Third, it is not in general

true that Theorem 1.2 has an analogue for g, and indeed maximal non-

semisimple subalgebras of g do not have to be parabolic—where a Lie

subalgebra of g is called parabolic if it is the Lie algebra of a parabolic

subgroup. Indeed, [110, p. 149] describes (all) irreducible representations

of the soluble Heisenberg Lie algebras, most of which have dimensions

divisible by p.

Circumventing these problems in the case that G is classical is wide

open. But at least when G is of exceptional type in good characteristic,

these problems have been dealt with in [46], [89] and [90]. The analogue

of the Liebeck–Seitz classification of maximal connected subgroups of

G holds, with certain exceptions. For example, for p ≥ 3 the first Witt

algebra W1 := Der(k[X]/Xp) is a simple Lie algebra of dimension p

and appears between G and its regular sl2 subalgebra whenever p =
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h + 1 where h is the Coxeter number of G. There are some maximal

semisimple Lie algebras when G has type E7 and p = 5 or 7, which

have nothing to do with semisimple subgroups of G. We also point out

that [90, Corollary 1.4] establishes an exact analogue of the Borel–Tits

Theorem for exceptional Lie algebras in good characteristic.

One would like to consider the analogues for Lie algebras of the main

problem addressed in this article. The following definition was given in

[81] and developed in [10].

Definition 2.50. Let g = Lie(G) for G a reductive algebraic group.

Then a subalgebra h of g isG-cr if whenever h is in a parabolic subalgebra

p = Lie(P ) of G, then h is in a Levi subalgebra l = Lie(L) of p, where

P = QL is a Levi decomposition of P .

An analogue of Theorem 1.5 for Lie algebras (building on work in [47])

is given in [109, Theorem 1.3]:

Theorem 2.51. Let G be a connected reductive algebraic group in char-

acteristic p with Lie algebra g. Suppose that h is a semisimple subalgebra

of g and p > h. Then h is G-cr.

In the case h ∼= sl2, the theorem interacts surprisingly closely with

Kostant’s uniqueness result about the embeddings of nilpotent elements

into sl2-subalgebras: it builds on the Jacobson–Morozov theorem [52,

85], which says that for any complex finite-dimensional semisimple Lie

algebra g = Lie(G), there is a surjective map

{conjugacy classes of sl2-triples} −→ {nilpotent orbits in g}, (∗)

where an sl2-triple is a triple (e, h, f) ∈ g3 satisfying [h, e] = 2e, [h, f ] =

−2f , [e, f ] = h. The surjective map is induced by sending (e, h, f) to

the nilpotent element e. So any such e can be embedded into some

sl2-triple. In [58], Kostant showed that this can be done uniquely up

to conjugacy by the centraliser Ge of e; i.e. the map (∗) is actually a

bijection. Much work has been done on extending this important result

into characteristic p > 0. We mention some critical contributions. In

[87], Pommerening showed that under the mild restriction that p is a

good prime for G, one can always find an sl2-subalgebra containing a

given nilpotent element, but this may not be unique; in other words, the

map (∗) is still surjective, but not necessarily injective. In [104] Springer

and Steinberg prove that the uniqueness holds whenever p ≥ 4h− 1 and

in his book [25], Carter uses an argument due to Spaltenstein to reduce
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this bound to p > 3h − 3; both proofs make use of an exponentiation

argument. One use of Theorem 2.51 is to prove the following.

Theorem 2.52. Let G be a connected reductive group in characteristic

p > 2 with Lie algebra g. Then (∗) is a bijection if and only if p > h.

In fact, [109] also considers a map

{conjugacy classes of sl2-subalgebras} → {nilpotent orbits in g}, (∗∗)

and when a bijection exists, realises it in a natural way. The equivalence

of bijections (∗) and (∗∗) is easily seen in large enough characteristics

by exponentiation, but there are quite a few characteristics where there

exists a bijection (∗∗), but not (∗).
Further progress on this theme has been made by Goodwin–Pengelly

[41], characterising the subvarieties of nilpotent elements where bijec-

tions (∗) and (∗∗) hold.
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algébriques. Actualités Sci. Ind. no. 1152. Hermann & Cie., Paris.

[27] Cline, E., Parshall, B., Scott, L., and van der Kallen, W. 1977. Rational
and generic cohomology. Invent. Math., 39(2), 143–163.

[28] Cohen, Arjeh M., and Wales, David B. 1995. Finite simple subgroups
of semisimple complex Lie groups—a survey. Pages 77–96 of: Groups of
Lie type and their geometries (Como, 1993). London Math. Soc. Lecture
Note Ser., vol. 207. Cambridge: Cambridge Univ. Press.

[29] Cooperstein, Bruce N. 1981. Maximal subgroups of G2(2
n). J. Algebra,

70(1), 23–36.
[30] Craven, David A. 2017. Alternating subgroups of exceptional groups of

Lie type. Proc. Lond. Math. Soc. (3), 115(3), 449–501.
[31] Craven, David A. 2021. The maximal subgroups of the exceptional

groups F4(q), E6(q) and 2E6(q) and related almost simple groups.
arXiv:2103.04869.

[32] Craven, David A. 2022a. Maximal PSL2 subgroups of exceptional groups
of Lie type. Mem. Amer. Math. Soc., 276(1355), v+155.

[33] Craven, David A. 2022b. On the maximal subgroups of E7(q) and related
almost simple groups. arXiv:2201.07081.



References 53

[34] Craven, David A. to appear. On medium-rank Lie primitive and max-
imal subgroups of exceptional groups of Lie type. Mem. Amer. Math.
Soc.

[35] Craven, David A., Stewart, David I., and Thomas, Adam R. 2022. A
new maximal subgroup of E8 in characteristic 3. Proc. Amer. Math.
Soc., 150(4), 1435–1448.

[36] Dawson, Denise Karin. 2011. Complete reducibility in Euclidean twin
buildings. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)–Cornell Uni-
versity.

[37] Dowd, Michael F., and Sin, Peter. 1996. On representations of algebraic
groups in characteristic two. Comm. Algebra, 24(8), 2597–2686.

[38] Dynkin, E. B. 2000. Selected papers of E. B. Dynkin with commentary.
American Mathematical Society, Providence, RI; International Press,
Cambridge, MA. Edited by A. A. Yushkevich, G. M. Seitz and A. L.
Onishchik.

[39] Fulton, William, and Harris, Joe. 1991. Representation theory, A first
course. Graduate Texts in Mathematics, vol. 129. New York: Springer-
Verlag.

[40] Ganeshalingam, Vanthana, and Thomas, Adam R. On the non-
completely reducible subgroups of F4. in preparation.

[41] Goodwin, Simon M., and Pengelly, Rachel. On sl2-triples for classi-
cal algebraic groups in positive characteristic. Transform. Groups, (to
appear).

[42] Gorenstein, Daniel, Lyons, Richard, and Solomon, Ronald. 1998. The
classification of the finite simple groups. Number 3. Part I. Chapter A.
Mathematical Surveys and Monographs, vol. 40. American Mathemati-
cal Society, Providence, RI.

[43] Gruchot, Maike, Litterick, Alastair, and Röhrle, Gerhard. 2020. Relative
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