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Abstract

Visual Place Recognition (VPR), part of Simultaneous Localisation and Mapping (SLAM),

is an essential task for the localisation process, where each robotic platform is required to

successfully navigate through its environment using visual information gathered from the

on-board camera. Despite the recent efforts of the research community, VPR remains an im-

proving process. To this end, a large number of deep-learning-based and handcrafted VPR

techniques (also referred as learnt and non-learnt VPR techniques) have been proposed to

overcome the challenges in this field, such as viewpoint, illumination and seasonal variations.

While Convolutional Neural Network (CNN)-based VPR techniques have significant compu-

tational requirements that may restrict their applicability on resource-constrained platforms,

handcrafted VPR techniques struggle with appearance changes. In this thesis, two mainly

unexplored avenues of research are investigated, namely sequence-based filtering and JPEG

compression.

To overcome the previously mentioned challenges, this thesis proposes a handcrafted

VPR technique based on HOG descriptors, paired with an adaptive sequence-based filter-

ing schema to perform VPR in scenarios where the appearance of the environment drastically

changes upon different traversals. The technique entitled ConvSequential-SLAM is capable

of achieving comparable place matching performance with state-of-the-art VPR techniques

at reduced computational costs. The approach utilised for matching sequences of images in

the above technique has been employed to investigate the improvement in VPR performance

and the computational effort required to execute VPR when utilising a sequence-based fil-

tering approach. As CNNs are computationally demanding, this thesis shows that VPR can

be performed more efficiently using lightweight techniques. Furthermore, this thesis also in-

vestigates the effects of JPEG compression for VPR applications, where important reductions

in both transmission and storage requirements can be achieved. As the VPR performance is

drastically reduced, especially for high compression ratios, this thesis shows how a fine-tuned



CNN can achieve more consistent VPR performance on highly JPEG compressed data (i.e.

above 90% JPEG compression). Sequence-based filtering is introduced to overcome the per-

formance loss due to JPEG compression. This thesis shows that the size of a JPEG compressed

image is often smaller than the size of the image descriptor, and therefore should be trans-

ferred instead. Furthermore, our experiments also show that the amount of data required for

transfer is reduced with an increase in JPEG compression, even when requiring an increased

number of images in a sequence. This thesis also analyses the effects of image resolution on

the performance of handcrafted techniques, to enable efficient deployment of VPR solutions

on commercial products. The analysis performed in this thesis confirms that local feature

descriptors are unable to operate on low-resolution images, as no keypoints (salient informa-

tion) are detected. Moreover, this thesis also shows that the time required to perform VPR is

reduced with a decrease in image resolution.



Contents

List of Figures xi

List of Tables xv

Abbreviations xvii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Simultaneous Localisation and Mapping (SLAM) . . . . . . . . . . . . . . . . 4

1.2.1 Localisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Visual Place Recognition Overview . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Literature Review 13

2.1 Local Feature Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Global Feature Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Complementarity of Visual Place Recognition Techniques . . . . . . . . . . . . 15

2.4 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Sequence-based Visual Place Recognition Techniques . . . . . . . . . . . . . . 17

2.6 Decentralised Visual Place Recognition . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Benchmarking Visual Place Recognition Approaches . . . . . . . . . . . . . . . 21

2.7.1 Test Datasets for Visual Place Recognition . . . . . . . . . . . . . . . . 22

2.7.2 Performance Metrics for Visual Place Recognition . . . . . . . . . . . . 24

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



viii CONTENTS

3 ConvSequential-SLAM: A Sequence-Based VPR Technique 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Information Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.2 Entropy Map and ROI Extraction . . . . . . . . . . . . . . . . . . . . . 30

3.2.3 Regional HOG Computation . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.4 Regional Convolutional Matching . . . . . . . . . . . . . . . . . . . . . 32

3.2.5 Creating the Query Images Sequence . . . . . . . . . . . . . . . . . . . 33

3.2.6 Entropy-Based Dynamic Query Images Sequence . . . . . . . . . . . . 34

3.2.7 Dynamic Sequence Matching . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 Sequential Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.2 Utilised VPR Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.4 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.2 Area-Under-the-Precision-Recall-Curve (AUC) . . . . . . . . . . . . . . 40

3.4.3 Performance-Per-Compute-Unit (PCU) . . . . . . . . . . . . . . . . . . 41

3.4.4 Variation in Sequence Length . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.5 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.6 Exemplar Matches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Sequence-Based Filtering for Visual Route-Based Navigation 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Single-Based Image Matching . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.2 Sequential-Based Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Employed Performance Metrics . . . . . . . . . . . . . . . . . . . . . . 55

4.3.2 Utilised VPR Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.3 Utilised Sequential Datasets . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



CONTENTS ix

4.4.1 Place Matching Performance . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.2 Performance-Boost Variations . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.3 Benefits and Trade-Offs of Sequential-Based Filtering . . . . . . . . . . 62

4.4.4 Computational Budget . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Data-Efficient VPR Using Extremely JPEG-Compressed Images 71

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.1 Image Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.2 Place Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.3 Performance Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.1 Test Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.2 VPR Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.1 Place Matching Performance . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.2 JPEG Optimised CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.3 Non-Uniform JPEG Compressed Datasets . . . . . . . . . . . . . . . . . 80

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Data-Efficient Sequence-Based VPR for JPEG-Compressed Imagery 83

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2.1 JPEG Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2.2 Implementation of Sequence-Based Filtering . . . . . . . . . . . . . . . 85

6.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3.1 VPR Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3.2 Test Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3.3 Performance Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.4 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.4.1 Sequence Length Impact on VPR . . . . . . . . . . . . . . . . . . . . . 86

6.4.2 Data Requirements for 100% accurate VPR . . . . . . . . . . . . . . . 87

6.4.3 Non-Uniform Compression Ratios . . . . . . . . . . . . . . . . . . . . . 89



x CONTENTS

6.4.4 Analysis on the Time Required to Perform VPR . . . . . . . . . . . . . 90

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7 Data-Efficient VPR Using Low Resolution Images 99

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2.1 VPR Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2.2 Performance Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2.3 VPR Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.2.4 Test Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.3.1 Place Matching Performance . . . . . . . . . . . . . . . . . . . . . . . . 104

7.3.2 Analysis on the Time Required to Perform VPR . . . . . . . . . . . . . 106

7.3.3 Performance and Computation Trade-off Analysis . . . . . . . . . . . . 107

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8 Concluding Remarks and Future Directions 109

8.1 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Bibliography 113



List of Figures

1.1 The winners of the two DARPA competitions. . . . . . . . . . . . . . . . . . . 2

1.2 Images showing the same place under different conditions. . . . . . . . . . . . 3

1.3 The two main components of a SLAM system. . . . . . . . . . . . . . . . . . . 5

1.4 The three main components of a VPR system are presented here. . . . . . . . 7

2.1 The difference between a) local feature descriptors and b) global feature descriptors

is shown here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 The single-frame matching approach is presented here. . . . . . . . . . . . . . 17

2.3 The sequence-based matching approach is presented here. . . . . . . . . . . . 18

2.4 Sample images taken from well-established VPR datasets are presented here. . 22

3.1 The block diagram of our framework is shown here, which presents all the

major components of the system. . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 The ROIs extracted by ConvSequential-SLAM for various ET . . . . . . . . . . 32

3.3 The most common changes in the environment are presented here. . . . . . . 36

3.4 The accuracy of ConvSequential-SLAM is compared against the accuracy of

other well-established VPR techniques on widely used public VPR datasets. . . 38

3.5 The Precision-Recall Curves for all VPR techniques on each of the 4 datasets

used in this work are enclosed here. . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 The PCU of ConvSequential-SLAM is compared with the PCU of other well-

established VPR techniques on all mentioned datasets. . . . . . . . . . . . . . 41

3.7 The feature encoding times of various VPR techniques are presented in this

graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.8 The variation in sequence length of ConvSequential-SLAM on all four datasets

is shown here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



xii LIST OF FIGURES

3.9 The ablation study showing the accuracy of ConvSequential-SLAM when util-

ising a fixed sequence length (1 ≤ K ≤ 20). . . . . . . . . . . . . . . . . . . . 44

3.10 The ablation study showing the AUC of ConvSequential-SLAM when utilising

a fixed sequence length (1 ≤ K ≤ 20). . . . . . . . . . . . . . . . . . . . . . . 45

3.11 Some correctly matched sequences of query and reference frames. . . . . . . . 46

3.12 Some incorrectly matched query and reference frames. . . . . . . . . . . . . 47

4.1 The sequence-based filtering schema employed is presented. . . . . . . . . . 51

4.2 Sample sequence of images taken from each of the 4 datasets. . . . . . . . . 56

4.3 The performance boost (%) of sequence matching performance in comparison

to the single-frame-matching performance of all VPR techniques on the data-

sets mentioned in sub-section 4.3.3. . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 The single-frame matching performance compared to the sequence matching

performance for all 5 VPR techniques on all 4 datasets. . . . . . . . . . . . . . 59

4.5 Some correctly matched sequences of query and reference images taken from

each dataset used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 Some incorrectly matched sequences of query and reference images taken from

Gardens Point day-to-night and Nordland datasets. . . . . . . . . . . . . . . . 61

4.7 The matching time in seconds of each VPR technique on all 4 datasets is presen-

ted here. For every VPR technique, we only plot up to the value of the sequence

length K that is required to reach 100% accuracy (reported in Table 4.1). . . 63

4.8 The PCU values for each VPR technique on all 4 datasets is reported here. For

every VPR technique, we only plot up to the value of the sequence length K

that is required to reach 100% accuracy (reported in Table 4.1). . . . . . . . . 64

5.1 The same image taken from the Gardens Point day left dataset with different

compression percentages applied. . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 A selection of uncompressed query images and their corresponding reference

images taken from each dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 The accuracy of all VPR techniques on each dataset with different levels of

JPEG compression applied is presented here. . . . . . . . . . . . . . . . . . . . 77

5.4 Average entropy in query images with different compression ratios applied to

each dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 The accuracy of our model on all 8 datasets is enclosed here. . . . . . . . . . . 79



LIST OF FIGURES xiii

5.6 The average accuracy of our model in comparison with other VPR techniques

on the combined datasets, for each level of JPEG compression applied. . . . . 80

5.7 The average place matching performance of our model in comparison with

the other VPR techniques presented, in scenarios where the amount of JPEG

compression applied to query and reference images greatly differs. . . . . . . 81

5.8 The accuracy of our model in comparison with each VPR technique on non-

uniform JPEG compressed versions of the Campus Loop and SYNTHIA datasets. 82

6.1 The average image size in Kilobytes (KB) taken from each dataset with multiple

JPEG compression ratios applied. . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 The sequence length required for each VPR technique to reach maximum ac-

curacy for each JPEG compression ratio is enclosed here. . . . . . . . . . . . . 87

6.3 The amount of data transferred in Kilobytes (KB) for each VPR technique and

JPEG compression ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.4 The value of K required to achieve maximum accuracy on non-uniformly JPEG

compressed data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.5 tV PR for every VPR technique on each dataset and JPEG compression amount

specified in Fig. 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.6 tV PR of each VPR technique on non-uniformly JPEG compressed data specified

in Fig. 6.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.7 The average time tc required to JPEG compress an image. . . . . . . . . . . . 93

7.1 The same image resized to various resolutions. . . . . . . . . . . . . . . . . . 100

7.2 The accuracy of all VPR techniques on each resized dataset. . . . . . . . . . . 102

7.3 The average accuracy of each technique on the combined datasets. . . . . . . 103

7.4 Keypoints found in the same image at several distinct resolutions, as determ-

ined by ORB descriptor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.5 The VPR time (refer to equation (7.1)) in seconds (s) of all VPR techniques on

various image resolutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.6 The accuracy of each technique and the corresponding VPR time for each res-

ized dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107





List of Tables

2.1 A selection of datasets designed for VPR applications. . . . . . . . . . . . . . . 23

3.1 The AUC of VPR techniques on the four datasets. . . . . . . . . . . . . . . . . 39

4.1 The sequence length K required for each VPR technique to reach maximum

place matching performance (100% accuracy) on each of the 4 datasets. . . . 58

4.2 Feature encoding times of different VPR techniques. . . . . . . . . . . . . . . . 62

4.3 Given the tV PR of the best performing single-frame-based VPR technique, we

show the maximum sequence length that can be reached by the sequence-

based implementation of the remaining VPR techniques, on Campus Loop and

Gardens Point (day-to-day) datasets. . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Given the tV PR of the best performing single-frame-based VPR technique, we

show the maximum sequence length that can be reached by the sequence-

based implementation of the remaining VPR techniques, on Gardens Point

(day-to-night) and Nordland datasets. . . . . . . . . . . . . . . . . . . . . . . 68

5.1 The size of each dataset in Megabytes (MB) with different JPEG compression

ratios applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1 Descriptor sizes compared to the average image size of ESSEX3IN1 at several

compression levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 Feature encoding time of the single-image-based implementation of each VPR

technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3 Total VPR time, in scenarios where the ESSEX3IN1 dataset is both uniformly

and non-uniformly JPEG compressed. . . . . . . . . . . . . . . . . . . . . . . 94

6.4 Total VPR time, in scenarios where the Campus Loop dataset is both uniformly

and non-uniformly JPEG compressed. . . . . . . . . . . . . . . . . . . . . . . 95



xvi LIST OF TABLES

6.5 Total VPR time, in scenarios where the GP day-to-night dataset is both uni-

formly and non-uniformly JPEG compressed. . . . . . . . . . . . . . . . . . . 96

6.6 Total VPR time, in scenarios where the 17 places dataset is both uniformly and

non-uniformly JPEG compressed. . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.1 The size of each dataset in Megabytes (MB) resized to various resolutions. . . 101

7.2 The encoding time in milliseconds (ms) of a query image, for each VPR technique.104

7.3 The matching time in milliseconds (ms), for each VPR technique. . . . . . . . 105



Abbreviations

AUC Area-Under-the-Precision-Recall-Curve

BNNs Binary Neural Networks

BoW Bag-of-Words

BRIEF Binary Robust Independent Elementary Features

CenSurE Center Surround Extremas

CNN Convolutional Neural Network

DCT Discrete Cosine Transform

DTW Dynamic Time Warping

FAB-MAP Frequent Appearance Based Mapping

GPS Global Positioning System

GPU Graphics Processing Unit

HMM Hidden Markov Model

HOG Histogram-of-Oriented-Gradients

JPEG Joint Photographic Experts Group

LM-DTW Local Matching Dynamic Time Warping

MCN Minicolumn Network

xvii



xviii Abbreviations

PCA Principal Component Analysis

PCU Performance-per-Compute-Unit

RNN Recurrent Neural Network

ROIs Regions of Interest

SIFT Scale-Invariant Feature Transform

SLAM Simultaneous Localisation and Mapping

SURF Speeded-Up Robust Features

VLAD Vector of Locally Aggregated Descriptors

VPR Visual Place Recognition

WI-SURF Whole-Image SURF



Chapter 1

Introduction

During the last few decades, the rapid advancements in computing power and an ever grow-

ing desire to create autonomous platforms resulted in new technologies to emerge. Hence,

self-driving vehicles and autonomous robots are no longer a figment of imagination, being

widely employed to solve diverse problems ranging from transportation to healthcare and ag-

riculture. Despite that extensive research is still required to achieve robust robot perception

to support long-term autonomy, autonomous robots are here to stay.

1.1 Background

Over the last few decades, the robotics community has been dedicated to developing robots

that are capable of performing a variety of activities autonomously and reliably. One such ex-

ample of robot autonomy are self-driving cars [1], where research in this area has been con-

ducted since the middle of 1980s by not only universities and research centers, but also car

companies. To advance the development of self-driving cars, the Defense Advanced Research

Projects Agency (DARPA) organised a series of competitions in 2004, 2005 and 2007 respect-

ively. The first competition, entitled DARPA Grand Challenge, took place over 142 miles of

desert trails in the Mojave Desert and required the self-driving cars to complete the course

in under 10 hours. However, there was not a single vehicle that was capable of completing

this challenging task. Therefore, the DARPA Grand Challenge was repeated the following

year [2], with the Stanford University’s car entitled Stanley [3] claiming the fist place when

it successfully navigated a 132 miles long challenging environment. The final competition,

entitled DARPA Urban Challenge [4], required self-driving vehicles to successfully operate in

a 60 miles long simulated urban environment, and completing the task in 6 hours or less.
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DARPA Grand Challenge, 2005: Stanley DARPA Urban Challenge, 2007: Boss

Figure 1.1: The winners of the two DARPA competitions.

The first place in this competition was awarded to Boss [5], Carnegie Mellon University’s car.

To navigate through this challenging environments, all cars were equipped with a variety of

sensors ranging from Light Detection and Ranging (LiDAR), odometer, camera and ultrasonic

sensors to Global Positioning System (GPS). The winners of the two competitions are shown

in Fig. 1.1.

To achieve robot autonomy, a robot is required to function and take decisions free from on-

going human supervision. Therefore, they can operate in constantly changing environments,

as their behaviour can adapt to new conditions. To become autonomous, a robotic platform is

required to perceive, plan and execute the given task. An important challenge within the area

of perception is the localisation process (discussed in sub-section 1.2.1) which is performed

utilising the visual information taken from the on-board camera. Moreover, visual localisa-

tion can be performed in GPS restricted environments such as urban environments, where

the signal is unable to reach areas with large buildings and tunnels [1].

Visual Place Recognition (VPR) is an integral part of computer vision, whose goal is to de-

termine through visual inputs whether an autonomous robot is in a previously visited location.

In addition to the changes in the robot’s camera pose, our ever-changing environments greatly

contribute to the drastic increase in the difficulty of correctly performing place matching, as

depicted in Fig. 1.2. Due to the absence of distinct features that are found in confusing and

feature-less images, a geographically-different but visually-similar place may not be correctly

determined by a VPR system (perceptual-aliasing) [6, 7]. Moreover, as robotic platforms are

required to perform place matching in real-time, the storage and processing power limitations

must be taken into consideration as they can hamper with the VPR process.

Prior to the deployment of deep-learning in VPR systems, handcrafted local descriptors



1.1. BACKGROUND 3

Figure 1.2: Images showing the same place under different conditions.

were used to perform place recognition as discussed in more detail in chapter 2. Local fea-

ture descriptors only process salient parts (keypoints) of the image, however these cannot

handle severe illumination changes in the environment. In contrast with the local feature

descriptors, global feature descriptors process the entire image regardless of its content, but

cannot handle viewpoint variation [8]. The application of deep-learning, especially CNNs,

was first studied by Chen et al. in [9] and since then most of the advances in VPR have

been primarily due to deep-learning-based techniques. CNNs are systems capable of learning

features extracted from images using supervised training on labeled datasets. Such CNN-

based VPR techniques have achieved state-of-the-art performance on the most challenging

VPR datasets, as evaluated in [10] and [11]. However, in order to train a CNN for VPR tasks,

one needs a large-scale dataset of labeled images taken from different environments, under

various angles, seasons and illumination conditions. Although labelled VPR datasets exist,

such as Oxford Robot Car dataset [12], SPED dataset [13] and Pittsburgh dataset [14], they

represent a particular environment under limited conditional (environmental changes such

as seasonal and illumination variation) and viewpoint changes. Therefore, the creation of

a large-scale, labeled dataset representing all the different possible variations is not feasible

and requires significant time and resources. Furthermore, training a CNN within reason-

able times to adjust to a new environment will require dedicated Graphics Processing Units

(GPUs) and may take several days/weeks in order to be trained. However, once a CNN has

been successfully trained for VPR, the time required to perform place matching is consider-

ably reduced when compared with the time required for training. Even with this significant

reduction in time between training and running a CNN-based VPR technique, the match-

ing time and memory footprint of CNNs are significantly higher than those needed for the
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handcrafted feature descriptors [10]. Although the CNN-based VPR techniques have largely

outperformed handcrafted feature descriptor-based techniques on the image matching front,

their intense computational requirements make them harder to use in this field. As a res-

ult of these demanding requirements, the deployment of CNN-based techniques for VPR are

restricted for resource-constrained vehicles such as battery-powered aerial, micro-aerial and

ground vehicles, as discussed in [11] and [15].

To autonomously operate in an environment, a mobile robot has to map, localise and

navigate through the environment. This problem of simultaneously mapping and localising

the environment is a widely researched topic within the autonomous robotics field, termed as

Simultaneous Localisation and Mapping (SLAM) [16]. Generally, robots are equipped with

a wide variety of sensors such as cameras, lasers and wheel encoders, that provide essential

information that enables motion and location estimates. However, iterative location estimates

based on dead-reckoning accumulate errors, which become significant over longer trajector-

ies, leading to incorrect belief about the robot’s location in the world. Within autonomous

robotics, these accumulated errors can be catered-for if the robot revisits and recognises a

previously visited (known) place in the world − action generally labelled as ‘loop-closure’.

However, it is of great importance that erroneous loop closure detection is avoided [17] as

it can obstruct with the SLAM framework. For a vision-only system, this loop-closure can be

achieved if a robot is able to recall a previously visited place using only visual information.

This task is performed by extracting distinct features from images, calculating their similar-

ities and determining the confidence metrics [17]. If the visual information taken from the

camera does not correspond with any location that has already been visited, this new obser-

vation is included in the robot’s map. Hence, the ability of correctly recognising a previously

visited place has become a subject of great interest within the robotic vision community and

therefore VPR has developed as a dedicated field within autonomous robotics over the past

17 years [8].

1.2 Simultaneous Localisation and Mapping (SLAM)

Simultaneous Localisation and Mapping (SLAM) [16], one of the most famous research top-

ics, is the process of building a map of an unknown environment while estimating the robot’s

position relative to the map. This is a challenging problem as the robot is constantly re-

quired to correctly match incoming sensory information (query images) with the information
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Figure 1.3: The two main components of a SLAM system.

that is stored in the database (the map of the environment), for consistent map generation.

A SLAM pipeline typically consists of a front-end component, responsible for handling the

sensor data, whilst the back-end component determines the location based on the informa-

tion received from the sensors [17]. More specifically, the front-end component is responsible

for analysing the data retrieved from the camera, and extracting the salient features within

the image. Moreover, the front-end is also required to perform data association, where each

measurement is associated to a specific landmark (e.g. 3D point) [16]. Loop-closure is per-

formed by the front-end component, where a constraint is added each time the robot returns

to a previously known place [18]. Furthermore, erroneous loop closure detection (false-

positive loop-closure) is handled by the back-end component [19, 20, 21]. The architecture

of a SLAM system including the font-end and back-end components are presented in Fig. 1.3.

The back-end component of a SLAM system can provide feedback to the front-end component

to determine if a loop-closure has been found.

1.2.1 Localisation

Localisation is the process of determining the robot’s location in the stored map, utilising

visual information. In contrast with localisation, the pose of a robot refers to its orientation

in the environment. The localisation process of a SLAM system is performed by comparing

the visual data taken from the camera with the stored map of the environment, to determine

the exact location of the robot. However, this process is rendered difficult due to the extreme

changes in the appearance of an environment, as shown in Fig. 1.2. Global localisation, also

termed as the ’wake-up robot problem’ [22], refers to the difficulty in determining the robot’s

location, given a map of the environment. The re-localisation task (or the ’kidnapped-robot

problem’ [23]), tries to retrieve the robot’s location in the environment following an arbitrary



6 CHAPTER 1. INTRODUCTION

change in its position, under heavy occlusions or tracking failures [17]. In contrast with

global localisation where no previous location information is available to the robot, in local

localisation prior knowledge regarding the location of the robot within the map is required.

1.2.2 Mapping

Mapping the trajectory of an autonomous robot during the environment exploration plays a

key role in the SLAM architecture as it allows for successful localisation and navigation. As

the robot constantly explores a large number of environments, the storage requirements are

drastically increased [8]. Moreover, the map needs to be constantly updated as the robot

explores the terrain. Pure image retrieval only stores visual information regarding each vis-

ited place, with no associated pose information. These maps assume that place matching is

only performed on the similarity between the places utilising image retrieval techniques [24].

Metric maps, such as the 2D occupancy grid, only incorporate metric information for high

levels of localisation accuracy. Each cell in the occupancy grid map represents a single unit

of space, either representing a free space or an obstacle that the robot has to avoid. These

maps enable centimeter-level localisation precision whilst also giving the robot geometrically

accurate depictions of its environment [25]. Topological maps are a graph-based representa-

tion of the environment that include the relative position of places, without storing the metric

information [26, 27]. Topological information can facilitate an increased number of correctly

determined place matches, while reducing the risk of obtaining an incorrect place match [28].

Topological-metric (hybrid) maps contain both metric (such as distance and direction) and

topological information. In hybrid maps, a graph-based model is employed to represent the

environment, and the nodes of the model are related to local metric maps [29, 30, 31, 32].

1.3 Visual Place Recognition Overview

VPR is usually cast as an image retrieval problem. The objective of a VPR system is to match

images of a place under varying viewpoint and environmental conditions, such as appear-

ance and illumination changes, as shown in Fig. 1.2. To achieve this challenging task, a VPR

system searches the best representation of a query image (e.g. a frame taken from a robot’s

camera while exploring its environment), in the stored map of the environment (e.g. a pre-

vious traverse of the same route). The feature descriptors of both query and map images are

computed using handcrafted or deep-learning-based approaches, as later discussed in chapter
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Figure 1.4: The three main components of a VPR system are presented here.

2. Thus, given the feature descriptor of a query image, a VPR technique is required to find

the most representative reference descriptor, and hence, the matching place.

Each Visual Place Recognition system has three main components [8]. The first compon-

ent, namely the image processing module is concerned with the processing of incoming visual

data. Additionally, the robot uses a map to store the world’s representation of a visited place.

The third component is the belief generating module, which is involved in comparing the

visual data with the map in order to decide the position of the robot in the environment.

These components are shown in Fig. 1.4.

1.4 Thesis Contributions

The contributions of this thesis to the Visual Place Recognition community are as follows:

1. The first contribution presented in this thesis is a dynamic sequence-based and training-

less VPR technique for changing environments. In contrast with VPR techniques that

utilise a constant sequence length, our technique can successfully adapt its sequence

length depending on the environment. This is achieved by analysing consecutive query

images to determine a minimum sequence length. Entropy computation of salient re-

gions extraction is then utilised to formulate a dynamic sequence length, that is capable

of adapting to distinct environments. Hence, our technique can determine the most rep-

resentative sequence length for each query image, for achieving the best place matching

performance in changing environments.
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2. The second contribution of this thesis is an in-depth analysis of the sequence-based fil-

tering schema presented above. As this matching schema is agnostic to the underlying

single-frame-based VPR technique, this enabled a comparison between the place match-

ing performance and computational efficiency of each VPR technique tested. A detailed

comparison between the single-based image matching schema and sequence-based fil-

tering matching schema is provided. For every VPR technique, the single-frame match-

ing performance is compared with the sequence matching performance. Moreover, the

Performance-per-Compute-Unit (PCU) and the boost in performance resulted by intro-

ducing sequence-based filtering are assessed.

3. The third contribution of this thesis is a study of the effects of Joint Photographic Ex-

perts Group (JPEG) compression in VPR. We show that JPEG compression can be util-

ised to reduce the amount of data transmitted in decentralised VPR applications. The

analysis performed on several JPEG compressed datasets, shows that every VPR tech-

nique employed has a drastic decrease in place matching performance, especially in the

higher spectrum of JPEG compression. We also show how fine-tuning a CNN specifically

for JPEG compressed imagery can enable more consistent and accurate place matching

performance.

4. The fourth contribution of this thesis overcomes the loss in VPR performance when

utilising highly JPEG compressed images by introducing sequence-based filtering. An

in-depth analysis is provided that details the sequence length required to achieve max-

imum place matching performance, the amount of data transferred on each dataset

throughout the entire spectrum of JPEG compression as well as the VPR performance of

each technique when the query and reference images have different levels of compres-

sion applied.

5. The fifth contribution of this thesis provides an in-depth analysis on the effects of image

resolution on the performance of several well-established handcrafted VPR techniques.

We confirm that local feature descriptors are unable to operate on small resolution

images. We utilise the total time required to perform VPR as a measurement of com-

putational efficiency, showing how a reduced image resolution enables a more efficient

VPR process. Moreover, a trade-off analysis between performance and computation

is presented, to allow efficient deployment of VPR solutions on low-end commercial

products that have limited computational ability, such as battery-powered aerial and
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micro-aerial, as discussed in [11, 15, 33].

1.5 Thesis Structure

The remainder of this thesis is organised as follows:

Chapter 2 presents an overview of the literature for Visual Place Recognition. Handcrafted-

feature descriptors and deep-learning-based VPR techniques utilised for VPR applications are

presented. An overview of the literature regarding sequence-based VPR techniques is presen-

ted alongside with details related to the datasets and the performance metrics employed for

VPR evaluation.

Chapter 3 presents a new handcrafted VPR technique entitled ConvSequential-SLAM,

based on Histogram-of-Oriented-Gradients (HOG) descriptors that is successfully able to per-

form VPR using an adaptive sequence-based matching approach to tackle VPR in dynamic

environments. The proposed technique achieves comparable place matching performance

with state-of-the-art VPR techniques on viewpoint and appearance variant datasets.

In chapter 4, the matching schema proposed in ConvSequential-SLAM has been employed

to investigate the application of sequence-based filtering on top of single-frame-based meth-

ods. In particular, the thesis analyses the VPR performance improvement and the computa-

tional effort required to execute VPR using a sequence of images compared with the single-

frame approach. The trade-off between VPR accuracy and computational efficiency is also

examined, showing how lightweight techniques can replace state-of-the-art descriptors to

perform VPR more efficiently, without any loss in place matching performance.

In chapter 5, the thesis investigates the effects of JPEG compression for decentralised VPR

applications, where it can be employed to drastically reduce the amount of data transmitted

over a communication channel as well as the size of the dataset. An assessment of several

well-established VPR techniques under mild to extreme JPEG compression rates is performed

on datasets designed for VPR applications. This thesis demonstrates how a fine-tuned CNN-

based descriptor on highly JPEG compressed data can achieve higher and more consistent

VPR performance than non-optimised VPR techniques. The experiments conducted show that

our model is more consistent on both uniform and non-uniform JPEG compressed data than

any other technique tested.

In chapter 6, the thesis incorporates sequence-based filtering in a number of well es-

tablished, learnt and non-learnt VPR techniques to overcome the performance loss resulted
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by introducing high levels of JPEG compression. The sequence length that enables 100%

place matching performance is reported and an analysis of the amount of data required for

each VPR technique to perform the transfer on the entire spectrum of JPEG compression is

provided. Moreover, the time required by each VPR technique to perform place matching is

investigated. The results show that it is beneficial to use a highly compressed JPEG dataset

with an increased sequence length, as similar levels of VPR performance are reported at a

significantly reduced bandwidth. The results presented in this chapter also emphasize that

there is a trade-off between the amount of data transferred and the total time required to

perform VPR. Our experiments also suggest that it is often favourable to compress the query

images to the same quality of the map, as more efficient place matching can be performed.

In chapter 7, the thesis investigates the effects of image resolution on the accuracy and ro-

bustness of well-established handcrafted VPR pipelines. An assessment of the place matching

performance of several handcrafted VPR techniques on various image resolutions is presen-

ted. This chapter also reports the total time required to perform VPR for various image

resolutions and presents a trade-off analysis between performance and computation.

Chapter 8 presents the conclusions, where a summary of the novel work undertaken in

this thesis is presented. The future research directions are also highlighted.
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Chapter 2

Literature Review

This chapter presents an in-depth overview of the literature in the field of Visual Place Re-

cognition (VPR). Environmental changes such as illumination [39] and viewpoint variation

[6] make a place appear differently on different traverses. These appearance changes render

VPR a challenging problem motivating significant effort put by the research community in

proposing improvements to existing VPR methods and new techniques. A thorough review of

existing research, current challenges and the application of VPR are presented by Lowry et al.

in [8], Zeng et al. in [40], Masone et al. in [41] and more recently by Tsintotas et al. in [17].

Garg et al. [42] present a detailed comparison between VPR in the fields of computer vision

and robotics, respectively.

2.1 Local Feature Descriptors

Local feature descriptors such as Scale-Invariant Feature Transform (SIFT) [43] and Speeded-

Up Robust Features (SURF) [44] make use of the most notable features in the image for ex-

traction (keypoints), followed by description. This can be seen in Fig. 2.1 a) (image taken

from [8]), where the circles represent the salient parts of the image as extracted by SURF.

These local descriptors have been widely used to perform VPR such as in [45, 46, 47, 48, 49].

Frequent Appearance Based Mapping (FAB-MAP) [50] is an appearance based place recogni-

tion system based on local feature descriptors integrated within a SLAM system. It represents

visual places as words and uses SURF for feature detection. The system is successfully able

to deal with perceptual aliased images and can perform loop-closure detection. CAT-SLAM

[51], extends the work of FAB-MAP by including odometry information. Binary Robust In-

dependent Elementary Features (BRIEF) [52] holds comparable recognition accuracy with
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a) b)

Figure 2.1: The difference between a) local feature descriptors and b) global feature

descriptors is shown here.

both SIFT and SURF but at reduced encoding times. The authors of ORB [53] propose a

computationally-efficient descriptor, capable of performing real-time VPR. The proposed tech-

nique is tolerant to noise and is rotation invariant, however it is not scale invariant. Center

Surround Extremas (CenSurE) [54] introduces a suite of new feature detectors that out-

perform the previously mentioned local feature descriptors, performing real-time detection

and matching of image features. CenSurE has been used by FrameSLAM in [55]. Bag-of-

Words (BoW) [56] and Vector of Locally Aggregated Descriptors (VLAD) [57] build an image

descriptor of fixed length by aggregating local feature descriptors around centroids. They

are used to partition the feature space in a fixed number of visual words, that enables more

efficient image matching. BoW has been used for VPR in [57, 58] and VLAD in [33].

2.2 Global Feature Descriptors

In contrast with local feature descriptors which extract interesting parts of the image, whole-

image descriptors process the entire image regardless of its content, as seen in Fig. 2.1 b).

Such a whole-image descriptor is GIST [59, 60], that processes the entire image without

looking for keypoints in the image. This is done by dividing the image into grids and then

processing each separate block. The work done in [61, 62] and [63] shows some examples

of GIST whole-image descriptor used in place recognition. Badino et al. [64] proposed a

variation of SURF, named Whole-Image SURF (WI-SURF), that integrates the accuracy res-

ulting from metric methods together with the robustness of topological localisation, to per-

form visual localisation. HOG [65] is a global descriptor used to represent gradient angles,

whilst also indicating the gradient magnitude for all image pixels. HOG is computationally

efficient and tolerant to appearance changes [7]. McManus et al. used HOG for VPR in [66].
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More recently in CoHOG [67], the authors proposed a training-free technique based on the

HOG descriptor that is able to achieve state-of-the-art performance in changing conditions.

The proposed approach has zero training requirements and low encoding times, hence it is

a great alternative to more resource-intensive VPR techniques, especially for deployment on

resource constrained robotic platforms.

2.3 Complementarity of Visual Place Recognition Techniques

As shown in several comparison works [10, 68], there is no universal VPR descriptor that can

handle every environmental change. Thus, it is often the case that VPR descriptors work well

with some place changes while not with others. The use of complementary VPR techniques

is an emerging approach to address VPR. In an attempt to overcome these limitations, the

work presented in [69] examines the strengths and weakness of various VPR approaches

and optimal combinations of methods are proposed for different environmental conditions.

SwitchHit [70] relies on complementarity to propose a switching system to select the optimal

VPR technique in dynamic environments.

2.4 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are known to be robust feature extractors and their

performance on VPR related tasks showed promising results, thus being extensively explored

in the field of VPR in changing environments. The applicability of deep-learning in VPR has

been originally studied by Chen et al. in [9] where the authors combined all 21 layers of the

Overfeat network [71] trained on ImageNet 2012 dataset together with the spatial and se-

quential filter of SeqSLAM [72]. In [13], the authors trained two neural-network based VPR

techniques. The first architecture, entitled HybridNet, uses weights learnt from the top 5 con-

volutional layers of CaffeNet [73], while the second architecture, AmosNet, was trained from

scratch on the Specific PlacEs Dataset (SPED). Arandjelović et al. [74] introduced a new layer

based on a generalised VLAD entitled NetVLAD, that can be incorporated in any CNN archi-

tecture for VPR training. The authors of [10] tested the performance of NetVLAD on multiple

datasets, including: Berlin Kudamm [75], Gardens Point [39, 76] and Nordland [77, 78]

datasets, showing its robust performance given various VPR scenarios. Cross-Region-Bow

[79] achieves viewpoint tolerance by building an image representation from a pre-trained

CNN. First, it searches for local maxima in a pre-trained CNN’s feature map to identify Re-
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gions of Interest (ROIs). Then, the features underlying the selected ROIs are pooled to form

an image descriptor using BoW. Khaliq et al. [80] present a light-weight CNN-based VPR sys-

tem, with low memory and resource utilisation, that is robust to viewpoint and environmental

changes. CALC [81] trained a Convolutional Auto-Encoder to output illumination-invariant

HOG descriptors, where instead of using the original version of the image, laterally shifted

and distorted versions of the image are used as input to output the same HOG descriptor for

all distorted inputs. This results in a light-weight system robust to variations in viewpoint

and illumination. However, CALC has low accuracy when compared to other CNN-based VPR

techniques. Torii et al. proposed in [82] a place recognition approach, entitled DenseVLAD,

that successfully combines synthesis of novel virtual views with a densely sampled but com-

pact image descriptor. Khaliq et al. present RegionVLAD [83], a light-weight CNN-based VPR

technique that is able to detect salient features from images, while filtering out confusing

elements. While RegionVLAD is based on the same approach as Cross-Region-BoW, it em-

ploys VLAD for feature pooling. In [39], the authors have used the AlexNet ConvNet [73]

pre-trained on the ImageNet ILSVRC dataset [84] for object recognition. The authors of [85]

propose SuperGlue, a CNN that matches local features by finding correspondences between

the points from two images, while also running in real time. The authors of PointNetVLAD

[86] utilise deep-learning to solve point cloud based retrieval for VPR. The "lazy triplet and

quadruplet" loss functions are proposed to solve retrieval tasks. Patch-NetVLAD [87] com-

bines the advantages of local and global feature descriptors to achieve improved performance

over NetVLAD. The proposed system is tolerant to viewpoint, illumination and seasonal vari-

ations while at the same time it is computationally efficient. In [88], the authors propose a

VPR technique entitled DELG, that unifies local and global image features for accurate and

efficient image retrieval. The authors of [89] present HF-Net, a hierarchical localisation ap-

proach for large scale VPR that is robust and accurate to appearance changes, while perform-

ing real-time place matching. The authors of [90] and [91] utilise Binary Neural Networks

(BNNs) for VPR. These systems are less computationally demanding than other CNN-based

VPR techniques, while achieving similar place matching performance as full-precision sys-

tems. However, BNNs require dedicated hardware or an inference engine that enables an

efficient computation of bitwise operations. Bio-inspired algorithms are also considered to

address efficient VPR. Arcanjo et al. [92] proposed a lightweight network inspired by Droso-

phila neural system consisting in a pre-processing stage to compute a compact binary image

representation, followed by a classifier to predict the current location of the robot.
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Figure 2.2: The single-frame matching approach is presented here.

2.5 Sequence-based Visual Place Recognition Techniques

The most common approach utilised for analysing sequential information is to perform se-

quence matching [72, 93]. In comparison with the approaches previously mentioned in

sub-sections 2.1, 2.2 and 2.4 that represent each map image as a distinct place, the VPR

techniques presented in this sub-section create groups/sequences of images to improve their

place matching performance. In the presence of severe seasonal and illumination variations,

sequence-based VPR techniques usually yield increased VPR performance over the single-

based image descriptors, as later discussed in this sub-section. In the single-frame matching

schema, every image qi captured from a robot’s camera (e.g. the query) is matched with

every reference image ri present in the map. A similarity score si is computed for every

query-reference pair. Hence, the reference image ri with the highest similarity score si is re-

trieved as the matching place for qi. For sequence-based VPR techniques, sequences of query

and reference images of length K (where K ≥ 2) are created and matched together. A simil-

arity score is generated between each query-reference sequence. The sequence of reference

images rseqi with the highest similarity score si is regarded as the matching place for any

given query sequence qseqi. Fig. 2.2 presents the single-frame matching approach, whilst the

sequence-based filtering schema is shown in Fig. 2.3.

In SeqSLAM [72], sequences of camera frames are compared instead of single frames,

thus achieving increased performance in VPR when compared to traditional feature-based

techniques, in scenarios where the place is subject to drastic changes. The comparison al-

gorithm of SeqSLAM finds multiple strong matching candidates within every local section of

the route. Within the local best matches, spatially coherent sequences are determined by com-
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Figure 2.3: The sequence-based matching approach is presented here.

paring each frame to all previously learnt frames to form an image difference matrix. A linear

search is then performed through the image difference matrix to find possible localisation

hypotheses. The work of Pepperell et al. [94] on SMART extended SeqSLAM by incorporat-

ing odometry into its calculations. The authors of [95] proposed a new sequence-based VPR

system for aerial robots, that uses Bayes estimation to perform sequence image matching.

Moreover, it does not require that the query image sequence to be organised in the same

order as the stored map. In [96], the authors present a fast and compact VPR pipeline where

sequence matching is used to resolve the collisions in the hash space. It has an overall low

storage footprint while at the same time having extremely fast retrieval and sub-linear stor-

age growth. Johns et al. [97] show a new method for appearance-based localisation, namely

Feature Co-occurrence Maps. The performance of this technique does not degrade during

severe changes in illumination, thus place matching is performed at high precision/recall.

Co-occurrence Maps outperforms both FAB-MAP [50] and SeqSLAM [72]. The authors of

DeepSeqSLAM [98] proposed to integrate a Recurrent Neural Network (RNN) model on top

of a CNN. The resulting system is successfully able to learn both visual and positional repres-

entations from a single monocular image sequence of a route. The authors of [99] propose

a sequence-based VPR system with robust localisation, by creating a data association graph

that is able to relate images from sequences. This approach resulted in a VPR system than

can successfully handle substantial seasonal change. Vysotska et al. presented in [100] a

new approach based on graph-based image sequence matching that is swiftly able to retrieve

the correspondences between a sequence of query and reference images, under severe ap-

pearance changes. The authors of [101] use a Minicolumn Network (MCN) approach that is
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able to create an internal representation that encodes sequential information. The authors of

[102] propose two filtering approaches for sequences of images, the Hidden Markov Model

(HMM) and Monte Carlo-based visual localisation. The proposed technique is robust to ap-

pearance changes. The authors of [103] present an approach for scene boundary detection,

that utilises dynamic segmentation of the visual data instead of a pre-determined sequence

length. The authors of [104] propose a lightweight sequence-based loop-closure detection

system based on Principal Component Analysis (PCA) that is successfully able to decrease the

dimensions of the image descriptor, resulting in reduced computational complexity. Moreover,

to reduce the matching time and improve the matching efficiency of image sequences, consec-

utive sequences of query images are combined with fast approximate nearest neighbor search

(ANNS). ANNS provides an approximate solution to the nearest neighbour search, by trading

off some levels of accuracy for faster search times [105]. In [106], odometry is combined

with a coarse and a fine localisation module, to create a sequence-based localisation pipeline,

robust to illumination and seasonal variations. In [107], the authors combine the CNN’s fea-

tures with the temporal information found in a sequence of images to construct a graph-based

VPR method, capable of outperforming FAB-MAP. In SeqMatchNet [108], the authors propose

a triplet loss function based on sequence matching. The authors of [109] propose a VPR al-

gorithm that matches sequences of query and reference frames. A matrix of low-resolution,

contrast-enhanced image similarity values are computed in order to perform sequence match-

ing and a HMM framework is used to find the best sequence alignment. However, the system

can only deal with small viewpoint variations. STA-VPR [110] is a sequence-based VPR tech-

nique that uses an adaptive Dynamic Time Warping (DTW) algorithm in order to improve its

robustness to changes in appearance and viewpoint. Furthermore, to achieve image sequence

matching based on temporal alignment, a Local Matching Dynamic Time Warping (LM-DTW)

algorithm is used, thus achieving a linear time complexity. Both [109] and [110] are suitable

to deal with non-linear changes in velocity, whereas [72] does not perform well with vari-

able velocities. It has been shown in [111] that the computational cost required to perform

sequence-based matching grows linearly with the size of the map and the number of images

in a sequence. As a result of these limitations, the authors of [111, 112, 113, 114, 115]

propose to perform sequence retrieval by utilising sequence descriptors.
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2.6 Decentralised Visual Place Recognition

Several robotic applications benefit from deploying multiple units operating in parallel, such

as search and rescue missions, where multiple robots can cover the search area easier than a

single agent (i.e. a system that operates autonomously). This is also the case for planetary

exploration, where the dangerous terrain found on other planets can be simultaneously ex-

plored by multiple smaller robots. Moreover, due to the extreme nature of the task, employing

multiple agents may be desirable to minimise the risk of failure when areas are too dangerous

for only a single robot to explore. Multi-agent collaborative tasks are also of great interest

to NASA, as deep space exploration continues. In [116], two MarCO spacecrafts have been

utilised to simultaneously explore the terrain of Mars, while relaying the captured data back

to Earth. However, when a large number of robots are part of a decentralised system, the

bandwidth must accommodate the entire system to facilitate swift data transmission between

them. This is because the robots are still required to transmit data even when operating in

bandwidth constrained environments [117]. Knowing their position in the operating envir-

onment as well as the positions of the other agents is fundamental for mobile robots. As part

of the visual simultaneous localisation and mapping (SLAM), visual place recognition (VPR)

is an essential task for the localisation process when the environment is unstructured, Global

Positioning System (GPS) is unavailable or the visual odometry drifts due to accumulated

errors. For applications that involve a single robot, an ideal VPR method is accurate in de-

tecting known places and efficient enough to fit the robot’s hardware and battery capability

[33]. For applications requiring multiple robotic platforms to collaborate, navigate and map

the environment effectively, the visual data gathered must be transmitted remotely between

each robot [118, 119, 120]. Hence, the amount of data required to be transmitted must be

taken into consideration when working with limited bandwidth available for VPR.

In recent years, considerable effort has been put in creating decentralised VPR architec-

tures. In contrast with centralised architectures where each robot sends the map to a central

server that performs the place matching computations [121, 122], in decentralised architec-

tures each robotic platform performs the place matching computations between their own

map and that of other robots [123]. Thus, the visual data gathered from each agent has to

be shared between each robotic platform. As previously mentioned, this is especially import-

ant in applications such as search and rescue, where each agent can cover a distinct part of

the environment, resulting in a swifter task completion. In similar scenarios, these systems

have to be robust and scalable [124], hence a centralised point of failure or dependence
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may be undesirable. To achieve a robust decentralised system, the bandwidth limitations of

the communication network need to be overcome [117]. The authors of [125] propose a

decentralised system for multi-robot exploration based on thermal images and inertial meas-

urements. The front-end of the pipeline handles the feature tracking and place recognition,

whilst the back-end component reduces both the memory and computational cost by utilising

a covariance-intersection fusion strategy. The communication pipeline employed is based on

VLAD, resulting in reduced bandwidth usage. In [126], a method for multi-robot SLAM based

on ranging sensors is presented, where the system can create consistent maps even in scen-

arios where loop closures cannot be detected. In [118], the descriptor space of NetVLAD is

clustered, and each smaller cluster is sent to a robot to perform efficient decentralised VPR. In

[119], a data-efficient decentralised visual SLAM system is presented, where the data associ-

ation scales linearly with the number of robots present in the multi-robot SLAM system. The

authors of [120] present a loop detection architecture for performing multi-robot underwater

visual SLAM. A common observation in [118, 119, 120] and [123] is that in multi-robot SLAM

systems, working with a reduced bandwidth can significantly increase the difficulty in trans-

ferring the images between multiple autonomous vehicles. The work proposed in chapter 5

and chapter 6 addresses the data transfer problem using JPEG compression to facilitate VPR

applications where the available bandwidth is not capable of transmitting the visual data in

an uncompressed form.

2.7 Benchmarking Visual Place Recognition Approaches

Three main components are utilised when assessing the performance of a VPR technique

namely datasets, ground-truth information and the performance/evaluation metrics [7]. It

is usually the case that each dataset is accompanied by the ground-truth information, which

explicitly states the correspondence between the query and reference frames. For any data-

set, the ground-truth can be a CSV file, numpy array (an array whose elements must have

the same data type [127]), GPS information etc. However, for datasets where the query and

reference images have the same name or index, the ground-truth information is not always

required. In these cases, for any given query image, the reference image with the same name

or index should be retrieved as a matching place. A wide variety of datasets for benchmarking

VPR applications exist in the literature, and we discuss these in sub-section 2.7.1. Similarly,

several performance metrics that enable an efficient performance assessment of a VPR tech-
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Figure 2.4: Sample images taken from well-established VPR datasets are presented here.

nique are discussed in-depth in sub-section 2.7.2.

2.7.1 Test Datasets for Visual Place Recognition

The datasets utilised are an integral part of the VPR process, as they replicate the envir-

onmental changes that a robot can experience during its deployment, and can range from

illumination, viewpoint and seasonal variations to confusing features, dynamic objects (such

as vehicles) and clutter background. A dataset mainly consists of two traverses which are

captured along the same route, during different times and environmental conditions. The

first traverse along a route is stored as the map (reference images), while the second tra-

verse represent the query images, which are captured by a robot’s camera while exploring its

environment.

Several datasets exist that have been widely employed by the VPR community to test the

performance of VPR techniques. The majority of studies are performed on publicly accessible

datasets, which can include frames taken in various environments, ranging from indoor to

outdoor scenes. This thesis utilises a combination of datasets presenting illumination, view-

point, and weather variations to cover some of the most common viewing conditions experi-

enced by a robot, where the operating environment might present heterogeneous conditions
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Table 2.1: A selection of datasets designed for VPR applications.

Variation

Dataset Environment Viewpoint Conditional

Nordland [77, 78] Outdoor Lateral Appearance

Alderley [72] Urban Lateral Appearance

Campus Loop [81] Indoor/Outdoor, Campus Lateral Appearance

Gardens Point [39, 76] Indoor/Outdoor, Campus Lateral Illumination

Oxford Robot Car [12] Urban Lateral Illumination

ESSEX3IN1 [6] Indoor/Outdoor, Campus 3D Illumination

SYNTHIA [128] Synthetic Environment, Urban - Illumination

17 places [129] Indoor Lateral Illumination

SPED [13] Outdoor - Appearance

in different places. The following datasets have been utilised in various chapters of this thesis

and they are as follows: Campus Loop dataset [81] contains sequences of 100 query and 100

reference images taken from both indoor and outdoor locations of a campus environment.

The frames are taken under viewpoint and seasonal variations, whilst also containing dy-

namic objects which contribute towards a challenging dataset for VPR applications. Gardens

Point dataset [39, 76] consists of three traverses of the environment, two during the day (day

left and day right) and one traverse captured during the night (night right). Thus, the im-

ages within the above-mentioned dataset are divided as follows: 200 query images (day left)

and 400 reference images equally split into day images (day right) and night images (night

right). Apart from changes in the illumination, the dataset also includes viewpoint variation.

Nordland dataset [77, 78] captures outdoor images of a train journey in Norway during each

season (spring, summer, autumn and winter). Since the most notable differences between

seasons are seen during the summer and winter, this thesis uses 172 query and 172 refer-

ence images taken from the summer-to-winter traverses of the Nordland dataset. ESSEX3IN1

[6] is a dataset created at the University of Essex, with a focus on perceptual aliased and

confusing places. This dataset is composed of 420 frames, equally split into 210 query and

210 reference images. Oxford Robot Car dataset [12] contains 200 query and 200 reference

images that are taken under illumination and viewpoint changes. SYNTHIA dataset [128]

presents a simulated city-like environment which consists of 200 query and 200 reference
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images, whose frames contain various weather, seasonal and illumination changes. The 17

places dataset [129] contains images that are captured in distinct lighting conditions, in mul-

tiple indoor environments. For this thesis, three locations have been selected entitled Arena,

AshRoom and Corridor. Hence, this dataset consists of 457 query (day_vme1) and 434 ref-

erence images (night_vme1). The Alderley dataset [72] was created in Brisbane, Australia.

The first traverse is composed of 201 query images that are captured at night time, during

limited environmental illumination and in the presence of rain, translating to low visibility.

The second run (201 reference images) was captured during the day. Specific PlacEs Dataset

(SPED) dataset [13] contains 607 query and 607 reference frames. These are low-quality im-

ages taken from outdoor cameras [130] under weather, seasonal and illumination variations.

The images taken from these cameras capture an array of scenes such as forest/mountain

landscapes, country roads and urban locations. Sample images taken from each previously

mentioned dataset are presented in Fig. 2.4. In Table 2.1, the datasets together with the

changes depicted in the environment are included. Other datasets presented in the literature

include Berlin A100 [75], Berlin Halenseestrasse [75], Berlin Kudamm [75], Query247 [82],

Tokyo24/7 [74], INRIA Holidays [131], Cross-Seasons [132], Corridor [133], Pittsburgh [14]

and Living Room [134].

2.7.2 Performance Metrics for Visual Place Recognition

In this sub-section, several evaluation criteria designed for VPR applications are presented.

The authors of [8] suggested that Precision-Recall curves are a key evaluation metric for

VPR techniques. Therefore, an ideal system would achieve 100% precision at 100% recall.

Area-Under-the-Precision-Recall-Curve (AUC) is widely used in VPR research for evaluation

purposes [7] due to the fact that it performs well on unbalanced data, which is also the case

for VPR applications. AUC is computed by plotting the Precision-Recall curve at different

confidence thresholds as follows:

Precision =
True Positives

True Positives+ False Positives
(2.1)

Recall =
True Positives

True Positives+ False Negatives
(2.2)

In both equations (2.1) and (2.2), the True Positives (TP) refer to the correctly retrieved

matches, False Positives (FP) represent the incorrect retrieved matches while False Negatives
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(FN) are the incorrectly discarded matches. The values of AUC are between [0,1], with higher

values representing better VPR performance [135]. However, AUC cannot determine whether,

for any Recall value, the Precision is at 100% [68].

RP100 [136] is a derivative from a PR-Curve and it denotes the Recall value at which

the Precision starts to drop from 100%. More specifically, it represents the percentage of TP

that can be retrieved with no FP. It has been shown in both [135] and [137] that a FP can

have severe consequences, hence RP100 is a good performance indicator utilised in evaluation

works such as [136] and [138]. However, RP100 is not able to determine the performance of

a VPR technique in the lower spectrum. For this reason, the authors of [68] introduced a new

metric based on RP100 entitled Extended Precision (EP) that has the following formula:

EP =
PR0 +RP100

2
, (2.3)

where, PR0 represents the Precision at minimum Recall. The denominator in equation (2.3)

is included to ensure that the EP is in range [0,1]. Similarly to AUC, higher EP translates to a

better VPR performance.

The authors of [10, 11, 81] and [83] determined that the feature encoding time (te)

of a VPR system to be an important performance indicator. In [67], the authors evaluated

a system’s performance using PCU. This is defined by combining precision at 100% recall

(PR100) with te as in equation (2.4):

PCU = PR100 × log

(
te_max

te
+ 9

)
(2.4)

In this equation, the maximum feature encoding time (te_max) is used to represent the

most resource intensive VPR technique, while te represents the feature encoding times for

each of the remaining techniques (where te ≤ te_max). It is worth mentioning that without

the scalar 9 in equation (2.4), the VPR technique with te = te_max will always result in a PCU

of 0. Techniques with higher precision and lower feature encoding time generally lie towards

the higher spectrum of PCU, while compute-intensive and less precise techniques converge

towards lower PCU values. Thereby, this addition provides a more interpretable range.

Another metric utilised for VPR evaluation purposes is the accuracy [7], representing the

percentage of correctly matched images. This performance metric is computed as in equation

(2.5) below:

Accuracy =
Nc

Nq
, (2.5)
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where Nc represents the number of correctly matched query images and Nq the total number

of query images. The accuracy has values in range [0,1]. Higher the accuracy, higher the

place matching performance of a VPR technique.

In contrast with the previously mentioned performance metrics that only assess the VPR

performance of a technique, the encoding time and matching time are also important es-

pecially for VPR applications where resource-constrained platforms are utilised. While the

encoding time te refers to the amount of time that a VPR technique requires to compute the

feature descriptor of an image, the matching time tm represents the amount of time required

to match the descriptor of a query image with all the reference descriptors in the map. Both

the encoding time te and matching time tm of various VPR techniques have been discussed at

length throughout this thesis.

2.8 Summary

In this chapter, a detailed overview of the literature regarding Visual Place Recognition (VPR)

is presented, including handcrafted-feature descriptors and deep-learning-based VPR tech-

niques. An overview of the literature regarding sequence-based VPR techniques as well as an

introduction to decentralised VPR have been presented. Moreover, the datasets and perform-

ance metrics utilised to assess VPR performance have also been described in this chapter.



Chapter 3

ConvSequential-SLAM: A

Sequence-Based VPR Technique

In order to tackle the VPR challenges previously discussed in chapter 1, a large number of

handcrafted and deep-learning-based VPR techniques have been developed, where the former

suffer from appearance changes and the latter have significant computational needs. In this

chapter, a new handcrafted VPR technique is presented, entitled ConvSequential-SLAM, that

achieves comparable place matching performance with well-established deep-learning-based

VPR techniques in challenging conditions, whilst having a reduced computational footprint

which translates to a wider availability for resource constrained platforms. We utilise sequen-

tial information and block-normalisation to handle appearance changes, while using regional-

convolutional matching to achieve viewpoint invariance. Therefore, our technique employs

an adaptive sequence-based matching approach to address VPR in dynamic environments. We

analyse content-overlap in between query frames to find a minimum sequence length, while

also reusing the image entropy information for environment-based sequence length tuning.

The place matching performance of ConvSequential-SLAM is reported in contrast to several

well-established VPR techniques on four public datasets.
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3.1 Introduction

In this work, we propose a novel sequence-based and training-free VPR technique, namely

ConvSequential-SLAM, that is successfully able to perform VPR under changing viewpoint

and appearance conditions. In contrast to other sequence-based VPR systems such as [72]

and [98] that use a constant sequence length of images, our technique is using a dynamic

sequence-based matching approach that is able to determine the most representative se-

quence length for each sequence of images. The resulting system is a training-less and light-

weight VPR system, successfully able to adapt to distinct environments. We report comparable

performance with more complex deep-learning-based VPR techniques on both viewpoint and

conditionally-variant datasets while having a lower computational load which is important

especially for resource constrained platforms.

We make the following main contributions:

• We integrate convolutional matching into our system, achieving robustness to moderate

viewpoint variations.

• We achieve conditional invariance by using regional, block-normalised HOG descriptors

instead of contrast-enhanced pixel-matching.

• We developed an analysis based on information-gain from consecutive query images to

determine the minimum sequence length needed. Since ConvSequential-SLAM utilises

HOG for descriptor computation and regional convolutional matching for descriptor

comparison (refer to sub-section 3.2.4), this approach cannot be directly included in

other VPR techniques and it needs to be adapted for each particular technique.

• Building upon the sequence length generated by analysing consecutive query images,

we use the entropy computation for salient region extraction to formulate an optimal

dynamic sequence length, instead of a constant sequence length, as used in sequence-

based VPR techniques.

3.2 Methodology

This section presents the methodology proposed in our work. The query images represent the

visual data received from the camera, while the reference images represent the stored map
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Figure 3.1: The block diagram of our framework is shown here, which presents all the major

components of the system.

of the environment in the form of RGB images. The block diagram showing each step of the

ConvSequential-SLAM system is presented in Fig. 3.1.

3.2.1 Information Gain

The first major innovation in our work is the ability of our technique to determine the in-

formation gain resulted from analysing consecutive query images. This allows a more robust

understanding of the environment, while it also gives enough information about different

textures and properties found in successive query images. This approach is used to determ-

ine the local change-point in consecutive query images, thus enabling a minimum sequence

length (min_K) for each sequence of images to be determined (see sub-section 3.2.5).

The information-gain is calculated as follows. Firstly, we compute the HOG of the first and



30 CHAPTER 3. CONVSEQUENTIAL-SLAM: A SEQUENCE-BASED VPR TECHNIQUE

second query image that are part of a sequence. Secondly, we proceed to compare these two

images together using regional convolutional matching (see sub-section 3.2.4), generating

a similarity score. Finally, we compare this score with the Information Threshold (IT ) to

determine if the similarity between the two query images provides sufficient information

gain. We then proceed to compare the first query image with the third and so on, repeating

the above steps, until we find a representative minimum sequence length. The information

gain can be easily summarised as in equation (3.1) and (3.2) below:

Information Gain = 1− Similarity Score (3.1)

Initial Sequence =

 K + 1, if Information Gain ≥ IT .

entropy map, otherwise.
(3.2)

In the above equation, min_K ≤ K ≤ max_K_IG, IT is in range [0,1] and represents the

Information Threshold, min_K is the minimum sequence length (set to 1) and max_K_IG

is the maximum sequence length. The Initial Sequence in equation (3.2) represents the

number of query images that are part of the query list generated by this approach. When the

Information Gain module provides its best sequence length (e.g. Information Gain < IT ),

we proceed to calculate the sequential entropy (see sub-section 3.2.6) for that sequence of

query images and determine whether this has the optimal length.

3.2.2 Entropy Map and ROI Extraction

The second step in the ConvSequential-SLAM framework is to create the entropy1 map rep-

resenting the salient regions in each query image. The entropy map creation is based on

estimating the local pixel intensity variation within the grayscale image and computing the

base-2 logarithm of the histogram of pixel intensity values within each local region. This

entropy map is represented by a matrix of size W1 × H1, the elements of which are values

in the range {0 − 8}, due to the pixel intensities being in the range of 20 to 28 − 1. The

dimensions W1 ×H1 represent the fixed size dimensions of the input image. The following

matrix represents the entropy map for a query image:

1https://scikit-image.org/docs/stable/api/skimage.filters.rank.html#skimage.filters.rank.entropy
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Entropy =


e11 e12 e13 . . . e1W1

e21 e22 e23 . . . e2W1

...
...

...
. . .

...

eH11 eH12 eH13 . . . eH1W1

 (3.3)

Where eij ∈ {0− 8}.

Using the entropy map of an image, we extract Regions-of-Interest (ROIs) by computing

the average entropy of a region of size W2 ×H2. If this entropy is above a threshold ET , it

reflects that a region is informative and is selected as a ROI. The total number of regions (non-

overlapping) in an image is N = W1/W2×H1/H2 and the total number of ROIs is G which

can vary from one query image to another. In comparison with the traditional Top-G approach

where the value of G always remains constant, our approach offers greater saliency and

computational benefits. When dealing with an image that contains numerous non-informative

(confusing) regions, this approach only analyses the regions which are determined to contain

salient information. Therefore, by utilising a variable number of ROIs instead of the Top-G

approach, low-textured images are successfully matched. Moreover, as the confusing regions

of the image are discarded before the regional convolutional matching process (refer to sub-

section 3.2.4), the computational intensity of ConvSequential-SLAM is reduced. Fig. 3.2

shows the salient regions determined by our technique for various values of ET . It can be

seen that by increasing ET , non-informative elements such as walls and floors are filtered

out. Thus, with an increase in ET the number of ROIs detected in an image is reduced.

To get a single entropy value for the entire image, all the elements of the entropy matrix

are summed, then divided by W1 ×H1 × 8 to get the re-scaled value. This is useful for the

computation of sequential entropy of a sequence of query images to determine the dynamic

sequence length (see sub-section 3.2.6).

3.2.3 Regional HOG Computation

The process of regional HOG computation takes place as follows. In the first instance, we

compute a gradient map of a grayscale image of size W1 ×H1. Following this, a histogram

of oriented-gradients is computed for all N regions of the image, with each region having

the size of W2 × H2. Furthermore, each histogram of every region has L bins, where each

bin is labelled with equally spaced gradient angles between 0-180 degrees. Lastly, we use L2-

normalisation to achieve illumination invariance [139, 140]. This is computed as the square
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Query Image ET = 0.4 ET = 0.5

ET = 0.6 ET = 0.7 ET = 0.8

Figure 3.2: The ROIs extracted by ConvSequential-SLAM for various ET .

root of the sum of the squared pixel values. By utilising L2-normalisation, the pixel values are

scaled down such that the impact of illumination on the image is reduced. This is done at a

block level of size (W2× 2)× (H2× 2).

3.2.4 Regional Convolutional Matching

Following the regional HOG computation, we proceed to regional convolutional matching

(presented in Algorithm 1), given each query image is represented as N regions, each being

described by a HOG-descriptor of depth 4 × L. Using the information from the ROI eval-

uation, these N regions are reduced to G salient regions. By doing so, the query image

HOG-descriptor can be represented as a 2D matrix of dimensions [G, 4 × L]. The reference

image has N regions with the descriptor size of 4×L, therefore its resulting matrix has the di-

mensions of [N, 4×L]. We then proceed to multiply the query and reference matrices (d1 and

d2, respectively), and the result is a matrix (entitled d1d2dot_matrix) of dimensions [G,N ].

Each row of this matrix represents a salient region of a query image, while each column

represents the cosine-matching scores for that region with all the N regions of a reference

image. Max-pooling (d1d2matches_maxpooled in Algorithm 1) is used across the rows of the

aforementioned matrix in order to determine the best matched regions between the query
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Algorithm 1: The regional convolutional matching process is detailed here.
Given: Query Image HOG-Descriptor (d1)

Given: Reference Image HOG-Descriptor (d2)

Given: Query Image ROIs (regional_G)

nr_of_regions=(W1/W2− 1) × (H1/H2− 1)

INITIALISE (2D array of 0s): d1d2dot_matrix[nr_of_regions, nr_of_regions])

INITIALISE (array of 0s): d1d2matches_maxpooled[nr_of_regions]

INITIALISE (array of 0s): d1d2matches_regionallyweighted[nr_of_regions]

np.dot(d1, d2, out = d1d2dot_matrix)

// Select best matched reference region for each query region

np.max(d1d2dot_matrix, axis = 1, out = d1d2matches_maxpooled)

// Weighting regional matches with regional_G

np.multiply(d1d2matches_maxpooled, regional_G,

out = d1d2matches_regionallyweighted)

// Compute final score

score = np.sum(d1d2matches_regionallyweighted) / np.sum(regional_G)

and reference images. The final score is computed as the arithmetic mean of matching scores

of all G regions and is in the range of 0 − 1, such that the higher the score, the higher the

similarity between the two images. Finally, the reference image that has the highest score is

chosen to be the best match for a given query image. The value of the parameters utilised in

Algorithm 1 are detailed in sub-section 3.3.3.

3.2.5 Creating the Query Images Sequence

Query images are added into a 1D list in a sequential manner, such that the length of this list is

dependent on the sequential entropy (explained in sub-section 3.2.6). Even if the sequential

entropy’s value for the first K images is higher than the Entropy Threshold (ET ), where

0 ≤ ET ≤ 1, the minimum sequence length will be determined using the information-gain

resulted from analysing consecutive query images (see sub-section 3.2.1). Thus, we will not

end up with non-optimal sequence lengths, that will ultimately result in poor performance.

The 1D query list containing a sequence of query images is represented as:
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Sequential Query List =
[
q1 q2 q3 . . . qK

]
(3.4)

In the above equation, q1 is the first query image, qK is the last query image, and K is the

total number of images that are part of a sequence.

As previously mentioned, the length of this list will constantly change, but all the images

will be in a sequential order, starting from the first image to the K-th image. When computing

the second sequence of query images, we start with the second image (q2) and so on. It is

important to note that for any N images read, the number of query images sequence lists

created will be N− K + 1, where K will contain the length of the last list created. That is, for

any N query images, the algorithm will only match the first N− K + 1 images.

3.2.6 Entropy-Based Dynamic Query Images Sequence

The second key innovation is incorporating the ability of our technique to reuse entropy as

measure of the overall information content found in a sequence of query images, to decide

an optimal sequence length of each query list. Building upon the sequence length gener-

ated by analysing consecutive query images (see sub-section 3.2.1), we use the entropy to

maximize the efficiency of this length. To achieve this, our technique first looks at the in-

formation content (entropy score) of the query sequence list generated in sub-section 3.2.1.

If the information content within this sequence of images is less than a threshold (ET ), we

increase the sequence length by a constant step, then recompute the information content for

this new increased sequence of images. If the information content (Sequential Entropy) for

this increased sequence of images reaches a reasonable value (ET ), the corresponding length

of the query images sequence is used, otherwise we keep increasing it (up to the maximum

sequence length) to find a suitable sequence length. Sequential Entropy represents the arith-

metic mean of the entropy scores ei of the query images within the sequence. Thus, for any K

query images in a sequence, the sequential entropy is calculated utilising equation (3.5). The

entire iterative process is summarised in equation (3.6).

Sequential Entropy =

∑K
i=1 ei
K

(3.5)

Sequence Length =

 min_K_IG, if Sequential Entropy ≥ ET.

K + 1, otherwise.
(3.6)
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Algorithm 2: Matching Query and Reference Sequences
Given: Query Images Sequence (Q_Seq)

Given: Reference_Images_List (R_List)

ref_matching_scores = [ ]

iterator = 0

K = Length (Q_Seq)

while itr + K ≤ Length(R_List) do
Sequential_Reference_List = R_Seq = [ ]

for ref_itr in range(itr, itr + K) do
APPEND R_List[ref_itr] to R_Seq

match_score = Sequence_Matching_Func(Q_Seq, R_Seq)

ADD match_score to ref_matching_scores

iterator = iterator + 1
Best Match = Max (ref_matching_scores)

In equation (3.6), min_K_IG ≤ K ≤ max_K, ET represents the Entropy Threshold,

min_K_IG is the minimum sequence length (generated in sub-section 3.2.1) and max_K

is the maximum sequence length. The Sequence Length in equation (3.6) represents the

number of images that are part of the query list at a given time, thus being dependent on the

value of K. In the same equation, the Sequential Entropy refers to the average entropy value

(see sub-section 3.2.2) of K images that are part of this query list.

3.2.7 Dynamic Sequence Matching

This sub-section details the dynamic sequence matching approach of ConvSequential-SLAM.

As discussed in sub-section 3.2.6, our technique creates a dynamic list of query images, i.e.,

the length of the query sequence list will vary for different sets of query images. During the

matching phase, we create a sequential one dimensional (1D) reference list of the same length

as the sequential query list. These sequential 1D reference lists are created for all the images

in the reference map. Because the size of our reference list is dependent on the sequential

query list’s length, this simplifies the matching of the query and reference image sequences.

The algorithm that retrieves a correct match for a sequence of query images given a reference

map can be found in Algorithm 2. The function Sequence_Matching_Func in Algorithm 2 takes

K corresponding pairs (1-to-1 matching) from the query image sequence (Q_Seq) and refer-
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Figure 3.3: The most common changes in the environment are presented here.

ence image sequence (R_Seq) and matches them using Regional Convolutional Matching, as

explained in sub-section 3.2.4. The matching score of the query and reference sequences is

the arithmetic mean of the matching scores of the pairs within these sequences. This function

returns the matching score of the query image sequence and the reference image sequence.

Given all the reference images and their corresponding sequences from the reference map,

the sequence with the highest matching score is selected as the best match.

3.3 Experimental Setup

3.3.1 Sequential Datasets

To evaluate the proposed technique, we have used four VPR datasets which cover some of the

most common viewing conditions in real-world applications, as presented in sub-section 2.7.1

of chapter 2. These are as follows: Gardens Point [39] day-to-day and day-to-night, Nordland

[78] and Campus Loop [81]. Apart from using these datasets to show the performance of our

technique, we also use the Alderley (night-to-day) dataset solely to show the variation in

sequence length due to sequential entropy. Fig. 3.3 shows some sample images representing

the most common challenges in VPR.
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3.3.2 Utilised VPR Techniques

We compare the performance of ConvSequential-SLAM with other VPR techniques, such as

CoHOG [67], HOG [65], CALC [81], HybridNet [13], AMOSNet [13], SeqSLAM [72], Region-

VLAD [83], NetVLAD [74] and DeepSeqSLAM [98] on the datasets mentioned in sub-section

3.3.1. We have used SeqSLAM with a sequence length of 5 and 10 images respectively, while

DeepSeqSLAM was tested with a sequence length of 10 images only. The remaining VPR

techniques are single-image-based and are provided for completeness.

All VPR techniques presented in this study are written in Python, except SeqSLAM2 which

is written in Matlab. The implementations of CALC, HOG, HybridNet, AMOSNet, RegionVLAD

and NetVLAD have been used as presented in [7], with source code available within a shared

GitHub3 repository. Both DeepSeqSLAM4 and CoHOG5 can be found as GitHub repositories at

their respective web addresses. ConvSequential-SLAM was written in Python 2.7 and requires

the following Python libraries to run: cv26, numpy7 and skimage8.

3.3.3 Parameters

In this work, we have used W1 = H1 = 512, W2 = H2 = 16, L = 8 bins, G (can take different

values for different query images depending on the scene that is represented), ET = 0.5,

IT = 0.9, min_K = 1, max_K_IG = 15 and max_K = 25 for ConvSequential-SLAM. These

values represent the backbone of our system, as they are responsible for determining the

optimal sequence length. The above values were specifically chosen as they provide overall

good results in terms of Accuracy, AUC and PCU while also providing comparable results to

our static sequence length (K = 10 images) version of ConvSequential-SLAM. An ablation

study showing the performance of our technique in terms of accuracy and AUC with various

sequence lengths (1 ≤ K ≤ 20) is provided later in this work.

2https://github.com/OpenSLAM-org/openslam_openseqslam
3https://github.com/MubarizZaffar/VPR-Bench
4https://github.com/mchancan/deepseqslam
5https://github.com/MubarizZaffar/CoHOG_Results_RAL2019
6https://pypi.org/project/opencv-python
7https://pypi.org/project/numpy
8https://pypi.org/project/scikit-image
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Figure 3.4: The accuracy of ConvSequential-SLAM is compared against the accuracy of other

well-established VPR techniques on widely used public VPR datasets.

3.3.4 Performance Metrics

In this chapter, we report the performance of ConvSequential-SLAM utilising several perform-

ance metrics, described in sub-section 2.7.2. The first performance metric employed in this

work is the accuracy, which represents the percentage of correctly matched images (refer to

equation (2.5)). Another important performance indicator employed in this chapter is the

AUC, computed by plotting the Precision and Recall at different confidence thresholds util-

ising equations (2.1) and (2.2). PCU is a relative evaluation metric that combines Precision

at 100% Recall (PR100) with the feature encoding time te of a VPR descriptor. Thus, this

performance metric is employed in this chapter utilising equation (2.4).

3.4 Results and Analysis

In this section, we discuss results from a place matching performance point, in terms of

accuracy, AUC and PCU. We also present the performance of ConvSequential-SLAM for various

sequence lengths and show how the sequence length varies between one dataset and another.

Finally, we show some samples of correctly and incorrectly retrieved query and reference

images by our technique for a qualitative insight. For all experiments presented below, we

have used a PC equipped with an Intel Core i7-4790k CPU.
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Table 3.1: The AUC of VPR techniques on the four datasets.

AUC

VPR Campus Gardens Point Gardens Point Nordland

Technique Loop (day-to-day) (day-to-night) Dataset

Dataset Dataset Dataset

Ours Static K 0.999 1 0.754 0.533

Ours Dynamic K 1 1 0.8 0.6

CoHOG 0.776 0.928 0.43 0.151

HOG 0.301 0.431 0.294 0.036

CALC 0.597 0.738 0.403 0.104

HybridNet 0.889 0.933 0.595 0.214

AMOSNet 0.872 0.907 0.571 0.132

SeqSLAM K = 5 0.273 0.296 0.037 0.059

SeqSLAM K = 10 0.371 0.333 0.071 0.16

RegionVLAD 0.412 0.739 0.642 0.563

NetVLAD 0.998 0.959 0.698 0.733

DeepSeqSLAM 0.999 1 0.952 0.736

3.4.1 Accuracy

This sub-section presents the accuracy results of ConvSequential-SLAM against the perform-

ance of other VPR techniques. Fig. 3.4 shows the computed values of accuracy for all tech-

niques, on all 4 datasets. We report in Fig. 3.4 the accuracy of ConvSequential-SLAM using

a fixed sequence length of 10 images as well as a dynamic length determined by the system

itself. As all the datasets tested contain consecutive images, there is a high possibility that

each image is similar to the ones located in its immediate proximity. Therefore, if for any

query image, the reference image found to be the best match is in the range ±2, we consider

it as a correct match, except for the Nordland dataset where we use the ±1 range.

ConvSequential-SLAM achieves state-of-the-art accuracy on Campus Loop and Gardens

Point (day-to-day) datasets. Our approach also achieves high place matching performance

on the highly conditionally-variant Gardens Point (day-to-night) and Nordland datasets, fol-

lowed by deep learning-based techniques like NetVLAD, HybridNet and AMOSNet. However,

DeepSeqSLAM with a sequence length of 10 images outperforms every other VPR technique

on both Gardens Point (day-to-night) and Nordland datasets.
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Figure 3.5: The Precision-Recall Curves for all VPR techniques on each of the 4 datasets used

in this work are enclosed here.

3.4.2 Area-Under-the-Precision-Recall-Curve (AUC)

The performance of ConvSequential-SLAM in terms of AUC on all datasets is reported in

Table 3.1. It achieves good AUC performance on the Campus Loop, Gardens Point (day-to-

day), and Gardens Point (day-to-night) datasets. When compared to NetVLAD, our technique

achieves better performance on all datasets tested, except on Nordland dataset, as reported

in Table 3.1. We can see a small boost in performance between our algorithm using a fixed

sequence length of 10 images and a dynamic sequence length respectively. When compared

to DeepSeqSLAM, the proposed technique achieves comparable results on both Campus Loop

and Gardens Point (day-to-day) datasets. However, DeepSeqSLAM outperforms all VPR tech-

niques on the remaining two datasets (Gardens Point (day-to-night) and Nordland). In Fig.

3.5, we present the Precision-Recall curves of all the VPR techniques tested in our work on all

four datasets introduced in sub-section 3.3.1.
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Figure 3.6: The PCU of ConvSequential-SLAM is compared with the PCU of other well-

established VPR techniques on all mentioned datasets.

3.4.3 Performance-Per-Compute-Unit (PCU)

Fig. 3.6 presents the PCU of ConvSequential-SLAM using a fixed sequence length of 10 im-

ages. Because we match sequences of images instead of single frames, the feature encod-

ing time will also be increased with each image that is part of that sequence, as shown in

Fig. 3.7. In this figure, Ours K = 5 and K = 10 represent the feature encoding time of

ConvSequential-SLAM using fixed sequences of 5 and 10 images respectively. The feature

encoding time for dynamic K will vary between the lowest value (that is for a minimum se-

quence length determined by the information-gain) and the maximum value for a sequence

length of 25 images.
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Figure 3.7: The feature encoding times of various VPR techniques are presented in this graph.

In this sub-section, we use the average sequence length computed by our methodology

within the dataset for encoding time computation. Even though using a higher sequence

length will result in higher encoding times, the performance boost in place matching that is

gained greatly benefits ConvSequential-SLAM. This can be seen in Fig. 3.6, where we present

the PCU value of our technique against other VPR techniques, on all four datasets. A system

that achieves high precision will have a high PCU value, as previously mentioned in sub-

section 2.7.2. This is also the case for ConvSequential-SLAM, achieving high PCU values due

to its high precision, as seen in Fig. 3.6.

3.4.4 Variation in Sequence Length

It is well known the fact that by incorporating sequence-based filtering into a VPR system,

the overall performance is greatly improved. However, sequence matching requires a static

sequence length to be provided for each environment that the robotic platform is operating

in. Furthermore, this sequence length cannot always be constant as different VPR techniques

have different place matching performances. This is an important factor especially for re-

source constrained platforms, in which the computational intensity of a VPR technique needs

to be carefully considered. In this sub-section, we show that ConvSequential-SLAM is suc-

cessfully able to adapt its sequence length depending on the environment.

For each dataset employed in this study, Fig. 3.8 shows the number of image sequences

of length K obtained by ConvSequential-SLAM. More specifically, it shows how the sequence
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Figure 3.8: The variation in sequence length of ConvSequential-SLAM on all four datasets is

shown here.

length changes throughout the entire dataset, and details the exact number of sequences of

length K created, where 1 ≤ K ≤ 25. It is important to note that by varying both the Entropy

Threshold (ET ) and Information Threshold (IT ) we can achieve lower or higher sequence

lengths. Also, it is worth noting that we use day left as query images for both Gardens Point

(day-to-day) and Gardens Point (day-to-night) datasets, so we only include one instance of

the dataset in Fig. 3.8 in order to avoid redundancy.

In addition to the datasets mentioned above, we also use the Alderley (night-to-day)

dataset to show how the sequence length is modifying because of entropy. However, all VPR

techniques poorly perform on this dataset, because the query images (night images) provide

little to no information about the environment. This is due to the poor lighting condition

in the environment as well as the presence of rain, which increase the difficulty in place

matching.

Because in the Campus Loop, Gardens Point and Nordland datasets the entropy across

each dataset is too high, the sequence length would not have increased in most cases, there-

fore we would end up with non-optimal sequence lengths. By using information-gain resul-

ted from analysing consecutive query images, we are able to increase the minimum sequence

length even though the salient information found in any given query image is above the

threshold set (e.g. ET ≥ 0.5). However, in contrast with the previously mentioned datasets
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Figure 3.9: The ablation study showing the accuracy of ConvSequential-SLAM when utilising

a fixed sequence length (1 ≤ K ≤ 20).

where the sequence length would not increase due to high information content in query im-

ages, on the Alderley dataset query images (night images) do not contain salient information

due to poor illumination, therefore the sequence length will increase up to the maximum

sequence length of 25 as shown in Fig. 3.8.

Using entropy is particularly helpful in scenarios where the query frames do not provide

much information (as mentioned above), thus increasing the sequence length allows better

chances of finding the correct reference image for any given query image. On the other hand,

in cases where the information content of multiple sequences of query images is too high in a

dataset (such as Campus Loop, Gardens Point and Nordland datasets), non-optimal sequence

lengths will be achieved if entropy alone is used. Therefore, information gain is used to

establish the lower bounds of the sequence length needed to achieve optimal results.

3.4.5 Ablation Study

Fig. 3.9 and Fig. 3.10 present the performance of our approach in terms of accuracy and

AUC values, when using a fixed sequence length K between 1 and 20 images respectively.

Increasing the value of K leads to an increase in both accuracy and AUC performance. In both
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Figure 3.10: The ablation study showing the AUC of ConvSequential-SLAM when utilising a

fixed sequence length (1 ≤ K ≤ 20).

Campus Loop and Gardens Point (day-to-day) datasets, a sequence length of K = 7 images

will result in the best performance, whilst a higher sequence length is needed to achieve

desirable results for the remaining two datasets: Gardens Point (day-to-night) and Nordland.

3.4.6 Exemplar Matches

Fig. 3.11 shows some correctly matched sequences of query and reference images, taken from

each dataset. Some failure cases for the proposed technique are shown in Fig. 3.12. These

are primarily due to the presence of confusing features coming from trees and vegetation that

can be found in most images throughout the Nordland dataset, increasing the difficulty in

place matching.

3.5 Summary

As previously discussed in chapter 2, sub-section 2.5, matching sequences of images instead

of single camera frames can enable better place matching performance, especially in challen-

ging conditions such as severe illumination and seasonal changes. However, sequence-based



46 CHAPTER 3. CONVSEQUENTIAL-SLAM: A SEQUENCE-BASED VPR TECHNIQUE

Figure 3.11: Some correctly matched sequences of query and reference frames.

filtering adds more computational complexity to the VPR process, which paired with a deep-

learning-based VPR technique can severely restrict its applicability on resource constrained

platforms. Moreover, as each VPR technique achieves distinct levels of place matching per-

formance in different scenarios, a constant sequence length can either result in sub-optimal

VPR performance or an unnecessary increase in the computational load of the system.

To overcome the limitations of utilising a constant sequence length and the demanding

computational resources required to run a deep-learning-based VPR technique, this chapter

presents ConvSequential-SLAM, a dynamic sequence-based and training-less VPR technique

for changing environments which achieves comparable place matching performance with

well-established deep-learning-based VPR techniques on public VPR datasets that contain
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Figure 3.12: Some incorrectly matched query and reference frames.

both viewpoint and appearance variations. We developed a new analysis based on information-

gain and entropy to formulate a dynamic sequence length for optimal VPR performance in

changing environments. Moreover, the sequence-matching approach proposed in this chapter

is agnostic to the underlying VPR technique, hence it can be incorporated in both handcrafted

and deep-learning-based VPR techniques. Thus, the following chapter proposes an in-depth

study on the effects of sequence-based filtering on top of single-frame-based VPR techniques.





Chapter 4

Sequence-Based Filtering for Visual

Route-Based Navigation

An emerging trend in VPR is the use of sequence-based filtering methods on top of single-

frame-based place matching techniques for route-based navigation. The combination leads

to varying levels of potential place matching performance boosts at increased computational

costs. This raises a number of interesting research questions: How does performance boost

(due to sequential filtering) vary along the entire spectrum of single-frame-based matching

methods? How does the sequence matching length affect the performance curve? Which spe-

cific combinations provide a good trade-off between performance and computation? How-

ever, there is a lack of previous work investigating these fundamental questions, whilst most

of the sequence-based filtering work to date has been used without a systematic approach.

To bridge this research gap, this chapter conducts an in-depth investigation of the relation-

ship between the performance of single-frame-based place matching techniques and the use

of sequence-based filtering on top of these methods. The sequence-based filtering schema

presented in chapter 3 is employed to perform the above mentioned experiments, as it is

agnostic to the underlying single-frame technique. This chapter also analyses individual

trade-offs, properties and limitations for different combinations of single-frame-based and

sequential techniques. The experiments conducted in this study demonstrate the benefits of

sequence-based filtering over the single-frame-based approach using various VPR techniques.
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4.1 Introduction

In recent years, it has been shown that sequence-based VPR systems such as [72, 98, 133, 141]

and [34] can achieve good performance in changing environments. Thus, an almost parallel

track has emerged where sequence-based techniques have been shown to outperform single-

frame-based techniques. More importantly, the benefits presented by sequential information

are generally extendable to most non-learning and learning-based VPR techniques albeit at

varying levels and costs. Therefore, it is critical to understand the properties of sequential-

based filtering, its trade-offs and how to deploy them on single-frame-based VPR techniques

for designing better VPR systems.

To the best of our knowledge, there is no previous work that has examined this important

problem in a systematic way (such as performance boost variations due to sequential filtering

along the entire spectrum of single-frame-based VPR methods, the effects of sequence length

on performance, performance-computation trade-off etc.). To bridge this research gap, this

chapter investigates the relationship between the performance of single-frame-based, learnt

and non-learnt VPR methods, and the use of sequence-based filtering on top of these meth-

ods. In particular, this chapter introduces sequential information into a number of VPR tech-

niques to improve conditional invariance and shows that sequence matching takes a poorly

performing single-frame-based VPR technique and improves its performance. While sequence

matching has a positive effect on VPR accuracy, it increases the time required to perform VPR.

This chapter examines the effects of different sequence lengths on the resulting performance

boost and determines the optimal combinations between different VPR techniques and se-

quence lengths, taking into consideration both the performance and computational load of

each system. We found that high-precision VPR systems slightly improve their performance

from introducing sequential-based filtering. On the contrary, less accurate but lightweight

techniques can receive a significant boost in their VPR accuracy, whilst in some cases also

keeping the matching time shorter than state-or-the-art techniques. For example, CALC out-

performs NetVLAD on Campus Loop dataset using a sequence of 16 images while taking

about 78% of the time to perform VPR. The sequence-based filtering schema employed is

summarised in Fig. 4.1 and discussed in-depth in sub-section 4.2.2.

In summary, our work provides the following contributions:

• The application of sequence-based filtering on top of single-frame-based methods is in-

vestigated. In particular, we analysed the VPR performance improvement and the com-

putational effort required to execute VPR using a sequence compared with the single-
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Figure 4.1: The sequence-based filtering schema employed is presented.

frame approach.

• The trade-off between VPR accuracy and computational efficiency is examined, show-

ing how lightweight techniques can replace state-of-the-art descriptors to perform VPR

more efficiently, without any loss in accuracy.

4.2 Methodology

This section presents the approach taken for evaluating the boost in performance resulted

from introducing sequence-based filtering on top of single-frame-based techniques. To en-

able the comparison of different VPR descriptors, the sequence filtering schema presented

in chapter 3 has been employed, as it is agnostic to the underlying single-frame technique.

This approach combines the outcome of single-frame matching operations into a scalar rep-

resenting the similarity between sequences of images representing the places to match. The

sub-sections below provide details on sequence-based filtering and the evaluation criteria

used to assess the impact of sequence-based filtering on single-frame-based VPR techniques.

4.2.1 Single-Based Image Matching

For any given query image (e.g. a frame taken from a robot’s camera), the main goal of a

VPR technique is to retrieve the most representative reference image (the matching place)

from the database. This is done by comparing each query image with all the stored database

images in such a way that each time a query and reference image are matched together, a

similarity score is computed. For any given query image, the reference image with the highest

score is chosen as the best match.
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Algorithm 3: Query and Reference Descriptor Comparison.
Given: Query Descriptor (QF )

Given: Map of Reference Descriptors (RM)

INITIALISE (array of 0s): score_array[length(RM)]

iterator = 0

for RF in RM do
score = Cosine_Similarity(QF , RF )

score_array[iterator] = score

iterator = iterator + 1
Best_Match = Max(score_array)

The feature descriptor computed by a VPR technique for a query image Q is denoted as

QF , for a reference image R as RF whilst the list containing the reference descriptors for the

entire map as RM . The similarity between two image descriptors (QF and RF ) is determined

using the cosine [79]:

s =
QFRF

||QF || ||RF ||
(4.1)

The single frame-matching schema requires that QF is compared with every RF from RM .

Thus, for any N images in a dataset, a set of similarity scores S is created as follows:

S = {s1, s2, s3, ..., sN} (4.2)

Where s ∈ R and s in range [0,1]. Higher the score, higher the similarity between two

image descriptors.

For each query image Q, a new set of similarity scores S is created containing the values

for that particular frame. Once the similarity coefficients have been computed, the reference

image with the highest value (s ∈ S) is regarded as the matching place for QF .

Algorithm 3 presents the entire matching process for a query image descriptor QF and

the map, RM . The matching score (calculated as in equation (4.1)) of each query-reference

pair is stored in a 1D array entitled score_array. Once a similarity score has been generated

for every RF (from RM), the maximum value from the score_array is retrieved, and thus, the

most representative reference image for QF is selected as the best match.

4.2.2 Sequential-Based Filtering

In contrast to the single-image matching process previously mentioned, sequential-based fil-

tering allows a VPR technique to match sequences of query and reference frames. Fig. 4.1
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summarises the sequence-based filtering schema employed. First, sequences of query and

reference images of constant length are created. A similarity value is generated each time a

sequence of query and reference images are matched together. Thus, for each sequence of

query images, the reference sequence with the highest similarity score is selected as the most

representative match. The most important steps for introducing sequential-based filtering on

top of single-frame-based VPR techniques are presented below:

Creating the Image Sequence

For any given query image qi, the sequence of K consecutive images is built as follows:

qi qi+1 qi+2 . . . qK (4.3)

Where qi is the query image for which the sequence is built, qK is the last query image that

is part of the given sequence, and K is the total number of images that forms each sequence.

Similarly to (4.3), the reference images are organised in sequences (formed with an offset

of 1 image) as presented in equation (4.4):

r1 r2 r3 . . . rK

r2 r3 r4 . . . rK+1

...
...

...
. . .

...

rN−K+1 rN−K+2 rN−K+3 . . . rN

(4.4)

The application of equation (4.4) results in N - K + 1 image sequences, where N is the

total number of images in the dataset and K is the sequence length. Using higher sequence

lengths will lead to less images to be searched for, as no new image sequences of length K

can be created when we approach the end of the dataset. For this reason, the number of

sequences created depends solely on the value of the selected sequence length (2 ≤ K ≤ N)

as shown below:

No. of Seq Created = N − K + 1 (4.5)

Once the query and reference sequences are created, the sequence matching is performed.

Sequence Matching

All query and reference features are initially computed and stored in two separate 1D lists:

QF and RF . perform_VPR in Algorithm 4 has two main functions, more specifically creating
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Algorithm 4: Creating Query and Reference Sequences.
Given: Total Number of Query Images

Given: Total Number of Reference Image

K = image sequence length

for i in range (total_Query_Images - K + 1) do
ref_matching_scores = []

for j in range (total_Ref_Images - K + 1) do
score = perform_VPR(QF , RF , i, j)

ADD score to ref_matching_scores
Best Match = Max (ref_matching_scores)

the query and reference image sequences of constant length K from QF and RF (presented

in sub-section 4.2.2) and image sequence matching.

The perform_VPR function firstly takes the indices (i for query images and j for reference

images) from Algorithm 4 in order to determine for which query and reference image the

sequences will be created. Starting from the i-th image, the perform_VPR function creates

sequences by adding consecutive images until the required sequence length K has been ob-

tained. The same process is repeated for every reference image, starting with the j-th image.

This process is presented in Algorithm 5, which represents the perform_VPR function.

For every given query image sequence previously created, perform_VPR searches for the

most representative reference image sequence. Algorithm 5 presents the process of matching

a sequence of query and reference images, generating K similarity values (score) for each

query-reference pair that are part of the matched sequences. The similarity or matching

score of any query-reference image sequences (sequential_score) is calculated as the arith-

metic mean of the matching scores of the pairs within these sequences. Thus, the matching

score for a sequence of images of length K is computed as:

s′ =

∑K
i=1 si
K

(4.6)

Where si represents the matching score for each query-reference pair with index i. The

matching score s’ has values in range [0,1], with a higher score denoting a better similarity

between two sequences of query and reference frames. Thus, for each query image sequence,

the reference sequence with the highest score is selected as the most representative match.

This can be seen in Algorithm 4, where for any given query image sequence, the matching

scores of all reference image sequences are stored in a list, namely ref_matching_scores. The
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Algorithm 5: The perform_VPR function is presented here.
Given: List of Query Descriptors (QF )

Given: List of Reference Descriptors (RF )

Given: Query Image Number (i_query)

Given: Reference Image Number (j_ref)

K = image sequence length

sequential_score = 0

i = i_query

j = j_ref

while i < i_query + K and j < j_ref + K do
score = Cosine_Similarity(QF [i], RF [j])

sequential_score = sequential_score + score

i = i + 1

j = j + 1
sequential_score = sequential_score / K

maximum score from this list is taken as the best match for that given query image sequence.

When analysing a query image qi, we take into account the sequential information provided

from using consecutive images, thus the next K - 1 images are also analysed as part of qi’s

image sequence. For this reason, the first reference image that is part of the sequence with

the highest score is retrieved as being the best match for its corresponding query image.

4.3 Experimental Setup

This section discusses the performance metrics employed, the VPR techniques utilised to gen-

erate our results and the sequential datasets used in this work.

4.3.1 Employed Performance Metrics

Similarly to chapter 3, we assess the VPR performance of various VPR techniques (presented

in sub-section 4.3.2) utilising several performance indicators described in sub-section 2.7.2.

These are as follows: AUC, computed utilising the Precision and Recall (refer to equation

(2.1) and (2.2), respectively); accuracy, representing the percentage of correctly matched

images, computed utilising equation (2.5); PCU, calculated as in equation (2.4).



56 CHAPTER 4. SEQUENCE-BASED FILTERING FOR VISUAL ROUTE-BASED NAVIGATION

Figure 4.2: Sample sequence of images taken from each of the 4 datasets.

4.3.2 Utilised VPR Techniques

In this work, sequence-based filtering is introduced into a number of state-of-the-art VPR

techniques, namely HOG [65], CALC [81], AMOSNet [13], HybridNet [13] and NetVLAD

[74]. Single-frame-based implementation of Zaffar et al. [7] is used for all 5 aforementioned

VPR techniques. In sub-section 4.4, comparative results based on the employed performance

metrics for these VPR techniques are presented, along with discussion of the benefits and

trade-offs of sequence-based filtering.

4.3.3 Utilised Sequential Datasets

For this study, four sequential VPR datasets are used as presented in sub-section 2.7.1, namely

Campus Loop [81], Gardens Point [39] day-to-day and day-to-night and Nordland [78]. Fig.

4.2 shows sample images taken from each dataset.
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Figure 4.3: The performance boost (%) of sequence matching performance in comparison to

the single-frame-matching performance of all VPR techniques on the datasets mentioned in

sub-section 4.3.3.

4.4 Results and Analysis

In this section, we focus our attention on understanding how and when to use sequence-based

localisation/place matching, its strengths/downsides and the most appropriate performance

metrics that can be used in order to test the efficacy of such VPR systems. We present the

results for sequence-based filtering when used on top of the VPR techniques mentioned in

sub-section 4.3.2. We also present the computational effects of sequential-based filtering and

discuss the benefits and trade-offs. For all experiments presented below, we have used a PC

equipped with an Intel Core i7-4790k CPU.

4.4.1 Place Matching Performance

In Fig. 4.3 we present the performance boost achieved by different VPR techniques for several

sequence lengths. The maximum value of K presented in Fig. 4.3 corresponds to the value



58 CHAPTER 4. SEQUENCE-BASED FILTERING FOR VISUAL ROUTE-BASED NAVIGATION

Table 4.1: The sequence length K required for each VPR technique to reach maximum place

matching performance (100% accuracy) on each of the 4 datasets.

VPR Technique

Dataset NetVLAD HOG CALC AMOSNet HybridNet

Campus Loop 3 19 16 8 5

Gardens Point (day-to-day) 6 35 23 14 13

Gardens Point (day-to-night) 25 75 99 21 30

Nordland 11 71 107 45 55

required for each method to achieve 100% accuracy. Those K values are summarised in Table

4.1 for every VPR technique and dataset. The performance boost in Fig. 4.3 is calculated

as the percentage increase between the accuracy of the sequence-based and the single-image

version of the same VPR technique. It is evident from Fig. 4.3 that the addition of sequen-

tial filtering to a given single-frame-based VPR technique mostly improves the overall place

matching performance of that technique. This suggests that by increasing the sequence length

of a VPR technique, we will achieve better place matching performance. HOG achieves the

highest performance boost on all datasets except Gardens Point day-to-night. VPR techniques

such as AMOSNet and HybridNet have a substantial increase in performance using a consid-

erable shorter sequence length (K) than simpler VPR techniques, such as CALC or HOG, on

Gardens Point day-to-night and Nordland. The reason behind this is that CNN-based VPR

techniques such as AMOSNet and HybridNet are designed and trained to deal with drastic

changes in the environment, while simpler techniques such as HOG are only able to deal with

moderate viewpoint and illumination changes. We further discuss this topic in sub-section

4.4.2. However, VPR techniques which already achieve close-to-ideal matching performance,

such as NetVLAD, do not benefit much from using an increased sequence length on certain

datasets, such as on the Campus Loop and Gardens Point day-to-day dataset, where the per-

formance boost of the system is negligible. This is mainly because CNNs such as NetVLAD,

are successfully able to handle the viewpoint, seasonal and illumination variations that can

be found in these datasets, without requiring an increased sequence length. This observation

is important as using sequences instead of single images has computational drawbacks and

should be avoided where unnecessary. We expand on this further in sub-section 4.4.3 and

4.4.4.
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Figure 4.4: The single-frame matching performance compared to the sequence matching

performance for all 5 VPR techniques on all 4 datasets.

4.4.2 Performance-Boost Variations

Fig. 4.4 presents the single-frame matching performance (x-axis) of each VPR technique

in terms of accuracy and compare it with the sequence matching performance (y-axis) of

the same VPR techniques. Plotting the performance variations in this manner helps us to

understand the amount of compression and expansion in performance boosts given sequence

length variations for different VPR techniques, while also putting it on par with the single-

image retrieval performance.

A common observation in existing literature has been that sequential-filtering mostly helps

with introducing conditional invariance [72], however, the results obtained on Gardens Point

day-to-day shown in Fig. 4.4 demonstrate that it also greatly helps in viewpoint variant, con-
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Figure 4.5: Some correctly matched sequences of query and reference images taken from

each dataset used.

ditionally invariant scenarios. The performance boost of each VPR technique is directly linked

to the severity of the environmental changes (and their effects on the scene appearance) in the

dataset. The benefits of sequential-filtering are clearly enjoyed extensively by most techniques

on datasets (Campus Loop and Gardens Point day-to-day) with less conditional changes than

datasets (Nordland and Gardens Point day-to-night) with extreme conditional changes. Fig.

4.5 shows a sequence of correctly matched query and reference images taken from each of

the 4 datasets.

In contrast to the observations made above, the performance improvement of HOG (refer

to Fig. 4.3) is inconsistent on the Gardens Point day-to-night dataset (for sequence lengths
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Figure 4.6: Some incorrectly matched sequences of query and reference images taken from

Gardens Point day-to-night and Nordland datasets.

of 2 ≤ K ≤ 20), where the single-frame performance of this technique achieves similar or

better place matching performance compared to that of the sequence matching performance.

The presence of extreme viewpoint variation, illumination variation and also the presence

of statically-occluded frames in the Gardens Point day-to-night dataset may affect the per-

formance of this technique. Similarly, the improvement in the performance gained by using

sequential-based matching for CALC is more limited (thus requiring a longer sequence length

K to reach maximum accuracy) when compared to other techniques on the Nordland dataset

due to the presence of viewpoint and seasonal variation, as seen in Fig. 4.4. On this data-

set, even with the addition of sequential-based matching, both HOG and CALC achieve lower

results than more complex VPR techniques such as NetVLAD. These results are primarily due

to the nature of the dataset, which contains a large number of confusing features, primar-

ily coming from trees and vegetation. On the other hand, the night images from Gardens

Point contain a lot of noise (pepper noise) which drastically decrease the place matching

performance of light-weight systems such as HOG. We show in Fig. 4.6 some sequences of

incorrectly matched query and reference images taken from both Gardens Point day-to-night

and Nordland datasets. In such scenarios, evidently it is better for a system to switch to more

sophisticated and invariant techniques, such as NetVLAD and HybridNet, even at the expense

of higher computational needs.
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Table 4.2: Feature encoding times of different VPR techniques.
VPR Technique Feature Encoding Time (sec)

AMOSNet 0.36

CALC 0.027

HOG 0.0043

HybridNet 0.36

NetVLAD 0.77

In summary, some example cases where using a higher sequence length for a simple,

handcrafted VPR technique (such as HOG) is beneficial are laterally viewpoint variant and

seasonally variant (but under similar illumination) scenes, e.g. driving a car in a different

lane on a previously visited road in a different season. The increasing trend in performance

of the HOG technique can be clearly seen in both Fig. 4.3 and Fig. 4.4, for the Campus Loop

and Gardens Point day-to-day datasets. However, for platforms that can have 3D or 6-DOF

viewpoint changes, e.g. drones, UAVs etc., deep-learning-based techniques should be used

instead of simple techniques with high sequence length, which is also the case for highly illu-

mination/conditionally variant scenes such as those found in the Gardens Point (day-to-night)

and Nordland datasets. Our data supports the fact that deep-learning-based VPR techniques

are better equipped to deal with these variations, and that they should be used in these scen-

arios instead of more simple VPR systems. Thus, we propose that having this prior knowledge

can lead a system based on an ensemble of sequentially-filtered VPR techniques, which are

switched accordingly dependent upon the environmental variation cues. This criteria will

ensure that the most appropriate VPR technique is selected in each scenario, thus increasing

the place matching performance, possibly at much lower computational costs as discussed in

sub-section 4.4.3.

4.4.3 Benefits and Trade-Offs of Sequential-Based Filtering

This sub-section presents the benefits and trade-offs of sequential filtering while also answer-

ing key questions.

Computational Effects of Sequential-Based Filtering

Due to the fact that we are matching sequences of images instead of the traditional single-

frame approach, the feature encoding time for each VPR technique will be increased by K
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Figure 4.7: The matching time in seconds of each VPR technique on all 4 datasets is presented

here. For every VPR technique, we only plot up to the value of the sequence length K that is

required to reach 100% accuracy (reported in Table 4.1).

folds. Table 4.2 shows the feature encoding time of the five VPR techniques used in this

work without sequential filtering and Fig. 4.7 presents the matching time of each technique.

Because neural network-based VPR techniques, such as HybridNet, AMOSNet and NetVLAD

already have increased feature encoding times, the addition of sequential filtering will lead

to a drastic increase in processing time. Fig. 4.8 shows the PCU of each VPR technique and

the computational effects of using multiple sequence lengths. Thus, in both Fig. 4.7 and 4.8,

for each VPR technique, we only plot up to the sequence length values (K) that are required

to achieve 100% accuracy (see Table 4.1). It is important to note that a significant increase in

the PCU curves occurs when there is a notable increase in precision compared to the increase
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Figure 4.8: The PCU values for each VPR technique on all 4 datasets is reported here. For

every VPR technique, we only plot up to the value of the sequence length K that is required

to reach 100% accuracy (reported in Table 4.1).

in encoding time. HOG achieves high PCU values due to both its low encoding times and high

increase in precision when adding sequential filtering.

Apart from the computational downsides mentioned above, the latency in getting a match

as it needs to build up the sequence has to be considered. Furthermore, shifting between two

different routes that have not been traversed in that order in the map (switching latency) can

increase the computational requirements. Switching latency represents the amount of time

required for a VPR system to transition from recognising one location to another [142]. This

is crucial for real-time applications that require fast and precise visual place recognition in

changing environments. Moreover, the difficulties with variable velocities (solved partially
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with more sophisticated search or using odometry information) can lead to further computa-

tional constraints. This is especially important for resource constrained platforms as it may

restrict its applicability in real world scenarios, due to the high amount of visual information

that has to be processed.

Sequence-Based Filtering Vs. Single-Image-Based VPR

The data shows that for a VPR system that has poor performance on a dataset, the addition

of sequence-based filtering may greatly improve its performance. Using a longer sequence

length will have a higher impact in place matching performance. This is the case for HOG and

CALC, which greatly benefit from the addition of sequence-based filtering. On the other hand,

the single-image version of NetVLAD already achieves almost perfect results on both Campus

Loop and Gardens Point (day-to-day) datasets and thus, the increased computational effects

of sequential filtering for just a small gain in place matching performance may not evidently

be desirable, as shown in Fig. 4.8. Empirically, the increase in sequence length does not cause

any reduction in the place matching performance but mostly yields better performance and

therefore, given computational power, it may be desirable to use sequence-based techniques

instead of single-image-based techniques.

Performance Benefits Based on Sequential Filtering

As shown in Fig. 4.3 and Fig. 4.4, an increased sequence length for a given VPR technique

will lead to higher performance on most datasets tested. However, different VPR techniques

will require different sequence lengths (see Table 4.1) depending on the performance of the

system on a given dataset. When using sequence-based filtering, the boost in performance can

be attributed to several reasons. Primarily, using an increased sequence length increases the

chances of finding the best reference image for any given query image which also translates

to reduced perceptual aliasing. The increased sequence length also improves the conditional

invariance of a VPR technique as shown by our results.

Light-Weight Vs. Deep-Learning-Based VPR Techniques Blended With Sequential-Based

Filtering

It is evident that it is indeed possible to use a much simpler, light-weight VPR technique,

paired with sequential filtering in order to match or even outperform the effectiveness of
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deep-learning-based VPR techniques on certain datasets. We have showed that the perform-

ance of a simpler VPR technique, such as HOG, can be drastically increased when using

sequence-based filtering with a longer sequence length. The same can be said about CALC,

which achieves good results when paired with sequential filtering. Moreover, both VPR tech-

niques have a low feature encoding time, thus greatly benefiting from a PCU standpoint. Us-

ing the best VPR techniques (simpler systems with longer sequence lengths or deep-learning-

based systems with shorter sequence lengths) for the right dataset will result in an overall

better place matching performance, as discussed in sub-section 4.4.2.

4.4.4 Computational Budget

In a real-word scenario where robotic platforms are computationally restrained, it is imper-

ative to achieve the highest VPR performance given computational constraints. In this sense,

we show a performance comparison between the best performing single-frame-based VPR

technique and the sequence length obtainable by each VPR technique in a given time frame.

By adding together the encoding time (te) with the matching time (tm), we obtain the VPR

time for any technique as follows:

tV PR = te + tm (4.7)

Using equation (4.7) allows us to make a fair comparison between the performance of

each VPR technique and the effects that sequence length has on tV PR. For this reason, tV PR

is used as a criterion that helps us determine whether the best performing single-frame-based

VPR technique (NetVLAD - refer to Fig. 4.4) can be outperformed by a sequence-matching

filtering implementation of other VPR techniques presented in this work. As such, given the

tV PR of NetVLAD as computational budget, we present in Table 4.3 and Table 4.4 the max-

imum sequence length obtainable by each VPR technique in regards to the given time. In case

where a VPR technique reaches 100% accuracy before the computational budget is expended,

the respective sequence length is reported instead. The values presented in bold represent

the VPR technique that has the highest accuracy and the technique that has the lowest tV PR.

Apart from the accuracy of a VPR system, we also present the AUC values and the precision

at 100% recall (PR100) for that particular sequence length. Moreover, in addition to the VPR

techniques presented in sub-section 4.3.2, we also include the results for ConvSequential-

SLAM (described in chapter 3). However, as the sequence length of ConvSequential-SLAM

is constantly changing, the tV PR for each query image would be different. Hence, we do

not include the tV PR in Table 4.3 and Table 4.4, but only present the performance metrics
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Table 4.3: Given the tV PR of the best performing single-frame-based VPR technique, we show

the maximum sequence length that can be reached by the sequence-based implementation of

the remaining VPR techniques, on Campus Loop and Gardens Point (day-to-day) datasets.
Campus Loop Dataset

VPR Technique NetVLAD HOG CALC AMOSNet HybridNet ConvSequential-SLAM

K 1 1 16 1 1 dynamic

te (sec) 0.77 0.0043 0.432 0.36 0.36 -

tm (sec) 0.049 0.544 0.21 0.186 0.19 -

tV PR (sec) 0.819 0.544 0.642 0.546 0.55 -

Accuracy 0.98 0.21 1 0.6 0. 69 1

AUC 0.998 0.301 0.999 0.872 0.889 1

PR100 0.98 0.214 1 0.625 0.704 1

Gardens Point (day-to-day) Dataset

VPR Technique NetVLAD HOG CALC AMOSNet HybridNet ConvSequential-SLAM

K 1 1 10 1 1 dynamic

te (sec) 0.77 0.0043 0.27 0.36 0.36 -

tm (sec) 0.199 2.18 0.622 0.773 0.78 -

tV PR (sec) 0.969 2.184 0.892 1.133 1.14 -

Accuracy 0.955 0.315 0.75 0.76 0.81 1

AUC 0.959 0.431 0.899 0.907 0.933 1

PR100 0.955 0.316 0.748 0.779 0.814 1

mentioned above.

HOG has the lowest encoding time te of all VPR techniques presented. However, due to

its increased matching time tm, it is unable to achieve a sequence length of K > 1 in less

tV PR than NetVLAD. On the other hand, CALC has an overall low tV PR, thus being able to

compute a longer sequence length than every other technique. We show in Table 4.3 that,

on Campus Loop dataset, CALC is able to achieve better performance than NetVLAD, in less

tV PR. However, due to the low single-frame matching performance of CALC on datasets such

as Gardens Point (day-to-night) and Nordland (as shown in Fig. 4.4), a much longer sequence

length K than the one obtained in the given tV PR would have been required to achieve the

same or better levels of performance as other CNN-based VPR techniques such as NetVLAD,

AMOSNet or HybridNet (refer to Table 4.4).

This experiment concludes that, on Campus Loop dataset, CALC with a sequence length
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Table 4.4: Given the tV PR of the best performing single-frame-based VPR technique, we show

the maximum sequence length that can be reached by the sequence-based implementation of

the remaining VPR techniques, on Gardens Point (day-to-night) and Nordland datasets.
Gardens Point (day-to-night) Dataset

VPR Technique NetVLAD HOG CALC AMOSNet HybridNet ConvSequential-SLAM

K 1 1 10 1 1 dynamic

te (sec) 0.77 0.0043 0.27 0.36 0.36 -

tm (sec) 0.223 2.13 0.632 0.768 0.779 -

tV PR (sec) 0.993 2.134 0.902 1.128 1.139 -

Accuracy 0.565 0.205 0.355 0.475 0.45 0.607

AUC 0.698 0.294 0.623 0.571 0.595 0.8

PR100 0.585 0.214 0.357 0.477 0.456 0.649

Nordland Dataset

VPR Technique NetVLAD HOG CALC AMOSNet HybridNet ConvSequential-SLAM

K 1 1 13 1 1 dynamic

te (sec) 0.77 0.0043 0.351 0.36 0.36 -

tm (sec) 0.155 1.62 0.563 0.536 0.613 -

tV PR (sec) 0.925 1.624 0.914 0.896 0.973 -

Accuracy 0.412 0.023 0.143 0.162 0.186 0.537

AUC 0.733 0.036 0.39 0.132 0.214 0.6

PR100 0.42 0.04 0.143 0.163 0.187 0.544

of 16 images can achieve better and faster place matching performance within the computa-

tional budget represented by the tV PR of the single-frame-based implementation of NetVLAD

(K = 1). For this reason, we propose that the sequence-based implementation of CALC (with

a sequence length of K = 16 images) is selected as an alternative to the single-based imple-

mentation of NetVLAD on this dataset, as presented in our experiment.

4.5 Summary

To bridge the gap caused by a lack of systematic study on sequence-based filtering for visual

route-based navigation, this chapter has conducted an in-depth investigation on the benefits

and trade-offs of sequence-based filtering on top of single-frame-based VPR methods. This

analysis is performed on four public sequential VPR datasets, that pose difficulties in place
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matching (appearance changes, viewpoint variations etc.), using a variety of widely used

performance metrics such as PCU. Sequential filtering is introduced into a number of contem-

porary single-frame-based VPR methods in order to present the findings. The results show

the effects of various sequence lengths on performance boost and suitable combinations of

different VPR techniques and sequence lengths are determined. Moreover, we take into con-

sideration the computational effects of sequential-based filtering, for enabling the best place

matching performance in different scenarios. Therefore, the focus of this chapter is to show

that VPR can be performed more efficiently by pairing lightweight single-frame-based tech-

niques with sequence-based filtering, thus being capable of outperforming more complex VPR

descriptors.





Chapter 5

Data-Efficient VPR Using Extremely

JPEG-Compressed Images

In contrast with chapters 3 and 4 whose focus was directed towards sequence-based filtering,

this chapter shifts its attention towards an unexplored avenue for VPR research, namely image

compression. JPEG is a widely used image compression standard that is capable of signific-

antly reducing the size of an image at the cost of image clarity. For applications where several

robotic platforms are simultaneously deployed, the visual data gathered must be transmit-

ted remotely between each robot. Hence, JPEG compression can be employed to drastically

reduce the amount of data transmitted over a communication channel, as working with lim-

ited bandwidth for VPR can be proven to be a challenging task. However, the effects of JPEG

compression on the performance of current VPR techniques have not been previously studied.

For this reason, this chapter presents an in-depth study of JPEG compression in VPR related

scenarios. We use a selection of well-established VPR techniques on well-established bench-

mark datasets with various amounts of compression applied. We show that by introducing

compression, the VPR performance is drastically reduced, especially in the higher spectrum

of compression. Moreover, this chapter demonstrates how fine-tuning a CNN can be utilised

as an optimisation method for JPEG compressed data to perform more consistently with the

image transformations detected in extremely JPEG compressed images.
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0% compression 50% compression 80% compression

90% compression 95% compression 97% compression

Figure 5.1: The same image taken from the Gardens Point day left dataset with different

compression percentages applied.

5.1 Introduction

In this chapter, we propose to use highly compressed JPEG images to reduce the amount

of data transmitted in decentralised VPR contexts, as identified in sub-section 2.6 of the lit-

erature review. ISO/IEC-ITU JPEG is one of the most widely used compression standards

employed to facilitate significant data storage and transmission reduction [143]. The high

compression ratios enabled by JPEG compared to other standard techniques [144, 145] make

it attractive for distributed VPR applications. However, JPEG is designed to have a minimal

impact on the human perception system [146]. It is uncertain how the performance of vari-

ous VPR techniques is affected throughout the compression spectrum. To the best of our

knowledge, the study of JPEG for VPR application has been overlooked so far. To bridge

this gap, this chapter proposes to tune CNNs that deal with highly compressed JPEG images

to circumvent the limitation of existing techniques. In summary, our contributions are as

follows:

• An assessment of several well-established VPR techniques under mild to extreme JPEG

compression rate, as shown in Fig. 5.1. This analysis uses several datasets presenting il-

lumination, viewpoint, and weather variations to cover some of the most common view-

ing conditions experienced by a robot in real-world decentralised applications, where

the operating environment might present heterogeneous conditions in different places

(see Fig. 5.2).
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• We demonstrate how a fine-tuned CNN-based descriptor on highly JPEG compressed

data can achieve higher and more consistent VPR performance than non-optimised VPR

techniques.

5.2 Methodology

5.2.1 Image Compression

JPEG is a compression method that allows the user to select and adjust the amount of com-

pression applied to an image. As JPEG is a lossy compression method, there is a trade-off

between image clarity and image size. By applying an increased amount of compression

to any given image (e.g. above 90%), artifacts are introduced in the resulting compressed

image, which will inevitably lead to image alteration as seen in Fig. 5.1.

The JPEG compression process can be broken down into three main steps. Firstly, the

data in a given image is divided into the color and luminance components. As the human

perception system is better suited to perceive intensity rather than color information, the lat-

ter can be subsampled to reduce the amount of data whilst maintaining the image visually

unchanged to the user. Secondly, the data subsampled from the color component is divided

into 8x8 pixel blocks. On each block, the Discrete Cosine Transform (DCT) is applied to

describe the image content by the coefficients of the spatial frequencies for vertical and ho-

rizontal orientations, instead of pixel values. Finally, data quantization is performed, where

the higher frequency coefficients are transformed to 0 first. Depending on the amount of

compression selected by the user, the subsampling step may be skipped to achieve mild image

compression. Conversely, to extremely compress an image, the subsampling step is turned

on, and the quantisation matrix is selected so that most coefficients are set to 0.

The amount of compression applied to a given image is a parameter of the JPEG function

[143], having values in range [0,99]. As the visual quality of the image is not compromised

in the lower spectrum of JPEG compression, a lower value (e.g. 50%) should be selected to

achieve mild image compression. Conversely, for an extremely JPEG compressed image, a

high value (e.g. 97%) should be assigned to the compression parameter.

5.2.2 Place Matching

The place matching approach employed in this chapter has been previously detailed in chapter

4. Refer to sub-section 4.2.1 for details related to single-based image matching.
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Figure 5.2: A selection of uncompressed query images and their corresponding reference

images taken from each dataset.

5.2.3 Performance Metric

In this chapter, VPR performance is evaluated using the percentage of correctly matched

images as discussed in sub-section 2.7.2, utilising equation (2.5).

5.3 Experimental Setup

This section presents the experimental setup for our work. We present the datasets used

together with the VPR techniques employed for testing the effects of JPEG compression for

VPR.



5.3. EXPERIMENTAL SETUP 75

Table 5.1: The size of each dataset in Megabytes (MB) with different JPEG compression ratios

applied.

Compression Applied

Dataset 0% 50% 80% 90% 95% 97%

17 places 81.8 18.9 10.8 8.3 6.6 5.9

Nordland 235.1 26 13.7 8.3 5.4 4.4

Campus Loop 46.8 9 4.6 2.6 1.5 1

Gardens Point (day-to-day) 54.8 17.6 8.4 5.2 3.1 2.3

Gardens Point (day-to-night) 44.9 15.2 7 4.2 2.5 1.8

Oxford Robot Car 185.7 28.8 15.6 9.7 6.2 4.7

ESSEX3IN1 1100 191.2 100 56.8 29.9 19.6

SYNTHIA 207.5 33.6 15.9 8.5 4.8 3.6

5.3.1 Test Datasets

The test data consists of eight datasets designed for VPR applications (discussed in-depth in

sub-section 2.7.1). Fig. 5.2 shows a query-reference pair for each of them. The datasets

are as follows: Campus Loop [81], Gardens Point (GP) [39] day-to-day and day-to-night,

Nordland [78], ESSEX3IN1 [6], 17 places [129], SYNTHIA [128] and Oxford Robot Car

(ORCD) [12]. Table 5.1 presents the size of each dataset (in Megabytes) for different levels

of JPEG compression.

5.3.2 VPR Techniques

In this work, six well-established VPR techniques are used to show the effects of JPEG com-

pression in VPR scenarios. These techniques are as follows: HOG [65], CALC [81], HybridNet

[13], NetVLAD [74], CoHOG [67] and AlexNet [39]. All VPR techniques are used as they are

presented by their authors with no additional changes being made to neither technique. For

a fair comparison with our model, the results for AlexNet have been generated utilising the

fc6 layer [39].

As mentioned in section 5.2.1, JPEG compression introduces artifacts while decreasing

the quality of the image. As a result, JPEG compression introduces appearance changes in

an image, rather than viewpoint changes. The selection of VPR techniques employed in this
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work can be divided into two main categories: VPR techniques that are robust to viewpoint

changes (such as NetVLAD and CoHOG) and techniques that are optimised for appearance

changes (such as HybridNet and AlexNet). Thus, we can identify which approach can be

easily adapted to deal with extreme JPEG compression rates.

5.4 Results and Analysis

In sub-section 5.4.1, we present the effects of JPEG compression on the performance of sev-

eral VPR techniques. We discuss the performance of each technique for several levels of

compression in terms of accuracy. Furthermore, in sub-section 5.4.2, the details of our JPEG

optimised CNN are provided, whilst also presenting a comparison between our model trained

on compressed data and other VPR techniques. In sub-section 5.4.3 we present the place

matching performance of our model in scenarios where the query and map images may have

different levels of JPEG compression applied (non-uniform compression).

5.4.1 Place Matching Performance

By increasing the compression percentage on each dataset, we generally obtain lower results.

This can be seen in Fig. 5.3, where the accuracy (y-axis) generally decreases with the increase

in compression rate. This descending trend in performance is expected due to the fact that an

increase in JPEG compression would conclude in a drastic change within the image structure

(as observed in Fig. 5.1).

The results presented in Fig. 5.3 show that the amount of compression applied to each

dataset has a direct effect on the place matching performance. However, each technique

is affected differently by image compression. A possible explanation for this decrease in

place matching performance can be related to the inability of current VPR techniques to

cope with the extreme changes that emerge from including image compression besides the

already existing challenges in VPR (viewpoint, illumination, seasonal variations etc.). In

particular, we observed that JPEG compression affects more those methods designed to deal

with viewpoint changes such as NetVLAD and CoHOG. On the contrary, VPR descriptors that

are designed to handle appearance changes present higher tolerance to JPEG compression.

The details of our analysis are presented below.

On datasets including illumination variation, such as Gardens Point day-to-night and SYN-

THIA, techniques such as NetVLAD, CoHOG and HOG lose significant performance through-
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Figure 5.3: The accuracy of all VPR techniques on each dataset with different levels of JPEG

compression applied is presented here.

out the JPEG compression spectrum. The most affected VPR technique on 17 places dataset

is CoHOG, where the application of JPEG compression translates to a prominent decrease in

performance, as shown in Fig. 5.3. However, the results for SYNTHIA show that it is slightly

more stable than Gardens Point. As SYNTHIA is a synthetic dataset, it is less information rich

than a real-word dataset such as Gardens Point (refer to Fig. 5.2). The application of JPEG

compression on the SYNTHIA dataset does not alter significantly the image content from the

perspective of VPR. This conclusion is supported by Fig. 5.4 that shows the average entropy

[34, 67] (on the y-axis) in each query dataset resulting from applying different levels of JPEG

compression. The reduction in entropy on SYNTHIA is much smaller when compared to other

datasets tested. It is worth mentioning that for both Gardens Point day-to-day and day-to-

night datasets we use day left images as query images, therefore we only provide the entropy

results once in Fig. 5.4.
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Figure 5.4: Average entropy in query images with different compression ratios applied to

each dataset.

5.4.2 JPEG Optimised CNN

Model Design

In an effort to achieve more consistent place matching performance for different levels of

JPEG compressed data, we fine-tuned a neural-network based VPR technique specifically for

image compression. The neural network has the same structure as AlexNet [39], and has

been trained on the Places365 dataset [147], which contains approximately 1.8 million im-

ages from 365 scene categories. Then, this neural network has been fine-tuned using 97%

JPEG compressed versions of the images taken from the above mentioned dataset. We have

specifically selected 97% JPEG compression rate as it provides the best trade-off between

performance and stability. The resulting model, entitled 97, achieves great stability and con-

sistent performance in the higher compression spectrum, on a variety of environments and

viewing conditions. Our model achieves a considerable improvement in place matching per-

formance on JPEG compressed data over AlexNet, while at the same time being capable of

matching and even outperforming the deeper HybridNet at high compression ratios.

Model Stability and Performance

We have previously mentioned in section 5.3.2 that each VPR technique has a different per-

formance depending on the type and state of the perceived environment. Moreover, due to
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Figure 5.5: The accuracy of our model on all 8 datasets is enclosed here.

the presence of artifacts in a low-quality image as a result of utilising high levels of JPEG

compression, the place matching performance of each VPR technique is reduced, as discussed

in sub-section 5.4.1. To successfully perform VPR tasks in real world applications, it is funda-

mental to determine the best technique with regards to the above-mentioned environmental

variables. Thus, in this sub-section, we present a comparison between the place matching

performance of our model and that of other VPR techniques, throughout the entire spectrum

of JPEG compression.

Fig. 5.3 shows that JPEG compression has drastic effects on the performance of most VPR

techniques, especially when using a significant amount of compression (e.g. 97%). As there

is no universal model that achieves the highest VPR performance on all tested datasets, we

present in Fig. 5.5 the accuracy of one of the best performing models, with different amounts

of compression applied to each dataset. We have selected the features from the fc6 layer as

they achieve the best performance on average.

The performance of our 97_fc6 model is shown in Fig. 5.5. The VPR accuracy is highly

stable across different amounts of JPEG compression. Fig. 5.6 compares the average VPR

performance between our model and the other VPR techniques, across all tested datasets.

The results presented in Fig. 5.6 show that our model has more consistent performance on

compressed data and tends to have a steadier decrease in performance throughout the com-

pression spectrum. As previously mentioned, there is a trade-off in the performance and sta-

bility of each VPR technique with respect to the amount of image compression applied. While

outperformed on low compression ratios by NetVLAD, HybridNet and CoHOG, our JPEG op-

timised model can better operate at the highest compression ratios. This is highlighted in Fig.
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Figure 5.6: The average accuracy of our model in comparison with other VPR techniques on

the combined datasets, for each level of JPEG compression applied.

5.3 on the Campus Loop dataset, where NetVLAD achieves the highest place matching per-

formance for compression levels of up to 90%. However, when compression reaches 97%, our

model should be used instead as it achieves higher place matching performance as reported

in Fig. 5.5. This observation also applies to the Gardens Point day-to-day dataset. Moreover,

on Gardens Point day-to-night dataset, our model outperforms every technique for compres-

sion levels of above 80%. Our 97_fc6 model outperforms AlexNet on all JPEG compressed

datasets, except for SYNTHIA as seen in Fig. 5.3. However, on the 97% compressed versions

of Nordland, Oxford Robot Car and ESSEX3IN1 datasets, our model is outperformed by some

VPR techniques presented in Fig. 5.3. In these cases, the technique that achieves the highest

VPR performance should be utilised instead.

5.4.3 Non-Uniform JPEG Compressed Datasets

In some practical cases, the visual data transmitted by an agent might be subject to bandwidth

limitations, raising the need to use highly compressed images. Hence, the query and stored

images (e.g. the map) may have different JPEG compression levels applied (non-uniform

compression). For this reason, an analysis on the effects of non-uniform JPEG compression

on the performance of our model and other VPR techniques is presented below.

Fig. 5.7 presents the average performance of every VPR technique in scenarios where all

datasets are non-uniformly compressed. We only included the most significant results, those

of the extremes of the JPEG compression spectrum. Apart from being stable on highly JPEG

compressed images as discussed in sub-section 5.4.2, our model also has consistent perform-
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Figure 5.7: The average place matching performance of our model in comparison with the

other VPR techniques presented, in scenarios where the amount of JPEG compression applied

to query and reference images greatly differs.

ance on datasets where the amounts of JPEG compression applied to the query and reference

images are in the opposite spectrum. Our 97_fc6 model outperforms AlexNet and achieves

slightly better overall performance than HybridNet on non-uniform JPEG compressed data.

Fig. 5.8 presents the detailed results on Campus Loop and SYNTHIA datasets with non-

uniform JPEG compression applied. On the Campus Loop dataset, our model achieves the

highest VPR performance, outperforming every VPR technique tested. In sub-section 5.4.1

we have shown that SYNTHIA is more stable under JPEG compression (due to its synthetic

nature) in contrast to other datasets taken from real-world environments. This observation

is also emphasized in Fig. 5.8, which shows that the performance of most VPR techniques

on the SYNTHIA dataset is not drastically affected in the presence on non-uniform JPEG

compression, especially when compared with the results presented in Fig. 5.3.

The results presented in Fig. 5.7 and Fig. 5.8 show that our model is more tolerant to

non-uniform compression than any of the other VPR techniques tested. Moreover, the results

presented throughout this chapter emphasize the exceptional performance stability achieved

by our neural-network on both uniform and non-uniform JPEG compressed data.

5.5 Summary

This chapter conducts an in-depth study on the effects of JPEG compression in VPR. We use

a selection of well-established VPR techniques on a variety of JPEG compressed VPR datasets
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Figure 5.8: The accuracy of our model in comparison with each VPR technique on non-

uniform JPEG compressed versions of the Campus Loop and SYNTHIA datasets.

to present our findings. Our experiments show that techniques which are designed to deal

with appearance changes present higher tolerance to JPEG compression in comparison with

techniques that are designed to handle viewpoint variations. In an attempt to achieve more

stable VPR performance when using JPEG compressed data, we demonstrate how fine-tuning

can optimise a CNN descriptor to handle highly compressed images. The results show that

our model is more consistent on both uniform and non-uniform JPEG compressed data than

any other VPR technique presented in this work.



Chapter 6

Data-Efficient Sequence-Based VPR

for JPEG-Compressed Imagery

As previously mentioned in chapter 5, JPEG is not designed with VPR applications in mind.

Thus, it introduces a new level of complexity on top of the already existing challenges in

VPR, translating to reduced place matching performance. In this chapter, we incorporate the

sequence-based filtering schema utilised in both chapter 3 and chapter 4, in a number of well-

established, learnt and non-learnt VPR techniques to overcome the performance loss resulted

from introducing high levels of JPEG compression. The sequence length that enables 100%

VPR performance is reported, whilst also providing an analysis of the amount of data required

for each VPR technique to perform the transfer on the entire spectrum of JPEG compression.

Moreover, the time required by each VPR technique to perform place matching is investigated

on both uniformly and non-uniformly JPEG compressed data. The results show that it is

beneficial to use a highly compressed JPEG dataset with an increased sequence length, as

similar levels of VPR performance are reported at a significantly reduced bandwidth. The

results presented in this chapter also emphasize that there is a trade-off between the amount

of data transferred and the total time required to perform VPR. Our experiments also suggest

that is often favourable to compress the query images to the same quality of the map, as more

efficient place matching can be performed. The experiments are conducted on several VPR

datasets, under mild to extreme JPEG compression.
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Figure 6.1: The average image size in Kilobytes (KB) taken from each dataset with multiple

JPEG compression ratios applied.

6.1 Introduction

We have previously shown in chapter 5 that the VPR performance is drastically reduced es-

pecially when working with highly JPEG compressed images. Moreover, we have shown in

chapter 4 that by introducing sequence-based filtering on top of single-frame based VPR tech-

niques, their place matching performance is greatly improved. In this chapter, to compensate

for the performance degradation resulted from utilising high ratios of JPEG compression,

we propose to introduce the sequence-based filtering schema devised in chapter 3 and later

utilised in chapter 4, in several well-established VPR techniques. We analyse the total time re-

quired to perform VPR to determine whether it is more efficient to compress the query images

at the same quality as the map. In summary, our contributions are as follows:

• The application of sequence-based filtering is investigated on highly JPEG compressed

data. An analysis of the sequence length that enables perfect place matching perform-

ance and the amount of data required to transmit for each VPR technique is provided.

This study is performed on several datasets containing illumination, viewpoint and sea-

sonal variations, accurately depicting the most widely encountered changes in the en-

vironment.

• The time required for each VPR technique to perform place matching is investigated

throughout the entire spectrum of JPEG compression, in scenarios where the datasets

are uniformly and non-uniformly JPEG compressed. The analysis suggests that both the

query and map images should be compressed at the same ratio, as it facilitates more

efficient VPR at reduced bandwidth.
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6.2 Methodology

6.2.1 JPEG Compression

Refer to chapter 5 sub-section 5.2.1 for details related to the JPEG compression process. Fig.

6.1 illustrates that with higher levels of JPEG compression, the size of an image is drastically

reduced. For this reason, JPEG compression can benefit decentralised VPR applications as

less visual data is required to be transmitted. It is important to note that JPEG compression

only affects the image’s quality and file size.

6.2.2 Implementation of Sequence-Based Filtering

The details of the implementation of both the single-image-based and sequence-based filter-

ing have been discussed at length in chapter 4 and are not provided here to avoid redundancy.

Refer to sub-section 4.2.1 for the single-image-based implementation and sub-section 4.2.2

for the sequence-based filtering implementation.

6.3 Experimental Setup

6.3.1 VPR Techniques

A selection of four well-established, learnt and non-learnt VPR techniques have been em-

ployed in this work including: NetVLAD [74], HybridNet [13], RegionVLAD [83] and HOG

[65]. These techniques have been selected as they span over a broad spectrum ranging from

descriptors that are designed for seasonal and illumination variations such as HybridNet and

descriptors that achieve viewpoint tolerances such as NetVLAD. The sequence-based filtering

schema proposed in chapter 3 has been included in every VPR technique mentioned above

as it can be generalized for every method, viz. it is agnostic to the underlying single-frame

technique. For this reason, this particular matching schema is utilised as it enables a fair

comparison of each sequence-based VPR technique on highly JPEG compressed data.

6.3.2 Test Datasets

This chapter employs a total of four datasets (presented in sub-section 2.7.1) widely used by

the VPR community, which present different scenarios where the environment is affected by

illumination, viewpoint and/or seasonal variations. These are as follows: Campus Loop [81],
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ESSEX3IN1 [6], Gardens Point (GP) [39] day-to-night and 17 places [129]. For the purpose

of this work, we utilise 420 query (day_vme1) and 420 reference images (night_vme1), taken

from the Arena, AshRoom and Corridor locations of the 17 places dataset.

To enable an image size comparison, the datasets have been resized to 224x224 pixels for

the CNNs and 256x256 pixels (the closest power of 2 − 28x28) for HOG. Moreover, resizing

the datasets also helps in comparing the time required to perform VPR for HOG with the rest

of the methods, as similar image resolution will be utilised by all techniques. Following the

resizing process, multiple JPEG compression ratios have been applied. Fig. 6.1 presents the

average image size - in Kilobytes (KB) - for each of the four datasets utilised, throughout the

entire spectrum of JPEG compression. We only plot the image size for the datasets resized

to 256x256 pixels in Fig. 6.1, as there is no major difference in size between the two types

of resized datasets. It can be seen that significant size reduction can be achieved, especially

when applying a high JPEG compression ratio.

6.3.3 Performance Metric

Similarly to chapter 5, the VPR performance of each technique employed in this work is

evaluated using the percentage of correctly matched images, utilising equation (2.5).

6.4 Results and Analysis

This section presents the analysis of each sequence-based VPR technique on the employed

test data. The sequence length that enables perfect place matching performance throughout

the entire spectrum of JPEG compression is reported, utilising both uniformly (same JPEG

compression ratio is utilised for both query and map images) and non-uniformly (compression

ratio differs from query to map images) compressed datasets. An analysis on the amount of

data transferred and the time required to perform VPR for each technique utilised is also

included in this section. All experiments have been conducted on a PC equipped with an Intel

Core i7-4790k CPU.

6.4.1 Sequence Length Impact on VPR

JPEG compression reduces a VPR descriptor’s ability of performing successful place matching,

especially in the higher spectrum of compression, as discussed in chapter 5. However, VPR

techniques designed to handle appearance changes − such as HybridNet − are more toler-
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Figure 6.2: The sequence length required for each VPR technique to reach maximum accuracy

for each JPEG compression ratio is enclosed here.

ant to high levels of JPEG compression in contrast with descriptors designed for viewpoint

changes − such as NetVLAD − which are prone to severe loss in accuracy. To overcome the ex-

treme loss in VPR performance resulted from introducing JPEG compression, sequence-based

filtering is introduced in several VPR techniques (presented in sub-section 6.3.1). The details

of our analysis are presented below.

6.4.2 Data Requirements for 100% accurate VPR

Fig. 6.2 presents the sequence length K that facilitates each VPR technique to achieve per-

fect place matching performance (100% accuracy), throughout the entire spectrum of JPEG

compression. As utilising a higher level of JPEG compression usually yields a lower VPR per-

formance, the sequence length K required to achieve maximum VPR accuracy is increased.

This observation is highlighted in Fig. 6.2 on Gardens Point day-to-night, where NetVLAD

requires a sequence length K three times higher on the 99% JPEG compressed dataset, in

comparison with the uncompressed dataset. In comparison with the other VPR techniques

tested, HybridNet is more tolerant to JPEG compression as the sequence length required to

reach 100% accuracy is not greatly increased throughout the compression spectrum, as re-



88CHAPTER 6. DATA-EFFICIENT SEQUENCE-BASED VPR FOR JPEG-COMPRESSED IMAGERY

Table 6.1: Descriptor sizes compared to the average image size of ESSEX3IN1 at several

compression levels.

VPR Descriptor Descriptor-Image Size Ratio [%]

Technique Size [KB] 0% 50% 80% 90% 95% 97% 99%

NetVLAD 16 309.3 65.5 32 18.3 9.9 7.3 6.68

HybridNet 30 165 34.9 17.1 9.7 5.3 3.9 3.56

RegionVLAD 384 12.9 2.7 1.3 0.8 0.4 0.3 0.27

HOG 31.6 156.6 33.2 16.2 9.2 5 3.7 3.38

ported in Fig. 6.2. On the ESSEX3IN1 dataset, higher levels of JPEG compression improve

the performance of this technique. Hence, HybridNet benefits from JPEG compression on the

ESSEX3IN1 dataset, achieving maximum accuracy at 99% JPEG compression utilising a lower

sequence length K than on any other compression level employed.

Table 6.1 presents a comparison between the average image size taken from the ES-

SEX3IN1 dataset and the image descriptor size of each VPR technique. The results sug-

gest that it would be beneficial transmitting the compressed image rather than the image

descriptor. This is especially noticeable for RegionVLAD, whose descriptor size is considerably

higher than any ratio of JPEG compression applied to a given image. For the remaining VPR

techniques, above 50% JPEG compression, the average image size is less than their descriptor

size as shown in Table 6.1.

In decentralised VPR applications where the visual data has to be shared between multiple

robotic platforms, the amount of data transferred has to be carefully considered as to not

hamper with the VPR process. At any given JPEG compression level, the amount of data

transferred d by a VPR technique can be calculated as follows:

d = is ×K, (6.1)

where is is the average image size (in Kilobytes) at the given JPEG compression level, and

K represents the sequence length that enables the VPR technique to achieve maximum place

matching performance. For each VPR technique employed in this study, Fig. 6.3 shows the

amount of data d required to be transferred throughout the entire spectrum of JPEG com-

pression. A common observation is that the amount of data required for transfer d decreases

as the amount of JPEG increases. As the image’s size is is greatly reduced with an increase in

JPEG compression (as seen in Fig. 6.1), a longer sequence length K would not always result

in a larger amount of data transfer d, as observed in Fig. 6.3. The results presented above



6.4. RESULTS AND ANALYSIS 89

Figure 6.3: The amount of data transferred in Kilobytes (KB) for each VPR technique and

JPEG compression ratio.

suggest that it is beneficial to use a higher JPEG compression rate paired with a longer se-

quence length K, as it allows the same levels of VPR performance to be achieved at decreased

bandwidth requirements.

6.4.3 Non-Uniform Compression Ratios

To facilitate VPR applications where the limited bandwidth may disrupt the localisation pro-

cess, the query and the map images may have different ratios of JPEG compression applied.

Due to the discrepancy between the amount of JPEG compression applied to the query and

reference images, the VPR performance may be drastically reduced. In Fig. 6.4, the sequence

length required by each VPR technique to reach maximum accuracy on the non-uniformly

JPEG compressed datasets is assessed. For each technique, we utilise the JPEG compression

ratio that would result in the minimal amount of data transferred. The results presented in

Fig. 6.4 show that each of the tested methods tend to perform worse on non-uniformly JPEG

compressed data, requiring longer sequence lengths K to achieve maximum performance than

on uniformly compressed data (refer to Fig. 6.2). Moreover, Fig. 6.4 also shows that by util-

ising a JPEG compressed query image and uncompressed map, most VPR techniques have a

decrease in performance over the scenario where only the map is compressed.
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Figure 6.4: The value of K required to achieve maximum accuracy on non-uniformly JPEG

compressed data.

6.4.4 Analysis on the Time Required to Perform VPR

Fig. 6.5 presents the VPR time of each technique for the sequence lengths K that are required

to reach maximum place matching performance on each dataset and JPEG compression ratio

(K values are presented in Fig. 6.2). In the case of a given sequence-based technique, the

feature encoding time t′e can be obtained by multiplying the feature encoding time of the

single-image-based technique te (presented in Table 6.2) with the number of images in a

sequence K, as follows:

t′e = te ×K (6.2)

To obtain the VPR time tV PR, the matching time tm is summed with the feature encoding
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Figure 6.5: tV PR for every VPR technique on each dataset and JPEG compression amount

specified in Fig. 6.2

time t′e as follows:

tV PR = tm + t′e (6.3)

As previously mentioned in sub-section 6.4.3 and shown in Fig. 6.4, the sequence length

K required to achieve 100% accuracy when non-uniformly JPEG compressed datasets are

employed is considerably higher in most cases than on uniformly compressed data. The

results presented in both Fig. 6.5 and Fig. 6.6 clearly show that the sequence length K has

a direct impact on tV PR. As a result, for any given JPEG compression ratio, a VPR technique

can drastically have its tV PR increased if a longer sequence length K is employed.

Fig. 6.7 shows the time tc required to apply JPEG compression to a given image for each

of the four datasets tested. The time t′c required to JPEG compress an entire sequence of

images of length K can be computed using equation (6.4):

t′c = tc ×K (6.4)

ttotal = tV PR + t′c (6.5)

In Table 6.3, Table 6.4, Table 6.5 and Table 6.6, a comparison is provided between the

tV PR in a scenario where each dataset employed is uniformly and non-uniformly JPEG com-

pressed. The values in bold represent the shortest time required to perform VPR for each
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Figure 6.6: tV PR of each VPR technique on non-uniformly JPEG compressed data specified in

Fig. 6.4.

technique. These results show that the amount of time required to perform VPR can be

drastically reduced if the sequence of query images is compressed to the same quality as

the map. As JPEG compression is an extremely fast operation to perform, ttotal (refer to

equation (6.5)) is not considerably higher than tV PR. The results presented show that ttotal

always benefits from using a shorter sequence length K, thus it is desirable to JPEG compress

the query images to have the same quality as the map, as it facilitates more efficient place

matching performance. However, we note some cases where the sequence length of a VPR

technique is decreased on non-uniformly JPEG compressed data (refer to Fig. 6.2 and Fig.

6.4), more specifically HybridNet on Campus Loop (0% query and 99% map), RegionVLAD
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Table 6.2: Feature encoding time of the single-image-based implementation of each VPR

technique.

VPR Technique te (sec)

NetVLAD 0.77

HybridNet 0.36

RegionVLAD 0.424

HOG 0.0043

Figure 6.7: The average time tc required to JPEG compress an image.

on Gardens Point day-to-night (0% query, 99% map) and HybridNet on 17 places (0% query,

95% map). In these scenarios, the sequence of query images should not be compressed to

the same quality of the map, as it would increase the sequence length required to achieve

maximum accuracy, while also increasing tV PR.
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Table 6.3: Total VPR time, in scenarios where the ESSEX3IN1 dataset is both uniformly and

non-uniformly JPEG compressed.

NetVLAD

JPEG Compression K tm t′e tV PR t′c ttotal

99% query, 99% map 8 1.205 6.16 7.365 0.0102 7.375

0% query, 99% map 31 3.1 23.87 26.97 - 26.97

99% query, 0% map 88 4.1 67.76 71.86 - 71.86

HybridNet

JPEG Compression K tm t′e tV PR t′c ttotal

99% query, 99% map 29 16.05 10.44 26.49 0.037 26.52

0% query, 99% map 45 22.14 16.2 38.34 - 38.34

99% query, 0% map 57 24.95 20.52 45.47 - 45.47

RegionVLAD

JPEG Compression K tm t′e tV PR t′c ttotal

97% query, 97% map 11 40.96 4.664 45.624 0.0142 45.638

0% query, 97% map 30 92.78 12.72 105.5 - 105.5

97% query, 0% map 45 115.78 19.08 134.86 - 134.86

HOG

JPEG Compression K tm t′e tV PR t′c ttotal

99% query, 99% map 61 73.94 0.262 74.2 0.0778 74.277

0% query, 99% map 145 214.09 0.623 214.71 - 214.71

99% query, 0% map 70 88.3 0.301 88.6 - 88.6
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Table 6.4: Total VPR time, in scenarios where the Campus Loop dataset is both uniformly and

non-uniformly JPEG compressed.

NetVLAD

JPEG Compression K tm t′e tV PR t′c ttotal

99% query, 99% map 16 0.377 12.32 12.697 0.022 12.719

0% query, 99% map 29 0.68 22.33 23.01 - 23.01

99% query, 0% map 40 0.91 30.8 31.71 - 31.71

HybridNet

JPEG Compression K tm t′e tV PR t′c ttotal

99% query, 99% map 12 1.582 4.32 5.902 0.0165 5.918

0% query, 99% map 8 1.24 2.88 4.12 - 4.12

99% query, 0% map 17 2.08 6.12 8.2 - 8.2

RegionVLAD

JPEG Compression K tm t′e tV PR t′c ttotal

80% query, 80% map 4 2.56 1.696 4.256 0.00608 4.262

0% query, 80% map 5 3.5 2.12 5.62 - 5.62

80% query, 0% map 5 3.5 2.12 5.62 - 5.62

HOG

JPEG Compression K tm t′e tV PR t′c ttotal

97% query, 97% map 26 7.563 0.1118 7.6748 0.0366 7.711

0% query, 97% map 42 11.7 0.1806 11.8806 - 11.8806

97% query, 0% map 27 7.63 0.1161 7.7461 - 7.7461



96CHAPTER 6. DATA-EFFICIENT SEQUENCE-BASED VPR FOR JPEG-COMPRESSED IMAGERY

Table 6.5: Total VPR time, in scenarios where the GP day-to-night dataset is both uniformly

and non-uniformly JPEG compressed.

NetVLAD

JPEG Compression K tm t′e tV PR t′c ttotal

97% query, 97% map 34 3.04 26.18 29.22 0.0399 29.259

0% query, 97% map 37 3.12 28.49 31.61 - 31.61

97% query, 0% map 48 3.37 36.96 40.33 - 40.33

HybridNet

JPEG Compression K tm t′e tV PR t′c ttotal

97% query, 97% map 22 11.64 7.92 19.56 0.0258 19.585

0% query, 97% map 29 14.7 10.44 25.14 - 25.14

97% query, 0% map 37 17.51 13.32 30.83 - 30.83

RegionVLAD

JPEG Compression K tm t′e tV PR t′c ttotal

99% query, 99% map 33 87.41 13.992 101.402 0.0386 101.44

0% query, 99% map 32 85.39 13.568 98.958 - 98.958

99% query, 0% map 65 112.96 27.56 140.52 - 140.52

HOG

JPEG Compression K tm t′e tV PR t′c ttotal

99% query, 99% map 70 65.28 0.301 65.581 0.0819 65.662

0% query, 99% map 83 72.5 0.3569 72.856 - 72.856

99% query, 0% map 90 83.93 0.387 84.317 - 84.317
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Table 6.6: Total VPR time, in scenarios where the 17 places dataset is both uniformly and

non-uniformly JPEG compressed.

NetVLAD

JPEG Compression K tm t′e tV PR t′c ttotal

90% query, 90% map 6 4.62 4.62 9.24 0.00752 9.247

0% query, 90% map 9 5.82 6.93 12.75 - 12.75

90% query, 0% map 13 7.77 10.01 17.78 - 17.78

HybridNet

JPEG Compression K tm t′e tV PR t′c ttotal

95% query, 95% map 8 25.46 2.88 28.34 0.00973 28.349

0% query, 95% map 8 25.46 2.88 28.34 - 28.34

95% query, 0% map 11 33.24 3.96 37.2 - 37.2

RegionVLAD

JPEG Compression K tm t′e tV PR t′c ttotal

95% query, 95% map 6 87.65 2.544 90.194 0.0073 90.201

0% query, 95% map 7 110.36 2.968 113.328 - 113.328

95% query, 0% map 9 150.63 3.816 154.446 - 154.446

HOG

JPEG Compression K tm t′e tV PR t′c ttotal

80% query, 80% map 26 233.34 0.1118 233.4518 0.0414 233.493

0% query, 80% map 61 458.2 0.2623 458.462 - 458.462

80% query, 0% map 54 423.28 0.2322 423.512 - 423.512
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6.5 Summary

To compensate for the reduction in VPR performance resulted from introducing high levels of

JPEG compression, this chapter introduces sequence-based filtering in several well-established

single-frame-based VPR techniques. The sequence length that results in a perfect place match-

ing performance is reported for every descriptor throughout the entire spectrum of JPEG

compression. To facilitate decentralised VPR applications where the limited bandwidth can

impede the VPR process, the amount of data required to be transferred by each descriptor is

analysed. Moreover, an investigation of the time required to perform VPR is provided. Our

results show that a JPEG compressed image is often smaller in size when compared with an

image descriptor and should be transmitted instead, in scenarios where limited bandwidth is

available for VPR. Our experiments also conclude that it is often advantageous to compress

the query images to the same quality of the map, leading to a more efficient VPR performance

in changing environments.



Chapter 7

Data-Efficient VPR Using Low

Resolution Images

Images incorporate a wealth of information from a robot’s surroundings. With the wide-

spread availability of compact cameras, visual information has become increasingly popular

for addressing the localisation problem. While many applications use high-resolution cameras

and high-end systems to achieve optimal place-matching performance, low-end commercial

systems face limitations due to resource constraints and relatively low-resolution and low-

quality cameras. In comparison with chapter 5 and chapter 6 which study the effects of JPEG

compression for VPR applications, this chapter analyses the effects of image resolution on the

accuracy and robustness of well-established handcrafted VPR pipelines. Handcrafted designs

have low computational demands and can flexibly adapt to different image resolutions, mak-

ing them a suitable approach to scale to any image source and to operate under resource

limitations. This chapter aims to help academic researchers and companies in the hardware

and software industry co-design VPR solutions and expand the use of VPR algorithms in com-

mercial products.
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16x16 px 32x32 px 64x64 px

128x128 px 256x256 px 512x512 px

Figure 7.1: The same image resized to various resolutions.

7.1 Introduction

With the advances in technology made in the last decade, image and video capturing devices

became exceptional in reproducing a higher quality representation of our surroundings. To

achieve high place matching performance, VPR applications usually employ high-end systems

and advanced cameras [8]. However, low-end commercial products are computationally lim-

ited and have low-resolution cameras. Thus, the deployment of robust but computationally

demanding VPR methods is restricted on such platforms, as identified in [11, 33]. Hence,

handcrafted VPR techniques are suitable to be deployed on resource constrained platforms,

due to their computationally efficient nature. In addition to their low computational require-

ments, handcrafted VPR techniques can adapt to various image resolutions, which makes

them attractive for VPR applications on resource-constrained platforms with low-resolution

cameras. Moreover, as a lower-resolution image is visually different from its high-resolution

version (refer to Fig. 7.1), this chapter analyses the optimal image resolution for different

handcrafted descriptors. The focus of this work is mainly towards global feature descriptors,

as local feature descriptors are unable to detect keypoints in small images. Therefore, they

are not suitable to operate on small resolution images, as later shown in sub-section 7.3.1.

The aim of this chapter is to reduce the image resolution to facilitate VPR applications on

resource-constrained commercial platforms. In summary, our contributions are as follows:
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Table 7.1: The size of each dataset in Megabytes (MB) resized to various resolutions.

Image Resolution [px]

Dataset 16x16 32x32 64x64 128x128 256x256 512x512 1024x1024

17 places 0.671 0.872 1.5 3.3 8.4 21.8 57.9

Campus Loop 0.151 0.194 0.339 0.845 2.7 9.3 28.7

Gardens Point 0.442 0.573 1 2.5 7.5 23.1 63.9

Nordland 0.25 0.311 0.512 1.2 3.4 10.1 29.8

SYNTHIA 0.296 0.379 0.647 1.5 4.6 16.2 56.9

• An assessment of the place matching performance of several well-established handcraf-

ted VPR techniques on various image resolutions. We employ several datasets to enable

a VPR performance comparison in real-world scenarios, under illumination, viewpoint

and seasonal variations.

• We report the total time required to perform VPR for each descriptor, showing how a

reduced image resolution results in a more efficient VPR process. We also perform a

trade-off analysis between performance and computation, showing the best descriptor

that should be selected depending on the image resolution.

7.2 Experimental Setup

7.2.1 VPR Time

For low-end commercial products which are computationally limited, it is important to de-

termine the optimal technique in terms of resource utilisation. Hence, in this work we utilise

the total time required to perform VPR (tV PR) as a measurement of computational efficiency.

The tV PR of each technique is determined by adding the encoding time te with the matching

time tm as follows:

tV PR = te + tm (7.1)

7.2.2 Performance Metric

To evaluate the VPR performance on various image resolutions, the percentage of correctly

matched images is utilised as previously discussed in sub-section 2.7.2.
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Figure 7.2: The accuracy of all VPR techniques on each resized dataset.

7.2.3 VPR Techniques

A selection of four well-established VPR techniques have been employed in this work includ-

ing: HOG [65], CoHOG [67], ORB [53] and GIST [60]. For HOG, a cell and block size of

16x16 pixels was utilised, with a total of 9 histogram bins [7]. The remaining VPR techniques

have been utilised as presented by their authors, with no additional changes being made to

neither technique.

7.2.4 Test Datasets

In this chapter, five well-established VPR datasets (presented in sub-section 2.7.1) are em-

ployed to present our findings. These are as follows: Campus Loop [81]; Gardens Point [39],

utilising day_left as query and night_right as reference images; Nordland [78]; SYNTHIA

[128] and 17 places [129].

To enable a place matching performance comparison of each technique employed, the

above mentioned datasets have been resized to several image resolutions (values presented
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Figure 7.3: The average accuracy of each technique on the combined datasets.

64x64 px 256x256 px 1024x1024 px

Figure 7.4: Keypoints found in the same image at several distinct resolutions, as determined

by ORB descriptor.

in pixels (px)), ranging from 16x16 px to 1024x1024 px. To resize the images to different

resolutions, the Python Imaging Library (PIL1) has been utilised. The resizing process is

presented in Algorithm 6. The values for new_width and new_height are specified by the

user and represent the width and height values for the resized image. The resizing process

is performed by the resize2 function. Fig. 7.1 presents some sample images taken from the

Gardens Point day_left dataset resized to various image resolutions. Table 7.1 presents the

size in Megabytes of each resized dataset.

1https://pypi.org/project/Pillow/
2https://pillow.readthedocs.io/en/latest/_modules/PIL/Image.html#Image.resize
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Algorithm 6: The algorithm utilised for image resizing is presented here.
new_width = User Defined Constant

new_height = User Defined Constant

// Resize the original image (img)

resized_img = img.resize((new_width, new_height))

Save resized_img

Table 7.2: The encoding time in milliseconds (ms) of a query image, for each VPR technique.

VPR Image Resolution [px]

Technique 16x16 32x32 64x64 128x128 256x256 512x512 1024x1024

CoHOG 14.5 15.3 16.6 19 30.6 77.3 260.1

HOG 0.104 0.236 1.307 0.514 1.585 6.578 31.32

ORB - - - 0.86 2.49 6.171 17.5

GIST 0.967 2 9.807 27.561 153.99 708.02 4618.1

7.3 Results and Analysis

7.3.1 Place Matching Performance

The performance of all VPR techniques on every resized dataset is presented in Fig. 7.2.

In contrast with the VPR accuracy of HOG and GIST which peaks towards smaller images,

CoHOG benefits from an increased image resolution. Moreover, as CoHOG is designed to

handle lateral shifts in camera movement, this technique achieves high accuracy on 17 places

and Campus Loop datasets, while utilising a higher image resolution than the rest of the tech-

niques (1024x1024 px). This trend is also emphasized in Fig. 7.3, which presents the average

performance for each technique on all presented datasets, where the accuracy for each image

resolution is weighted with regards to the number of images in the dataset. CoHOG achieves

the highest place matching performance on datasets resized to 512x512 px. For GIST, the

highest accuracy is reported on the datasets resized to 32x32 px. HOG achieves similar levels

of performance on both 64x64 px and 128x128 px resized datasets, as seen in Fig. 7.3. It

is important to note that ORB cannot work with small image resolutions, as previously men-

tioned in section 7.1. This happens because no keypoints are detected in images, or the image

is smaller than the descriptor patch. In our experiments, ORB cannot work with image res-

olutions of less than 128x128 px. Moreover, for 17 places dataset, ORB does not find any
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Table 7.3: The matching time in milliseconds (ms), for each VPR technique.

CoHOG 16x16 32x32 64x64 128x128 256x256 512x512 1024x1024

Campus Loop 0.93 0.99 1.35 4.13 28.7 299 5403.1

Gardens Point 1.87 1.96 2.83 8.25 56.5 586 10714.7

Nordland 1.69 1.75 2.25 7.09 48.8 514 9171.97

SYNTHIA 2.03 2.15 2.61 8.35 56.7 601 10735.55

17 places 4.47 4.79 5.55 18.91 128.96 1352.07 24478.34

HOG 16x16 32x32 64x64 128x128 256x256 512x512 1024x1024

Campus Loop 1 1.04 1.08 1.33 2.01 5.46 18.2

Gardens Point 2.13 2.34 2.38 2.75 4.56 11.2 35.85

Nordland 1.7 1.83 2.09 2.68 4.23 9.19 31.33

SYNTHIA 2.11 2.45 2.56 2.94 4.39 11.4 35.45

17 places 4.5 4.56 4.71 5.56 9.83 24.93 80.16

ORB 16x16 32x32 64x64 128x128 256x256 512x512 1024x1024

Campus Loop - - - 21.6 110.7 145 151

Gardens Point - - - 43.05 223.8 300.95 285.7

Nordland - - - 19.47 137.96 239.01 238.54

SYNTHIA - - - 30.75 197.7 294.25 285.5

17 places - - - - 396.17 618.8 607.51

GIST 16x16 32x32 64x64 128x128 256x256 512x512 1024x1024

Campus Loop 0.78 0.83 0.978 1.06 0.885 0.92 0.88

Gardens Point 1.67 1.675 1.625 1.57 1.725 1.65 1.62

Nordland 1.715 1.529 1.616 1.389 1.389 1.372 1.366

SYNTHIA 1.6 1.525 1.67 1.805 1.525 1.505 1.625

17 places 3.54 3.45 3.67 3.53 3.83 3.95 4.56

keypoints in image resolutions of less than 256x256 px. Fig. 7.4 shows the keypoint locations

of ORB at different image resolutions. It can be seen that by reducing the image resolution

to 64x64 px, ORB fails to detect any of the previously identified keypoints in the presented

environment.
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Figure 7.5: The VPR time (refer to equation (7.1)) in seconds (s) of all VPR techniques on

various image resolutions.

7.3.2 Analysis on the Time Required to Perform VPR

This sub-section performs an analysis on the total time required to perform VPR. Table 7.2

presents the encoding time te and Table 7.3 presents the matching time tm of all VPR tech-

niques. Moreover, the VPR time (refer to equation (7.1)) of every technique is presented in

Fig. 7.5. We have previously discussed in sub-section 7.3.1 that CoHOG achieves increased

levels of place matching performance utilising a higher image resolution. However, as CoHOG

presents a longer matching time tm when utilising a higher image resolution, its VPR time is

drastically increased, as observed in Fig. 7.5 on the 17 places dataset. When utilising an im-

age resolution of 128x128 px and above, GIST achieves high encoding times when compared

to the remaining VPR techniques, as reported in Table 7.2. In contrast with HOG, ORB and

CoHOG where the descriptor size changes depending on the image resolution, the descriptor

size of GIST always remains constant, therefore its matching time (refer to Table 7.3) remains

similar for every image resolution. Thus, the tV PR of GIST does not differ significantly from

one dataset to another, as shown in Fig. 7.5. Hence, GIST should be selected for VPR applica-
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Figure 7.6: The accuracy of each technique and the corresponding VPR time for each resized

dataset.

tions with a focus on fast processing times. However, if the aim is towards VPR performance,

CoHOG should be utilised instead.

7.3.3 Performance and Computation Trade-off Analysis

As utilising a lower image resolution generally results in a decrease in tV PR (refer to Fig.

7.5), this section performs a trade-off analysis between VPR performance and time. Fig. 7.6

presents the VPR time (on x-axis) required to perform place matching on each resized dataset

and the corresponding accuracy (on y-axis) for each VPR technique. As previously mentioned

in sub-section 7.3.1, CoHOG generally achieves higher place matching performance while

using larger image resolutions, albeit at a considerable increase in tV PR. Thus, in comparison

with VPR techniques such as HOG and GIST which perform better whilst utilising a lower

image resolution, the accuracy of CoHOG is noticeably higher on datasets with high resolution

images, albeit at a considerable increase in tV PR, as shown in Fig. 7.6.
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7.4 Summary

This chapter presents an in-depth study on the effects of image resolution on the place match-

ing performance of several well-established handcrafted VPR techniques. We confirmed that

local feature descriptors are unable to operate on very small images, hence the focus of this

work is mostly related to global feature descriptors. We utilise several VPR datasets to present

our results, and show that the time required to perform VPR is reduced with a decrease in

image resolution. Moreover, this chapter performs a trade-off analysis between performance

and computation, showing how utilising a lower image resolution results in a more efficient

VPR process to allow efficient deployment on low-end commercial products.



Chapter 8

Concluding Remarks and Future

Directions

Despite the significant progress in the development of robust and accurate algorithms dur-

ing the past decades, Visual Place Recognition (VPR) still remains a challenging task. The

ability to handle dynamic large-scale environments and the presence of significant illumina-

tion, viewpoint and seasonal variations in the environment can drastically decrease the per-

formance of a VPR descriptor. However, the continued advancement in computing power,

together with the ever-growing availability of large-scale VPR datasets will allow new meth-

ods to emerge, in an effort to overcome these challenging problems. Moreover, as VPR is

a constantly improving field, it is expected that these improvements will enable a consider-

ably more accurate and reliable place matching performance in changing environments in the

years to come.

This chapter presents the concluding remarks, together with the contributions of this

thesis, our findings and extensions of the proposed work. More specifically, section 8.1

presents the novel research conducted and major contributions brought in this thesis. Section

8.2 presents future avenues of research for both sequence-based filtering and JPEG compres-

sion in the field of Visual Place Recognition. We hope that this thesis has established the

foundation of sequence-based filtering and JPEG compression within VPR, whilst providing

a deeper understanding on how to develop better VPR pipelines. We also hope that further

research can build upon our findings and bring further contributions to this field.
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8.1 Thesis Contributions

In an attempt to overcome some of the challenges in the field of Visual Place Recognition in

changing environments, this thesis proposes several contributions that are provided below.

In chapter 3, to combat the extreme computational demands of CNN-based VPR tech-

niques and the limitations of utilising a constant sequence length in sequence-based filtering

contexts, we propose a sequence-based, training-less VPR technique for changing environ-

ments. The proposed technique, entitled ConvSequential-SLAM, is successfully able to adapt

its sequence length depending on the environment, while at the same time achieving state-

of-the-art place matching performance on datasets that contain viewpoint and appearance

variations. Moreover, we developed a matching schema that is agnostic to the underlying

single-frame-based VPR technique and can enable an efficient comparison of the effects of

sequence-based filtering on top of single-frame-based VPR techniques.

Chapter 4 presents a systematic study of sequence-based filtering for visual route-based

navigation. More specifically, we employ the matching schema proposed in ConvSequential-

SLAM to analyse the benefits and trade-offs of sequence-based filtering. We show how light-

weight techniques can replace more complex VPR descriptors to perform VPR more efficiently.

We hope that the insights presented in this chapter will enable a better understanding of the

advantages and limitations of deploying sequence-based filtering on single-frame-based VPR

techniques, for designing better VPR systems.

In chapter 5, we shift our attention from sequence-based filtering to an area which has

been previously overlooked by the research community, viz. the study of JPEG compression

for VPR applications. JPEG is designed to reduce the clarity and size of an image, whilst

having a minimal impact on the human perception system. However, we show that it can

also be employed in decentralised VPR applications to reduce the amount of data transferred

over a communication channel. While VPR performance is reduced especially in the higher

spectrum of compression, we observed that JPEG affects more those methods which are de-

signed to deal with viewpoint changes rather than appearance changes. To overcome the

drastic reduction in VPR performance when utilising extremely JPEG compressed images, we

demonstrate how a fine-tuned CNN-based VPR technique is able to achieve more consistent

place matching performance.

In chapter 6, we utilise the sequence-based filtering schema proposed in ConvSequential-

SLAM to overcome the performance degradation resulted from utilising high ratios of JPEG

compression. We show that the amount of data transferred over a communication channel is



8.2. FUTURE DIRECTIONS 111

extremely reduced towards the high spectrum of JPEG compression, even at the expense of an

increased sequence length. Moreover, when comparing the size of a compressed image with

the size of the image descriptor, we found that the former is often smaller, hence should be

transferred instead. When analysing the amount of time required to perform VPR whilst util-

ising a sequence-based filtering approach on highly JPEG compressed data, our experiments

determined that more efficient VPR can be executed when the query and reference images

are compressed to the same ratio.

In chapter 7, we analyse the effects of image resolution on the performance and robust-

ness of several well-established handcrafted VPR techniques. Our analysis confirms that local

feature descriptors are not suitable to operate on low-resolution images, as they do not detect

any keypoints in small images. Therefore, the main focus of this chapter is towards global

feature descriptors. The total time required to perform VPR is analysed, and we show that it

is correlated with the image resolution. A trade-off analysis between performance and com-

putation is performed for every handcrafted VPR technique, to enable efficient deployment of

VPR solutions on low-end commercial products.

8.2 Future Directions

While several contributions have been proposed in this thesis to address some of the already

existing challenges in VPR, extensive work is still required to achieve robust robot perception

in its deepest sense. However, several interesting research directions emerged following this

thesis. These are as provided below.

Although ConvSequential-SLAM utilises HOG to compute the image descriptors, more

robust underlying image similarity algorithms can be employed. Another possible future dir-

ection for improving this work is to cater for dynamic objects and confusing features coming

from trees and vegetation in outdoor environments.

The simple matching schema utilised in chapter 4 was employed to highlight the benefits

of utilising sequences of images for VPR. A natural extension of this work is comparing dif-

ferent matching schema. While we demonstrated that VPR accuracy generally benefits from

using a sequence of images to find a place, sequence matching has some more strict require-

ments than single-matching approaches. The most relevant requirement is in regards to the

velocity of the traverses. If the velocity of the reference sequence is too different from that of

the query, the matching might fail [72]. Thus, the analysis proposed in this chapter could be
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extended to more complex sequence-based matching techniques to understand whether the

trade-off between the sequence length, VPR performance and computational cost are affected

by the matching method.

We have shown in chapter 5 that a fine-tuned CNN on highly JPEG compressed data

can achieve more consistent place matching performance than non-optimised techniques.

Hence, this research can be further extended by analysing the VPR performance of other fine-

tuned CNNs on highly JPEG compressed data, to determine the best performing descriptor in

different scenarios. While our experiments concluded that JPEG compression affects more

those descriptors that are designed to handle viewpoint changes rather than appearance

changes, additional research needs to be conducted to accurately determine the exact reason.

Moreover, the analysis conducted in chapter 6 can be utilised as the basis for an adaptive

sequence-based VPR system capable of switching between different VPR techniques and se-

quence lengths, for achieving the best possible VPR performance in regards to the available

bandwidth for VPR. The performance of ConvSequential-SLAM has not been investigated on

JPEG compression data. Hence, it would be interesting to determine whether this technique

achieves improved performance over the methods tested in chapter 6. Future work can also

explore new methods to optimise VPR techniques for JPEG imagery. These can include re-

training or re-calibrating VPR techniques specifically for handling highly JPEG compressed

data. Moreover, it would be interesting to investigate a sequence-based video compression

codec such as H.265 [148], as an alternative to sequence-based VPR. We strongly believe

that a VPR-specific image compression line of research would greatly benefit VPR applica-

tions, and we hope that the limitations highlighted in these studies on JPEG compression can

therefore be overcome.

Apart from the computational benefits of utilising low-resolution images presented in

chapter 7, this research also has potential benefits for visual privacy. Thus, VPR could poten-

tially be performed on images of sufficiently low-resolution such as they do not compromise

visual privacy. An extension of the work proposed in chapter 7 can investigate VPR using

low-resolution images in environments where delicate visual information is present, such as

faces in crowded environments and car plate numbers.
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[34] M.-A. Tomită, M. Zaffar, M. J. Milford, K. D. McDonald-Maier, and S. Ehsan,

“Convsequential-slam: A sequence-based, training-less visual place recognition tech-

nique for changing environments,” IEEE Access, vol. 9, pp. 118673–118683, 2021.
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