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Critical dynamical behavior of the Ising model
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We investigate the dynamical critical behavior of the two- and three-dimensional Ising models with Glauber
dynamics in equilibrium. In contrast to the usual standing, we focus on the mean-squared deviation of the
magnetization M, MSDM , as a function of time, as well as on the autocorrelation function of M. These two
functions are distinct but closely related. We find that MSDM features a first crossover at time τ1 ∼ Lz1 , from
ordinary diffusion with MSDM ∼ t , to anomalous diffusion with MSDM ∼ tα . Purely on numerical grounds, we
obtain the values z1 = 0.45(5) and α = 0.752(5) for the two-dimensional Ising ferromagnet. Related to this,
the magnetization autocorrelation function crosses over from an exponential decay to a stretched-exponential
decay. At later times, we find a second crossover at time τ2 ∼ Lz2 . Here, MSDM saturates to its late-time value
∼L2+γ /ν , while the autocorrelation function crosses over from stretched-exponential decay to simple exponential
one. We also confirm numerically the value z2 = 2.1665(12), earlier reported as the single dynamic exponent.
Continuity of MSDM requires that α(z2 − z1) = γ /ν − z1. We speculate that z1 = 1/2 and α = 3/4, values that
indeed lead to the expected z2 = 13/6 result. A complementary analysis for the three-dimensional Ising model
provides the estimates z1 = 1.35(2), α = 0.90(2), and z2 = 2.032(3). While z2 has attracted significant attention
in the literature, we argue that for all practical purposes z1 is more important, as it determines the number of
statistically independent measurements during a long simulation.
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I. INTRODUCTION

Universality is a key concept in statistical physics [1].
Phenomena which at first glance seem completely unrelated,
such as the liquid-gas phase transition and the ferromagnetic-
paramagnetic phase transition in magnetic materials, belong
to the same universality class, sharing the same set of criti-
cal exponents and other renormalization-group invariants that
characterize their equilibrium behavior around the critical
point [2]. The Ising model [3], the simplest fruit-fly model
in statistical physics which lends itself well for theory and
simulation, is found to belong to the same universality class
[4–6]. Studies of the critical equilibrium properties of the
Ising model are therefore of direct experimental relevance [4].

The concepts of critical phenomena can fortunately be
extended to dynamical processes (for a seminal review, see
Ref. [7]). However, while universality is well established for
equilibrium properties, it is not clear in how far it also ex-
tends to dynamical properties [7–10]. As is well known, the
onset of criticality is marked by a divergence of both the
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correlation length ξ and the correlation time τ . While the
former divergence yields singularities in static quantities,
the latter manifests itself notably as critical slowing down. To
describe dynamical scaling properties, an additional exponent
is required in addition to the static exponents. This so-called
dynamic exponent z links the divergences of length and time
scales, i.e., τ ∼ ξ z [11,12]. In a finite system, ξ is bounded
by the linear system size L, so that τ ∼ Lz at the incipient
critical point. The dynamic critical exponent z has been nu-
merically computed to be z = 2.1665(12) at two dimensions
by Nightingale and Blöte [11]. Note the value z = 2.0245(15)
at three dimensions [12].

In the current paper we attempt to extend our knowledge
in the field by highlighting an overlooked aspect of dynamic
critical phenomena using single spin-flip (Glauber) dynamics
on the two- and three-dimensional Ising ferromagnet. In con-
trast to the standard belief that the dynamical critical behavior
is characterized by a single dynamic exponent z, we provide
numerical evidence that there is another dynamic critical ex-
ponent, considerably smaller than the most studied one, which
appears to be of greater practical relevance. In particular, we
provide a more refined description of the magnetization auto-
correlation function featuring three regimes that are separated
by two crossover times, namely, τ1 ∼ Lz1 and τ2 ∼ Lz2 , where
z1 is a newly identified dynamic exponent and z2 the already
well-known exponent [9–12].

The rest of the paper is laid out as follows: In Sec. II we
introduce the model and outline the numerical details of our
implementation. In Sec. III we introduce the key observables
under study and elaborate on the analysis of the numerical
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data, placing our findings into context. Finally, in Sec. IV we
critically summarize the main outcomes of this work in the
framework of the current literature and also set an outlook for
future studies.

II. MODEL AND NUMERICAL DETAILS

We consider the nearest-neighbor, zero-field Ising model
with Hamiltonian

H = −J
∑

〈i, j〉
σiσ j, (1)

where J > 0 indicates ferromagnetic interactions, σi = ±1
denotes the spin on lattice site i, and 〈· · · 〉 refers to summation
over nearest neighbors only. Here, we study the two- and
three-dimensional Ising model on the square (L×L) and sim-
ple cubic (L×L×L) lattices, respectively, employing periodic
boundary conditions. Many equilibrium properties of these
models are known, especially at two dimensions where exact
results are available, such as the location of the critical tem-
perature, i.e., Tc = 2/ ln(1 + √

2) = 2.269 185 . . . [13]. For
the three-dimensional model on the other hand, there is a
wealth of high-accuracy estimates of critical parameters from
various approximation methods (see Ref. [14], and references
therein). One such prominent example is the value of the crit-
ical point Tc = 4.511 523 . . ., recently proposed in Ref. [15]
via large-scale numerical simulations.

The Ising model is without doubt a prototypical model for
studying dynamical properties. For this purpose, an elemen-
tary move is a proposed flip of a single spin at a random
location, which is then accepted or rejected according to the
Metropolis algorithm [16]. One unit of time then consists
of N = L2 elementary moves at two dimensions (similarly,
N = L3 at three dimensions). This dynamics is often referred
to as Glauber dynamics [17–19], even though Glauber orig-
inally used a slightly different acceptance probability. Note
that transition rates in Glauber dynamics are never higher, but
always at least half of those of single spin-flip Metropolis
dynamics, so that all dynamic exponents are shared. Other
commonly used dynamical algorithms in the extensive liter-
ature are the spin-exchange (Kawasaki) dynamics [20–22], as
well as numerous types of cluster algorithms [23–25]. Yet,
these are outside the scope of the current work.

On the technical side, our numerical simulations of the
Ising model were performed at the critical temperature [13,15]
using single spin-flip dynamics and systems with linear sizes
within the range L = {16–96} at two dimensions (accordingly,
L ∈ {10–40} at three dimensions). We note that the simulation
time needed for a single realization on a node of a Dual
Intel Xeon E5-2690 V4 processor was 1 h for L = 96 at two
dimensions. The analogous CPU time was 35 min for L = 40
at three dimensions. For each system size L, 104–105 indepen-
dent realizations have been generated at both dimensions.

III. RESULTS AND ANALYSIS

The two key observables that allow us to elaborate on
some new aspects of the dynamical behavior of the Ising
ferromagnet are based on the order parameter (magnetization)

FIG. 1. (a) Mean-square displacement of the magnetization
〈�M2(t )〉 vs time t . (b) The normalized autocorrelation ĈM (t ) =
〈M(t )M(0)〉/〈M2(0)〉 as a function of t . Results for the two-
dimensional Ising model.

of the system

M =
∑

i

σi. (2)

The first is the mean-squared deviation of the magnetization

MSDM (t ) = 〈[�M(t )]2〉 = 〈[M(t ) − M(0)]2〉, (3)

and the second the magnetization’s autocorrelation function,
defined as

CM (t ) = 〈M(t )M(0)〉. (4)

We start the presentation with the two-dimensional Ising
model and the raw numerical data, as shown in Fig. 1.
In particular, Fig. 1(a) depicts the MSDM (t ), whereas
Fig. 1(b) depicts the normalized autocorrelation ĈM (t ) =
〈M(t )M(0)〉/〈M2(0)〉, both as a function of time. Three dis-
tinct regimes can be identified, separated by two crossover
correlation times, τ1 and τ2.

At short times t , the dynamics consist of L2t proposed
spin flips at spatially separated locations, of which a fraction
f ≈ 0.14 is accepted, as determined numerically. The dy-
namics thus involve f L2t uncorrelated changes of �M = ±2.
Consequently, MSDM in the short-time regime is given by

MSDM = 4 f L2t (t � τ1). (5)

At these short times, the magnetization does not have enough
time to change significantly. Hence, it stays close to its value
at t = 0. The expectation of the squared magnetization is
related to the magnetic susceptibility [5]

χ = β

L2
〈M2〉. (6)

Thus, in the short-time regime,

CM (t ) ≈ kbT L2χ ∼ L2+γ /ν (t � τ1). (7)

Here, we used the equilibrium property χ ∼ Lγ /ν .
On the other hand, at very long times the two values of the

magnetization are uncorrelated so that 〈M(t )M(0)〉 is small as
compared to 〈M2〉. Hence we can derive that MSDM saturates
as follows:

MSDM (t ) = 〈M(t )2 + M(0)2 − 2M(t )M(0)〉
≈ 2〈M2〉 ≈ 2kbT L2χ. (8)
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FIG. 2. (a) Data collapse of MSDM (t ) curves over various sys-
tem sizes around the first crossover Lz1 , with a scaling form of
MSDM (t )/(L2t ) ∼ t/Lz1 , where z1 is 0.45 ± 0.05. MSDM (t ) turns
over from the normal diffusion (∼L2t) to anomalous diffusion
(∼L2+z1−αz1 tα) at t = Lz1 . (b) Data collapse for − ln [ĈM (t )] over
various L around t = Lz1 with a scaling factor L−γ /ν (note that
γ /ν = 1.75 for the two-dimensional Ising model). ĈM (t ) shifts from
exponential to stretched exponential around t = Lz1 . Results for the
two-dimensional Ising model.

Rather than an operational procedure, the dynamics can
also be formulated as the application of the transition matrix A
to a state vector 	S. This is a rather unpractical formulation as
A is a sparse matrix of size 2L2 × 2L2

, but nevertheless useful
for the sake of argument. This transition matrix has an eigen-
value of e0 = 1, with an eigenvector in which each element
lies the likelihood of that state (the Boltzmann distribution).
It also has a second-highest eigenvalue e1 ≈ 1, which deter-
mines the ultimate exponential decay of the autocorrelation.
At long times t , the dynamical matrix is applied tL2 times.
Thus, expressed in A the dynamics can be written as

CM (t ) = 〈	StAtL2 	S0〉. (9)

For long times, the decay of the autocorrelation function is
dominated by the largest nonzero eigenvector and eigenvalue

CM (t ) ∼ etL2

1 ∼ exp [−t/τ2], (10)

in which (τ2)−1 = −L2 ln (e1). It is very hard to obtain τ2

via e1 numerically unless L is a very small number, but this
provides a valid argument to show that the magnetization au-
tocorrelation function will decay exponentially at long times
for finite L. Let us point out here that at times between τ1 and
τ2 many modes contribute and the sum of their exponential is
well approximated by the stretched-exponential function.

As is natural, the intermediate regime has to connect the
short- and long-time regimes monotonically. The numerical
data suggest that this happens via anomalous diffusion, i.e.,
MSDM ∼ tα , whereas the autocorrelation function seems to
decay as a stretched-exponential with the same anomalous
exponent α.

Clearly, the key quantities that we want to establish in
this paper are the dynamic exponents z1 and z2, as well
as the anomalous exponent α. To this end, we use the
method of finite-size scaling [4–6]. Figure 2 embodies the
collapse of MSDM (t ) curves for the wide range of system
sizes studied around the first transition point, obtained for
z1 = 0.45 ± 0.05. At the intermediate regime of this plot,
the curve is expected to decay as ∼tα−1. Numerically, we
estimate the anomalous exponent to be α = 0.752 ± 0.005.

FIG. 3. (a) Data collapse of MSDM (t ) curves at the second
crossover t ≈ Lz2 , with a scaling form of MSDM (t )/(Lλt ) ∼ t/Lz2 ,
the numerically found λ and z2 are 2 + γ /ν − z2 and 2.1667, re-
spectively. MSDM (t )(t ) gradually transforms to saturation (∼L2+γ /ν)
from the anomalous diffusion (∼L2+z1−αz1 tα). (b) Data collapse for
− ln[ĈM (t )] around t = Lz2 , where the scaling factor L−z2 leads to
an excellent collapse. ĈM (t ) is expected to turn over from stretched
exponential to exponential around t = Lz2 . Results for the two-
dimensional Ising model.

Figure 3 now illustrates an analogous collapse of the curves
for around the second transition point. This is attained by
plotting − ln [CM (t )/CM (0)]/(L−z2t ) as a function of t/Lz2 ,
where z2 = 2.1665 is set equal to the value for z as reported
by Nightingale and Blöte [11].

The intermediate regime for MSDM starts at time τ1 ∼ Lz1

at a value of 〈(�M )2〉 ∼ L2+z1 , then increases following a
power-law mode with an exponent α, until it reaches its sat-
uration value ∼L2+γ /ν at time τ2 ∼ Lz2 . Assuming a single
power-law function in the intermediate regime, the anomalous
exponent is expected to be

α = (γ /ν − z1)/(z2 − z1). (11)

Purely based on numerical findings, we speculate that z1 =
1/2 and α = 3/4; in that case, we obtain from Eq. (11) that
z2 = 13/6 = 2.1667 in excellent agreement with the most
accurate numerical estimates [11].

To further corroborate on the main aftermath of our work,
we undertook a parallel examination of the three-dimensional
Ising ferromagnet. Analogously to the analysis sketched
above for the two-dimensional Ising model, we obtained data
collapses around the first and second crossover times. Fig-
ures 4–6 below summarize our main findings: Fig. 4 exhibits
the raw data, Fig. 5 suggests that MSDM (t )/(L3t ) is a func-
tion of t/Lz1 with z1 = 1.35 ± 0.02, and Fig. 6 suggests that

FIG. 4. Similar to Fig. 1 but for the three-dimensional Ising model.
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FIG. 5. Data collapse around the first crossover for the three-
dimensional Ising model. (a) MSDM (t ) collapses over various L,
with a scaling form of MSDM (t )/(L3t ) ∼ t/Lz1 , where the numer-
ically found estimate for z1 is 1.35 ± 0.02. MSDM (t ) turns over
from normal diffusion (∼L3t) to anomalous diffusion (∼L3+z1−αz1 tα)
at t = Lz1 . (b) − ln [ĈM (t )] collapse around t = Lz1 with a scaling
factor L−γ /ν (note that γ /ν = 1.9637 in the three-dimensional Ising
universality class [6]). ĈM (t ) shifts from exponential to stretched
exponential around t = Lz1 .

− ln [ĈM (t )]/(L−z2t ) is a function of t/Lz2 with z2 = 2.032 ±
0.003. Thus, as in two dimensions, the dynamical critical
behavior features two crossover times characterized by two
dynamic critical exponents. Additionally, the exponent of the
intermediate anomalous diffusion α for the three-dimensional
Ising ferromagnet is numerically found to be 0.90 ± 0.02. An
overview of the critical exponents reported in this paper is
given in Table I.

IV. SUMMARY AND OUTLOOK

We analyzed the results of extensive simulations of the
two- and three-dimensional Ising model with Glauber dynam-
ics. In particular, we scrutinized the mean-squared deviation
and autocorrelation function of the magnetization, showcas-
ing the existence of three dynamical regimes, separated by
two crossover times at τ1 ∼ Lz1 and τ2 ∼ Lz2 . In the short-
time regime, the mean-squared deviation of the magnetization

FIG. 6. Data collapse around the second crossover for the three-
dimensional Ising model. (a) MSDM (t ) collapse at t ≈ Lz2 , with a
scaling form of MSDM (t )/(Lλt ) ∼ t/Lz2 ; the numerically found λ

and z2 are 3 + γ /ν − z2 and 2.032 ± 0.003, respectively. MSDM (t )
gradually transforms to saturation (∼L3+γ /ν) from the anomalous
diffusion (∼L3+z1−αz1 tα). (b) Data collapse for − ln [ĈM (t )] around
t = Lz2 , where the scaling factor L−z2 leads to excellent collapse.
ĈM (t ) is expected to turn over from stretched exponential to expo-
nential around t = Lz2 .

TABLE I. A summary of critical exponents as reported in this
paper for the two- (2D) and three-dimensional (3D) Ising ferromag-
nets. The last two columns refer to exact [4] or high-precision [14]
estimates of the critical exponents γ and ν that have been used in the
data collapse.

z1 z2 α γ ν

2D 0.45(5) 2.1665(12) 0.752(5) 7/4 1
3D 1.35(2) 2.032(3) 0.90(2) 1.237075(10) 0.629971(4)

shows ordinary diffusive behavior and the autocorrelation
function exponential decay. In the second intermediate regime
the mean-squared deviation is characterized by anomalous
diffusive behavior and the autocorrelation function decays in
a stretched-exponential way. Finally, in the third late-time
regime the mean-squared deviation saturates at a con-
stant value while the autocorrelation function again decays
exponentially.

The second crossover to the exponential decay of the
autocorrelation function has been extensively studied in the
literature. Nightingale and Blöte reported that this exponential
decay sets in at a time determined by the dynamic critical
exponent z = 2.1665(12) [11]; this is in agreement with our
estimate z2 at the second crossover. To the best of our knowl-
edge, the first crossover has not yet been reported or was
assumed to occur at some fixed time (i.e., z1 = 0) without
substantiation. The simulations and analysis captured here
clearly manifest the existence of this first crossover at a time
governed by a new dynamic critical exponent z1. We should
stress here that earlier work on nonequilibrium dynamics has
also suggested the presence of a new exponent θ [26] akin to
the introduced exponent z1 of the present work. The authors
of Ref. [26] considered a quench from a high-temperature
configuration with an initial magnetization M(0) to the critical
temperature Tc; the exponent θ was introduced to describe the
behavior in the critical initial slip.

We also postulated a speculative argument about the
crossover times at two dimensions. Purely on numerical
grounds, we suspect the first crossover corresponds to a dy-
namic exponent z1 = 1/2, and the exponent of the anomalous
diffusion to be α = 3/4. In this case, we showed that the
second crossover is governed by the exponent z2 = 13/6, in
full agreement with the numerical result z = 2.1665(12). At
this stage, the development of a solid theoretical argument
supporting the presence of the numerically observed first
crossover and the relevant dynamic and anomalous diffusion
exponents z1 and α, respectively, is called for.

To sum up, we hope that the relevance of our work will
be twofold: (i) On the practical side, for obtaining statis-
tically uncorrelated samples the proper sampling frequency
should be set by the exponent z1: the correlation between
consecutive samples which are separated by (multiples of)
τ1 ∼ Lz1 has decayed in a stretched-exponential way to a
value which is as small as one would want. Hence, for ob-
taining statistically uncorrelated samples it is not necessary
to sample with an interval scaling as τ2. (ii) On the theoret-
ical side, the critical dynamical behavior of the Ising model
with Glauber dynamics is much richer than reported to date
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featuring two distinct crossovers. Thus, if dynamic universal-
ity exists, it must also be much more substantial and needs
further investigation.

In closing, we would like to mention some motivational
comments for future work. In a recent paper [27] it was shown
that the φ4 model with local dynamics appears to belong to the
same dynamic universality class as the Ising model; this was
done by probing numerically the dynamic critical exponent
which was found to be z = 2.17(3). If indeed this is the case,
then also the exponent z1 should apply to the φ4 model (see
also Refs. [28–30] for extensive aspects on the dynamic Ising
universality). Furthermore, in Ref. [31] the Ising model with
Kawasaki dynamics was studied and the authors reported that
the Fourier modes of the magnetization are in very close

agreement with the dynamical eigenmodes, suggesting that
z = 4 − η = 15/4. Investigating this aspect under the prism
of the introduced exponent z1 might be another intriguing
continuation of our work [32]. We plan to pursue these and
other relevant open questions in the near future.
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