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In the present paper, we investigate the effects of disorder on the reversal time (τ ) of classical anisotropic
Heisenberg ferromagnets in three dimensions by means of Monte Carlo simulations. Starting from the pure
system, our analysis suggests that τ increases with increasing anisotropy strength. On the other hand, for the case
of randomly distributed anisotropy, generated from various statistical distributions, a set of results is obtained: (i)
For both bimodal and uniform distributions, the variation of τ with the strength of anisotropy strongly depends
on temperature. (ii) At lower temperatures, the decrement in τ with increasing width of the distribution is
more prominent. (iii) For the case of normally distributed anisotropy, the variation of τ with the width of the
distribution is nonmonotonic, featuring a minimum value that decays exponentially with the temperature. Finally,
we elaborate on the joint effect of longitudinal (hz) and transverse (hx) fields on τ , which appear to obey a scaling
behavior of the form τhn

z ∼ f (hx ).
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I. INTRODUCTION

The metastable behavior of a ferromagnet is an interest-
ing field of modern research with important technological
applications [1,2]. It is well known today that the so-called
switching time (or reversal time τ ), a critical parameter of this
process, plays a key role in the speed of recording in magnetic
storage devices [3]. The whole problem of metastability dates
back to 1935 where the classical theory of nucleation was
developed by Becker and Döring [4], predicting the growth
of supercritical droplets. These predictions of the different
regimes of such growth depending on the magnitude of the
applied magnetic field were successfully verified by exten-
sive Monte Carlo simulations in Ising [5] and Blume-Capel
ferromagnets [6], as well as in generalized spin-s anisotropic
models [7].

Over the years, most numerical approaches of reversal
phenomena dealing with the growth of supercritical clusters,
the decay of metastable volume fraction, and their depen-
dencies on the applied field and temperature, focused on
pure ferromagnetic systems of discrete symmetric Ising and
Blume-Capel models. A straightforward extension would be,
then, to consider the case of continuous symmetric spin mod-
els, such as the classical Heisenberg model. Indeed, a few
papers have already shed some light in this context: The
magnetization switching in the classical anisotropic Heisen-
berg ferromagnet was studied by Monte Carlo simulations
and the dynamics of coherent spin rotation was detected
in the limit of low anisotropy [8]. Later on, the reversal
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properties were studied in classical anisotropic ferromag-
netic and antiferromagnetic bilayer Heisenberg models, and
it was observed that the magnetization behavior is differ-
ent at each branch of the hysteresis loop as well as the
exchange-bias behavior [9]. More recently, the problem was
investigated in the antiferromagnetic anisotropic Heisenberg
chain [10] and in a Van der Waals magnet where a strain-
sensitive magnetization reversal was reported [11]. This latter
work indicated that lattice deformation plays a major role
in the reversal process as it may lead to random variations
of the crystal field (anisotropy) acting on the spins of the
system.

In all aforementioned studies regarding the anisotropic
classical Heisenberg ferromagnet, uniform anisotropy was
used for simplicity. At this point, several intriguing ques-
tions may be raised: (i) What will be the effect of a random
anisotropy on the reversal phenomena in the classical Heisen-
berg ferromagnet? (ii) How does the nature of the statistical
distribution of the anisotropy affect the reversal of magne-
tization and other properties of the system? All these open
fundamental aspects are addressed here so our understand-
ing of metastable phenomena in a random environment is
rather limited—see Refs. [12,13] for some particular excep-
tions. In the present paper, we make one step forward in
this direction by studying via Monte Carlo simulations the
three-dimensional anisotropic classical Heisenberg ferromag-
net with the disorder, generated by a set of random anisotropy
distributions.

The rest of the paper is organized as follows: Section II
provides a description of the model together with an outline
of the simulation scheme. The numerical results and scaling
analysis are reported in Sec. III. This paper concludes with a
summary and outlook in Sec. IV.

2470-0045/2023/108(1)/014121(9) 014121-1 ©2023 American Physical Society

https://orcid.org/0000-0001-8147-4803
https://orcid.org/0000-0002-9428-1709
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.108.014121&domain=pdf&date_stamp=2023-07-20
https://doi.org/10.1103/PhysRevE.108.014121


NASKAR, ACHARYYA, VATANSEVER, AND FYTAS PHYSICAL REVIEW E 108, 014121 (2023)

II. MODEL AND NUMERICS

The classical anisotropic (uniaxial and single-site) Heisen-
berg model with nearest-neighbor ferromagnetic interactions
in the presence of an external magnetic field is described by
the following Hamiltonian:

H = −J
∑
〈i j〉

Si · Sj −
∑

i

Di
(
Sz

i

)2 − h
∑

i

Si, (1)

where Si (Sx
i , Sy

i , Sz
i ) represents a classical spin vector with

|S| = 1 [or (Sx
i )2 + (Sy

i )2 + (Sz
i )2 = 1], which is allowed to

take any (unrestricted) angular orientation in the vector space.
The first term in the Hamiltonian corresponds to nearest-
neighbor (〈i j〉) ferromagnetic (J > 0) spin-spin interaction.
The parameter Di appearing in the second term denotes the
strength of uniaxial anisotropy favoring the z-axis alignment
of the spin vector. Note that the limit D → ∞ corresponds
to the Ising ferromagnet, whereas, for D = 0, Eq. (1) re-
duces to the isotropic Heisenberg Hamiltonian. Finally, the
last term in the Hamiltonian (1) stands for the interaction of
individual spins with the externally applied magnetic field
vector h (hx, hy, hz ). The reversal of magnetization is stud-
ied mainly in the presence of a longitudinal field hz unless
otherwise stated. However, in the last part of our paper, we
also present the influence of an additional transverse field
(hx) on the reversal mechanism, along with the longitudinal
field.

We used Monte Carlo simulations of the Metropolis type
to study the model of Eq. (1) on simple cubic lattices with
periodic boundary conditions and linear dimension L, where
typically L = 50 (more information on the numerical details
is given in Appendix A). In all our numerical experiments,
L3 such spin updates define one Monte Carlo step per site,
which also sets the time unit of our simulations. We also fix
J = kB = 1 to properly set the temperature scale.

Finally, some comments about errors and fitting analysis:
Unless otherwise stated, we always perform the necessary
statistical averaging to increase the accuracy of our data (more
details are given explicitly in the plots of Sec. III) and compute
standard errors [14,15]. For the fits, we implement the χ2 test
of goodness of fit [16]. Specifically, the Q value of our χ2

test is the probability of finding a χ2 value that is even larger
than the one actually found from our data. We consider a fit as
being fair only if 10% < Q < 90%.

III. RESULTS AND DISCUSSION

The first port of call in our paper is to secure a rough
estimate for the critical temperature of the Heisenberg model
so that we assure that the system lies well below its
critical temperature. Although in previous works [17], we
observed no such detectable discontinuity in the behavior
of the metastable lifetime across the phase boundary of the
ferromagnetic-paramagnetic transition, still, in the present
paper, we follow the standard way of studying the reversal
time or the metastable lifetime below the critical temperature.
As the precise determination of the critical temperature is
definitely not necessary here, we follow the simplest practice
for locating an approximate estimation of the critical temper-
ature. The method refers to the detection of the pseudocritical

temperature, T ∗
L , at which the magnetic susceptibility χ ob-

tained via

χ = Nβ[〈m2〉 − 〈m〉2] (2)

attains a peak for a relatively large system size L. In the above
Eq. (2), N = L3, β = 1/T , and m =

√
m2

x + m2
y + m2

z denotes
the magnetization of the system, where mx = (

∑
i Sx

i )/N ,
my = (

∑
i Sy

i )/N , and mz = (
∑

i Sz
i )/N . Figure 1(a) presents

the T variation of χ for a system with linear size L = 20
and for various values of D, and Fig. 1(b) clearly illustrates
that the pseudocritical temperatures obtained increase with
increasing uniform anisotropy D. Note that the temperature
is varied in steps of δT = 10−2 so that the maximum error in
the T ∗

L determination is δT ∗
L ∼ 2.10−2.

The metastable lifetime (or reversal time) τ , the cru-
cial parameter of our analysis, is defined quantitatively as
the time at which the magnetization along the z direction
first changes sign (mz 	 0). A typical decay of a metastable
state for a single sample is presented in Fig. 2(a) for two
different strengths of uniform anisotropy D = 1.6 and 2.1.
Correspondingly, Figs. 2(b) and 2(c) present the statistical
distributions of τ , Pτ , obtained over 500 different samples.
These panels suggest that the standard deviation of the dis-
tributions increases with increasing anisotropy. Hereafter, the
parameter of interest will be the mean metastable lifetime
obtained by taking a simple arithmetic average over the
ensemble.

The effects of uniform anisotropy, but also uniform ran-
dom anisotropy on the variation of the reversal time, are
sketched in Fig. 3. Let us clarify, here, the three cases under
study:

(i) The first case refers to uniform anisotropy, where Di =
D ∀ i, so that each lattice site experiences the same strength of
anisotropy D.

(ii) The second case refers to the uniform random dis-
tribution of the anisotropy as obtained from the probability
distribution Pu(Di) = 1/WDU with mean value μ = 0. For
such distribution, the strength of the anisotropy is randomly
and uniformly distributed between {−WDU/2,WDU/2} over
the lattice sites.

(iii) In the third case, we consider the combination of
the above two cases, i.e., the resultant of uniform anisotropy
and uniformly distributed random anisotropy with P ′

u(Di ) =
1/WDU and a shifted mean value of μ = D in this case. Here,
the anisotropy is randomly and uniformly distributed between
{WDU/2, 3WDU/2} over the lattice sites.

In Fig. 3(a), the first and third cases outlined above are
represented by open and filled symbols, whereas, the second
case is denoted by red stars, respectively. The curves cor-
responding to the first and third cases are obtained for two
different temperature values, T = 0.8 and 1.0, and the second
case is investigated only for T = 1.0. In the first case, we
observe that the reversal time increases with the increasing
strength of the uniform anisotropy D. This is due to the fact
that as D increases, the alignment of spins along the z axis
becomes energetically more favorable, and, thus, the energy
barrier of the metastable state increases leading to a longer
metastable lifetime. Remarkably, we find here the presence of
a crossover analogous to a similar type of behavior reported
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FIG. 1. (a) Magnetic susceptibility (χ ) vs temperature (T ) for different strengths of the uniform anisotropy D. (b) Corresponding
pseudocritical temperatures T ∗

L vs D as obtained from panel (a). The temperature is varied in steps of 10−1 when obtaining the magnetic
susceptibility curves, so the maximum error in the determination of each T ∗

L is considered to be 2 × 10−2. Results are shown for a system with
linear size L = 20 averaged over ten samples.

in our previous study of the reversal time with respect to the
inverse of the applied field in the spin-1/2 Ising system [7].
For the second case and interestingly enough, when a uniform
random distribution of anisotropy with a mean value μ = 0 is
considered (red stars), the system appears to mimic the behav-
ior of an isotropic system with D = 0. On the contrary, for the
case of a uniform random anisotropy with mean value μ = D
(green triangles and blue circles), the reversal time varies
similarly to the first case of a uniform anisotropy. At this point,
it worth noting that we have also performed some additional
test simulations to probe any possible finite-size effects on
the variation of the reversal time in the presence of uniform
crystal field coupling. We refer the reader to the discussion in
Appendix B).

In Fig. 3(b), now, we focus explicitly on case (ii) and study
the system for a set of different temperatures. From the numer-
ical data, it is clear that there is a temperature dependence on
the behavior of the metastable lifetime. At high temperatures,
the lifetime is unaffected, resembling the behavior of the
isotropic system. However, at low temperatures, the reversal

time decreases with the increasing strength of the distribution.
Thus, as also noted in the previous paragraph, the deviation
in Fig. 3(a) is expected to be enhanced at T = 0.4 when
compared to that at T = 1.0.

At this point, and before investigating the effects of other
disorder distributions on the reversal time of the magneti-
zation, we report here the behavior of τ in the presence of
both longitudinal and transverse fields for the case of uni-
form anisotropy. For a fixed value of the transverse field,
we find that the reversal time decreases with increasing
strength of the longitudinal field; see Fig. 4. Furthermore,
with the application of a transverse field alongside the lon-
gitudinal field, reversal also becomes faster, as depicted in
Fig. 5(a). For this particular case, a scaling law of the form
τ = h−n

z f (hx ) with n = 1 appears to adequately describe the
collapse of the data, see Fig. 5(b), at least, within the strong hx

regime.
In analogy to Fig. 3, we present in Fig. 6 the variation of

the metastable lifetime of the system, now, in the presence of
a bimodal distribution of anisotropy of strength WDB, obtained

TABLE I. Fitting parameters corresponding to Fig. 3(a).

Temperature (T ) Disorder distribution D regime χ2/DOF Q (%) b ± δb

0.8 D Higher 1.62 20 11.15 ± 2.31
D Lower 1.69 15 1.25 ± 0.04

WDU(μ = D) Higher 2.13 12 17.52 ± 1.94
WDU(μ = D) Lower 1.49 20 1.56 ± 0.08

1.0 D Higher 0.95 41 5.66 ± 0.51
D Lower 0.96 42 0.82 ± 0.02

WDU(μ = D) Higher 2.13 12 6.13 ± 1.49
WDU(μ = D) Lower 1.49 20 0.99 ± 0.02
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FIG. 2. (a) Magnetization (mz) vs time (t) of a single sample for
two different strengths of the uniform anisotropy, D = 1.6 and D =
2.1. Normalized probability distribution of reversal times Pτ over 500
samples for (b) D = 1.6 and (c) D = 2.1. The simulation parameters
in all panels are L = 50, hz = −1.0, and T = 1.0.

from the well-known distribution,

PB(Di ) = pδ

(
Di − WDB

2

)
+ (1 − p)δ

(
Di + WDB

2

)
(3)

at various temperatures. In particular, in Fig. 6(a), we consider
the most symmetric case with p = 0.5. Here also, the rever-
sal time appears to decrease with increasing strength of the
bimodal distribution at lower temperatures. A simple modula-
tion of the bimodal distribution, for instance, p = 0.3, reduces
the reversal time even further as the mean of the distribution is
shifted to negative values; red circles in Fig. 6(b). An opposite
scenario is observed for p = 0.7 as can be seen from the
relevant data in the same panel.

The behavior of the reversal time was also investigated for
the case of a Gaussian of the anisotropy,

PG(Di ) = 1√
2πσ 2

e− D2
i

2σ2 , (4)

with mean μ = 0 and standard deviation σ = WDG, see Fig. 7.
First, in panel (a), the evolution of the magnetization for a
typical L = 50 sample at T = 0.2 is shown for three strengths
of the Gaussian distribution, namely, WDG = 0.4, 1.6, and 2.8
[18]. A few comments are in order: The reversal time at higher
temperatures behaves as if the system is isotropic, similar
to the results of Fig. 6 for the bimodal distribution of the
anisotropy. On the other hand, as the temperature is lowered
in Fig. 7(b), we record the appearance of a minimum in the
lifetime τmin at a certain value of WDG, denoted by WDGmin .
Since WDG is varied in steps of 0.1, the maximum error in-
volved in the determination of WDGmin is δWDGmin ∼ 0.2. On
the other hand, the error δτmin is comparable to the size of data
points. The variation of both WDGmin and τmin with temperature
is depicted in Fig. 8. Although a nonmonotonic behavior is
observed for WDGmin in Fig. 8(a), the data for τmin seem to
follow nicely an exponential decay as shown by the red solid
line in Fig. 8(b). Some additional results and analysis for the
case of a double Gaussian distribution of the anisotropy is
given in Appendix C.

IV. CONCLUSIONS

The motivation of the current paper was to thoroughly
investigate the role of disorder (in the form of randomly
distributed anisotropy) in metastability phenomena of contin-
uously symmetric ferromagnetic spin systems. In this respect,
the three-dimensional classical Heisenberg ferromagnet was
used as a platform model to study, by means of Monte Carlo
simulations, the behavior of reversal of the magnetization
under the presence of a randomly distributed anisotropy. Some
additional results were also presented for the combined pres-
ence of longitudinal and transverse fields. Although the case
of the uniform anisotropic Heisenberg model has been widely
used in the past, both in theoretical [19–24] as well as in
experimental [25,26] investigations, the scenario of nonuni-
form (over the space) distribution of anisotropy has not been
considered before. The main outcome of our analysis, here,
is that the behavior of the reversal time depends significantly
on the statistical distribution of the anisotropy. Another in-
teresting feature emerging from our paper is the crossover in
the behavior of the reversal time between the low- and the
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FIG. 3. (a) Variation of the reversal time (on the logarithmic scale) with (i) uniform D (purple circles and black triangles), (ii)
uniform random distribution P (Di ) = 1/WDU with mean μ = 0 (red stars), and (iii) similar to (ii) but with mean μ = D (blue circles
and green triangles). (b) Reversal time vs the strength of the uniform random distribution of anisotropy of case (ii) at different tem-
peratures. The different lines are simple exponential fits of the form f (x) = a exp(bx), as indicated in Table I for cases (i) and (iii) in
the low- and high-D regimes, marking the crossover in the behavior of τ . Indeed, we observe that the position of the crossover point
decreases with decreasing temperature. All results correspond to a system with linear size L = 50, hz = −1, and were averaged over
50 realizations.

high-anisotropy regimes, which is mathematically formalized
by the exponential fittings shown in Fig. 3(a). These inter-
connections may be employed in the future in a reversed
approach, providing a new route for the identification of the
presence and form of the disorder distribution by studying
the underlying metastable behavior, i.e., the thermal variation
of the switching time. Finally, as has been shown in the
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FIG. 4. Effect of the transverse field hx on the variation of re-
versal time with longitudinal field hz for a system with linear size
L = 50 at D = 1.5 and T = 1.2. Results averaged over 20 samples.

seminal papers by Aharony [27] and Aharony and Pytte [28]
and references therein, at low temperatures, random uniaxial
anisotropies generate local random fields. Of course, for the
present case, the situation is closer to the Ising limit because
the anisotropy direction is always along the z direction. Never-
theless, according to the Imry-Ma criterion [29], one expects
the destruction of long-range order above a critical value of
disorder. A detailed study in the absence of field (equilibrium
behavior) in order to confirm the destruction of this long-range
order is another theoretically motivating endeavor that we plan
to investigate in a future project.
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APPENDIX A: NUMERICAL DETAILS

The key points of the implemented algorithm are briefly
described below: The initial spin configuration (Sx

i , Sy
i , Sz

i )
consists of all spins parallel to the z-direction (0,0,1). At a
particular temperature T , the system is allowed to follow the
Metropolis dynamics in order to change the spin configura-
tion. For any fixed set of (hz, D) values a lattice site i is chosen
randomly. Let us denote the spin vector at this site by Si and
the energy of the system H, as given by the Hamiltonian. A
test spin vector, say S′

i, is then chosen (for a trial move) at
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FIG. 5. Effect of the longitudinal field hz on the variation of reversal time with (a) transverse field hx and (b) the corresponding data collapse
using the scaling law discussed in the main text. The solid line shows a linear fit in the strong hx regime. The system’s parameters are identical
to those of Fig. 4.

any direction as follows: two different (uncorrelated) random
numbers r1 and r2, uniformly distributed between −1 and +1,
are chosen in such a way that R2 = r2

1 + r2
2 � 1. Obviously,

the set of (r1, r2) values for which R2 > 1 is rejected. Now,
if Sx

i and Sy
i are taken as Sx

i = 2ur1 and Sy
i = 2ur2, then

Sz
i can be expressed as Sz

i = 1 − 2R2, setting u = √
1 − R2.

For this choice of S′
i at the site i the new energy is given

by H′ = −J
∑

〈i j〉 S′
i · Sj − ∑

i Di(S′z
i )2 − h

∑
i S′

i. Thus, the
energy change associated with this change in the direction of
the spin vector from Si to S′

i is given by �H = H′ − H. At

this stage, the Monte Carlo method decides whether the trial
move is acceptable or not.

Its probability follows the Metropolis rate [14],

W (Si → S′
i) = Min

[
1, exp

(
−�H

kBT

)]
, (A1)

where kB is the Boltzmann constant and compares the out-
come to a random number uniformly distributed between zero
and one. If this number does not exceed W , then, the move
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FIG. 6. (a) Reversal time vs the strength of the bimodal distribution of anisotropy (3) for the case p = 0.5 and various temperatures in
the range of T = 0.4–1.0. (b) Similar to panel (a) but for three versions of the bimodal distribution with p = 0.3 (red circles), p = 0.5 (black
squares), and p = 0.7 (green triangles) at T = 0.6. All results correspond to a system with linear size L = 50, hz = −1 and were averaged
over 80 realizations.
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FIG. 7. (a) Magnetization (mz) vs time (t) of a typical single sample for three different strengths of the Gaussian distribution of anisotropy
(4). (b) Reversal time vs the strength of the Gaussian distribution at different temperatures within the range of T = 0.2–1.0. All results
correspond to a system with linear size L = 50, hz = −1, and were averaged over 50 realizations.

Si → S′
i is accepted and the spin vector Si gets updated. In

our numerical experiments, L3 such spin updates define one
Monte Carlo step per site, which also sets the time unit of
our simulations. We also fix J = kB = 1 to properly set the
temperature scale.

APPENDIX B: ON THE QUEST OF FINITE-SIZE EFFECTS

We present here additional extensive simulations in an at-
tempt to investigate the presence of possible finite-size effects
on the variation of reversal time with uniform D [part of
Fig. 3(a)]. Our findings shown in Fig. 9 below indicate that
the reversal time decreases with a converging behavior with

increasing system size, but with no scaling properties being
detected. In particular, for systems with L � 75, the numerical
data become almost L independent with some minor deviation
being present.

APPENDIX C: THE CASE OF THE DOUBLE GAUSSIAN
DISTRIBUTION

It is also interesting to consider a double Gaussian distri-
bution of the anisotropy,

PdG(Di ) = 1√
8πσ 2

[
e− (Di−μ)2

2σ2 + e− (Di+μ)2

2σ2
]
, (C1)
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1.0

1.2

1.4

1.6

1.8

2.0

2.2

(a)

W
D
G
m
in

T
0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

50

100

150

200

250

300

350
f(x)

τ m
in

T

(b)

f(x) = ae-bx

a = 419 ± 25
b = 2.65 ± 0.11

FIG. 8. Temperature variation of (a) WDGmin and (b) τmin as obtained from Fig. 7. WDGmin are presented with a kind of systematic error as
presented in the case of T ∗

L . Regarding the fitting shown in (b), we note that χ2/DOF = 1.126 (DOF = 5) so that Q ∼ 34%.
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D

FIG. 9. Variation of reversal time with uniform D. Numerical
data for four system sizes are shown, namely, L = 25, 50, 75, and
L = 100, averaged over 1000, 500, 50, and 30 samples, respectively.
All curves are obtained at the selected temperature T = 1.0 with
hz = −1. The inset is an enlargement of a small section of the curve
at enough magnification so that the errors and, hence, the small
deviations for different L can be seen.

where now the mean of the distribution is μ = WDG/2. In the
limit σ → 0, we expect the behavior of the reversal time to be
equivalent to that under the presence of the discrete bimodal

0.0 0.5 1.0 1.5 2.0 2.5 3.0
140

145

150

155

160

165

170

175

180
WDB

σ = 0.125
σ = 0.25
σ = 0.50

τ

WDB, WDG

L = 50
T = 0.4
hz = -1.0

FIG. 10. Reversal time vs the strength of (i) the bimodal distri-
bution of anisotropy (3) for p = 0.5, and (ii) the double Gaussian
distribution of the anisotropy (C1) with σ = 0.5, 0.25, and σ =
0.125 at T = 0.4. All results correspond to a system with linear size
L = 50, hz = −1, and were averaged over 150 realizations.

distribution (3), studied above. This is indeed well verified
from the numerical data of Fig. 10.
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