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Summary

It is a very common problem to test survival equality using the right-censored time-
to-event data in clinical research. Although the log-rank test is popularly used in
various studies, it may become insensitive when the proportional hazards assumption
is violated. As follows, there have a variety of statistical methods being proposed to
identify the discrepancy between crossing survival curves or hazard functions. The
omnibus tests against general alternatives are usually preferred due to their wide ap-
plicability to complicated scenarios in real applications. In this paper, we propose
two novel statistics to estimate the ball divergence using the right-censored survival
data, and then implement them in the equality test on survival time in two inde-
pendent groups. The simulation analysis demonstrates their efficiency in identifying
the survival discrepancy. Compared to the existing methods, our proposed methods
present higher power in situations with complex distributions, especially when there
is a scale shift between groups. Real examples illustrate its advantage in practical ap-
plications.

KEYWORDS:
Crossing survival curves; Censored data; Two-sample test; Nonparameteric; Permutation.

1 INTRODUCTION

The comparison of survival time in two independent groups is a very common problem in medical research. For instance, to
evaluate the treatment effect of some new drug on tumor patients, the relapse or distant metastasis occurrence time of the treated
group with the new drug would be compared to that of the control group who accepts the standardized treatment. Moreover,
to explore potential risk factors, the survival times in the stratified groups, say males and females, would be compared. Due to
different individual admission times and the limited duration of the clinical trial, the observed survival data may be censored
if the event has not happened before the trial ends. With these right-censored observations, many statistical methods have been
proposed for the equality test of survival times in two arms. As a representation being well known, the log-rank (LR) test1

is most widely used in different disciplines, however, it may become insensitive in distinguishing the alternative of crossing
survival curves. Therefore, the development of statistical methods for testing the crossing alternatives is of great interest for a
long history2,3,4,5,6,7,8,9.

In the literature, there were two types of crossings being considered, that is the crossing of hazard rates or survival curves7.
Accordingly, two types of methods that are based on the comparison of hazard rates or survival curves were motivated. The
LR test summarizes the differences between the observed hazard rates of one group at each event time and their expectations
under the null hypothesis as the test statistic. In the cases of crossing hazard rates, these differences at different event time
points present opposite signs and therefore are canceled out, yielding the power loss of LR test. To overcome the obstacle, the
amended test statistics utilized various weight functions to emphasize the differences between two hazard rates at some stages10,



2 NA YOU ET AL

Density function Distribution function Hazard function

(A): Solid line: N(0,5); dashed line: N(0,10)

Density function Distribution function Hazard function

(B): Solid line: N(0,5); dashed line: N(5,5)

Figure 1 Illustrative examples of scale shift (A) and mean shift (B) between two probability measures. Left column: density
function 𝑓 (𝑥); middle column: distribution function𝐹 (𝑥) = ∫ 𝑥

−∞ 𝑓 (𝑦)𝑑𝑦; right column: hazard function ℎ(𝑥) = 𝑓 (𝑥)∕(1−𝐹 (𝑥)).

or considered the supremum or the square sum of these differences2,5,6,11. Taking the maximum of multiple subjects is another
common strategy to set up the statistic to test equivalence on multiple dimensions12. In the meantime, to quantify the discrepancy
between two survival curves, the difference between their Kaplan-Meier estimators was used to construct the test statistics,
incorporated with some weight functions, absolute difference or the supremum to handle the crossing13,3,14,15,16. Among these
methods, some were constructed for specific scenarios such as the crossing at early stage, while most recent ones were omnibus
for general alternatives of nonidentical hazard functions or survival curves. In practice, it is uncertain to know whether there
is a crossing or what kind of crossing it is, thus the omnibus tests against general alternatives are usually preferred. In order
to investigate the performance of existing methods to guide the practical use, the numerical analysis was conducted by Li et
al.17 via a series of simulations and Dormuth et al.18 via plenty of real datasets. It is shown that two-stage (TW) method8, the
adaptive Neyman smoothing (NS) test9, and the test utilizing the combination of multiple hazard weights (mdir)11 outperform
the others with higher powers in general scenarios.

No matter whether the hazard rate functions or survival curves were considered to construct the test statistics, the equality of
two probability measures on the survival time was of interest. To quantify the dissimilarity between probability measures, several
innovative statistical divergences and their sample estimators were proposed in modern research, such as the energy distance19,
MMD20, HHG21 and Ball divergence22. Besides much attention they have attracted in dealing with high-dimensional data,
another important feature that makes them outstanding is their nonparametric nature. The statistical inference based on these
quantities is model-free with weak assumptions, therefore can deal with a vast range of situations. They were popularly adapted
to the univariate survival analysis. Matabuena and Padilla23 adapted the statistics to estimate the energy distance and MMD
measure using the right-censored data. Gorfine et al.24 extended the HHG test for comparing two or more survival distributions
using right-censored data.

For two probability measures 𝑇1 and 𝑇2 with a mean shift, i.e., 𝑇2 = 𝑇1 + 𝜇 where 𝜇 is a constant, their distribution functions
𝐹1 and 𝐹2 satisfy 𝐹2(𝑡) = 𝐹1(𝑡−𝜇). Since the distribution function is non-decreasing, 𝐹2(𝑡) ≥ 𝐹1(𝑡) when 𝜇 < 0, or 𝐹2(𝑡) ≤ 𝐹1(𝑡)
when 𝜇 > 0, thus 𝐹1 and 𝐹2 never cross over. For 𝑇1 and 𝑇2 with a scale shift which can be expressed as 𝑇1 = 𝜇 + 𝜖 and
𝑇2 = 𝜇 + 𝜎𝜖, where 𝜇 and 𝜎 > 0 are constants and 𝜖 is a random variable with the distribution function 𝐹 (𝑡) and mean zero,
𝐹1(𝑡) = 𝐹 (𝑡− 𝜇) and 𝐹2(𝑡) = 𝐹 ((𝑡− 𝜇)∕𝜎). When 𝜎 > 1, 𝐹2(𝑡) ≥ 𝐹1(𝑡) for 𝑡 < 𝜇, then they intersect at 𝑡 = 𝜇, and 𝐹2(𝑡) ≤ 𝐹1(𝑡)
for 𝑡 > 𝜇. When 𝜎 < 1, 𝐹2(𝑡) ≤ 𝐹1(𝑡) for 𝑡 < 𝜇, and then 𝐹2(𝑡) ≥ 𝐹1(𝑡) after the intersection at 𝑡 = 𝜇. Therefore, the distribution
functions cross due to the scale rather than mean shift between the probability measures. We present two illustrative examples
in Figure 1. It was demonstrated that Ball divergence is more powerful in testing the scale shift22. In this paper, we propose two
novel statistics to estimate the Ball divergence using the right-censored survival data, and implement them in the two-sample
equality test for crossing survival curves.



NA YOU ET AL 3

The paper is structured as follows. In Section 2, we introduce the test statistics and hypothesis testing procedure. A series
of simulation studies are conducted in Section 3 to investigate their performance in finite samples. In Section 4, we apply the
proposed testing procedure to multiple real datasets, and a short discussion is given in Section 5.

2 METHODS

In Banach space (𝑉 , || ⋅ ||), the Ball divergence of two Borel probability measures 𝜇 and 𝜈 was defined as22,

𝐷(𝜇, 𝜈) = ∫ ∫
𝑉 ×𝑉

(𝜇 − 𝜈)2𝐵̄(𝑥, 𝜌(𝑥, 𝑦))
(

𝜇(𝑑𝑥)𝜇(𝑑𝑦) + 𝜈(𝑑𝑥)𝜈(𝑑𝑦)
)

,

where 𝐵̄(𝑥, 𝜌(𝑥, 𝑦)) indicates the closed ball with center 𝑥 and radius 𝜌(𝑥, 𝑦) = ||𝑥 − 𝑦||. For two survival times 𝑇1 ∼ 𝐹1 over
(0, 𝜏1] and 𝑇2 ∼ 𝐹2 over (0, 𝜏2], their Ball divergence is given by

𝐷(𝐹1, 𝐹2) =

𝜏

∫
0

𝜏

∫
0

(𝐹1 − 𝐹2)2𝐵̄(𝑥, |𝑥 − 𝑦|)
(

𝐹1(𝑑𝑥)𝐹1(𝑑𝑦) + 𝐹2(𝑑𝑥)𝐹2(𝑑𝑦)
)

,

where |𝑥−𝑦| is the absolute difference between 𝑥, 𝑦 ∈ (0, 𝜏], and 𝜏 = max(𝜏1, 𝜏2). Let 𝑠 = min(2𝑥−𝑦, 𝑦) and 𝑣 = max(2𝑥−𝑦, 𝑦),
and 𝛾𝑘(𝑥, 𝑦) = ℙ(𝑠 < 𝑇𝑘 ≤ 𝑣) for 𝑘 = 1, 2. The Ball divergence has more specific expression, i.e.,

𝐷(𝐹1, 𝐹2) = 𝐷1 +𝐷2, with

{

𝐷1 = ∫ 𝜏
0 ∫ 𝜏

0 [𝛾1(𝑥, 𝑦) − 𝛾2(𝑥, 𝑦)]2𝐹1(𝑑𝑥)𝐹1(𝑑𝑦),
𝐷2 = ∫ 𝜏

0 ∫ 𝜏
0 [𝛾1(𝑥, 𝑦) − 𝛾2(𝑥, 𝑦)]2𝐹2(𝑑𝑥)𝐹2(𝑑𝑦).

(1)

Note that 𝛾1(𝑥, 𝑦) and 𝛾2(𝑥, 𝑦) respectively measure the probability that 𝑇1 and 𝑇2 belong to the time interval (𝑠, 𝑣].
Suppose there are two independent samples 𝑇𝑘,𝑖 ∼ 𝐹𝑘, 𝑖 = 1, 2,… , 𝑛𝑘, 𝑘 = 1, 2, which may not be observed but censored by

𝐶𝑘,𝑖 ∼ 𝐺𝑘, 𝑖 = 1, 2,… , 𝑛𝑘, 𝑘 = 1, 2, respectively. Note that 𝑇𝑘,𝑖 and 𝐶𝑘,𝑖 are mutually independent of each other. The observed
data are then represented by 𝑋𝑘,𝑖 = min(𝑇𝑘,𝑖, 𝐶𝑘,𝑖) and 𝛿𝑘,𝑖 = 𝐼(𝑇𝑘,𝑖 ≤ 𝐶𝑘,𝑖), 𝑖 = 1, 2,… , 𝑛𝑘, 𝑘 = 1, 2. Our target is to test the
hypothesis

𝐻0 ∶ 𝐹1 = 𝐹2 versus 𝐻𝑎 ∶ 𝐹1 ≠ 𝐹2. (2)
For 𝑘 = 1, 2, let 𝐻𝑘(𝑡) = 𝑛−1𝑘

∑𝑛𝑘
𝑖=1 𝐼(𝑋𝑘,𝑖 > 𝑡) and

Γ𝑘(𝑥, 𝑦) =
𝐻𝑘(𝑠)
̂̄𝐺𝑘(𝑠)

−
𝐻𝑘(𝑣)
̂̄𝐺𝑘(𝑣)

,

where ̂̄𝐺𝑘 is the Kaplan-Meier estimate for 𝐺̄𝑘 = 1 − 𝐺𝑘.

Lemma 1. For ∀ 𝑥, 𝑦 such that 𝐺̄𝑘(𝑣) > 0, Γ𝑘(𝑥, 𝑦) is a consistent estimator for 𝛾𝑘(𝑥, 𝑦).

With the survival observations (𝑋𝑘,𝑖, 𝛿𝑘,𝑖), 𝑖 = 1, 2,… , 𝑛𝑘, 𝑘 = 1, 2, let

𝑘 =
1
𝑛2𝑘

𝑛𝑘
∑

𝑖=1

𝑛𝑘
∑

𝑗=1

𝛿𝑘,𝑖𝛿𝑘,𝑗
̂̄𝐺𝑘(𝑋𝑘,𝑖) ̂̄𝐺𝑘(𝑋𝑘,𝑗)

[

Γ1(𝑋𝑘,𝑖, 𝑋𝑘,𝑗) − Γ2(𝑋𝑘,𝑖, 𝑋𝑘,𝑗)
]2
, 𝑘 = 1, 2,

and
 = 1 +2. (3)

Theorem 1.  is a consistent estimator for the Ball divergence 𝐷(𝐹1, 𝐹2) (1).

Besides, the Kaplan-Meier integral25 provides a general method to estimate statistical functionals using the right-censored
survival data. We order the observations in two samples and denote them as 𝑋𝑘(1) ≤ 𝑋𝑘(2) ≤ ⋯ ≤ 𝑋𝑘(𝑛𝑘), with the corresponding
status 𝛿𝑘(𝑖), 𝑖 = 1, 2,… , 𝑛𝑘, 𝑘 = 1, 2.

Theorem 2. Let

𝑊𝑘(𝑖) =
𝛿𝑘(𝑖)

𝑛𝑘 − 𝑖 + 1

𝑖−1
∏

𝑗=1

( 𝑛𝑘 − 𝑗
𝑛𝑘 − 𝑗 + 1

)𝛿𝑘(𝑗)
,
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and

𝐴
𝑘 =

𝑛𝑘
∑

𝑖=1

𝑛𝑘
∑

𝑗=1
𝑊𝑘(𝑖)𝑊𝑘(𝑗)

[ 𝑛1
∑

𝑢=1
𝑊1(𝑢)𝜂(𝑋𝑘(𝑖), 𝑋𝑘(𝑗), 𝑋1(𝑢)) −

𝑛2
∑

𝑣=1
𝑊2(𝑣)𝜂(𝑋𝑘(𝑖), 𝑋𝑘(𝑗), 𝑋2(𝑣))

]2

, for 𝑘 = 1, 2,

where 𝜂(𝑥, 𝑦, 𝑧) = 𝐼
(

𝑧 ∈ 𝐵̄(𝑥, |𝑥 − 𝑦|
)

= 𝐼
(

min(2𝑥 − 𝑦, 𝑦) < 𝑧 ≤ max(2𝑥 − 𝑦, 𝑦)
)

.

𝐴 = 𝐴
1 +𝐴

2 (4)

provides a consistent estimator for the Ball divergence 𝐷(𝐹1, 𝐹2) (1), alternatively.

We call (3) and (4) as the survival Ball divergence, denoted by BD(1) and BD(2) respectively, and use them as the test statistic
for the hypothesis (2). In order to quantify the significance of the observed data, it is useful to explore the distribution of test
statistic under null hypothesis. However,

𝑘 =
1
𝑛2𝑘

1
𝑛21𝑛

2
2

𝑛𝑘
∑

𝑖,𝑗=1

𝑛1
∑

𝑢,𝑢′=1

𝑛2
∑

𝑣,𝑣′=1

𝛿𝑘,𝑖𝛿𝑘,𝑗
[

𝜉1(𝑋𝑘,𝑖, 𝑋𝑘,𝑗 , 𝑋1,𝑢) − 𝜉2(𝑋𝑘,𝑖, 𝑋𝑘,𝑗 , 𝑋2,𝑣)
][

𝜉1(𝑋𝑘,𝑖, 𝑋𝑘,𝑗 , 𝑋1,𝑢′) − 𝜉2(𝑋𝑘,𝑖, 𝑋𝑘,𝑗 , 𝑋2,𝑣′)
]

̂̄𝐺𝑘(𝑋𝑘,𝑖) ̂̄𝐺𝑘(𝑋𝑘,𝑗)
,

with 𝜉𝑘(𝑥, 𝑦, 𝑧) = 𝐼
(

𝑧 > min(2𝑥 − 𝑦, 𝑦)
)

∕ ̂̄𝐺𝑘
(

min(2𝑥 − 𝑦, 𝑦)
)

− 𝐼
(

𝑧 > max(2𝑥 − 𝑦, 𝑦)
)

∕ ̂̄𝐺𝑘
(

max(2𝑥 − 𝑦, 𝑦)
)

, and

𝐴
𝑘 =

𝑛𝑘
∑

𝑖,𝑗=1

𝑛1
∑

𝑢,𝑢′=1

𝑛2
∑

𝑣,𝑣′=1
𝑊𝑘(𝑖)𝑊𝑘(𝑗)

[

𝑊1(𝑢)𝜂(𝑋𝑘(𝑖), 𝑋𝑘(𝑗), 𝑋1(𝑢)) −𝑊2(𝑣)𝜂(𝑋𝑘(𝑖), 𝑋𝑘(𝑗), 𝑋2(𝑣))
]

⋅

[

𝑊1(𝑢′)𝜂(𝑋𝑘(𝑖), 𝑋𝑘(𝑗), 𝑋1(𝑢′)) −𝑊2(𝑣′)𝜂(𝑋𝑘(𝑖), 𝑋𝑘(𝑗), 𝑋2(𝑣′))
]

are both Kaplan-Meier V-statistics26, whose asymptotic distributions are complicated to be inferred in theory and also by nu-
merical approximation. Thus, we use the permutation method27,23 to calculate p-value for the hypothesis testing (2) using the
test statistics BD(1) or BD(2). Assign the group label 𝐾𝑖 = 1 to (𝑋1,𝑖, 𝛿1,𝑖), 𝑖 = 1, 2,… , 𝑛1, and 𝐾𝑛1+𝑗 = 2 to (𝑋2,𝑗 , 𝛿2,𝑗),
𝑗 = 1, 2,… , 𝑛2. With a permutation of (𝐾1,… , 𝐾𝑛1+𝑛2), denoted by (𝐾∗

1 ,… , 𝐾∗
𝑛1+𝑛2

), the samples are divided into two groups
according to 𝐾∗

𝑖 = 1 or 2, and the test statistic can be calculated. The permutation repeats 𝐵 times, and the p-value is given by
the proportion of test statistics with permuted labels that are greater or equal to the observed statistic.

3 SIMULATIONS

A series of experiments were simulated to numerically evaluate the performance of our proposed testing procedure with BD(1)
or BD(2) in a variety of scenarios. The type-I error rates under null hypotheses and the testing powers under alternative settings
were investigated. For null hypotheses, two experiments, 1 and 2, were considered. In experiment 1, the survival times 𝑇𝑘𝑖,
𝑖 = 1, 2,… , 𝑛𝑘, for 𝑘 = 1, 2, are both simulated from the Weibull distribution 𝐹1(𝑡) = 𝐹2(𝑡) = exp(−𝜆𝑡𝑝) with 𝜆 = 2 and
𝑝 = 4, while in experiment 2, they are generated from the Gompertz distribution 𝐹1(𝑡) = 𝐹2(𝑡) = exp

(

𝜆(1 − exp(𝛼𝑡))∕𝛼
)

with
𝜆 = 3 and 𝛼 = 1. The survival functions in these two experiments are plotted in Figure 2, presenting an inverse S and L shaped
survival curves. The testing powers under alternative hypotheses are assessed in the following experiments 3-9, where 𝑇1𝑖, 𝑖 =
1, 2,… , 𝑛1 and 𝑇2𝑗 , 𝑗 = 1, 2,… , 𝑛2 are from different survival functions. As shown in Figure 2, two survival curves to be tested
in experiments 3-4 are not crossing while they intersect each other in experiments 5-9. More specifically, the hazard functions
of two groups in experiment 3 are proportional, while not in experiment 4. For the crossed survival curves in experiments 5-7,
the intersections are set at early, median and later stages respectively, as done by Li et al.17. Two more complicated scenarios
are implemented in experiments 8-9, where 𝐹𝑘(𝑡) may be a mixture distribution. To illustrate the dispersion of two probability
measures in experiments 3-9, we plot their density functions in Figure 2 as well. It is shown that, in experiments 3-4, there
mainly show location shifts, meanwhile in experiments 5-9, there additionally appear scale shifts. Particularly in experiment 9,
it is rather a scale shift than a location shift. The distributions and their parameters used for data generation are listed in Table 1.
For each experiment, the censoring times 𝐶1𝑖, 𝑖 = 1, 2,… , 𝑛1 and 𝐶2𝑗 , 𝑗 = 1, 2,… , 𝑛2 are subject to the uniform distribution
𝑈 (0,1) and 𝑈 (0,2) respectively, where 1 and 2 are chosen to yield no censoring, or the censoring rates of both groups at
low level around 20%, median level around 40%, or high level around 60%.

First, the consistency of our proposed statistics BD(1) and BD(2) was investigated. For each experiment, with different settings
of 1 and 2, we increase the sample sizes 𝑛1 = 𝑛2 = 30, 50 to 100. Under each scenario, the statistics BD(1) and BD(2) were
calculated according to (3) and (4) with the simulated data. The simulation is repeated 500 times. The average and standard



NA YOU ET AL 5

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5

S
ur

vi
va

l C
ur

ve

0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5

D
en

si
ty

 F
un

ct
io

n

Exp−1

0.00

0.25

0.50

0.75

1.00

0.0 0.4 0.8 1.2

0

1

2

3

0.0 0.4 0.8 1.2

Exp−2

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5

S
ur

vi
va

l C
ur

ve

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5

D
en

si
ty

 F
un

ct
io

n

Exp−3

0.00

0.25

0.50

0.75

1.00

0.0 0.4 0.8 1.2

0.0

0.5

1.0

1.5

2.0

0.0 0.4 0.8 1.2

Exp−4

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6

S
ur

vi
va

l C
ur

ve

0

2

4

0.0 0.2 0.4 0.6

D
en

si
ty

 F
un

ct
io

n

Exp−5

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

0

1

2

3

0.00 0.25 0.50 0.75 1.00

Exp−6

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6

0

1

2

3

4

5

0.0 0.2 0.4 0.6

Exp−7

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5

Exp−8

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5 2.0 2.5

0

1

2

3

0.0 0.5 1.0 1.5 2.0 2.5

Exp−9

Figure 2 Survival curves and density functions to be tested in the simulation experiments 1-9.

deviation of the statistics from 500 repetitions are calculated for evaluation, being presented in Table 2. The Ball divergence
is zero if and only if 𝐹1 = 𝐹2

22, however, it is hard to be computed analytically when 𝐹1 ≠ 𝐹2 due to its complex expression
(1). For experiments 1-2 with null hypotheses 𝐹1 = 𝐹2, 𝐷(𝐹1, 𝐹2) = 0, while for experiments 3-9, we used the Monte Carlo
method to approximate 𝐷(𝐹1, 𝐹2) by its sample estimator, where two random samples of size 5000 were generated from 𝐹1 and
𝐹2, respectively, and the sample estimator was calculated using R package Ball28. It is shown in Table 2, as the sample size
increases, both BD(1) and BD(2) approach 𝐷(𝐹1, 𝐹2), and their standard deviations become smaller. As mentioned previously,
both 𝑘 and 𝐴

𝑘 are Kaplan-Meier V-statistics, which are biased estimators29, so that BD(1) and BD(2) present positive biases
from 𝐷(𝐹1, 𝐹2) in most scenarios. The bias reduces as the sample size goes larger, demonstrating the consistency of the statistics
as proved. It is indicated that the estimation bias of BD(2) is larger than that of BD(1) when the censoring rate is high, especially
in the scenario with a smaller sample size.

Next, the performance of our testing procedure is investigated for each experiment with the sample sizes 𝑛1 = 𝑛2 = 30 or 50
and different censoring rates. Each scenario with different parameter settings is repeated 500 times. Given the significance level
𝛼 = 0.05, the proportion that the null hypothesis is rejected is calculated, which estimates the type-I error rate in experiments
1-2 and the testing power in experiments 3-9. We summarize the results from our testing procedure using BD(1) and BD(2) in
Figure 3 and 4. Li et al.17 and Dormuth et al.18 concluded that two-stage (TS) method8, the adaptive Neyman smoothing (NS)
test9, and the test employing the combination of multiple hazard weights (mdir)11 outperform the other existing methods with
higher powers in general scenarios. Therefore, we compare the results of our method to that of the classical LR test, TS, NS,
mdir, and the newly developed ED, MMD, and HHG methods for survival data analysis. Matabuena and Padilla23 provided the
R source code to calculate ED with Euclidean distance and MMD with Gaussian and Laplacian kernels while presenting the
methodologies. We used their code to apply ED and MMD methods. The results of MMD with two kernels are very similar,
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Table 1 Survival distributions and their parameters used for data generation in simulations.

Exp Distribution Parameter Setting
Group 1 Group 2

Type-I Error
Rate

1 Weibull 𝜆 = 2, 𝑝 = 4
2 Gompertz 𝜆 = 3, 𝛼 = 1

Power

3 Weibull 𝜆 = 2, 𝑝 = 4 𝜆 = 4, 𝑝 = 4
4 Weibull 𝜆 = 3, 𝑝 = 4 𝜆 = 4, 𝑝 = 3
5 Gompertz 𝜆 = 0.5, 𝛼 = 15 𝜆 = 1.5, 𝛼 = 5
6 Gompertz 𝜆 = 0.6, 𝛼 = 9 𝜆 = 2, 𝛼 = 2
7 Gompertz 𝜆 = 0.1, 𝛼 = 13 𝜆 = 0.8, 𝛼 = 6

8 Gompertz
𝜆 = 0.1, 𝛼 = 5 𝜆 = 0.1, 𝛼 = 4 (50%)

mixture 𝜆 = 0.1, 𝛼 = 10 (50%)

9 Weibull 𝜆 = 10, 𝑝 = 10 (70%) 𝜆 = 10, 𝑝 = 20 (30%)
mixture 𝜆 = 1, 𝑝 = 2 (30%) 𝜆 = 1, 𝑝 = 2 (70%)
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Figure 3 Type-I error rates of our proposed method using two statistics BD(1) and BD(2) in experiments 1 and 2 with the
sample sizes 𝑛1 = 𝑛2 = 30 and 50 at the nominal significance level 𝛼 = 0.05, with comparison to those of Logrank (LR), two-
stage (TS), Neyman smoothing (NS), mdir, energy distance (ED), MMD and HHG methods.

thus we only present those with Gaussian kernel. The other methods were accomplished using the corresponding R packages
listed by Dormuth et al.18.

It is shown by experiments 1 and 2 in Figure 3, all methods can control the type-I error rates around the nominal level of
0.05 in different scenarios with varying sample sizes and censoring rates. Figure 4 presents the testing powers of all methods for
diverse alternative hypotheses. In each experiment, their powers increase as the sample size becomes larger, and decrease as the
censoring rate goes higher. For experiment 3 where the hazard functions of two groups are proportional and two survival curves
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Table 2 The average and standard deviation in the parentheses of the estimated survival Ball divergence BD(1) or BD(2) in 500
repetitions of experiments 1-9 with varying sample sizes and censoring levels.

Exp 𝑛1 = 𝑛2
BD(1) BD(2)

𝐷(𝐹1, 𝐹2)Censoring level Censoring level
Low Median High Low Median High

1
30 .028(.02) .04(.026) .054(.034) .031(.021) .047(.031) .082(.057)

050 .018(.012) .023(.016) .032(.02) .018(.013) .026(.018) .041(.029)
100 .008(.006) .011(.008) .016(.01) .008(.006) .012(.008) .019(.014)

2
30 .027(.018) .031(.021) .031(.024) .03(.021) .056(.038) .088(.059)

050 .017(.011) .02(.014) .02(.014) .018(.012) .033(.025) .055(.046)
100 .008(.006) .01(.007) .011(.009) .008(.006) .016(.011) .027(.021)

3
30 .065(.039) .075(.044) .091(.06) .071(.043) .087(.055) .152(.103)

.03350 .054(.03) .058(.035) .069(.041) .057(.032) .064(.038) .104(.066)
100 .044(.02) .046(.022) .053(.028) .045(.02) .048(.023) .071(.041)

4
30 .07(.041) .078(.046) .089(.06) .075(.045) .09(.055) .175(.112)

.04150 .056(.032) .061(.035) .068(.041) .059(.033) .066(.039) .119(.07)
100 .047(.021) .049(.022) .051(.026) .048(.021) .051(.022) .084(.044)

5
30 .094(.042) .099(.047) .089(.047) .1(.045) .108(.055) .109(.065)

.07250 .084(.031) .087(.036) .08(.035) .087(.033) .09(.039) .074(.045)
100 .077(.023) .077(.026) .07(.026) .078(.023) .076(.027) .054(.03)

6
30 .079(.038) .08(.04) .072(.038) .083(.04) .089(.051) .12(.072)

.05450 .067(.028) .068(.031) .059(.029) .07(.029) .066(.033) .076(.045)
100 .06(.02) .059(.022) .049(.021) .061(.021) .053(.023) .053(.028)

7
30 .073(.039) .081(.045) .081(.049) .077(.041) .09(.051) .146(.094)

.04450 .06(.029) .064(.032) .061(.033) .061(.03) .067(.034) .095(.056)
100 .051(.02) .053(.021) .048(.023) .052(.02) .054(.021) .065(.034)

8
30 .087(.044) .095(.051) .088(.056) .093(.047) .115(.062) .211(.12)

.05750 .074(.033) .077(.036) .067(.036) .076(.035) .085(.041) .15(.084)
100 .066(.024) .068(.027) .057(.025) .067(.024) .071(.029) .118(.06)

9
30 .078(.045) .082(.048) .09(.057) .083(.048) .095(.055) .126(.078)

.05650 .065(.032) .069(.037) .07(.041) .067(.034) .075(.041) .086(.048)
100 .058(.023) .059(.026) .058(.029) .059(.023) .062(.027) .066(.034)

are non-crossing, the LR test achieves the highest power. However, for experiment 4 when the hazards are not proportional
though two survival curves are still non-crossing, ED outperforms the LR test. The other methods including ours, provide
comparable but lower powers than ED and LR tests in these two experiments. It is worth noting that ED with Euclidean distance
degenerates to quantify the mean difference between two probability measures, so that it is sensitive to the location shift, similar
to the classical LR test, whereas the others that were designed for the crossing alternatives are less sensitive than them. Although
LR test and ED perform better in experiments 3 and 4, their powers greatly drop in experiments 5-9 when the survival curves
are crossing, especially the LR test, meanwhile, the other methods provide higher powers. When the data of two groups are
generated from the simple parametric models with both location and scale shifts as in experiments 5-7, mdir and NS show the
highest powers, followed by HHG, MMD, and our method. However, when the underlying model becomes more complex such
as the mixture model in experiment 8, HHG, MMD, and our method present very similar results to that of mdir and NS, and
higher powers than TS, ED, and LR test. In particular, for experiment 9 where there is only a scale shift, HHG, MMD, and
our method surpass all the others and result in significantly higher powers. It is shown that HHG, MMD, and our method are
more sensitive to the scale shift than the other compared methods. The nonparametric nature of HHG, MMD, and our method
warrants their efficiency for general alternatives. The extension for survival analysis aimed to quantify the divergence between
two probability measures with the right-censored data, no matter whether it is in location or scale. However, the other typically
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Figure 4 Testing powers of our proposed method using two statistics BD(1) and BD(2) in experiments 3-8 with the sample
sizes 𝑛1 = 𝑛2 = 30 and 50 at the nominal significance level 𝛼 = 0.05, with comparison to those of Logrank (LR), two-stage
(TS), Neyman smoothing (NS), mdir, energy distance (ED), MMD and HHG methods.

developed methods try to estimate the survival curves or hazard functions first, and then use them to measure the difference
between the probability measures, which lose power for the estimation.

The consistency result of the Ball divergence estimator does not depend on the sample size ratio, ensuring its testing power in
imbalanced samples22. In order to further investigate the performance of our proposed method, we set 𝑛1 = 30, 𝑛2∕𝑛1 = 4 or 16
in experiments 3-9, and present the powers of all aforementioned methods in Figure 5. For experiments 3-8, the results remain in
a similar pattern to those of 𝑛2∕𝑛1 = 1 in Figure 4, while for experiment 9, our method reaches the highest powers, presenting a
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significant advantage over HHG and MMD. The nonparametric statistical divergences ED, MMD, and BD are all kernel-based
approaches22, and BD is associated with HHG with a proper weight30. The different definitions of these divergences account for
their varied performance in survival analysis. In summary, for balanced samples, the kernel-based approaches perform similarly
and are superior to the typical methods designed for crossing in identifying the scale shift, while for imbalanced samples, our
method outperforms both the typical competitors and other kernel-based approaches.

The results of our methods using BD(1) and BD(2) are both illustrated in Figure 4 and 5. When the censoring rate is low, their
powers are very close. However, as the censoring rate increases, the testing power from BD(2) drops lower than that from BD(1),
which can be clearly seen in Figure 5 with a larger sample size than those in Figure 4. It is noteworthy that the observed higher
power of BD(2) than BD(1) at the high level of censoring in Figure 4, even the elevated tail in experiment 8 when 𝑛1 = 𝑛2 = 30,
does not necessarily indicate the superior performance of BD(2) compared to BD(1). According to the estimation results in
Table 2, BD(2) may present nonnegligible positive bias at the high level of censoring, in particular with a small sample size,
which makes it very likely to be rejected. Compared to BD(2), BD(1) exhibits greater resilience to the high level of censoring.
Therefore, our method using BD(1) is more recommended for use in practice. Note that MMD was adapted in a similar manner
as BD(2) to handle censoring, resulting in a similar performance to BD(2) in most simulation scenarios but with lower power
for imbalanced samples.

4 REAL DATASETS

The crossing survival curves are very commonly seen in real applications. Although it was alarmed early that LR test may lose
power without the proportional hazards assumption, it is still popularly used in clinical research, even for crossing survival
curves31. To convey the state-of-the-art statistical tests to the community and evaluate their performance to help the choice in
practice, Dormuth et al.18 collected 18 datasets with crossing survival curves from the most recent clinical oncology publications
on PubMed. With a significance level of 0.05, mdir rejects the most number of null hypotheses of equal survival in two arms
of these datasets, among 11 methods being considered by Dormuth et al.18. We applied the proposed and aforementioned peer
methods to the analysis of these datasets. The sample sizes and the censoring rates in both groups of each dataset, and their
p-values are listed in Table 3. There are 7 datasets, presented in the first 7 rows, where all methods provide nonsignificant p-
values that are larger than 0.1, due to limited sample sizes, high censoring rates, or trivial differences between two groups. In
the following two datasets, all methods except LR reject the null hypothesis at the significance level of 0.05, indicating the
ineffectiveness of LR test in testing crossing survival curves. In the rest 9 datasets, NS and mdir reject the null hypothesis in 6
cases with the most significant p-values. Although BD(1) only reports p-values that are less than 0.05 in 3 datasets, there are two
more p-values of 0.06 which are very close to the significance level. Meanwhile, BD(2) identifies the survival inequality in 5
datasets. Besides, MMD rejects the null hypothesis in 5 cases; HHG, TS, and ED all succeed in 4 ones, and LR in only one dataset
with one more p-value of 0.06. In simulations, it is indicated that our method shows an advantage in complex distributions, and
is especially sensitive to the scale shift. However, as stated by Dormuth et al.18, they selected the datasets with criteria that there
are only one or two crossings, so that the underlying distribution may not be much complicated. Moreover, a location shift is
more expected than a scale shift in clinical studies. Our method rejected the null hypothesis in as comparably many datasets as
NS and mdir, demonstrating its power in detecting the survival difference for general crossing survival curves.

When the crossing pattern becomes more complicated, there usually involves a scale shift. The R package KMsurv collected
a series of survival data sets from the book of Klein and Moeschberger32, one of which is from a randomized clinical trial to
investigate the therapeutic effectiveness of an experimental treatment using the combination of AZT, zalcitabine and saquinavir
for HIV patients, compared to the standard treatment using both AZT and zalcitabine. There included 34 patients, being assigned
at 1:1 ratio into two groups for different treatments. The time to CD4 counts reaching a specified level after drug administration
is recorded for each patient, with the censoring rate of 17.6% and 23.5% respectively in the standard and experimental treatment
group. We present the Kaplan-Meier estimators of two survival curves under different treatments in Figure 6. It is seen that, after
two crossings at the beginning, those two curves depart but approach to each other again in the median survival stage. Thereafter,
they go separate and then get close again at the end. Note that it is impossible to know if there is a location or scale shift by
the observation of survival curves. The R package survPresmooth33 implements nonparametric presmoothed estimators of
the main functions in survival analysis, including the survival, density, hazard, and cumulative hazard functions. We plot the
estimated density functions of this data set on the right side of Figure 6. It is obviously seen that the patients in the two groups
have distinct survival patterns. The p-values for equality testing using different methods are presented in the last row of Table 3.
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Figure 5 Testing powers of different methods in experiments 3-8 with the sample sizes 𝑛1 = 30, 𝑛2∕𝑛1 = 4 and 16, at the
nominal significance level 𝛼 = 0.05, with comparison to those of Logrank (LR), two-stage (TW), Neyman smoothing (NS),
mdir, energy distance (ED), MMD and HHG methods.

Only MMD and our methods reject the null hypothesis at the significance level of 0.05, besides ED reports a p-value of 0.06.
It is illustrated that these nonparametric statistical methods are more powerful in identifying the survival difference between
complex underlying distributions.

Note that due to the disease or population heterogeneity, it is very common in reality that the survival distribution under the
same treatment has multiple modes and presents as a mixture, where a scale shift usually presents between groups. Our method
and MMD show an advantage over NS and mdir in identifying this change in survival. However, whether or not there is a scale
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Table 3 The p-values from our proposed method and compared methods in real data analysis, where 𝑛𝑘 is the sample size and
𝑅𝑘 indicates the censoring rate of the 𝑘th group, for 𝑘 = 1, 2.

Dataset 𝑛1 𝑅1 𝑛2 𝑅2 LR ED TS NS mdir HHG MMD BD(1) BD(2)
Cortes[1] 19 .16 36 .19 .19 .83 .84 .24 .44 .43 .93 .50 .80

Godfrey[2] 192 .95 190 .96 .49 .54 .90 .50 .77 .28 .39 .71 .59
Golan[3] 62 .52 92 .57 .61 .89 .23 .61 .62 .59 .90 .76 .97

Hammel[4] 57 .60 89 .63 .22 .28 .25 .26 .14 .23 .28 .50 .14
Kotani[5] 66 .17 60 .43 .14 .50 .51 .17 .27 .45 .55 .54 .32
Mukai[6] 14 .36 32 .56 .16 .77 .54 .21 .36 .18 .68 .21 .79

Toxopeus[7] 173 .61 208 .53 .91 .16 .15 .90 .10 .35 .12 .32 .13
Bellmunt[8] 272 .17 270 .19 .49 .00 .03 .00 .00 .00 .00 .00 .00

Fradet[9] 272 .09 270 .14 .40 .00 .03 .00 .00 .00 .00 .00 .00
Bang[10] 48 .27 50 .18 .37 .02 .05 .03 .05 .13 .04 .06 .03

Becker[11] 25 .00 152 .11 .09 .22 .27 .01 .02 .16 .42 .19 .28
Ferris[12] 121 .15 240 .20 .33 .08 .04 .00 .02 .01 .01 .01 .01
Jones[13] 37 .38 94 .34 .17 .01 .04 .01 .02 .05 .00 .12 .01

Jones20[14] 71 .56 69 .70 .05 .00 .33 .08 .12 .12 .00 .00 .00
Kreuzer[15] 37 .46 26 .50 .53 .15 .13 .08 .10 .34 .24 .55 .21

Lu[16] 139 .43 141 .38 .06 .00 .04 .01 .00 .05 .03 .06 .04
Malone[17] 215 .82 217 .87 .11 .25 .66 .13 .30 .09 .34 .16 .32
Motzer[18] 411 .22 410 .21 .07 .66 .29 .00 .02 .02 .47 .03 .20

Drughiv 17 .18 17 .24 .15 .06 .36 .18 .14 .11 .05 .05 .03
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Figure 6 The Kaplan-Meier estimators of the survival curves (left) and their density estimators (right) of HIV patients in two
groups with the standard or experimental treatment.

shift can not be certainly known by the inspection of survival curves or even density functions, except for the obvious patterns
observed in the HIV drug data set. Actually, both location and scale shifts occur simultaneously for common cases. If only the
location shift is of interest, we suggest NS and mdir, while if a scale shift is expected, then our method is recommended. We
present two test statistics BD(1) and BD(2). They make the same decisions for most hypotheses, but may choose different ones
such as in the 13th and 18th data sets in Table 3. When they are discordant, BD(2) gives the same results as MMD, due to the
fact that both of them utilized the Kaplan-Meier integral to deal with the censoring, whereas BD(1) incorporated the inverse
probability weights.
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5 DISCUSSION

In literature, for non-proportional hazard alternatives, either crossing survival curves or crossing hazard functions were con-
ceived in the construction of test statistics. Although their null hypotheses are the same, these two alternatives are not equivalent
but overlapped7. Moreover, it is ambiguous to infer crossings by inspection of estimated survival curves or cumulative hazard
functions. These facts bring confusion to users regarding the choice of testing methods. Although the omnibus tests attempt
against general alternatives, Janssen34 indicated that there exists no test globally with high power, and any nonparametric test
can only outperform in a finite-dimensional subspace. It is essentially meaningful to clarify in which situations the proposed test
is more applicable to guide practical use. No matter which type of crossing was presumed in mind, those existing methods reveal
the divergence between probability measures. In this paper, we utilized the estimation of Ball divergence from right-censored
survival data to propose a testing method for general alternative settings. The test statistics compare the numbers of observa-
tions from different groups on a collection of intervals formulated by the sample data, thus they are rank-based and in line with
LR test. Our method inherits the advantage of Ball divergence, being sensitive to the scale shift between probability measures.

The proposed test statistics are consistent estimators of Ball divergence defined by Pan et al.22. As the domain of survival
time being 𝑅+, the ball 𝐵(𝑥, |𝑥 − 𝑦|) reduces to the interval (𝑠, 𝑣], where 𝑠 = min(2𝑥 − 𝑦, 𝑦), and 𝑣 = max(2𝑥 − 𝑦, 𝑦). On the
other hand,

[𝛾1(𝑥, 𝑦) − 𝛾2(𝑥, 𝑦)]2 = [(1 − 𝛾1(𝑥, 𝑦)) − (1 − 𝛾2(𝑥, 𝑦))]2

= [𝑃 (𝑇1 ∉ 𝐵̄(𝑥, |𝑥 − 𝑦|)) − 𝑃 (𝑇2 ∉ 𝐵̄(𝑥, |𝑥 − 𝑦|))]2

= [(𝑃 (𝑇1 ≤ 𝑠) − 𝑃 (𝑇2 ≤ 𝑠)) + (𝑃 (𝑇1 > 𝑣) − 𝑃 (𝑇2 > 𝑣))]2.

The ball divergence can also be regarded as a measure of probability distribution difference on both tails out of the interval
(𝑠, 𝑣]. When there is only a location shift between 𝑇1 and 𝑇2, 𝑃 (𝑇1 ≤ 𝑠) − 𝑃 (𝑇2 ≤ 𝑠) and 𝑃 (𝑇1 > 𝑣) − 𝑃 (𝑇2 > 𝑣) have reverse
signs. Meanwhile, when 𝑇1 differs from 𝑇2 in terms of scale rather than location, they have concordant signs. The accrued
divergence enhances the significance of testing statistics, and therefore improves their power performance in different scenarios.
The crossing is induced by a scale shift, where the location shift usually occurs as well, so that some omnibus tests, such as NS
and mdir, provide comparable results to our method in many situations, as illustrated by simulations and real data analysis. For
a robust powerful test, the Cauchy combination test can be further implemented to integrate the p-values from these competitive
methods35. Nevertheless, their extensions may be challenging. In contrast, the Ball divergence was originally developed for
multivariate analysis, so our method can be naturally extended to the cases of multiple time-to-event endpoints. Moreover,
the Ball divergence defines a metric on the difference between two probability measures. It can be adapted with conditional
probability to control potential covariates in the comparison of survival. We leave these studies for future work.

The Ball divergence provides a framework to measure the discrepancy between two probability measures. It integrates the
square of their difference over a ball Borel 𝜎-algebra. For multi-dimensional space, within or out of a ball is a natural choice of
the 𝜎-algebra. However, for one-dimensional space such as 𝑅+, it may be either an interval, or both left and right tails out of
the interval, or even the only left or right tail, i.e., for 𝑥, 𝑦 ∈ 𝑅+, 𝛾𝑘(𝑥, 𝑦) can be either 𝑃 (𝑠 < 𝑇𝑘 ≤ 𝑣), 𝑃 (𝑇𝑘 ≤ 𝑠) + 𝑃 (𝑇𝑘 > 𝑣),
𝑃 (𝑇𝑘 ≤ 𝑠), or 𝑃 (𝑇𝑘 > 𝑣). Different settings of 𝛾𝑘(𝑥, 𝑦) correspond to varying choices of 𝜎-algebra, leading to different definitions
of the statistical divergence. Considering the right-censoring of survival data, 𝛾𝑘(𝑥, 𝑦) = 𝑃 (𝑇𝑘 > 𝑣) = 𝑃 (𝑇𝑘 > max(𝑥, 𝑦))may be
an alternative to simplify the notations and reduce the computational complexity. With the simplified version, more complicated
statistical inferences can be more easily developed, such as the conditional divergence and independence test between the survival
time and potential covariates. Its performance will be investigated in future work.
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APPENDIX

Proof of Lemma 1. Under the assumption of independent censoring, as 𝑛𝑘 ←→ ∞,

𝐻𝑘(𝑡) =
1
𝑛𝑘

𝑛𝑘
∑

𝑖=1
𝐼(𝑋𝑘,𝑖 > 𝑡)

𝑎.𝑠.
←→ 𝑃 (𝑋𝑘,𝑖 > 𝑡) = 𝑃 (𝑇𝑘,𝑖 > 𝑡)𝑃 (𝐶𝑘,𝑖 > 𝑡) = 𝑃 (𝑇𝑘 > 𝑡)𝐺̄𝑘(𝑡).

The Kaplan-Meier estimator ̂̄𝐺𝑘(𝑡)
𝑎.𝑠.
←→ 𝐺̄𝑘(𝑡) for the continuous distribution 𝐺𝑘(𝑡)36. Therefore, for any 𝑡 > 0 such that 𝐺̄𝑘(𝑡) > 0,

𝐻𝑘(𝑡)
̂̄𝐺𝑘(𝑡)

𝑎.𝑠.
←→

𝑃 (𝑇𝑘 > 𝑡)𝐺̄𝑘(𝑡)
𝐺̄𝑘(𝑡)

= 𝑃 (𝑇𝑘 > 𝑡).

Γ𝑘(𝑥, 𝑦) =
𝐻𝑘(𝑠)
̂̄𝐺𝑘(𝑠)

−
𝐻𝑘(𝑣)
̂̄𝐺𝑘(𝑣)

𝑎.𝑠.
←→𝑃 (𝑇𝑘 > 𝑠) − 𝑃 (𝑇𝑘 > 𝑣)

=𝑃 (𝑠 < 𝑇𝑘 ≤ 𝑣) = 𝛾𝑘(𝑥, 𝑦).

Proof of Theorem 1.

𝑘 =
1
𝑛2𝑘

𝑛𝑘
∑

𝑖=1

𝑛𝑘
∑

𝑗=1

𝛿𝑘,𝑖𝛿𝑘,𝑗
̂̄𝐺𝑘(𝑋𝑘,𝑖) ̂̄𝐺𝑘(𝑋𝑘,𝑗)

[

Γ1(𝑋𝑘,𝑖, 𝑋𝑘,𝑗) − Γ2(𝑋𝑘,𝑖, 𝑋𝑘,𝑗)
]2

= 1
𝑛2𝑘

𝑛𝑘
∑

𝑖=1

𝑛𝑘
∑

𝑗=1

𝛿𝑘,𝑖𝛿𝑘,𝑗
̂̄𝐺𝑘(𝑋𝑘,𝑖) ̂̄𝐺𝑘(𝑋𝑘,𝑗)

[

(

Γ1(𝑋𝑘,𝑖, 𝑋𝑘,𝑗) − 𝛾1(𝑋𝑘,𝑖, 𝑋𝑘,𝑗)
)

−
(

Γ2(𝑋𝑘,𝑖, 𝑋𝑘,𝑗) − 𝛾2(𝑋𝑘,𝑖, 𝑋𝑘,𝑗)
)

+
(

𝛾1(𝑋𝑘,𝑖, 𝑋𝑘,𝑗) − 𝛾2(𝑋𝑘,𝑖, 𝑋𝑘,𝑗)
)

]2

From Lemma 1, as 𝑛 ←→ ∞,

𝑘
𝑎.𝑠.
←→𝐸

[ 𝛿𝑘,1𝛿𝑘,2
𝐺̄𝑘(𝑋𝑘,1)𝐺̄𝑘(𝑋𝑘,2)

(

𝛾1(𝑋𝑘,1, 𝑋𝑘,2) − 𝛾2(𝑋𝑘,1, 𝑋𝑘,2)
)2
]

= 𝐸𝑇𝑘,1,𝑇𝑘,2

{

𝐸
[ 𝛿𝑘,1𝛿𝑘,2
𝐺̄𝑘(𝑋𝑘,1)𝐺̄𝑘(𝑋𝑘,2)

(

𝛾1(𝑋𝑘,1, 𝑋𝑘,2) − 𝛾2(𝑋𝑘,1, 𝑋𝑘,2)
)2
|𝑇𝑘,1, 𝑇𝑘,2

]

}

= 𝐸𝑇𝑘,1,𝑇𝑘,2

[

𝛾1(𝑇𝑘,1, 𝑇𝑘,2) − 𝛾2(𝑇𝑘,1, 𝑇𝑘,2)
]2

= 𝐷𝑘.

Therefore, 1 +2
𝑎.𝑠.
←→ 𝐷(𝐹1, 𝐹2) is proved.

Proof of Theorem 2. Denoted by 1 − 𝐹𝑘,𝑛𝑘 the Kaplan-Meier estimator for 1 − 𝐹𝑘 and 𝜑(𝑡) a Borel-measurable function on the
real line such that ∫ |𝜑|𝑑𝐹𝑘 < ∞, it is shown that ∫ 𝜑(𝑡)𝐹𝑘,𝑛𝑘(𝑑𝑡) converges almost surely to ∫ 𝜑(𝑡)𝐹𝑘(𝑑𝑡) for the continuous
distribution 𝐹𝑘(𝑡)36. Furthermore, the strong consistency property still holds for two-sample U-statistic with kernel function
ℎ(𝑥, 𝑦) such that ∫ ℎ(𝑥, 𝑦)𝐹1(𝑑𝑥)𝐹2(𝑑𝑦) < ∞37, i.e.,

∫ ℎ(𝑥, 𝑦)𝐹1,𝑛1(𝑑𝑥)𝐹2,𝑛2(𝑑𝑦)
𝑎.𝑠.
←→ ∫ ℎ(𝑥, 𝑦)𝐹1(𝑑𝑥)𝐹2(𝑑𝑦).
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Let 𝜑(𝑡) = 𝜂(𝑋𝑘(𝑖), 𝑋𝑘(𝑗), 𝑡), then we have ∫ 𝜂(𝑋𝑘(𝑖), 𝑋𝑘(𝑗), 𝑡)𝐹𝑘(𝑑𝑡)
𝑎.𝑠.
←→ ∫ 𝜂(𝑋𝑘(𝑖), 𝑋𝑘(𝑗), 𝑡)𝐹𝑘(𝑡) = 𝛾𝑘(𝑋𝑘(𝑖), 𝑋𝑘(𝑗)).

𝐴
𝑘 =

𝑛𝑘
∑

𝑖=1

𝑛𝑘
∑

𝑗=1
𝑊𝑘(𝑖)𝑊𝑘(𝑗)

[ 𝑛1
∑

𝑢=1
𝑊1(𝑢)𝜂(𝑋𝑘(𝑖), 𝑋𝑘(𝑗), 𝑋1(𝑢)) −

𝑛2
∑

𝑣=1
𝑊2(𝑣)𝜂(𝑋𝑘(𝑖), 𝑋𝑘(𝑗), 𝑋2(𝑣))

]2

=
𝑛𝑘
∑

𝑖=1

𝑛𝑘
∑

𝑗=1
𝑊𝑘(𝑖)𝑊𝑘(𝑗)

[

(

𝑛1
∑

𝑢=1
𝑊1(𝑢)𝜂(𝑋𝑘(𝑖), 𝑋𝑘(𝑗), 𝑋1(𝑢)) − ∫ 𝜂(𝑋𝑘(𝑖), 𝑋𝑘(𝑗), 𝑡)𝐹1(𝑑𝑡)

)

−
(

𝑛2
∑

𝑣=1
𝑊2(𝑣)𝜂(𝑋𝑘(𝑖), 𝑋𝑘(𝑗), 𝑋2(𝑣)) − ∫ 𝜂(𝑋𝑘(𝑖), 𝑋𝑘(𝑗), 𝑡)𝐹2(𝑑𝑡)

)

+
(

𝛾1(𝑋𝑘(𝑖), 𝑋𝑘(𝑗)) − 𝛾2(𝑋𝑘(𝑖), 𝑋𝑘(𝑗))
)]2

𝑎.𝑠.
←→ ∫

(

𝛾1(𝑥, 𝑦) − 𝛾2(𝑥, 𝑦)
)2

𝐹𝑘(𝑑𝑥)𝐹𝑘(𝑑𝑦) = 𝐷𝑘,

Therefore, 𝐴
1 +𝐴

2
𝑎.𝑠.
←→ 𝐷(𝐹1, 𝐹2) is proved.

How to cite this article: You N., He X., Dai H. and Wang X. (2022), Ball divergence for the equality test of crossing survival
curves, Statistics in Medicine, 2017;00:1–6.
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