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ABSTRACT Recent development in modern wireless applications and services, such as augmented reality,
image processing, and network gaming requires persistent computing on average commercial wireless
devices to perform complex tasks with low latency. The traditional cloud systems are unable to meet those
requirements solely. In the said perspective, Mobile Edge Computing (MEC) serves as a proxy between the
things (devices) and the cloud, pushing the computations at the edge of the network. The MEC provides
an effective solution to fulfill the demands of low-latency applications and services by executing most
of the tasks within the proximity of users. The main challenge, however, is that too many simultaneous
service requests created by wireless access produce severe interference, resulting in a decreased rate of
data transmission. In this paper, we made an attempt to overcome the aforesaid limitation by proposing a
user-centric QoS-aware multi-path service provisioning approach. A densely deployed base station MEC
environment has overlapping coverage regions. We exploit such regions to distribute the service requests in
a way that avoid hotspots and bottlenecks. Our approach is adaptive and can tune to different parameters
based on service requirements. We performed several experiments to evaluate the effectiveness of our
approach and compared it with the traditional Greedy approach. The results revealed that our approach
improves the network state by 26.95% and average waiting time by 35.56% as compared to the Greedy
approach. In addition, the QoS violations were also reduced by the fraction of 16.

INDEX TERMS Mobile edge computing, Internet of Things (IoT), quality of service (QoS), service
provisioning, multi-path routing, high level petri nets.

I. INTRODUCTION
In the digital era, we are experiencing an explosive increase
in the number of mobile devices accessing the wireless net-
work. Advancements in cloud computing (CC) and wireless
communication technology have been the motivating factor
behind such explosive growth. The total number of mobile
devices is expected to reach 75 billion by 2020, while the vol-
ume of data is expected to exceed 24.3 exabytes/mo [1]. Since
the emergence of the IoT, Edge and Fog computing paradigm,
smartphones and devices have undergone a huge transfor-
mation in the way they can be used. The more advanced
technologies are evolving and attracting consumers, such as
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facial recognition, virtual reality, online immersive gaming,
and natural language processing. These applications typically
require high availability and are data intensive or computing
intensive, requiring high resource and energy consumption.
Mobile devices are known for the resource scarcity, hav-
ing limited computational power and battery life. The con-
flict between the intensive application of compute/data and
resource-constrained mobile devices prevents the efficient
adaptation of new paradigms [2].

Mobile Edge Computing (MEC) offers a viable solu-
tion for tackling the tension between computing or data-
oriented applications and constrained mobile devices [3]. The
term mobile edge computing was regulated by the Euro-
pean Telecommunications Standards Institute (ETSI) and
by the Industry Specification Group (ISG). According to
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ETSI, MEC generates an IT service based environment and
cloud computing functionality on the edge of the mobile net-
work, within the Radio Access Network (RAN) and mobile
subscribers [4]. To reduce long gigabit transmission delays
in the cloud, the MEC is designed to support pervasive
high-performance computing, especially for delay-sensitive
applications. In addition, MEC shifts publicly accessible
computing resources, such as cellular base stations and WiFi
access points, to the edge of the radio access network, so that
mobile users (MUs) can easily outsource computational tasks
[5]. However, utilizing the edge resources efficiently to max-
imize the service provisioning to a greater number of appli-
cations while maintaining the specified Quality of Services
(QoS) is a complex task.

There are recent studies, such as [12], [14], [20], and
[27] available in the literature that discusses the resource
allocation and offloading in a MEC environment. However,
to the best of our knowledge, an overlapping multi-cell
environment, where a user is under the coverage region of
multiple base stations is not studied in the literature. Multi-
path routing is well studied in Data Center Network and
Mobile Adhoc Networks (MANETs) and has proved to be
effective in maintaining a unified state of the network. With
the inception of 5G technologies, the density of base stations
has been increasing to reach up to 50 base stations per KM [6].
In the said perspective, in this research, we have considered a
densely deployed base stations (as shown in Fig. 1) to exploit
the multiple available paths, so as to route the service request
of the users. We propose an adaptive QoS-aware Multi-
path Service Provisioning (QMSP) approach to maximize the
number of requests served by the edge server. The QMSP
initially identify the number of available paths based on the
QoS attributes of the service request. Once the paths are
identified, the requests are routed through the specified paths
that ensures the QoS. As multiple paths are available for a
single request to serve, the scheduler selects the shortest path
initially to serve the request. As the number of requests routed
to the same path increases, the congestion on that particular
link increases that results in a longer waiting time or increased
packet drop rate. In QMSP, when a certain congestion
threshold is reached, then the requests are redirected to
an alternative path to process the request. To demonstrate
the effectiveness of proposed QMSP, we performed several
experiments to evaluate: (a) the overall congestion state of
the network, (b) the effect on waiting time of the requests,
and (c) the number of QoS violations. We also compared our
approach with the traditional Greedy approach. The results
highlighted that the network state and average waiting time
is improved by 26.95% and 35.56%, respectively.

Moreover, the QoS violations were also reduced by the
fraction of 16% as compared to theGreedy approach. Further-
more, in this study, we tried to minimize the level of abstrac-
tion in a MEC environment, we have performed formal
modeling and analysis using High-Level Petri Nets (HLPN).
The HLPN(s) are used for system simulation, it also pro-
vide mathematical representation of proposed systems so as

FIGURE 1. An overlapping base station system model of MEC
environment.

to analyze the behavior and structural properties [7]. The
detailed discussion about the proposed approach and results
are provided in the later sections. The contributions to this
paper are summarized as follows:

• introducing a novel QoS-aware Multi-path Service Pro-
visioning (QMSP) approach that exploits the multiple
paths available in a multi-cell MEC environment to effi-
ciently route the service requests;

• formalizing the QMSP approach using High Level Petri
Nets;

• conducting the simulation experiments and comparison
of the proposed strategy with the Greedy approach.

The remainder of the paper is organized as follows.
Section 2 will review some of the related work done in
the field of resource allocation and offloading in the MEC
environment. The mathematical model and formulation of
the problem will be discussed in Section 3. Section 4 will
discuss the proposed QMSP approach along with the formal
modeling of QMSP using HLPN. Section 5 will highlight
the detailed discussion, evaluation results, and the compar-
ison of our approach with the greedy approach. Finally,
Section 6 concludes this paper, followed by the references.

II. RELATED WORK
This section includes the related research on task offloading
and resource allocation in the MEC systems. In the task
offloading, the task is assigned to the appropriateMEC server
to be executed, which can results in minimum energy con-
sumption of data transmission and thus increase the overall
system utility [8]. A cooperative game-based job schedul-
ing [9] is used to obtain the criteria of maximum job exe-
cution for meeting the target deadlines in MEC model. The
proposed framework improves quality of service of the MEC
system. In another work [10], by considering service latency,
a distributed task scheduling algorithm increase throughput,
reduce latency and improve device performance. In [11],
a hybrid framework that incorporates wireless power transfer
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technology uses an algorithm for resource allocation. It opti-
mize the total energy consumption based on service latency
constraints. A game-based computation offloading (GCO)
algorithm has been proposed for the issue of task offload-
ing. Experimental results proves that the proposed approach
reduces energy consumptionwith increase in system through-
put [12]. In [13], a new task offloading algorithm was pro-
posed to reach the user tasks deadline while using low energy
consumption. The problem formulation for task offloading
has been performed in [14] as a non-linear program. The
proposed offloading mechanism minimize the task delay and
the battery consumption of mobile users, but did not consider
the users mobility in the MEC environment. In [15], a task
offloading algorithm based on the time and energy model has
been proposed for the formalization of optimization based
metrics. The proposed algorithm reduces the time for com-
pletion of task and energy utilization. In another work task
optimization has been performed to reduce task latency and
the mobile users energy consumption. The work given in 16]
discussed the mobile users for the energy consumption in
MEC system. The total latency cost and energy consump-
tion assessment criteria for algorithm performance have not
been precisely optimized. Power consumption of mobile user
equipment UEs and task execution delay has been consid-
ered for optimization in the proposed online task unloading
algorithm. It proves effective for multi-objective optimiza-
tion and also provide improvements in the user’s Quality of
Service (QoS) in MEC systems [17]. A different approach
to MEC systems designed to achieve quality-of-result and
service response time criteria. The suggested scheme is used
for edge applications with a certain degree of tolerance for
quality loss [18]. The problem of computation offloading
has been addressed in [19], it minimize the energy con-
sumption of multiple mobile users in the multi-input multi-
output (MIMO) network. In another work computation task
offloading with multi-user resource allocation is considered
which claims to reduce user energy consumption and delay
[20]. A Lyapunov optimization approach based on the task
offloading scheme has been proposed in [21], [22] to reduce
the delay in the implementation of the proposed system
for energy consumption. Multi-user multi-MEC server task
offloading design [23] can reduce the pressure of single link
communication in order to improve based network perfor-
mance and reduce the amount of communication overhead.
The proposedmodel was designed tomaximize resource allo-
cation energy. The problem ofmaximization was based on the
Mixed-Integer Non-Linear Program (MINLP). The proposed
optimal solutions for user selection and energy utilization
have been achieved by following the transformation problem.
Computational offloading decisions, physical resource block
allocation and allocation of MEC resources were formu-
lated as an optimization problem in [24]. Resource allocation
and enormous computation resources in centralized cloud
computing center has been considered for cloud MEC sys-
tem in [25]. Cloud–MEC collaborative computation offload-
ing has been investigated and proposed a scheme based on

approximation and game theory. A cache-assisted scheme
optimize task offloading and preserve a minimum delay in
the mobile edge work. With this cache-assisted MEC system,
the mobile user can upload and execute custom programs on
the MEC server, while the server is configured for software
reusability [26]. In another work [5], the computation delay
and energy consumption of mobile MU users is minimized.
Several parameters such as joint optimization of service
caching placement, decision-making on task offloading and
allocation of resources have been investigated. The prob-
lem of service optimization and request routing in MEC-
enabled multi-cell networks is given in [27]. The proposed
work includes multidimensional dimensions such as storage,
energy computation and network communication. A random-
ized rounding technique-based algorithm has been suggested
that is designed to maintain close-to-optimal performance
and efficiently use the available resources. The approach
given in [28] considers multi-user MEC scenario with server
where the user equipment (UEs) may choose to unload their
tasks through access point to the MEC server for QoS and
reduced system.An ant colony optimization (ACO) algorithm
has been designed to minimize system cost, provide better
QoS and increase the MEC system performance. A mobility-
aware task offloading problem has been studied in the MEC
environment [29]. The mobility of edge users is used with a
deep-learning approach to identify connectivity patterns and
forecast potential user trajectories. An online approach is pro-
posed to solve the quality-of-service (QoS) task offloading
problem and predict user paths in real-time.

Machine learning methods like Deep Reinforcement
Learning (DRL) based schemes with Q-learning models like
DDQN and DRL have been efficiently utilized for task opti-
mization and resource allocation in multi-user MEC sys-
tems [8], [30]–[35]. An adaptive task offloading and resource
allocation approach based on DRL is given in [8], it decides
about the task offloading and allocation of computational
resources for these tasks. In addition, the mobile user equip-
ment (UE) for mobility between base stations (BSs), is also
considered in this scheme. It has been claimed that the pro-
posed algorithm shows improved system performance with
utility to satisfy the user service provider’s requirements.
In security and privacy context, there are various adversarial
attacks in MEC environment like wireless jamming, denial
of service, man-in-the-middle, spoofing attacks, privacy leak-
age, virtual machine manipulation, and unintended informa-
tion injection [36], [38]. Recently, machine learning based
approach for security and privacy in MEC have been studied
frommultidimensional perspectives. Deep Learning (DL) has
been used for the detection of cyber-attack MEC networks
[36]. An edge caching security mechanism as given in [37]
provide anti-jamming approach for mobile offloading, phys-
ical authentication, and friendly jamming.

The literature in [38] studied Q learning based physical
security in fog computing, it mitigate the smart QoS and secu-
rity and privacy related parameters. A detailed comparative
analysis of related work is given in Table 1. It is also clear
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TABLE 1. A comparative analysis of related work in MEC systems.

from the related work comparison that most of the work has
been performed for service offloading and resource allocation
in MEC systems and performs improvement in mobile user
equipment energy consumption. Security and privacy aspect
have not been accommodated in a hybrid manner in proposed
solutions. It is important to note that MEC users requires
smart and application oriented QoS. In this regard there is
need to propose an efficient MEC system routing algorithm
that must be adaptively and automatically tune the network.
Our proposedwork providesQoS in terms of specific network
parameters like response time and network link availability.
Moreover, it has the capability to handle network conges-
tion which will results in an improved response time for

specific user application requests. We have described these
QoS parameters in detail in Section III.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A general MEC architecture usually comprised of mobile
user, MEC server, services, and a traditional Cloud Data
Center (CDC). In our model, we consider MEC architecture
consisting of a set X having |X | number of mobile users
(represented as N i∈X ) and a set M having |M |MEC servers,
represented as δn∈M . Each δn∈M has the following capabili-
ties, as shown in (1).

δn∈M = (S,C,Bu,Bd )n, (1)

VOLUME 9, 2021 56023



S. U. R. Malik et al.: User-Centric QoS-Aware Multi-Path Service Provisioning in Mobile Edge Computing

where Sn represents the storage capacity of δn, Cn represents
the computational power of δn, and Bun,B

d
n represents the

upload and download bandwidth capacity of δn. The mobile
users subscribe to different services provided by different
service providers, such as online gaming, augmented reality,
and video/audio streaming. Every service has a different
requirement in order to perform successfully as per QoE of
the users. A service, represented as ξi, hosted at δn can be
represented as ξ δni∈S , where i belongs to the set of service S.
The requirements of the services can be represented as in (2).

ξ
δn
i∈S =

(
ξ s, ξ c, ξB

u
, ξB

d
)δn
i
, (2)

where ξ s,δni represents the storage requirement of the ξi hosted
at δn, ξ

c,δn
i represents the computational requirement of the

ξi, and ξ
Bu,δn
i , ξB

d ,δn
i represents the uplink and downlink

bandwidth requirement of the ξi hosted at δn, respectively.
Every ξi has QoS attributes associated to it, such as in online
banking availability and reliability is of top concern. Sim-
ilarly, in online gaming service minimum delay or latency
is of utmost importance. The online users can arbitrarily
dispersed over the coverage region of the base stations. More-
over, in a densely deployed base station environment the
coverage regions may overlap. In this research, we assume
a densely deployed base station environment, where the cov-
erage regions are overlapped. The user generates a service
request that inherently has an associated QoS attribute deter-
mining the QoE of the users. The service request specification
can be represented as REQNiξi = {∂, α}ξi , where ∂ and α
state the response time and reliability requirements for ξi. The
REQNiξi can be routed to a nearby δn given that the necessary
specifications of the requests are met. If there is no such δn
available, then the request is routed to the CDC, which may
cause additional delay and thusmust be avoided. The network
operator is responsible for placing services and routing the
user to them. To potentially increase the availability and per-
formance of the services, the network operator may choose
to replicate services to different δn. In such cases, routing a
REQNiξi to the respective and appropriate δn to provide best
services becomes a crucial task.
QoS-aware Multi-path Service Provision (QMSP) Prob-

lem: Given a set ψ of U mobile users, generating a REQNiξi =
{∂, α}ξi for the ξi hosted at multiple δn, the QMSP problem
is to find the best δn that can fulfill the service request, such
that: (a) the ∂p ≤ ∂ ,where ∂p is the response time provided by
the δn and (b) the αp ≥ α, where αp represents the expected
reliability of the service being requested.

We define πNiδn as a set of all δn that can provide the
services to the mobile node Ni. We have considered the MEC
overlapping environment as an undirected graph, represented
as G = (V ,E), where V denotes the nodes, represented
as N (MEC server and mobile users) in the network and E
represents the edges connecting the nodes (depicted in Fig.
2). A link between mobile node Ni and δn (if it exists) has a
communication cost or weight associated to it, represented as

FIGURE 2. An undirected graph of MEC overlapping environment.

w(Ni, δn), where (Ni, δn) is a link between Ni and δn. Without
loss of generality, we assume that w (Ni, δn) = w(δn,Ni).

The weight of the communication link between w(Ni, δn),
can generally be calculated as given in (3):

w (Ni, δn) =
D (Ni, δn)

pd
+

s
βNiδn

, (3)

where D(Ni, δn) is the distance between the nodes, pd rep-
resents the propagation delay of the medium, s is the mes-
sage size in kilobytes, and βNiδn is the available network
bandwidth between the nodes. It ensures that multiple users
can harmoniously access and share a single communications
medium, needs some kind of equitable link sharing. If a
communication link provide R data rate shared by x active
network users (with a minimum limit of one data packet in
queue), every network user typically gains a throughput of
approximately R/x, if fair queuing best-effort communica-
tion policy is assumed. Therefore, the βNiδn of the link will
become (4):

βNiδn = RNiδn/x. (4)

Considering the request specification that we have used pre-
viously, REQNiξi = {∂, α}ξi , the ∂ between Ni, δn, represented

as ∂Ni,δnξi
, can be calculated as(5):

∂
Ni,δn
ξi
=
eNi
pδn
+
dNi,δn

rNi,δn
+ wδn , (5)

where eNi is the execution requirements (no. of processor
cycles) of the request, pδn represents the processing speed of
the selected δn, dNi,δn represents the amount of data that is
to be communicated over the link, rNi,δn represents the data
transmission rate, and wδn is the mean waiting time for δn to
be free. The other specified QoS attribute is α that is mainly
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computed based on the availability of the link. The network
link availability A(Ni, δn), can be calculated as (6):

A(Ni, δn) =
u(Ni,δn)
t(Ni,δn)

, (6)

where u(Ni,δn) represents the expected uptime of the
medium or link and t(Ni,δn) is the total time which is (uptime
+ downtime) of the communication link. The average link
availability should be the real line interval. Suppose we have
a constant c > 0, then average link availability, represented
as αNi,δnξi

, can be calculated as (7):

α
Ni,δn
ξi
= Aσ (Ni,δn) =

1
c

∫ c

t=0
A (t) dt. (7)

Once the request attributes are computed for all of the avail-
able servers, the job of the network operator is to select the
best to process the REQξi . The feasible servers that satisfy
the requested QoS attributes of the REQNiξi = {∂, α}ξi can be
aggregated as given in (8):

π
Ni
δn
=

 0 ≤ Max
(
∂
Ni,δn
ξi

)
≤ ∂

0 ≤ α ≤ Min
(
α
Ni,δn
ξi

) 
∀Ni∈X∧∀δn∈M

. (8)

Once populated, the δn providing the Min
(
Max

(
∂
Ni,δn
ξi

))
andMax

(
Min

(
α
Ni,δn
ξi

))
from all of the available δn ∈ π

Ni
δn

is
selected for the service request.

IV. QoS-AWARE MULTI-PATH SERVICE PROVISIONING
In this section, we present our main contribution of this
work; a QoS-aware Multi-path Service Provisioning (QMSP)
algorithm inMEC environment. As stated above, service pro-
vision is mainly based on two core aspects, which are mobile
users (Ni) and MEC servers (δn). Our proposed algorithm
(depicted in Fig.3) is also based on the core elements. The
input to our algorithm is the request generated by the mobile
user for a specific service. As soon as the request is generated,
the first step is to identify the servers that can provide the
requested service. Once the servers are identified, the next
step is to compute the QoS attributes related to the services.

The QoS attributes is computed for each of the server that
can provide the requested service. The QoS attributes are
calculated according to the equations discussed in previous
section.

Once the attributes are calculated for each server, all the
servers that satisfies theminimum requested attribute require-
ments are selected. Finally, the best among the selected server
that fulfills both of the service attribute is selected to pro-
cess the request of the user. The key barriers to offloading
computation in MEC are the network bandwidth and latency
[39]. If too many simultaneous offloading requests are made
through the wireless access to the cloud, then severe interfer-
ence may be created, resulting in a reduced data rates for data
transmission [40], [41]. In the said perspective, overlapping
coverage of the services can be exploited to process the user
requests efficiently. Our approach aims to fulfill the QoS

FIGURE 3. The steps involved in QMSP approach.

requirements, rather than choosing the shortest path. The
paths are computed according to the equations listed above.
Suppose (in Fig. 2) N1,N2,N3, and N4 generates a REQ for
ξi, which is hosted at several servers including δ1, δ2, δ4, δ5,
and δ8. The cloud operator analyzes the request and identify
the server(s) (πNiδn ) that can efficiently process the request.
Let δ4 being the closest to all of the requesting nodes is
selected to process the requests. As δ4 starts to process the
requests, the congestion level also starts increasing. When
the congestion level reaches a certain threshold value (0),
all the requests generated from the nodes N1,N2,N3, and
N4 are now processed by the other servers from the list πNiδn .
It is noteworthy that our approach is mainly related to rout-
ing, we are not proposing a novel strategy on computational
offloading. However, our approach can perform with any
offloading strategy. The complexity of our algorithm isO(n2).

A. FORMAL MODELING AND ANALYSIS OF QMSP
We perform formal modeling of QMSP approach using
HLPN in this section. As stated previously, the formal models
help: a) analyze the interconnected system components and
processes, b) provide in depth analysis of the flow of informa-
tion, and c) depicts the information processing. The HLPN(s)
are widely used in literature to formally model the systems.
In formal modeling using HLPNs, we identify the required
data types, Places (P), and mappings.

The description of the QMSP is described in the previ-
ous section, and now, we can define proposed approach-
based formulas (preconditions and post conditions) to map
on mathematical transitions. (Readers are encouraged to read
Ref. [7], [40], and [44] for further details about the use of
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TABLE 2. Places and mappings of data types involved in QMPS approach
HLPN.

TABLE 3. Data types Used In QMPS.

HLPN). The HLPN model of the QMSP approach is given
in Fig 4. The descriptions of the variable type, places, and
description involved in HLPN for the proposed QoS-aware
Multi-path Service Provisioning (QMSP) algorithm is given
in Table 2 and Table 3. The HLPN model of the QMSP
algorithm takes inputs request REQNiξi = {∂, α}ξi from dif-
ferent mobile user devices and store it in place M-USERS
in MEC system. Each mobile user service request consists
of specific QoS attributes depending upon user requirement
in distributed environment. The transition Populate places
mobile users request by assigning request variable Rmobiξi

to

π
Ni
δm

in MEC-SRV for identifying the servers that can poten-
tially provide the requested services attributes. MEC-SRV
is further updated with the newly variable values for MEC
servers for further processing in (9).

R (Populate) = ∀i2 ∈ x2 ∧ ∀i3 ∈ x3∀i4 ∈ x4|

i4 [1]n∀i4[1]∈x4 := (i3 [1]m∀i3[1]∈x3 )

∧x4′ := x4 ∪ {i4 [1]n∀i4[1]∈x4 , i4 [2]r∀i4[2]∈x4 ,

FIGURE 4. The HLPNs model of QMSP approach.

i4 [3]l∀i4[3]∈x4} (9)

R (Compute) = ∀i5 ∈ x5 ∧ ∀i6 ∈ x6 ∧ ∀i7 ∈ x7|

i7[1] := (i7 [1]r∀i7[1]∈x7 )

∧(i7 [2]s∀i7[2]∈x7 ) := Compt

− val(i6 [2]r∀i6[2]∈x6 )

∧(i7 [3]t∀i7[3]∈x7 ) := Compt

− val(i6 [3]r∀i6[3]∈x6 )

∧x7′ := x7 ∪ {i7 [1]n∀i7[1]∈x7 , i7 [2]s∀i7[2]∈x7 ,

i7 [3]t∀i7[3]∈x7} (10)

The QoS attributes are taken from MEC-SRV and computed
in transition Compute for each of the δm server that can
provide the requested service. The transition Compute cal-
culate the QoS parameters that are service response time
∂
Ni,δm
ξi

with the routing strategy and average link availability

time αNi,δmξi
values from expected link time and total link time

with function Compt − val(). It update and assigns these
calculated values in temporary variables ∂tmpNi,δmξi

of service

response time and link availability time αtmpNi,δmξi
in place

TMP-SRV-VAL as given in (10).

R (Update)

= ∀i9 ∈ x9 ∧ ∀i10 ∈ x10 ∧ ∀i11 ∈ x11|

((i9 [2]r∀i9[2]∈x9 )

≤ i10 [1]) ∧ ((i10 [3] ≤ i9 [3]r∀i9[3]∈x9 )

→ ((i11 [2]n∀i11[2]∈x11 := Upd

−Rsp
(
i9 [2]r∀i9[2]∈x9

)
∧i11 [3]n∀i11[3]∈x11 := Upd

− avalablty(i9 [3]r∀i9[3]∈x9 ))

∧(i11 [1]n∀i11[1]∈x11 := ((i11 [2]
n∀i11[2]∈x11

)

∪(i11 [3]n∀i11[3]∈x11 ))

∨((i11 [2]q∀i11[2]∈x11 )

:= (i10 [2]p∀i10[2]∈x10 )
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∧(i11 [3]v∀i11[3]∈x11 ) := (i10 [3]u∀i10[3]∈x10 ))

∧x11′ := x11 ∪ {i11 [1]n∀i11[1]∈x11 , i11 [2]n∀i11[2]∈x11 ,

i11 [3]n∀i11[3]∈x11} (11)

In transition Update condition for QoS attributes are checked
if it is TRUE then all the δm servers that satisfies the required
value for QoS requirements are selected. Moreover InUpdate
transition functionsUpd−Rsp() andUpd−avalablty() assign
the service response time and link availability time variable
values to the corresponding final variables values in place.
MEC-SRV. Moreover this transition update both the variable
attribute values and stores these updated value of service
response time ∂Ni,δmξi

and service link availability αNi,δmξi
in

TMP-SRV-VAL, given in (11). In case if condition is FALSE
then ∂Ni,δmξi

and αNi,δmξi
are again computed for next value of

these variables from MEC-SRV.

R (Select) = ∀i12 ∈ x12 ∧ ∀i13 ∈ x13 ∧ ∀i14 ∈ x14|

i14[1] := Maxval(i12 [2]r∀i12[2]∈x12 )

∧i14[1] := Minval(i13 [3]r∀i13[3]∈x13 )

∧x14′ := x14 ∪ {i14[1]} (12)

The QoS attributes for different mobile user’s request
REQNiξi = {∂, α}ξi that are saved in MEC-SRV are taken
as input to the Transition Select as given in equation (12).
The network operator now select the most feasible server
among the candidate servers. The functions Minval () and
Maxval () calculate the minimum response time value and
maximum link availability time variables from MEC-SRV
and store the updated selected server variable value SelπNiδm
place SEL-SRV. In the above-mentioned process, the selected
server SelπNiδm will provide the most suitable minimum and
maximum value of service response time ∂Ni,δmξi

and service

average link availability time αNi,δmξi
to process the mobile

users request in proposed scheme QMPR in MEC system.

V. RESULTS AND DISCUSSION
In this section, we discuss the results of our simulations, the
simulation setup, the dataset used for the simulations, and
analysis of our results. Our setup is mainly inspired from
the previous work [7], [8]. We consider N = 300 mobile
users distributed uniformly at random with M = 12 on a
grid network of 300m × 300m area. The coverage area of
each δ is approximately 150m radius. There are ξ = 100 ser-
vices available to the users that they can request. Moreover,
the service requests generated by the users follows a usual
Zipf distribution with a varying shape parameter from 0.5 to
0.9. The parameters for the servers, such as storage capacity,
computation capacity, the upload and download capacities
were set to Sn = 500 GB(s), Cn = 3.2 GHz, Bun = 80 Mbps,
and Bdn = 250 Mbps, respectively. The service requested
attributes are varied over the course of simulations along with
the aforesaid parameters.

We perform different experiments to demonstrate the effec-
tiveness of our proposed approach. The objective of the exper-
iments is to analyze the effect of multi-path routing on the

FIGURE 5. Average network congestion using QMSP and Greedy
approach.

FIGURE 6. Effect of varying buffer threshold values over the average
network congestion.

QoS of the network. Moreover, we also demonstrate how a
single path and multi-path routing effects the congestion state
of the network. It is noteworthy, that multi-path routing is well
studied in data center network and Mobile Adhoc Networks
(MANETs). However, the concept of multi-path routing is
less studied in the MEC environment. We implemented a
Greedy algorithm for a single path routing. The path selection
for a Greedy algorithm is based on the nearest server. When-
ever a request is generated, the Greedy algorithm will select a
server that is closest to the mobile user to process the request.
The QMSP also selects the nearest server initially. However,
when a certain congestion threshold (Ĉ) is reached, theQMSP
redirects the request to the other feasible available paths, as
illustrated in Section IV.

QoS attributes as stated in the service level agreement.
We evaluate the fractions of service requests that are gener-
ated and not processed during the time of simulations; as a
QoS violation.
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FIGURE 7. Effect of various buffer capacities on waiting time of the
requests.

FIGURE 8. A comparison of average waiting time using QMSP and Greedy
approach.

In case of Greedy algorithm, as it always selects the nearest
server, the value of Ĉ has no impact. However, Ĉ can have a
significant impact in case of QMSP. The overall load on the
network is one of the most important parameters to evaluate
the efficiency of the routing mechanism. Therefore, we eval-
uate the state of the network using our proposed approach
and compared it with the Greedy approach. We plot the aver-
age congestion of the whole network against varying no. of
service requests, as shown in Fig. 5. As seen in the Fig. 5,
the congestion state of the network is significantly better in
case of QMSP, as compared to theGreedy approach. As stated
before, the Greedy algorithm always selects the closest server
to process the request, causing some of the servers to reach
higher congestion level, while the others are under- utilized.
In case of QMSP, when the Ĉ value is reached, the alternative
server (if exists) is selected to process the next average con-
gestion level. The aforesaid uniformly distributes the service

FIGURE 9. The fraction of QoS violations using QMSP and Greedy
approach.

requests over the network and eventually maintain a lower
average congestion level. Moreover, as the no. of requests are
increased, the congestion state of the network is much more
stable in case of QMSP as compared to Greedy approach. The
decision of redirecting the request to another route is based on
Ĉ. Next, we analyze the effect of varying Ĉ on the overall state
of the network. The Ĉ is computed based on consumed buffer
capacity. The redirection of the service requests is performed
based on the current consumption of the buffer. The results are
depicted in Fig. 6. It shows that the lower the value of Ĉ the
loess is the overall congestion in the Network quite straight
forward. However, the important point related to Ĉ is that
the lower the value, the higher will be the ratio of the packet
drop. The reason for the aforesaid is that in case of QMSP, Ĉ
value would redirect the request to the other available paths.
If the value of Ĉ is low, then low number of service requests
are served by a specific server In such cases, if there are no
feasible paths (servers) available within the network topol-
ogy, then the packets will be dropped. Therefore, selecting
an optimal Ĉ value is very important. In our case, we are
more interested in the overall state of the network. We choose
few lower values of Ĉ so we can evaluate the process of
redirections and how it effects the overall load of the network.
We further investigate about the effect of Ĉ on the waiting
time of the requests, shown in Fig. 7. The service waiting time
is the time consumed by the request in the buffer, before it is
processed. Waiting time represents the time a service has to
wait until it is processed. The lower the time is the better will
be the service response time, which improves the QoE of the
users. In the said perspective, we analyzed the QoS violations
in QMSP and Greedy approach, as shown in Fig. 9. The
objective of any service provider is to deliver the Considering
that we only had limited number of users and they can only
generate certain number of requests, the fraction of QoS
violations are not high. However, it is evident from the results
that as the number of requests increases the QoS violations
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also increase. The aforesaid is due to the fact that there are
less number of servers as compared to the number of service
requests. The QMSP seems to perform better than the Greedy
approach and the rate of creep in the violations of QMSP is
very low as compared to the Greedy approach. Our analysis
concludes that multi-path routing can noticeably improve the
state of the network, which ultimately have a positive impact
the QoE of the users.

VI. CONCLUSION AND FUTURE DIRECTIONS
Efficiently exploiting the edge and cloud resources to
improve the QoE of the users is a complex task. Moreover,
improving the service request response time is vital, consid-
ering the mobile nature of the users in a MEC environment.
In the said perspective, this research aims to provide an
improved design for the overall state of the network and
response time, by exploiting redundant paths available in
the network for service provisioning. We propose a QMSP
approach that can process a service request from multiple
routes, while not violating the QoS attributes. We have per-
formed several simulation experiments to illustrate the effec-
tiveness and efficiency of our proposed approach. Moreover,
we compared our approach with the traditional single path
Greedy approach. The results revealed that QMSP improves
the network state by 26.95% and average waiting time by
35.56% as compared to the Greedy approach. In addition, the
QoS violations were reduced by the fraction of 16%.

In future perspective, we aim to implement the proposed
approach in a real edge-cloud environment, which would
require constant profiling of parameters related to new tasks,
such as CPU, RAM, and Disk. Furthermore, an interesting
aspect that we are planning to study is the mobility pattern of
users and its effect on the service provisioning. In MEC envi-
ronment, the users are mostly mobile and providing services
to a mobile user is a complex task. The aforesaid involves
questions related to what and where to offload the task and
which server to select for the service request. Furthermore, as
the environment at the edge of the network is highly dynamic
in nature so it makes the network more vulnerable and diffi-
cult to protect. In the said perspective, a deep reinforcement
schemes can be used to analyze the mobility patterns of the
user, manage the task offloading, and resource allocation
aspect in MEC systems in an intelligent and secure way [29],
[42], and [43].
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