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Abstract—Synchronization plays a crucial role in computer
systems, providing support for system security, data consistency,
and coordination. It contributes to the establishment and applica-
tion of trust, security, and dependability in distributed systems
and concurrent computing to a significant extent. This article
makes innovative contributions in the field of synchronic distance
in Petri net. We provide refined definitions for the hierarchical
classification of synchronic levels in Petri net, proposing the
concepts of absolute synchronization, strong synchronization,
and extended synchronization based on different conditions.
Furthermore, we propose an innovative method for calculating
synchronic distance. This method can automate the calculation of
synchronic distance between any two transitions using computer
computation, resulting in improved accuracy and reduced errors.
This novel approach provides an effective tool for system security
and trustworthy modeling, as accurate synchronic distance calcu-
lations allow for better evaluation of synchronic distance between
different transitions, leading to the identification of potential
security vulnerabilities and design flaws, thereby enhancing the
credibility of decision-making and promoting the reliability of
models and analysis results. To validate the proposed method,
we introduce a specific example of a Petri net with concurrency,
demonstrate the practicality and effectiveness of the proposed
method and algorithm through analysis of this example. Our
work extends the research on Petri net synchronic distance,
further advancing the understanding and exploration of this field.

Index Terms—Petri net, synchronization, synchronic distance,
system security, concurrency, trustworthy, security, safety

I. INTRODUCTION

Currently, Petri nets have become a widely used modeling
tool in various domains [1]. As a graphical modeling language,
Petri nets provide a clear representation of asynchronous and
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concurrent behavior in systems [2], [3], offering advantages
such as intuitiveness, visualization, formalism, and verifiabil-
ity. Petri nets have found extensive applications in various
fields [4]-[12]. It is noteworthy that in practical scenarios,
many coupled systems or distributed systems [13], collab-
orative interactions often occur in a synchronous manner
[14], [15], ensuring the synchronicity and coordination among
various components of the system remains crucial, it is also
a key element in ensuring system security and trustworthi-
ness. For instance, in the domain of Advanced Driver As-
sistance Systems (ADAS) [16], [17], synchronization among
subsystems, including sensors, control units, actuators, and
human-machine interfaces, is considered crucial. The degree
of synchronization among these subsystems directly affects the
safety and reliability of the entire ADAS system [18].

In light of this, scholars have embarked on research regard-
ing the synchronization theory of Petri nets [19]. Such research
has profound implications for process synchronization and
communication problems in distributed systems, which are
directly related to system safety and reliability. However, there
has been a lack of scholars categorizing synchronic systems,
which represents a gap in this field of study.

Furthermore, the study of synchronization theory cannot
be separated from discussions on synchronic distance [1].
Synchronic distance refers to the measurement of patterns ob-
served during the alternating firing process between two events
or transitions in a Petri net. In terms of calculating the syn-
chronic distance, excellent algorithms with clear procedures
have emerged, Ref. [20] gives a method to compute the syn-
chronic distance between two transitions in a fair Petri net by
adopting a weighted observe-place. However, the complexity
of network topology and the randomness of network operation
can lead to limitations such as high computational complexity
and potential errors. In such situations, this paper proposes a
automated computational approach that can effectively reduce
computational costs and calculate synchronic distance more



accurately. Additionally, this paper introduces an innovative
approach by classifying the synchronization of Petri nets based
on hierarchical levels, which can assist developers in gaining a
deeper understanding of system security and reliability. Con-
sequently, this enables better system design and development
practices to ensure the safety and dependability of the system.
This paper aims to explore and validate the synchronization
and the computational methods for synchronic distance of Petri
nets, in order to better facilitate the advancement of research
on synchronization mechanisms

The main contributions of this paper can be summarized as
follows:

e We provide different classification definitions for the
synchronic levels of Petri nets.

e We propose an innovative method for calculating syn-
chronic distance.

e We apply the proposed classification method and algo-
rithm to analyze a specific example.

The remaining sections of this paper are organized as
follows: Section II introduces the relevant definitions of Petri
nets. Section III presents the classification definitions for
synchronic levels. Section IV proposes a new method for
calculating synchronic distance and provides an example for
illustration. Finally, Section V concludes the paper.

II. RELATED CONCEPTS

For the convenience of subsequent discussion, we provide
relevant definitions here.

Definition 1 [1]: An original Petri net is a four-tuple ¥ =
(S,T, F, My), where

1) S is a finite set of places.

2) T is a finite set of transitions, which represents the action
of the system, where SUT # 0,SNT = (.

) F C (SxT)uU (T x S) is a set of directed arcs,
which represents a change in the state of the system, where
dom(F)={z € SUT |y € SUT : (z,y) € F},cod(F) =
{r e SUT |FyeSUT : (y,x) € F},dom(F) U cod(F) =
SuT.

4) My is a initial marking, which represents the initial state
of the Petri net.

Definition 2 [1]: Transition firing rules of Petri net:
l)ForteT,if Vse S:se€*t— M(s)>1, then M[t >

2) For M[t >, new marking M’ will be obtained, where

M(s)—1,if se*t—t*
M(s)+1,if s€t® —*t
M(s), others

Definition 3 [1]: Reachable Marking Graph.

Let ¥ = (S,T,F, My) is a bounded Petri net, reachable
marking graph of ¥ is a three-tuple RG(X) = (R(M,y), E, P)
, where

1) R(My) is the set of all reachable markings from M.

2) FE = {(M“MJ) | MZ,MJ S R(Mo), Jt, €T : Ml[tk >
M;}.

3) P: E — T,P(M;, M) =t if and only if M;|t; >
M.
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Fig. 1. The absolute synchronization relation

The reachable marking graph is a useful analysis tool for
bounded Petri nets, which can be used to determine various
dynamic properties of the bounded Petri nets. However, when
3. is not a bounded Petri net, it is impossible to draw the
reachable marking graph of ¥ because R(Mp) is an infinite
set. In order to express the operational behavior of a system
with infinitely many states in a finite form, it is necessary to
introduce a symbol w to represent the unboundedness.

When the number of tokens in place s; tends to infinity
during the execution of the Petri net, the j-th component
of the marking vector is replaced by w to cover all such
markings. In this way, the operational behavior of the Petri
net can be reflected by a finite tree. This finite tree is called
the coverability tree of the Petri net X, denoted as CT'(X).
Definition 4 [1]: Coverability Graph.

Let CT(X) is a coverability tree of the Petri net. If the
nodes in C'T'(X) with the same marking vectors are overlapped
(merged into one), the resulting directed graph is referred to
as the coverability graph of X, denoted as CG(X).
Definition 5 [1]: Synchronic Distance.

Let ¥ = (S,T, F, My) is a Petri net, t1,to € T, the syn-
chronic distance between ¢; and ¢y is given by the following
formula:

00, if t1 and £ do not exhibit a fair relation-
-ship in X

maxy, ¢ er{#(t;/o)|3M € R(Mo) : M[o > A
£(t:)0) = O Ai,j € {1,2}(i # j)}, others

III. HIERARCHICAL CLASSIFICATION OF PETRI NET
SYNCHRONIC LEVELS

U(tl,tg) =

In the previous section, we provided an overview of the
research status and fundamental knowledge of Petri nets. Now,
we propose the concept of classifying the synchronic levels of
Petri nets. By categorizing the synchronization of Petri nets,
we can gain a better understanding of the system’s security and



Fig. 2. The strong synchronization relation
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Fig. 3. Non-extended Synchronization Petri net

reliability, thereby providing enhanced assurance in system
design and development.

According to Definition 5, we can comprehend the essence
of synchronic distance, which refers to the maximum number
of occurrences of one transition while the other transition
remains unenabled between any two transitions in the Petri net.
Synchronic distance effectively defines the level of synchro-
nization between the two events represented by the transitions.
We are aware of the close relationship between fairness and
synchronicity in Petri nets. If two transitions are not in a fair
relationship, their synchronic distance is considered infinite.
Therefore, when the synchronic distance is finite, we also aim
to provide appropriate definitions that delineate the differences
therein. In the following, we present more refined classification
definitions for synchronic distance.

Definition 6: Absolute Synchronization Relation.

Let ¥ = (S,T;F, M) be a Petri net, and t1, to € T.
VM € R(My) and Yo € T* : M[o > holds such that
maxtutjET{ﬁ(tj/O’)|ﬂ(ti/0) = 0} =0,i,j € {172} and i #

j. then t; and ¢, are said to be in an absolute synchronization
relationship. If any two transitions in ¥ are in an absolute
synchronization relationship, then ¥ is called an absolute
synchronization Petri net.

Absolute synchronization implies a highly stringent con-
straint on the synchronization between transitions. As depicted
in Fig. 1, it represents a partially idealized state of synchro-
nization where two transitions, ¢y and ¢;, are merged into one
transition, denoting the simultaneity of the two events. In real-
life scenarios, a typical example of an absolute synchronic
system is the act of “clapping”, where the left and right hands
simultaneously complete the action of “clapping”.

What we commonly refer to as “alternation” is, in fact, a
specific sequential relationship, which also constitutes a form
of strong synchronization. After the firing of transition ¢,
transition t; immediately acquires the firing right to occur.
Subsequently, after the occurrence of ¢, ¢; promptly regains
the firing right. Their synchronization distance is 1. Based
on the definition of the sequential relation, we provide the
definition of strong synchronization as follows.

Definition 7: Strong Synchronization Relation

Let ¥ = (S,T; F, M) be a Petri net, with ¢; and t5 €
T, M € R(My). If the following conditions hold ( 4,j €
{1,2}(i # )

1) M[t; > but ~M[t; > AM'[t; > but ~M'[t; >

2) M[tl > M — M/[tj > M

then ¢; and ?; are said to be in a strong synchronization
relation.

As shown in Fig. 2, the strong synchronization relation
typically exists between two regular events that occur locally
and alternately within a system, when token flow in, they
alternately trigger each other, and they will cease to occur
when token flow out of the loop. This kind of relationship
is manifested when the synchronic distance between two
transitions is 1, this relationship exhibits exclusivity. Gener-
ally, a Petri net does not have arbitrary pairs of transitions
that simultaneously possess a strong synchronization relation.
However, it is possible to have multiple groups of strong
synchronization relation within a Petri net, where transitions
within each group are in strong synchronization with each
other pairwise.

Definition 8: Extended Synchronization Relation.

If there exists a positive integer k such that for any
M € R(My), Yo € T* Mo > it holds that
max;,  er{8(t; /o) 4(t:/0) = 0} < k. i,j € {1,2}(i # ).

then ¢; and ¢4 are said to be in an extended synchronization
relation. If any two transitions in ¥ are in an extended
synchronization relation, Y is referred to as an extended
synchronization Petri net.

We are aware that there is a certain connection between
synchronicity and fairness. In a Petri net X, if two transitions,
t1 and to, are not in a fair relation, it means for any positive
integer k, there exists a reachable marking M and a transition
sequence o, such that M[o >, and f(t;/0) = 0 A §(t;/0) > k
(where 7,7 € 1,2 and i # j), then we consider their syn-
chronic distance to be co [1]. This serves as a counterexample



Fig. 4. A Petri net with concurrency
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Fig. 5. Reachable marking graph with a marked path

to the extended synchronization. In Definition 8, k& does not
depend on a specific marking but imposes restrictions on the
entire operational process of the Petri net.

To illustrate this, we provide an example with the non-
extended synchronization Petri net depicted in Fig. 3. For
any positive integer k, we can find a transition sequence o =
(tot1)*+1 such that My[o > M;. In this case, My (P,) = k+1.
Under the marking M, there exists a transition sequence
o = th™! such that Mi[o >, #(to/o)=0 A #(t1/0)=0 but
#(t2/0) > k. Therefore, even though the occurrence of ¢y is
limited by ¢y and 1, 2 is not in an extended synchronization
relation with ¢g or ¢;.

The following lemma is self-evident.

Lemma 1: Let X = (S, T; F, My) be a Petri net, and ¢1,t €
T. If t; and ty are in an absolute synchronization relation
or strong synchronization relation, then they must be in an
extended synchronization relation.

The more common application in real-world industries is the

Algorithm 1: SDA(ALAM, cur_node, cur_t;_count, t;,t;)

1. Mark cur_node as visited;
2. if cur_t;_count > max(t;) then
L update max(t;);

3. for each neighbor of cur_node do
if the arc-label to the neighbor #t; then
if the neighbor is already visited then
L set max(t;) = co and end the program;

else
if the arc-label = t; then
SDA(ALAM, neighbor, cur_t;_count+
+, i, T3
)

else
L SDA(ALAM, neighbor, cur_t;_count, t;,t;);

else
L continue;

4. Mark cur_node as unvisited and return;

extended synchronization system. Extended synchronization
implies that regardless of the system’s state, the repeated oc-
currence of any event is strictly limited in frequency, yet there
is a certain degree of flexibility for adjustments within the
system while still being subject to synchronization constraints.

However, in natural systems such like chemical reaction pro-
cesses, for example, many phenomena are asynchronous sys-
tems, which means they are not constantly in a synchronized
state. This implies that the occurrences of these processes are
not dependent on strict synchronization requirements but are
influenced by various factors.

This distinction reflects the different demands and adapt-
abilities of synchronization in different fields, as well as
considerations of flexibility and practical applications in sys-
tem design. By distinguishing between different levels of
synchronic systems, we can better ensure the safety of the
system. In the industrial and manufacturing sectors, system
safety is of paramount importance. By determining the level
of a synchronic system, we can plan and monitor the operation
and control of the system more precisely. The strict constraints
of a extended synchronic system limit the repeated occurrence
of events, which helps prevent unexpected situations and
potential hazards. For example, in ADAS (Advanced Driver
Assistance Systems), strict synchronization control ensures
that the vehicle’s perception and decision-making align with
the actual road conditions, thereby enhancing driving safety.

IV. ALGORITHM FOR COMPUTING SYNCHRONIC
DISTANCE

To ensure system security more effectively, we continuously
seek innovative methods and technologies. In this regard, we
introduce a novel approach for computing synchronic distance,
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Fig. 6. The recursive invocation of SDA starting from node S

aiming to assess and control system synchronization more
accurately.

We believe that through this innovative method of comput-
ing synchronic distance, we will provide optimized solutions
for system security and efficiency. This will leads to more
reliable, intelligent, and sustainable industrial processes.

The proposed method is based on automated computa-
tion using reachable marking graphs and coverability graphs.
Firstly, to enable the computer to recognize reachable marking
graphs and coverability graphs, we treat them as a special type
of directed graph. We then store them as a unique adjacency
matrix called the Arc-label Adjacency Matrix (ALAM). The
uniqueness of ALAM lies in its matrix elements, which are
not 0 or 1. Instead, A;; represents the arc-label from marking
S; to S in the reachable marking graph.

Subsequently, the task of computing the synchronic distance
between any two transitions ?; and ¢; is delegated to an
automated program. We present the innovative algorithm in
pseudocode and name it the Synchronic Distance Algorithm
(SDA), as shown in Algorithm 1.

A feasible algorithm is expected to have termination.
Herein, we present the relevant theorem and its proof for the
SDA algorithm.

Theorem 1: The Synchronic Distance Algorithm (SDA) is
guaranteed to terminate.

Proof: Consider a reachable graph (or coverability graph) with
N nodes and E edges. During the execution of Algorithm 1,
SDA, the algorithm traverses the neighboring nodes of the
current node and recursively calls itself on eligible nodes.

By observation, it can be noted that each recursive call
marks an unvisited node as visited and proceeds to mark its
neighbors, once all neighbors have been traversed, the current

loop will terminate, returning to the previous level.

Since the number of nodes in the graph is finite, after a
finite number of recursive calls, Algorithm 1 will mark all
nodes that satisfy the conditions and eventually terminate the
recursion. Alternatively, if a marked node is encountered, the
program terminates directly.

Therefore, Algorithm 1 is guaranteed to terminate. O

For each node in the reachable marking graph (or coverabil-
ity graph), invoke SDA(ALAM, node,0,t;,t;). Eventually,
we obtain max(t;), which represents the maximum number
of occurrences of ¢; when ¢; does not firing. By swapping the
positions of ¢; and t;, we obtain max(t;). Finally, we take
the larger value between the two to obtain o(t;,%;).

V. EVALUATION

TABLE I
VALUE CHANGES DURING THE RECURSION

Recursion | cur_node | cur_ta_count | max(t2)
1 S1 0 1
2 S5 I I
3 Sa 1 1
7 So I I
5 So 2 2

To illustrate our algorithm, we will provide an example.
Fig. 4 depicts a Petri net with a concurrent relationship, and
Fig. 5 shows its reachable marking graph. Using this method,
we calculate the synchronic distance for transitions ¢ and
t3. We present a portion of the process where node S; calls
SDA(ALAM, S4,0,ts,t3), as shown in Fig. 6.

The process aims to find a path starting from node S
where the transition ¢, is fired the most number of times and
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the transition ¢3 is not fired. In fact, for illustrative purposes,
this path is precisely the one with the highest occurrence of
to in the entire graph, as shown in Fig. 5. We use different
colored markings on ALAM to visualize this process to the
reader (blue markings represent the currently visited node S;
and the ¢; along the path leading to adjacent nodes. green
markings represent the adjacent nodes to be recursively called,
and red indicates that the arc-label is t3, so the corresponding
adjacent node will not be visited). At the fourth level of
recursion, when encountering a branch labeled as ts3, the
algorithm chooses to avoid it and selects the next node as
So. The fifth level of recursion begins, and at this point,
since the branch from S: to its only neighboring node is
labeled as t3, our algorithm initiates a return process. This
continues until reaching the initial recursion, and the algorithm
concludes, updating max(t2) to 2. This value represents the
maximum number of occurrences of ¢, that can happen given

the current knowledge that t3 does not occur. However, this
only represents a small part of the automated execution process
of the algorithm. Table 1 displays the values of cur_to_count
and max(ta) corresponding to each level of recursive calls
shown in Fig. 6 (note that max(t2) has already been updated
to 1 in the previously unshown steps of the algorithm).

The key to the successful execution of the algorithm lies in
avoiding paths containing ¢35 during the traversal of adjacent
nodes at each level of recursion. Furthermore, when the algo-
rithm exits the current recursion, the value of cur_to_count
is returned to the count of the previous recursion level,
ensuring the accuracy of counting the occurrences of tz on
each traversed path.

Now, let’s consider the scenario where the arc-label from
Sp to S is t2, how would the algorithm operate in this case?
According to the steps of SDA, when we recursively reach
the fourth level with Sy, the algorithm continues to the fifth
level, which leads to the already visited node S7. In this case,



max(t2) would be directly updated to oo, and the algorithm
would terminate entirely. This precisely represents another
termination condition of the algorithm: the presence of a loop
in the reachable marking graph, where only ¢; (or t;) fires.
As shown in Fig. 7 and 8, in order to provide a more
comprehensive explanation of the algorithm’s process, we
illustrate the complete procedure of computing o (2, t3) using
a diagrammatic approach. The three variables involved in each
recursion are the current node, cur_to_count, and max(ts)(or
cur_ts_count, and max(ts)). Firstly, we sequentially invoke
Algorithm 1 SDA(ALAM, S;,0,ta,t3) for each node in the
reachable marking graph, continuously updating maz(tz)
during the execution. After applying SDA to all nodes in
the reachable marking graph, we obtain the final value of
maz(ty). Subsequently, we interchange the positions of ¢5 and
t3 in SDA, transforming it into SDA(ALAM, S;,0,t3, t2), and
repeat the aforementioned process. Similarly, we obtain the
final value of max(t3). The value of o(t2,t3) can be obtained
by taking the larger of the two values, which is expressed
as o(te,t3) = max(max(te), max(ts)) = 2. Although this
procedure may appear intricate, it can be effectively delegated
to computational systems due to the introduction of ALAM,
which converts the reachable marking graph into a matrix
recognizable by computers. Consequently, this approach sig-
nificantly reduces manual effort and computational errors.

VI. CONCLUSIONS

The contribution of this paper lies in proposing a hi-
erarchical definition for the synchronization of Petri nets,
as well as an algorithm for automating the calculation of
synchronic distance. This will lead to a further improvement
in the efficiency of system design and analysis, consequently
bolstering the security, reliability, and dependability of the
system. Based on different levels of synchronic constraints,
we provide definitions for absolute synchronization, strong
synchronization, and extended synchronization. The refined
classification principles aid in distinguishing various risks
and security vulnerabilities within the system. Our proposed
synchronic distance algorithm realizes a high degree of au-
tomation in the computation process. This assists in reducing
the workload associated with synchronic distance calculation
in complex network structures. However, the existing work still
has certain limitations, and it is anticipated that in the future,
a simulation platform can be developed to directly convert the
modeled Petri net into an ALAM. This would enable the entire
process to be fully automated.
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