MARS: a DRL-based Multi-task Resource
Scheduling Framework for UAV with IRS-assisted
Mobile Edge Computing System

Feibo Jiang, Yubo Peng, Kezhi Wang, Li Dong and Kun Yang

Abstract—This paper studies a dynamic mobile edge com-
puting (MEC) system assisted by unmanned aerial vehicles
(UAVs) and intelligent reflective surfaces (IRSs). We propose a
scaleable resource scheduling algorithm to minimize the energy
consumption of all UEs and UAVs in the MEC system with a
variable number of UAVs. We propose a Multi-tAsk Resource
Scheduling (MARS) framework based on deep reinforcement
learning (DRL) to solve the problem. Firstly, we present a
novel Advantage Actor-Critic (A2C) structure with the state-
value critic and entropy-enhanced actor to reduce variance and
enhance the policy search of DRL. Then, we present a multi-head
agent with three different heads in which a classification head
is applied to make offloading decisions and a regression head is
presented to allocate computational resources, and a critic head
is introduced to estimate the state value of the selected action.
Next, we introduce a multi-task controller to adjust the agent to
adapt to the varying number of UAVs by loading or unloading a
part of weights in the agent. Finally, a light wolf search (LWS) is
introduced as the action refinement to enhance the exploration
in the dynamic action space. The numerical results demonstrate
the feasibility and efficiency of the MARS framework.

Index Terms—Mobile edge computing (MEC), intelligent re-
flecting surface (IRS), unmanned aerial vehicle (UAV), deep
reinforcement learning (DRL), resource scheduling.

I. INTRODUCTION

In recent years, the number of computation-intensive and
latency-sensitive applications such as automated driving,
mixed reality, and metaverse has grown fast, making it chal-
lenging for user equipments (UEs) to handle these tasks
locally. Because of recent advances in mobile edge computing
(MEC) [1], UEs may offload computationally heavy tasks to
neighboring MEC servers. However, the deployment of sta-
tionary MEC servers in the terrestrial region may not be cost-
effective, particularly in temporary, unexpected, or emergency
scenarios [2]. Unmanned aerial vehicle (UAV)-assisted MEC
has been suggested to provide flexible and efficient com-
putation and communication services to terrestrial UEs [3].
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Nonetheless, physical signal blocking and interference of tall
buildings and other obstacles will lead to frequent obstructions
of wireless communication channels between UAVs and UEs.

The intelligent reflecting surface (IRS) technology can ad-
just the amplitude and phase of the incident signals by massive
low-cost passive reflecting elements, and it is a promising
technology to reorganize the propagation environments and
enhance network performance [4]. The IRS uses signifi-
cantly less energy than existing methods like active relay and
backscattering communication. In UAV-assisted MEC systems,
the IRS can be deployed easily on building facades, ceilings,
and walls to reflect the signals between UAVs and users when
the connections are blocked.

Despite the advantages of UAV with IRS-assisted MEC
systems, there are some issues that should be resolved: (1) The
resource allocation is typically a continuous variable while the
offloading decision is typically an integer variable, creating
a mixed-integer nonlinear programming (MINLP) problem
[5]. The MINLP is challenging to tackle using conventional
techniques. (2) The wireless environment becomes more com-
plicated as the number of UEs and UAVs changes, particularly
when the IRS is taken into account in the UAV-assisted MEC
system.

For overcoming these issues, we design a dynamic UAV
with IRS-assisted MEC system. A Multi-tAsk Resource
Scheduling (MARS) framework based on deep reinforcement
learning (DRL) is presented to minimize the energy con-
sumption of all UEs and UAVs for the variable number of
UAVs in the system. By jointly optimizing the UAV location,
offloading decision, resource allocation, and phase-shifted
diagonal matrix, the MARS framework is achieved for online
resource scheduling. The core innovations of the study can be
summarized as follows:

o A2C structure: We introduce a novel Advantage Actor-
Critic (A2C) structure with the state-value critic and
entropy-enhanced actor. In the critic network, we use
advantage value to reduce variance in the learning process
of DRL. In the actor network, we apply policy entropy
to enhance the policy learning of DRL.

o Multi-head agent: We design a multi-head agent with
three output heads, in which a classification head is
applied to make offloading decisions and a regression
head is presented to allocate computational resources in
the actor network, and a critic head is introduced to
estimate the state value of the selected action in the critic
network.



o Multi-task controller: We present a multi-task controller
to adjust the agent for adapting to the varying number of
UAVs. In the multi-task controller, we perform pruning
and network retraining to sequentially pack the resource
scheduling knowledge of multiple UAVs into the multi-
head agent. The agent can reuse the stored resource
scheduling knowledge by loading or unloading a part of
weights when the number of UAVs is changing without
retraining the agent.

e LWS refinement: We incorporate the action refinement
into the proposed A2C structure to improve the explo-
ration and accelerate the hunt for the best policy in the
dynamic action space. A light wolf search (LWS) is
introduced as the action refinement module and a light
wolf driven by the channel gains is applied to guide the
wolf pack for enhancing the global policy search.

The rest of the paper can be organized into the following
sections. In Section II, some related works are reviewed. Sec-
tion III describes the system model and problem formulation.
Section IV introduces the structure of the MARS framework.
Section V presents the simulation results, while Section VI
discusses the conclusions.

II. RELATED WORK
A. Resource Allocation in IRS Aided Communication Systems

In [6], authors studied the fundamental capacity limits of
IRS-assisted multi-user wireless communication systems and
jointly optimized the IRS reflection matrix and wireless re-
source allocation under the constraints of a maximum number
of IRS reconfiguration times. In [7], three multi-agent deep
reinforcement learning-based frameworks were proposed to
solve the problem under three different IRS cases, and thus
dynamically assigned network resources for each grant-free
user. In [8], an IRS-assisted wireless-powered communication
network was investigated, and three types of IRS beamforming
configurations were presented to strike a balance between
the system performance and signaling overhead as well as
implementation complexity. A novel IRS-assisted coordinated
multi-point system was proposed in [9], which aimed to
maximize the energy efficiency of this system. The authors in
[10] studied the optimal resource allocation algorithm design
for large IRS-assisted simultaneous wireless information and
power transfer (SWIPT) systems to minimize the total transmit
power of the base station. In [11], the authors aimed to
apply the IRS technique to improve the efficiency of wireless
energy transfer (WET) and task offloading when wireless links
between the hybrid access point and Internet of Things devices
are hostile.

B. Resource Allocation in UAV Aided Communication Systems

A resource allocation algorithm for the UAV networks based
on multi-agent collaborative environment learning was pro-
posed in [12], which improved the utility of the UAV networks.
The authors in [13] combined the advantages of both UAV and
ultra-reliable low-latency communication (URLLC) to inves-
tigate the resource allocation for a URLLC-enabled two-way
UAV relaying system, which maximized the transmission rate

of the backward link. In [14], a UAV-swarm-based hierarchical
network architecture was proposed to jointly schedule sensing,
computing, and communication resources, thus improving
computing resource utilization. Considering the limited energy
supply of UAVs, the authors in [15] explored how to mini-
mize UAVs’ overall training energy consumption by jointly
optimizing the local convergence threshold, local iterations,
computation resource allocation, and bandwidth allocation.
To maximize the amount of computed tasks while satisfying
heterogeneous quality-of-service (QoS) requirements of tasks
through the joint optimization of UAV resource allocation and
task offloading, a multi-agent proximal policy optimization
(MAPPO)-based algorithm was designed in [16].

C. Resource Allocation in MEC Systems

Considering the limited computation capacity of the MEC
server and the QoS and energy-causality constraints per IoT
node, the authors [17] proposed two resource allocation
schemes to maximize the total computation bits of all IoT
nodes and the system computation energy efficiency, respec-
tively. To minimize the total computation and communication
overhead of the joint computation offloading and resource
allocation strategies for the vehicles system, a decentralized
value-iteration-based reinforcement learning (RL) approach
was developed in [18] as the feasible solution. The authors in
[19] investigated the dynamic resource management issue of
joint subcarrier assignment, offloading ratio, power allocation,
and computation resource allocation in MEC-assisted railway
IoT networks. In [20], the data analysis scenario in IoT archi-
tecture was investigated, and the authors aimed to maximize
the long-term average system utility by jointly optimizing the
communication resource allocation, the data generating and
discarding strategies, and the computing resource allocation.
The authors in [21] studied the resource allocation problem
for the conceived mmWave MEC system with a dynamic
offloading process, and a matching-aided-learning (MaL) re-
source allocation scheme was proposed to tackle this problem.
A harvest-and-offload protocol was proposed in [22], which
jointly scheduled wireless energy transfer and cooperative
computation offloading and aimed to minimize the total energy
consumption.

However, none of the above works studied the UAV and
IRS-assisted MEC system with a variable number of UAVs
under fast-fading channels. Multi-task learning is a workable
method in dynamic environments. Hence, in this paper, we
propose a MARS framework for the UAV with IRS-assisted
MEC system, which can achieve real-time resource scheduling
in dynamic environments.

III. SYSTEM MODEL AND PROBLEM FORMULATION

The system model of the UAV with IRS-assisted MEC
system is shown in Fig. 1. In the system, we consider there
are N UEs, denoted as a set of A/ = {1,2,..., N}, and
each UE has a computational task to be executed and all
UEs are randomly distributed. Then, we consider there are
L IRSs, denoted as a set of £L = {1,2,...,L}, and all
IRSs are mounted on buildings. Also, there are some UAVs,



denoted as a set of M = {1,2,..., M}, which have edge
server enhanced. A control center (or central cloud) can collect
the environment information (e.g., the number of UEs, IRSs,
and UAVs, and the channel state information) as well as the
task information (e.g., the data size of the task and required
computing resources of the task) from the UEs, and carry out
the resource scheduling for the system. Since the small amount
of collected information, the communication overhead of the
central cloud is ignored in the study.

Fig. 1: UAV with IRS-assisted MEC network.

A. MEC Model

We assume that each UE has a computationally intensive
task A; which can be expressed as follows:

A = (Di7Fi)7 VieN (D)
where D; represents the data size that needs to be transmitted
to the UAV for execution, and F; represents the total number
of required CPU cycles of the task.

Each UE can offload the whole task to one UAV or stay
locally for execution. We use al°® to denote the task is
executed locally, and afj‘” to denote the task is offloaded to
the j-th UAV. Then, we have the following constraints:

Cl:d°={0,1}, VieN )

C2:a ={0,1}, VieN, VjeM 3)

where al°® = 0 means that the i-th UE does not execute the
task locally, while aéoc = 1 means that the i-th UE decides to
execute the task locally. Also, a;i*” = 0 means that the i-th
UE does not offload the task to the j-th UAV, and ;" =1
otherwise. We assume that each UE can select only one place
to execute the task, thus we have the following constraint:

A+ > alv =1, VieN. @

jeEM

1) Local computing: The execution time of the local com-
puting for the i-th UE is given by

T}oc _ FZ
4 - f,loc’
i

where f!°¢ means that the local computation capacity of the
i-th UE, which is measured by CPU cycles per second. The
computation capacity of the ¢-th UE is limited by

Vie N (&)

. loc ¢l ! :
Ca:a [ <F/ s YieN (6)
where Ff‘ifmx means the maximum local computation capacity

of the ¢-th UE.
The energy consumption in the local computing phase is
given by

Bt = (fl)" 7' F, VieN 7

where v, > 0 is the effective-switched capacitance and v; > 1
is the positive constant. To match the realistic measurements,
we set v = 10727 and v; = 3 [23].

2) Remote computing: The execution time of the task for
the i-th UE at the j-th UAV can be expressed as

_B

where f;; means that the computation capacity provided by
the j-th UAV to the i-th UE. The energy consumption in the
remote computing phase is

B = (fi)? ' F, )

where 7, is the effective-switched capacitance and v > 1 is
the positive constant. We set 7o = 1072% and vy = 3 [23].

Due to the fact that the computation capacity provided by
each UAV is limited, the constrained computational resource
of the j-th UAV can be expressed as

C5: ) alf fiy < Fiib,
€N

is the total computation capacity of the j-th

Vie N, VjeM ®)

vVjeM (10)
where F}'00
UAV.

B. IRS Model

Assume that UEs are located in the prosperous environment
with many tall buildings, and the direct links of UAVs are
blocked, which suffer from severe path loss. Deploying IRSs
on the building surface can improve the communication quality
between the UEs and the UAVs. Assume each IRS has several
reflecting elements denoted as X = {1,2,...,K}, and all
of the reflecting elements can improve the communication
quality by adjusting the phase shift of the incident signal.
We assume that only one IRS is applied to help one UE
for communication. The coordinate of the [-th IRS can be
denoted as (X*, Y%, Z[!), the coordinate of the i-th UE can
be represented as (XZU ,YZU, Z U) the coordinate of the j-th
UAYV can be denoted as(X JM YJM , ZJM ) Thus, the distance
between the i-th UE and the [-th IRS is expressed as

dU =/ (xv

~XP (Y - YR 4 (2V - Zp)”.

(1)



Similarly, the distance between the [-th IRS and the j-th
UAV is given by

ditM \/(XM X[)?

ZR)?.
12)

MY (2)

In this paper, we assume that the communication path
between the i-th UE and the j-th UAV is divided into two
sections: the UE-IRS link and the IRS-UAV link. We assume
that each UE only uses one IRS for signal transmission so
that the channel gain of the UE-IRS link for the i-th UE can
be expressed as hgiR. The channel gain of the UE-IRS link

hl" e CEX1 s given by

WUR _ B T

oWl [e%
U,R
(4:7%)

where « is the path loss exponent of the channel between the
i-th UE and the [-th IRS, B is the path loss at the reference
_ b
of the angle of arrival (AOA) of the signal between the i-th
UE and the [-th IRS.

We assume that each UE can offload the task to only one
UAV, hence the channel gain of the IRS-UAV link for the i-th
UE can be expressed as hfj'iM € CK*1! can be expressed as

- 27 U,R U,R
{1,6—3%1% .. e IR -1de;

(13)

distance of one meter, (bl = is the cosine value

hR’-M _ L [1 efj 2 d¢ﬁJM7.

(ar)’

where the right term in Eq. (14) above is the array response of
the [-th IRS which have K reflecting elements, d is the antenna
|X ! R _XM |
dRiM

r,M7T
e IR IR e }

(14)

separation distance between two elements, ¢l =

is the cosine value of the angle of departure (AOD) of the
signal between the j-th UAV and the [-th IRS, X is the carrier
wavelength.

We assume there are K elements in each IRS, and the phase
shift of the k-th reflecting element of the [-th IRS is denoted by
k.15 € [0,2m). Therefore, we have a phase-shifted diagonal
matrix for the IRS-assisted signal transmission, which can be
denoted as ©;; ; = diag {ei% 1.3, Vk € K}.

When the i-th UE decides to offload the task to the j-th
UAV by the [-th IRS, the whole channel gain of the UE-UAV
link can be expressed as

Hij = (hi") 0,05, VieNVjeM. (15

The achieved data transmission rate between the i-th UE
and the j-th UAV can be expressed as

tra 2
Pij HZ]l
0-2

where B denotes the channel bandwidth, o< denotes the
noise spectral density, P“"“ represents the transmitting power
between the i-th UE and the j-th UAV, and we can obtain the
Pfjm from [24]. Note that we assume UEs offload their tasks

Tij = Blog, (1 + (16)

2

to the UAV via orthogonal frequency division multiplexing
(OFDM) channels, which means that there is no interference
between each other. Then, the transmission time can be
expressed as

D,
T ==, VieN,VjeM.
Tij
The energy consumption of transmission can be calculated
as follows:

A7)

tra __ tramitra
Bl = pireTire. (18)

C. UAV Model

When the j-th UAV hovers at a fixed position, the consumed
energy can be approximated as

E;wv — PjhovTJhov (19)

where Pho” means the hover power of the j-th UAV, and the
Th"” means the hover time of the j-th UAV.

The flight energy of the UAV can be expressed as
L

_ pflyZjg
_Pj

EY
J .
Uj

(20)
where P]f " means the flight power of the j-th UAV, L; is the
flight distance of the j-th UAV, and v; is the flight velocity of
the j-th UAV, which is a constant value.

D. Problem Formulation

In this paper, we aim to minimize the total energy con-
sumption of the UAV with IRS-assisted MEC system, and the
optimization problem can be formulated as follows:

locEloc+ E auavptra
jEM Vi

Ehm; _|_77 Efly + Z auavEuav>
iEN
st. C1—C5 Q1)

where p = {XM YM ZM|je M} are the locations of
UAVs, a = {al"‘, al®|ie N,j € M} is the offloading
decision, f = {f JfijlieN,je ./\/l} is the computing
resource allocation, ® = {0, li € N,l € L,j € M} rep-
resents the phase-shifted diagonal matrix for the IRS-assisted
signal transmission, and n; and 7, are weight coefficients.

IV.

We propose a MARS framework based on DRL to minimize
the energy consumption of all UEs and UAVs for the variable
number of UAVs in the UAV with IRS-assisted MEC system.
The data flow of the MARS framework can be described as
follows: first, the central cloud collects the global environment
information as well as task information from the system. Then,
the central cloud executes the MARS algorithm, updates the
locations of UAVs and the phase-shifted diagonal matrix of
IRSs, and performs the online decisions of the user association
and resource allocation for each UE. Finally, based on the
decision received from the central cloud, each UE can offload
the task to the suitable UAV, and then receive the results
accordingly.

THE MARS ALGORITHM



Algorithm 1 MARS framework
Input: D;,, F; ;.
Output: (X, YN, ZM), 0154, ai 51, fijie
1: Initialize the parameters 6,, of the multi-head agent for
m UAVs randomly.

2: Initialize a replay buffer R.

3: Set the iteration number T4 .

4: while t < Ty¢ do

5:  if the number of UAVs has changed then

6: Adjust the parameters 0,, ; of the multi-head agent
by multi-task controller.

7: Optimize the locations (X}, V}}, Z}) of UAVs by
LS-FCM algorithm.

8: end if

. fori=1,...,N do

10: Calculate the phase-shifted diagonal matrix ©;
by Eq. (24).

11: Take the action A;; ~ 7, , (-|S;i¢) by the forward
propagation process of the multi-head agent.

12: Add A; ; to the epoch register.

13:  end for

14:  Execute action Ay, receive reward R; and the next state
Sty1-

15:  Evaluate the current solution A;, and execute the offline
learning stage when the current solution is abominable.

16:  Search the optimal action A} from the initial action A,
by Algorithm 2.

17: Append the transition {S;, A7, R;:, Sitt1} of all
UEs to the replay buffer R.

18:  Sample a batch of transitions by prioritization experi-
ence replay strategy.

19:  Feed the sampled transitions to the multi-head agent.

20:  Train the multi-head agent and update the parameters
0.+ by the backpropagation process of the multi-head
agent.

21: end while

A. Algorithm Overview

The workflow of the MARS framework is described in
Algorithm 1. For saving flight energy, we assume that UAVs
need to be redeployed only when the number of UAVs is
changed. We use large-scale path-loss fuzzy c-means cluster-
ing algorithm (LS-FCM) to optimize the locations of UAVs
and obtain the p in PO [25], which is based on the large-scale
path-loss factors. Then, we introduce a quantitative passive
beamforming method to solve the phase-shifted diagonal ma-
trix ® according to the positions of UAVs and UEs. Finally,
we design a novel A2C to generate the offloading decision a
and computational resource allocation f of all UEs.

The structure of the DRL part of the MARS framework
is illustrated in Fig. 2. The key elements of the DRL in the
MARS framework are described as follows:

o State: S; = {Sl)t‘l € N} where Si,t = {Hi,t;Di,t;Fi7t}
is the environment information of the ¢-th UE at the ¢-th
timeslot, in which H;; = {h; j|j € M} is the channel
gain between the i-th UE and all UAVs, D; ¢ and F; 4 are

the task attributions of the i-th UE.

o Action: A, = {A;+|i € N} where A;; = {a;¢, fii} is
the resource scheduling decision of the i-th UE at the ¢-th
timeslot. a; + € N is the user association and f; ; € R is
the allocated resource of the i-th UE.

o Reward: R;; is defined as the reciprocal of the energy
consumption of the i-th UE’task, and R; is defined the
reciprocal of the objective function at the ¢-th timeslot.

o Transition: {S; ;, A; ¢, Ri i, Si.t+1} is stored in the replay
buffer and applied to update the policy of the agent. The
first in first out (FIFO) strategy is introduced to update
transitions in the replay buffer.

In the following, more details of four main parts in the
MARS framework are introduced: (1) A quantitative passive
beamforming method (detailed in Section IV-B) is introduced
to solve the phase-shifted diagonal matrix according to the
positions of UAVs and UEs. (2) A multi-head agent (detailed
in Section IV-C) is designed to solve the MINLP by A2C
learning. (3) A multi-task controller (detailed in Section I'V-
D) is presented to adjust the structure of the multi-head agent
when the number of UAVs is changed without retraining the
whole neural network. (4) A novel LWS (detailed in Section
IV-E) is applied to enhance the action exploration of the DRL
and accelerate the learning process in dynamic environments.

B. Quantitative Passive Beamforming

We apply a quantitative passive beamforming method to
optimize the phase shift matrix of IRSs. Specifically, Eq. (14)
can be transformed into the following equation:

RM _ (| RM| jwM R M
h; —th,j ‘e A

RM| jwiM RM| jwi

(22)

)

where ‘thjM‘ is the magnitude and wﬁj)f € [0,2m) denotes

the phase shift of the k-th reflecting element from the j-th
UAV to the [-th IRS. Also, Eq. (13) can be transformed into
the following equation:

. UR
hz({iR = [ ejwi,l,l’

ey eIWiln

U,R v,r1T
hi ‘

U,R
h;

. UR
hUiR‘ eI¥itz,
1/7

(23)

where hg;R ’ is the magnitude and ng,Ri; € [0, 27) denotes the
phase shift of the k-th reflecting element from the /-th IRS to
the ¢-th UE.

For simplicity, we consider discrete phase shift angles in
this paper, and the phase shift 0 ;; ; of the IRS is chosen
from the following set of U £ i‘?\,ﬂ,z =0,1,...,N, — 1},
where N, denotes the number of t e]i)hase shift values that can
be selected for every element. When the signals from different
paths are combined coherently at the UAV, the coherent signal
construction can maximize the received signal power, thereby
maximizing the achievable rate. Hence, we optimize the phase
shift 0, ; of the k-th reflecting element of the [-th IRS
between the i-th UE and the j-th UAV with the following
equation [26]:

B ) / R,M UR
Ok,ip,; = argmin lok,i,z,j - (wl,j,k +“i7l,k)"
[4

(24)

kyi,l,g
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Fig. 2: The DRL part of the MARS framework.

C. Multi-head Agent

We propose an A2C structure with the multi-head agent to
solve the MINLP. The multi-head agent has two networks with
three heads. The critic head is presented to calculate the state-
value function of the action, and the actor head is applied to
predict the resource allocation and offloading decision. In the
learning process, the actor network and critic network share
parameters of the shallow part of the network to extract the
common features and then adjust the independent parameters
of the subsequent part of the networks to learn the unique
features of each head respectively. The structure of the multi-
head agent is shown in Fig. 3.

Input Shared Independent Output
layer layer layer layer
» State
: value I”
D, :
Crific network
F; i
Resource
H,, allocation f
H,, wp
Offloading
decision a

Actor network

Fig. 3: The multi-head agent.

1) Forward propagation process: In Fig. 3, the multi-head
agent has L shared layers and each task has K independent
layers. The output of the ¢th shared layer can be described as
follows:

O, = ReLLU (WgOg_l + bg) (25)

where W, means the weights of the ¢-th shared layer and
the by means the biases of the ¢-th shared layer, ReLU is the
activation function.

The output of the k-th independent layer of the j-th head
can be represented as:

Ojr+k =ReLU(W; 14xOj ryk—1 +bjrir) (26

where W 1, means the weights of the k-th independent
layer for the j-th head and the b; 7,1} means the biases of the
k-th independent layer for the j-th head.

The output layer of the j-th head can be represented as:

Sigmoid (WJ;L n KOj,L+K—1 + bj,L+K> ,
For the regression head in the actor.
Softmax (Wj,L+KOj,L+K71 + bj,L+K) ,
For the classification head in the actor.
Wi+ k0j0+xk-1 +bjr+k,

For the critic head.

Ojr+x =

27)

where W 11 x means the weights of the output layer for the
j-th head and b, 1 x means the bias of the output layer for the
7-th head. Sigmoid and Softmax are the activation functions.

2) Back propagation process: In our study, the critic head
is presented to calculate the state-value function of the action.
Hence, the advantage value can be calculated as:

6t = R + (Veo, (St41) — 1) — Vio, (St)

where 7, is the discount factor for the state-value function
Vo, (St+1). The advantage value highlights the difference
between the action-value and state-value functions. Thus,
actions with smaller advantage values are less likely to occur,
effectively lowering the overall variance [27].

The loss function of the critic head can be expressed as

(28)

].
§ 2



where Z is the number of selected transitions.

The actor network consists of a regression head for the
resource allocation and a classification head for the offloading
decision. Hence, we can solve the original MINLP problem
with two different heads efficiently.

In the classification head, the loss function of the user
association is cross-entropy loss which can be expressed as:

1 Z M
Lo = sz: —Zl U;108 D (30)
=

where y;; is an indicator variable, y,; = 1 means that the
true label is same as the predicted label, and py; denotes the
probability that the k-th transition belongs to the j-th class.

In the regression head, the loss function of the resource
allocation is mean square error (MSE) loss which can be
expressed as:

Z

L= 25 ()

k

€Y

where fk means the predicted computational resource and fj,
means the true computational resource.

The shared layers of the multi-head agent can be updated
by

z
1
i1 =0+ at?ZVGt log e, (Ak|Sk) (61)+
r (32)

1< 1<
Btzzk:(th (516)2) + ’Ytgzk:VGtH(ﬂ-et (S’f))

where « is the learning rate of the actor network, [, is the
learning rate of the critic network, H(-) is the entropy of the
policy mg,, and its learning rate is -;. Policy entropy assigns
the exploration probability according to the advantage value
of the action, thus making the agent could explore various
actions as much as possible, implying that various state will
also be explored [28].

D. Multi-task Controller

Multi-task learning is a machine learning method that puts
multiple related tasks together to learn [29]. We consider a
dynamic MEC system in which the number and positions of
UAVs are variable, and we should memorize the offloading
knowledge of different UAVs in the agent. Therefore, we
design a novel multi-task controller to meet this challenge. The
basic principle of the multi-task controller is to design different
learning tasks for different numbers of UAVs, then adjust
the structure of the network for different learning tasks. For
enhancing the learning efficiency, we free up redundant param-
eters for each task in the network, so that we can sequentially
”pack” multiple tasks into a single network while ensuring
minimal performance degradation. This structure can naturally
accumulate experiences for varying numbers of UAVs and is
immune to catastrophic forgetting. The detailed process of the
multi-task controller can be described as follows:

1) Network training: We initialize the agent and train it
for the scenario with the minimum number of UAVs (Task 1).
Taking into account network redundancy, after the network
training is finished, we delete a certain number of weights.
At this point, the performance of the network degrades due to
the pruning in the network structure, and then we continue to
fine-tune the network until the performance of the network is
optimal on Task 1. Then, we increase the number of UAVs in
the scenario for learning as a new Task 2. On the one hand,
we freeze the weights of Task 1 and train all the remaining
parameters as the initial weights of Task 2. After the network
training is completed, a part of weights is deleted, and then
we fine-tune the network again until the network performance
is optimal on Task 2. We then repeat the process until all tasks
are trained or the network with no extra free weights.

2) Network pruning: We delete the weights of the agent by
network pruning and get a high-performance multi-head agent.
In the pruning process of each task, we arrange the weights of
each layer by absolute value and remove the smallest weights
in a fixed proportion, and then we add a small number of
random weights for exploration. It is important to note that
we only prune the weights of the current task, not the weights
of the previous tasks. This allows the weights of the previous
tasks to be used in the later task, but the weights of the later
task do not interfere with the previous tasks. This mechanism
ensures that when training a new task, the knowledge of old
tasks is retained and the performance of old tasks does not
change, thus avoiding catastrophic forgetting.

3) Network inference and adjustment: After the training
of all tasks in the agent is completed, we will select the
corresponding task weights according to the number of UAVs
in the current scenario, so that the network structure of
the current task corresponds to the number of UAVs. Then
the offloading decision and resource allocation are generated
according to the current network structure.

The adjustment process of the multi-task controller is de-
scribed in Fig. 4. The load rule of the ¢-th layer for the k-th
task can be represented as

k
Orx = ReLU(W,Op 1 ctbret Y (WeiOp1ctbyi))

1=c+1
(33)

where ¢ means the weights of the current task, and the unload
rule of the ¢-th layer for the k-th task can be represented as

Wi =0, by, =0 Vi=k+1,..c (34)

E. Light Wolf Search

Action refinement is an effective exploration strategy for
large-scale action space presented by Google DeepMind [30],
and we propose a novel light wolf search algorithm to realize
the action refinement in the study. The gray wolf optimizer
(GWO) is inspired by the hunting behaviors of wolves [31],
and combined with the channel quality information, we design
the LWS as follows:

1) Solution representation: The solution of LWS is repre-
sented as a vector x = (a,f), where the a is the offloading
decision, and f denotes the resource allocation. The initial
solution xg = (ag, fp) is obtained from the epoch register.



2) Population initialization: We initialize four wolves ran-
domly form a population P = {x;,X2,X3,%X4} in the d-
dimensional search space. For simulating the social hierarchy
of wolves, the optimal wolf is selected as the @ wolf x,, the
second and the third-best wolves are selected as the 5 wolf x
and ) wolf x;, respectively. The initial solution x¢ is marked
as the light wolf x,.

3) Parameter updating: We update the hunt parameters of

the population P. A(t) and C(t) are coefficient vectors which
can be defined as follows:

At)=(2r1—1)-a(t) (35)

Ct)=2r (36)

where ¢ is the current iteration number, r; and r, are indepen-
dent random numbers in the range of [0,1]. a(t) is the control
parameter, whose formula is defined as follows:

2t

at)=2— (37)

tmax
where t;,.x 18 the maximum iteration number. The control
variable a(t) decreases linearly from 2 to 0.

4) Wolf hunt: During the hunt process, wolves encircle their
prey, and the update formula of the light wolf is defined as
follows:

D (t) = [C (1) - xe (1)

—x,, (t)] (38)

() =5 3 Gk ()~ AW De (1)

e€{a,B,6}

(39)

where x,,(t) is the position vector of the light wolf. x. (¥)
represents the positions of elite wolves (i.e., o, [ and ).
D, represents the distances between the light wolf and elite
wolves. The offloading part of all solutions needs to be
rounded to the feasible solution space.

5) Wolf evaluation: We define PO as the fitness function
of the wolf pack. We calculate the fitnesses of all wolves, and
the optimal wolf is selected as the wolf x,, the second and
the third-best wolves are selected as the wolf x5 and wolf x;,
respectively. The remaining individual is marked as the light
wolf w. Finally, we update the offloading part of the light wolf
whose offloading decision for each UE is set to the UAV with
the highest channel gain.

6) Constraint check: When a new solution is generated,
the constraint check will be performed to ensure that the
resource allocated by the UAV will be no more than the
maximum computational resource of the UAV. When the
allocated resource of the UAV is overflowing, we will reduce
the allocated resource of the UAV for each UE proportionally
until the total computational resource is within the maximum
computational resource constraint. The overall algorithm for
LWS is summarized in Algorithm 2.

Algorithm 2 LWS

Input: ag, fy.
Output: x,,.
1: Initialize the wolf population.
Initialize a, A and C.
Select elite wolves x,, xg and Xx;.
Define initial light wolf as x,, = (ag, fo).
while ¢ < t,., do
for each wolf do
Update the position of the current wolf by Eqgs. (38)-
(39).
end for
: Calculate the finesses of all wolves.
10:  Update elite wolves x,, X3 and X;.
11:  Update the light wolf x,, according to channel gains.
12:  Update a by Eq. (37).
13:  Update A and C by Egs. (35) - (36).

AN A

o »

14: t=t+ 1.
15:  Carry out the constraint check and obtain valid solu-
tions.

16: end while

F. Convergence Analysis of the MARS Framework

1) Propositions: We consider that the critic network uses
linear function approximation to estimate the state-value func-
tion, which can be represented as V (-;w) = ¢ ' (-)w [32]. We
define A and b as:

A :=Es a5 |6(S)(#(S) —¢(S5))

b= Es 4.s5[(R(S,A) — R(0)p(S)]

! (40)

(41)

where A is the action and A ~ g (-|S); &’ is the next
state and S’ ~ P (S, A), where P(:|S,.A) is the transition
probability measure. R is the reward function and R(8) is the

predicted reward. The limiting point w*(0) satisfies [33]:
Aw*(0)+b=0. (42)

The approximation error of the linear function is defined as
follows:

app(8) = \/Es (6(S) Tw(8) — V(S))’

where V(+) is the state-value function.
Throughout this paper, we assume the approximation error
for all potential policies is uniformly bounded, namely

(43)

€app(0) < €app 44)

where €, is a constant and €, > 0.
2) Assumptions:

Assumption 1. For all potential policy parameters 0, the
matrix A defined above is negative definite and has the
maximum eigenvalues as —\ [34].

Assumption 2. For a fixed 0, denote pg(-) as the stationary
distribution induced by the policy mg(-|S) and the transition
probability measure P(:|S, A). Consider a Markov chain
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) Sit ~ P (IS0 A,
1) such that [35]:
<

mp’ V1 > 0,

generated by the rule Ay ~ g (-|S;
Then, there exists m > 0 and p € (0,

drv (P(S: € |So=38),pe())

where drv (+) is the total variation norm between two proba-
bility measure.

(45)

Assumption 3. Ler 7g (A|S) be a policy parameterized by
0. There exist constants L, B, L; > 0, such that for all given
state S and action A it holds [33]:

[Viogme(A|S)|| < B,V6 € R? (46)

[Vlogme, (A|S) — Vlegm, (A | S)| <
Ll ||91 — 02” ,V@l,gg S Rd

70, (A ] S) = 70,(A|S)| < L6162, ¥01,0, € R
(48)

(47)

Assumption 4. Under Assumptions 1 and 2, there exists a
constant L, > 0 such that [36]

[w™ (01) —w™ (B2)]] < Lu [[61 —

3) Convergence Analysis:

0s),V01,05 € R (49)

Theorem 1. Suppose Assumptions 1-3 hold and we choose
o = ¢o/(141)%, where o € (0,1) and ¢, > 0 are constants.
At the t-th iteration, the critic satisfies [36]:

8 < 2 <
7 > Ellwi — wil® + n > E (e — R (61))* = £(t) (50)
k=1 k=1

where wy, is the critic parameter and ny, is the discount factor
at the k-th iteration of the actor’s update, £(t) is a bounded
sequence, then we have

. 2 _
Join E INCACH e
1 log® t
0 (can) +0 (125 ) + 0 (51 + ote)

where O(-) is used to further hide constants [36].

(S

Theorem 2. Suppose Assumptions 1-3 hold and we choose
ay = co/(14+t)7 and By = cg/(1+t)” , where 0 < o <v <1
and ¢, and cg < \~L are positive constants, we have [36]

Z E [lwy — wi|* =

1+t )
1 logt 1
o (i u)+"’< )+o ()
1 t
2_
mk;tE(m R(01)) = -

1 logt 1
0 () +0 (“21) +0 (s )

Combining Theorem 1 and Theorem 2, we can deduce the



TABLE I: Simulation parameters.

Parameters Assumptions
Number of UEs N 50
Number of IRSs L 50
Transmitting data size D; 20 MB
Transmitting power Pf; a 1w
UAV executing power Pi’;.‘” 1w
UAV hover power Pjh‘”’ 1w

Max computation capacity of the local F!°¢ 109 cycles/s

i,max

Required number of CPU cycles F; 109 cycles/s

Total computation capacity of the UAV F*2V 3 x 1010 cycles/s

j,mazx

Bandwidth B 1 MHz

10~12 W/Hz

Noise spectral density 2

convergence rate of the proposed A2C structure as follows:

min E[|V.J (6x)] = O (€app) + O <1> +0 <1ogt)

0<k<t tl—o tv
1
+0 (tQ(UV)) '

Finally, the MARS framework can find an e-approximate
stationary point of J(-) within T steps, namely

(54)

: 2
<

ogilélT]E [VJ(01)]]" < O (€app ) +€ (55)

where T is the total iteration number; V.J (68}) is the policy

gradient.

V. NUMERICAL RESULTS
A. Simulation Settings

In this section, we provide some simulation results to evalu-
ate the performance of the MARS framework. The simulation
is conducted in Python 3.7 and TensorFlow 2.2.0 environment
running on an Intel Xeon CPU with 32GB RAM and a Tesla
T4 GPU with 15 GB SGRAM. The initial multi-head agent
has two shared layers with 64 and 128 neurons, respectively.
The number of neurons in each independent layer is set to 32.
The replay buffer size is set to 8000, and the minibatch size is
set to 50. Dropout is applied to the training process to avoid
overfitting. In the multi-task controller, the compression ratio
is set to 75% for each UAV. In the LWS, the size of the wolf
pack is set to 4 and the maximum iteration number is set to
10. Other parameters used in the simulations are summarized
in Table I unless otherwise specified.

B. Performance Evaluation of the Multi-Head Agent

We compare the performances of agents in the MARS
framework with different heads. These agents are introduced
as follows:

« Single-head agent: The agent in the A2C structure outputs
the state value of the critic network, and the offloading

decision and resource allocation of the actor network by
a single head.

o Two-head agent: The agent in the A2C structure outputs
the state value of the critic network by one head, and the
offloading decision and resource allocation of the actor
network by the other hand.

o Three-head agent: The agent in the A2C structure outputs
the state value of the critic network and the offloading
decision and resource allocation of the actor network by
three heads.

For fairness, the number of weights in all agents is set
to the same. In the single-head agent, MSE loss is used to
optimize all network parameters. In the two-head agent, MSE
loss is introduced to optimize the critic head and the regression
head, and the cross-entropy loss is applied to optimize the
classification head. The rewards of all agents are shown in Fig.
5. We can see that all agents can obtain relatively good rewards
and achieve convergence at last. However, the three-head agent
can obtain the highest reward and this phenomenon can be
explained by the reason that different heads have different
feature representations, and the MSE loss is good at optimizing
the regression head but hard to optimize the critic head and
classification head.
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Fig. 5: Rewards of different agents.

C. Performance Evaluation of the Multi-Task Controller

In this section, we simulate a scenario where the number
of UAVs is varying and compare the energy consumption of
the MEC system when the agent for Task 1 (One UAV) is
well-trained. Fig. 6 summarizes the multi-task performances
for different multi-task methods, in which we add three UAVs
as new tasks one by one to the MEC system. The contender in
Fig. 6 is dynamic-expansion net (DEN) [37], which reduces
the weights of the previous tasks via sparse-regularization and
does not ensure non-forgetting. As shown in Fig. 6, while
training for a new task (adding a new UAV), the energy
consumption of DEN on Task 1 increases continuously, which
means the catastrophic forgetting has already happened, and
the knowledge of the old task in DEN has been forgotten.



TABLE II: The performance comparison of different tasks.

Different Scratch Finetune Progressive Pruning
Tasks network (75%)
One UAV 78.37 - 78.37 79.02
Two UAVs 80.42 75.86 75.35 75.47
Three UAVs 70.71 66.28 65.04 64.92
Four UAVs 61.55 59.56 58.21 57.69

Our multi-task controller is superior to DEN, and the energy
consumption on all tasks remains fixed.

Then, we evaluate the performance of the multi-task con-
troller in different tasks. These contenders are introduced as
follows:

o Scratch: All new tasks are trained from scratch without
any old task knowledge.

o Finetune: All new tasks are fine-tuned from Task 1 with
the previous knowledge.

o Progressive network [38]: The agent is grown by adding
nodes or weights for training new tasks.

¢ Pruning (75%): The agent is pruned by 75% weights, and
the new tasks are adjusted by the multi-task controller.

TABLE II characterizes the energy consumption of different
multi-task learning methods. It can be seen that for the first
task (One UAV), Pruning (75%) performs slightly worse than
the others since it has to compress the agent via pruning. Then,
for tasks 2 to 4, Pruning (75%) outperforms the others in
almost all cases, which shows the superiority of the multi-
task controller on building a compact and unforgettable base
for multi-task learning.

100 T

[ DEN
o5 | [ Multi-task controller

97.29

Energy consumption

One UAV

Two UAVs Three UAVs
Different tasks

Four UAVs

Fig. 6: Task 1 performances of different multi-task methods
for different numbers of UAVs.

D. Performance Evaluation of the Action Refinement

In this section, we evaluate the performance of the action
refinement on three benchmarks: DRL with LWS (LWS),
DRL with Taboo Search (TS) [39], and DRL without action

refinement (None). In the experiment, the iteration number of
LWS and TS is set to 10, the length of the taboo list is set to
5, and the search neighborhood size is set to 10.

The performances of different action refinements are illus-
trated in Fig. 7. The results in Fig. 7 show that LWS and TS
achieve lower loss than None, and LWS has faster convergence
than TS. This is because the LWS adopts the light wolf with
the highest channel gain to accelerate the search and the
LWS also executes the constraint check to obtain validly high-
quality solutions.

22

LWs

Iterations

Fig. 7: Training performances of DRL with different action
refinements.

E. Performance Evaluation of the MARS Framework

In this section, we evaluate the performance of the whole
MARS framework. We first compare the MARS framework
with three well-known DRL algorithms: TD3 [40], PPO [27]
and SAC [28]. TABLE III characterizes the training time of
the Initial task (only one UAV at the beginning), New task
(adding a new UAV), Old task (removing a UAV), and Average
energy consumption in all DRLs. It can be seen that the MARS
framework achieves the least training time for the old task
and the lowest average energy consumption. The superiority
of the MARS framework can be explained as follows: (1) The
multi-task controller can store the parameters of the old tasks,
and the agent can reuse the stored policy knowledge when
the number of UAVs is changing without retraining the agent
again. Hence, the training time for the old task in the MARS
framework is the least. (2) The LWS refines the action and
enhances the exploration, which leads to jump out of the local
extremum in the search process. Hence, the average energy
consumption of the MARS framework is the lowest.

Then, five offloading schemes are selected as benchmarks
to compare the offloading performance. These benchmarks are
introduced as follows:

o Random offloading (Random) denotes that the offloading

decision of each UE is randomly determined.

o Local executed (Local) denotes that all UEs execute tasks

locally.



TABLE III: The performance comparison of different DRLs.

Metric Initial task New task Old task Average energy
consumption
MARS 234.23 126.57 0.45 64.95
TD3 258.13 192.46 130.58 68.37
PPO 263.41 196.41 131.82 67.45
SAC 248.76 185.33 122.63 65.69

o Offloading nearby (Remote) denotes that each UE decides
to offload the task to the closest UAV.

o LWS denotes light wolf search applied to find the best
offloading decision for all UEs.

e Deep reinforcement learning-based online offloading
(DROO) is a celebrated DRL offloading scheme for the
MEC system [41].

The energy consumption of these five offloading methods is
shown in Fig. 8, it can be seen that the energy consumption
of the proposed MARS framework is much lower than the
energy consumption of Local, Random, Remote and DROO.
Meanwhile, the energy consumption of the proposed MARS
framework is close to the LWS. This is because the MARS
method can update the offloading policy from the high-quality
offloading solutions generated by LWS. Moreover, the MARS
method can construct a nonlinear mapping from the state
information to the offloading decision and resource allocation,
which can make high-quality decisions much faster than
traditional heuristic search methods.
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Fig. 8: Energy consumption of different offloading schemes.

VI. CONCLUSION

In this article, a novel MARS framework has been proposed
to jointly optimize the positions of UAVs, phase-shifted diago-
nal matrix, computation offloading, and recourse allocation for
dynamic UAV with IRS-assisted MEC systems. The objective
of the MARS framework is to minimize the sum of energy
consumption for all UAVs and UEs. Overall, the proposed
MARS framework has the following advantages.

(1) The A2C structure is introduced to reduce variance and
enhance the policy learning of the DRL. (2) The multi-head
agent with three output heads is presented to solve the MINLP
efficiently. (3) The multi-task controller is used to adjust the
agent for adapting to the varying number of UAVs. (4) The
LWS is applied to enhance the exploration of the DRL and
accelerate the hunt for the best policy.

The simulation results demonstrate that the MARS frame-
work has better performance than the existing benchmarks,
and it exhibits enormous potential in dynamic MEC systems.
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