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Abstract. Budget-feasible procurement has been a major paradigm in
mechanism design since its introduction by Singer [24]. An auctioneer
(buyer) with a strict budget constraint is interested in buying goods
or services from a group of strategic agents (sellers). In many scenar-
ios it makes sense to allow the auctioneer to only partially buy what
an agent offers, e.g., an agent might have multiple copies of an item
to sell, they might offer multiple levels of a service, or they may be
available to perform a task for any fraction of a specified time inter-
val. Nevertheless, the focus of the related literature has been on set-
tings where each agent’s services are either fully acquired or not at all.
The main reason for this, is that in settings with partial allocations like
the ones mentioned, there are strong inapproximability results (see, e.g.,
Chan and Chen [10], Anari et al. [5]). Under the mild assumption of
being able to afford each agent entirely, we are able to circumvent such
results. We design a polynomial-time, deterministic, truthful, budget-
feasible (2 +

√
3)-approximation mechanism for the setting where each

agent offers multiple levels of service and the auctioneer has a discrete
separable concave valuation function. We then use this result to design
a deterministic, truthful and budget-feasible mechanism for the setting
where any fraction of a service can be acquired and the auctioneer’s val-
uation function is separable concave (i.e., the sum of concave functions).
The approximation ratio of this mechanism depends on how “nice” the
concave functions are, and is O(1) for valuation functions that are sums
of O(1)-regular functions (e.g., functions like log(1+ x)). For the special
case of a linear valuation function, we improve the best known approxi-
mation ratio from 1 + ϕ (by Klumper and Schäfer [17]) to 2.

Keywords: Procurement Auctions · Budget-Feasible Mechanism De-
sign · Multiple Levels of Service.
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1 Introduction

Consider a procurement auction, where the agents have private costs on the
services that they can offer, and the auctioneer associates a value for each pos-
sible set of selected agents. This forms a single parameter auction environment,
where the agents may strategically misreport their cost to their advantage for
obtaining higher payments. Imagine now that the auctioneer additionally has a
strict budget constraint that they cannot violate. Under these considerations,
a natural goal for the auctioneer is to come up with a truthful mechanism for
hiring a subset of the agents, that maximizes her procured value and such that
the total payments to the agents respect the budget limitations. This is precisely
the model that was originally proposed by Singer [24] for indivisible agents, i.e.,
with a binary decision to be made for each agent (hired or not). Given also
that even the non-strategic version of such budget-constrained problems tend
to be NP-hard, the main focus is on providing budget-feasible mechanisms that
achieve approximation guarantees on the auctioneer’s optimal potential value.

Ever since the work of Singer [24], a large body of works has emerged, de-
voted to obtaining improved results on the original model, as well as to propos-
ing a number of extensions. These extensions include, among others, additional
feasibility constraints, richer objectives, more general valuation functions and
additional assumptions, such as Bayesian modeling. Undoubtedly, all these re-
sults have significantly enhanced our understanding for the indivisible scenario.
In this paper, we move away from the case of indivisible agents and concentrate
on two settings that have received much less attention in the literature. In both
of the models that we study, instead of hiring agents entirely or not at all, the
auctioneer has more flexibility and is allowed to partially procure the services
offered by each agent. We assume that the auctioneer’s valuation function is the
sum of individual valuation functions, each associated with a particular agent.

Agents with Multiple Levels of Service: In this setting, each agent offers a
service that consists of multiple levels. We can think of the levels as correspond-
ing to different qualities of service. Hence, the auctioneer can choose not to hire
an agent, or hire the first x number of levels of an agent, for some integer x, or
hire the agent entirely, i.e., for all the levels that she is offering. Furthermore,
the valuation function associated with each agent is concave, meaning that the
marginal value of each level of service is non-increasing. This setting was first
introduced by Chan and Chen [10] in the context of each agent offering multiple
copies of the same good and each additional copy having a smaller marginal
value. In their work it is assumed that the cost of a single level is arbitrary,
meaning that it is plausible that the auctioneer can only afford to hire a sin-
gle level of service of a single agent. Chan and Chen [10] proposed randomized,
truthful, and budget-feasible mechanisms for this setting, with approximation
guarantees that depend on the number of agents. The crucial difference with our
setting is that we assume that the auctioneer’s budget is big enough to hire any
single individual agent entirely, which is in line with the indivisible setting in
which the auctioneer can afford to hire any individual agent.
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Divisible Agents: Another relevant setting is the setting in which agents are
offering a divisible service, e.g., offering their time. In this case, it is reasonable
to assume that the auctioneer can hire each agent for any fraction of the service
that they are offering. Again, the valuation function associated with each agent
is assumed to be concave, meaning that the marginal gain is non-increasing in
the fraction of the acquired service. Note that this problem is the fractional
relaxation of the problem introduced by Singer [24], when it is assumed that
the auctioneer can afford to hire any individual agent entirely. Anari et al. [5]
were the first to study the divisible setting. In their work they employed a large
market assumption, which, in the context of budget-feasible mechanism design,
roughly means that the cost of each agent for their entire service is insignificant
compared to the budget of the auctioneer. Additionally, they notice that in the
divisible setting, no truthful mechanism with a finite approximation guarantee
exists without any restriction on the costs. Very recently, Klumper and Schäfer
[17] revisited this problem without the large market assumption but under the
much milder assumption that the auctioneer can afford to hire any individual
agent entirely (which is standard in the literature for the indivisible setting, but
here it does restrict the bidding space). They present a deterministic, truthful
and budget-feasible mechanism that achieves an approximation ratio of 1 + ϕ ≈
2.62 for linear valuation functions and extend it to the setting in which all agents
are associated with the same concave valuation function.

The two discussed settings of procurement auctions have a number of prac-
tical applications in various domains. As previously mentioned, the divisible
setting would for example be useful to model the time availability of a worker in
the context of crowdsourcing. Moreover, these types of auctions can also be ap-
plied to other industries, such as transportation and logistics, where the delivery
of goods and services can be broken down into multiple levels of service. For in-
stance, in the transportation industry, the first level of service can represent the
basic delivery service, while the higher levels can represent more premium and
specialized services, such as express delivery or temperature-controlled shipping.
The auctioneer can then choose to hire each agent up to an available level of
service, not necessarily the best offered, based on the budget constraint and the
value of the services provided.

Our Contributions. In this work, we propose deterministic, truthful and budget-
feasible mechanisms for settings with partial allocations. Specifically,

– We present a mechanism, Sort-&-Reject(k) (Mechanism 1), with an ap-
proximation ratio of 2 +

√
3 ≈ 3.73 for the indivisible agent setting with

multiple levels of service and concave valuation functions (Section 3, Theo-
rem 2). The main idea behind our novel mechanism is to apply a backwards
greedy approach, in which we start from an optimal fractional solution and
we discard single levels of service one by one, until a carefully chosen stopping
condition is met. For this setting, no constant-factor approximation mecha-
nism was previously known.

– We use Sort-&-Reject(k) as a subroutine in order to design the mechanism
for the setting with divisible agents, Chunk-&-Solve (Mechanism 2), that
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achieves an approximation ratio of L(1 + ϕ + o(k−1)) for L-regular concave
valuation functions (Section 4.1, Theorem 3), where k is a discretization
parameter. This is the first result for the problem that is independent of the
number of agents n. Note that L-regularity is a Lipschitz-like condition and
for L = 1 the problem reduces to the setting with linear valuation functions.
In this case, our ratio retrieves the best known guarantee of Klumper and
Schäfer [17] as k grows. On a technical level, we exploit the correspondence
between the discrete and the continuous settings; as the number of service
levels grows large, the former converges to the latter.

– We improve on the aforementioned best known result for L = 1, by suggesting
a 2-approximation mechanism, Prune-&-Assign (Mechanism 4), for the
divisible setting with linear valuation functions (Section 4.2, Theorem 4).
This mechanism is inspired by the randomized 2-approximate mechanism
proposed by Gravin et al. [14] for the indivisible setting.

As we mentioned above, all our results are under the mild assumption that
we can afford each agent entirely. For the setting with divisible agents this is
necessary in order to achieve any non-trivial factor [5], and it was also assumed
by Klumper and Schäfer [17]. Even for the discrete setting with multiple levels
of service this assumption circumvents a strong lower bound of Chan and Chen
[10] (see also Remark 1). In both settings our assumptions are much weaker than
the large market assumptions often made in the literature (see, e.g., [5, 16]).

Further Related Work. The design of truthful budget-feasible mechanisms
for indivisible agents was introduced by Singer [24], who gave a deterministic
mechanism for additive valuation functions with an approximation guarantee of
5, along with a lower bound of 2 for deterministic mechanisms. This guarantee
was subsequently improved to 2 +

√
2 ≈ 3.41 by Chen et al. [11], who also

provided a lower bound of 2 for randomized mechanisms and a lower bound of 1+√
2 ≈ 2.41 for deterministic mechanisms. Gravin et al. [14] gave a 3-approximate

deterministic mechanism, which is the best known guarantee for deterministic
mechanisms to this day, along with a lower bound of 3 when the guarantee is with
respect to the optimal non-strategic fractional solution. Regarding randomized
mechanisms, Gravin et al. [14] settled the question by providing a 2-approximate
randomized mechanism, matching the lower bound of Chen et al. [11]. Finally,
the question has also been settled under the large market assumption by Anari
et al. [5], who extended their e

e−1 ≈ 1.58 mechanism for the setting with divisible
agents to the indivisible setting. As mentioned earlier, Klumper and Schäfer [17]
study the divisible setting without the large market assumption, but under the
assumption that the private cost of each agent is bounded by the budget and
give, among other results, a deterministic (1 + ϕ)-approximate mechanism for
linear valuation functions, i.e., non-identical valuations.

For indivisible agents, the problem has also been extended to richer valu-
ation functions. This line of inquiry also started by Singer [24], who gave a
randomized algorithm with an approximation guarantee of 112 for a monotone
submodular objective. Once again, this result was improved by Chen et al. [11]
to a 7.91 guarantee, and the same authors devised a deterministic mechanism
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with a 8.34 approximation. Subsequently, the bound for randomized mechanisms
was improved by Jalaly and Tardos [16] to 5. Very recently, Balkanski et al. [8]
proposed a new method of designing mechanisms that goes beyond the sealed-
bid auction paradigm. Instead, Balkanski et al. [8] presented mechanisms in the
form of deterministic clock auctions and, for the monotone submodular case,
present a deterministic clock auction which achieves a 4.75 guarantee.

Beyond monotone submodular valuations, it becomes much harder to obtain
truthful mechanisms with small constants as approximation guarantees. Namely,
for non-monotone submodular objectives the first randomized mechanism that
runs in polynomial time is due to Amanatidis et al. [3] and its approximation
guarantee is 505. This guarantee was improved to 64 by Balkanski et al. [8] who
provided a deterministic mechanism for the problem and Huang et al. [15] who
gave a further improvement of (3 +

√
5)2 for randomized mechanisms. In both

[8] and [15] the mechanisms take the form of clock auctions, procedures in which
bidders are offered prices in multiple rounds, see also [21].

Richer valuations that have been studied are XOS valuation functions (see
Bei et al. [9], Amanatidis et al. [2]) and subadditive valuation functions (see
Dobzinski et al. [12], Bei et al. [9], Balkanski et al. [8]). For subadditive valuation
functions, no mechanism achieving a constant approximation is known. However,
Bei et al. [9] have proved that such a mechanism should exist, using a non-
constructive argument. Finding such a mechanism is an intriguing open question.

Other settings that have been studied include environments with underlying
feasibility constraints, such as downward-closed environments (Amanatidis et
al. [1], Huang et al. [15]) and matroid constraints (Leonardi et al. [18]). Other
environments in which the auctioneer wants to get a set of heterogeneous tasks
done and each task requires that the hired agent has a certain skill have been
studied as well, see Goel et al. [13], Jalaly and Tardos [16]. Recently, Li et al.
[19] studied facility location problems under the lens of budget-feasibility, in
which facilities have private facility-opening costs. Finally, the problem has been
studied in a beyond worst-case analysis setting by Rubinstein and Zhao [23].

2 Model and Preliminaries

We first define the standard budget-feasible mechanism design model below
which constitutes the basis of the more general models considered in this paper.
The multiple service level model is introduced in Section 2.2 and the divisible
agent model in Section 2.3.

2.1 Basic Model

We consider a procurement auction consisting of a set of agents N = {1, . . . , n}
and an auctioneer who has an available budget B ∈ R>0. Each agent i ∈ N
offers a service and has a private cost parameter ci ∈ R>0, representing their
true cost for providing this service. The auctioneer derives some value vi ∈ R≥0

from the service of agent i which is assumed to be public information.
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A deterministic mechanism M in this setting consists of an allocation rule
x : Rn

≥0 → Rn
≥0 and a payment rule p : Rn

≥0 → Rn
≥0. To begin with, the

auctioneer collects a profile b = (bi)i∈N ∈ Rn
≥0 of declared costs from the agents.

Here, bi denotes the cost declared by agent i ∈ N , which may differ from their
true cost ci. Given the declarations, the auctioneer determines an allocation
(hiring scheme) x(b) = (x1(b), . . . , xn(b)), where xi(b) ∈ Rn

≥0 is the allocation
decision for agent i, i.e., to what extent agent i is hired. Generally, we distinguish
between the divisible and indivisible agent setting by means of the corresponding
allocation rule. In the divisible setting, each agent i can be allocated fractionally,
i.e., xi(b) ∈ R≥0. In the indivisible setting, each agent i can only be allocated
integrally, i.e., xi(b) ∈ N≥0. Given an allocation x, we define W (x) = {i ∈ N |
xi > 0} as the set of agents who are positively allocated under x. The auctioneer
also determines a vector of payments p(b) = (p1(b), . . . , pn(b)), where pi(b) is
the payment agent i will receive for their service.

We assume that agents have quasi-linear utilities, i.e., for a deterministic
mechanism M = (x,p), the utility of agent i ∈ N for a profile b is ui(b) =
pi(b)− ci · xi(b). We are interested in mechanisms that satisfy three properties
for any true profile c and any declared profile b:

– Individual rationality: Each agent i ∈ N receives non-negative utility, i.e.,
ui(b) ≥ 0.

– Budget-feasibility: The sum of all payments made by the auctioneer does not
exceed the budget, i.e.,

∑
i∈N pi(b) ≤ B.

– Truthfulness: Each agent i ∈ N does not have and incentive to misreport their
true cost, regardless of the declarations of the other agents, i.e., ui(ci,b−i) ≥
ui(b) for any bi and b−i.

Given an allocation x, the total value the auctioneer obtains is denoted by
v(x). The exact form of this function depends on the respective model we are
studying and will be defined in the subsections below.

All the models that are studied in this paper are single-parameter settings and
so the characterization of Myerson [22] applies.1 It is therefore sufficient to focus
on the class of mechanisms with monotone non-increasing (called monotone for
short) allocation rules. An allocation rule is monotone non-increasing if for every
agent i ∈ N , every profile b, and all b′i ≤ bi, it holds that xi(b) ≤ xi(b

′
i,b−i).

We will use this together with Theorem 1 below to design truthful mechanisms.

Theorem 1 ([7, 22]). A monotone non-increasing allocation rule x(b) admits
a payment rule that is truthful and individually rational if and only if for all
agents i ∈ N and all bid profiles b−i, we have

∫∞
0

xi(z,b−i)dz < ∞. In this
case, we can take the payment rule p(b) to be

pi(b) = bixi(b) +

∫ ∞

bi

xi(z,b−i)dz . (1)

1 We refer the reader to [6] for a rigorous treatment of the uniqueness property of
Myerson’s characterization result.
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In this paper, we will exclusively derive monotone allocation rules that are
implemented with the payment rule as defined in (1). Therefore, in the remainder
of this paper, we adopt the convention of referring to the true cost profile c of the
agents as input (rather than distinguishing it from the declared cost profile b).
Also, throughout the paper we will omit the explicit reference to the respective
cost profile c whenever it is clear from the context.

2.2 k-Level Model

We consider the following multiple service level model as a natural extension of
the standard model introduced above (see also [10]). Throughout the paper, we
refer to this model as the k-level model for short: Suppose each agent i ∈ N offers
k ≥ 1 levels of service and has an associated valuation function vi : {0, . . . , k} →
R≥0 which is public information.2 Here, vi(j) denotes the value that the jth
level of service of agent i has to the auctioneer. Observe that in this setting each
agent i ∈ N is indivisible and the range of the allocation rule is constrained to
{0, . . . , k}, i.e., xi : Rn

≥0 → {0, . . . , k}. Note also that the total cost of agent i is
linear (as defined above), i.e., the cost of using xi(x) = j service levels of agent
i is j · ci.
Valuation functions: Without loss of generality, we assume that each vi is
normalized such that vi(0) = 0. We study the general class of concave valua-
tion functions, i.e., for each agent i, vi(j) − vi(j − 1) ≥ vi(j + 1) − vi(j) for
all j = 1, . . . , k − 1. We also define the j-th marginal valuation of agent i as
mi(j) := vi(j) − vi(j − 1) for j ∈ {1, . . . , k}. Given a profile c, the total value
that the auctioneer derives from an allocation x is defined by the separable
concave function v(x(c)) =

∑
i∈N vi(xi(c)).

Cost restrictions:We consider different assumptions with respect to the ability
of the auctioneer to hire multiple service levels. In the all-in setting, we assume
that the auctioneer can afford to hire all levels of each agent, i.e., given a cost
profile c, for every agent i ∈ N it holds that k ·ci ≤ B. In contrast, in the best-in
setting, which is equivalent to the setting of Chan and Chen [10], the auctioneer
is guaranteed only to be able to afford the first service level, i.e., given a cost
profile c, for every agent i ∈ N it holds that ci ≤ B.3 We focus on the all-in
setting throughout this extended abstract; see the full version of our work [4] for
an almost tight result on the best-in setting.

Remark 1. For the best-in setting, Chan and Chen [10] show a lower bound of k
for the approximation guarantee of any deterministic, truthful, budget-feasible
mechanism and a lower bound of ln(k) for the approximation guarantee of any

2 Our results very easily extend to the setting where there is a different (public) ki
associated with each agent i. We use a common k for the sake of presentation.

3 Whenever we use one of these assumptions, we implicitly constrain the space of the
(declared) cost profiles. That is, we assume that any agent who violates the respective
condition is discarded up front from further considerations, e.g., by running a pre-
processing step that removes such agents.
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randomized, universally truthful, budget-feasible mechanism. For these bounds,
a single agent is used and then it is claimed that they generalize to nk and ln(nk),
respectively, for n agents. The former is not correct, as we show in the full version
of this paper [4], where we present a (k + 2 + o(1))-approximate mechanism,
named Greedy-Best-In(k), almost settling the deterministic case. Note that
the mechanism suggested by Chan and Chen [10] is 4(1 + ln(nk))-approximate.

Benchmark: The performance of a mechanism is measured by comparing v(x(c))
with the underlying (non-strategic) combinatorial optimization problem, which
is commonly referred to as the k-Bounded Knapsack Problem4 (see, e.g., [20] for
a classification of knapsack problems):

OPTk
I (c, B) := max

n∑
i=1

vi(xi), s.t.

n∑
i=1

cixi ≤ B, xi ∈ {0, . . . , k} ,∀i ∈ N. (2)

The k-Bounded Knapsack Problem is NP-hard in general. We say that a mech-
anism M = (x,p) is α-approximate with α ≥ 1 if v(x(c)) ≥ 1

α OPTk
I (c, B). We

also consider the relaxation of the above problem as a proxy for OPTk
I (c, B).

The definition and further details about this are deferred to Section 2.4 below.
An instance I of the k-level model will be denoted by a tuple I = (N, c, B, k,

(vi)i∈N ). Whenever part of the input is clear from the context, we omit its
explicit reference for conciseness (e.g., often we refer to instance simply by its
corresponding cost vector c).

2.3 Divisible Agent Model

Next, we introduce the fractional model that we study in this paper. Throughout
the paper, we refer to this model as the divisible agent model : Here, the auc-
tioneer is allowed to hire each agent for an arbitrary fraction of the full service.
More precisely, each agent i ∈ N is divisible and the range of the allocation rule
is constrained to [0, 1], i.e., xi : Rn

≥0 → [0, 1]. Each agent i ∈ N has an associated
valuation function v̄i : [0, 1] → R≥0 (which is public information), where v̄i(x)
represents how valuable a fraction x ∈ [0, 1] of the service of agent i is to the
auctioneer.

Valuation functions: Also here, we assume without loss of generality that
each vi is normalized such that v̄i(0) = 0. We focus on the general class of non-
decreasing and concave valuation functions. The total value that the auctioneer
derives from an allocation x(c) is defined as v(x(c)) =

∑
i∈N v̄i(xi(c)).

L-Regularity Condition: We introduce the following regularity condition for
the valuation functions which will be crucial in our analysis of the divisible
agent model below. Given a function f : R≥0 → [0, 1], we say that f is L-regular
Lipschitz (or just L-regular for short) for L ≥ 1 if

f(x) ≤ xLf(1) ∀x ∈ [0, 1). (3)

4 Note that for k = 1, the problem reduces to the well-known 0-1 Knapsack Problem.
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Note that if we remove f(1) from the above definition, then this definition co-
incides with the standard Lipschitz definition. We say that an instance of the
divisible agent model is L-regular for some L ≥ 1, if for each agent i ∈ N the
valuation function v̄i is L-regular as defined in (3).

Cost restrictions: We assume that the auctioneer can afford each agent to the
full extent. More formally, given a cost profile c it must hold that for each agent
i ∈ N , ci ≤ B. With respect to this assumption, the same remarks as given
above apply (see Footnote 3).

Benchmark: As above, the performance of a mechanism is measured by com-
paring v(x(c)) with the underlying (non-strategic) combinatorial optimization
problem, which we refer to as the Fractional Concave Knapsack Problem:

OPTF(c, B) := max
n∑

i=1

v̄i(xi) s.t.

n∑
i=1

cixi ≤ B, xi ∈ [0, 1] ∀i ∈ N. (4)

In the divisible agent model, a mechanism M = (x,p) is α-approximate with
α ≥ 1 if v(x(c)) ≥ 1

α OPTF(c).
An instance I of the divisible agent model will be denoted by a tuple I =

(N, c, B, (v̄i)i∈N ). As mentioned before, we will omit the explicit reference of
certain input parameters if they are clear from the context.

2.4 Fractional k-Bounded Knapsack Problem

We also consider the Fractional k-Bounded Knapsack Problem that follows from
the k-Bounded Knapsack Problem in (2) by relaxing the integrality constraint:

OPTk
F(c, B) := max

n∑
i=1

vi(⌊xi⌋) +mi(⌈xi⌉)(xi − ⌊xi⌋) ,

such that

n∑
i=1

cixi ≤ B, xi ∈ [0, k] ∀i ∈ N.

Naturally, it also holds that OPTk
F(c, B) ≥ OPTk

I (c, B). Note that OPT1
F(c, B)

is the fractional relaxation of the well-known Knapsack Problem. It is not hard to
see that OPTk

F(c, B) inherits the well-known properties of its one-dimensional
analogue, including the fact that an optimal solution can be computed by a
simple greedy algorithm in polynomial time.

We state the following as a fact and refer the reader to [4] for details. More
generally, all the proofs that are omitted here can be found in [4].

Fact 1. Given an instance I = (N, c, B, k, (vi)i∈N ) of the Fractional k-Bounded
Knapsack Problem, a simple greedy algorithm computes in time O(kn log(kn))
an optimal solution x∗ that has at most one coordinate with a non-integral value.

The next fact relates the values of instances which only differ with respect
to their budget.



10 G. Amanatidis, S. Klumper, E. Markakis, G. Schäfer, and A. Tsikiridis

Fact 2. Let I = (N, c, B, k, (vi)i∈N ) and I ′ = (N, c, B′, k, (vi)i∈N ) with B <
B′ be two instances of the Fractional k-Bounded Knapsack Problem. Then,
OPTk

F(c, B)/B ≥ OPTk
F(c, B

′)/B′.

In most cases the budget is going to be clear from the context, so usually
we are going to omit B from OPTk

F(c, B) and OPTk
I (c, B), and simply write

OPTk
F(c) and OPTk

I (c), respectively.

3 Budget-Feasible Mechanism for Multiple Service Levels

We derive a natural truthful and budget-feasible greedy mechanism for the k-
level model. This mechanism will also be used in our Chunk-&-Solve mecha-
nism for the divisible agent model (see Section 4.1).

3.1 A Truthful Greedy Mechanism

The main idea underlying our mechanism is as follows: If there is an agent i∗

whose maximum valuation vi∗(k) is valuable enough (in a certain sense), then we
simply pick all service levels of this agent. Otherwise, we compute an allocation
using the following greedy procedure: We first compute an optimal allocation
x∗(c) to the corresponding Fractional k-Bounded Knapsack Problem (which
can be done in polynomial time) and use the integral part of this solution as
an initial allocation. Note that this allocation is close to the optimal fractional
solution because x∗(c) has at most one fractional component (Fact 1). We then
repeatedly discard the worst service level (in terms of marginal value-per-cost)
of an agent from this allocation, until the total value of our allocation would
drop below an α-fraction of the optimal solution.

We need some more notation for the formal description of our mechanism:
Given an allocation x, we denote by ℓ(x) the agent whose xℓ(x)-th level of service
is the least valuable in x, in terms of their marginal value-per-cost ratio. Notice
that due to the fact that the valuation functions are concave, the worst case
marginal value-per-cost ratio indeed corresponds to the xℓ(x)-th ratio of agent
ℓ(x). When x is clear from the context, we refer to this agent simply as ℓ. A
detailed description of our greedy mechanism is given in Mechanism 1.

The main result of this section is the following theorem:

Theorem 2. Sort-&-Reject(k) with α = 1
2+

√
3
is truthful, individually ratio-

nal, budget-feasible and (2+
√
3)-approximate for instances of the k-level model,

and runs in time polynomial in n ank k.

The polynomial running time for the allocation is straightforward. In the
remainder of this section, we prove several lemmas to establish the properties
stated in Theorem 2. Technically, the most challenging part is to prove that the
mechanism is budget-feasible (see Section 3.2).

The following property follows by construction of the mechanism.
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Mechanism 1: Sort-&-Reject(k)

▷ Input: A profile c and a parameter α ∈ (0, 1)

1 Set i∗ = argmaxi∈N vi(k)/OPTk
F(c−i)

2 if vi∗(k) ≥ α
1−α ·OPTk

F(c−i∗) then

3 set xi∗ = k and xi = 0 for all i ∈ N \ {i∗}
4 else
5 Compute an optimal allocation x∗(c) of OPTk

F(c).
6 Initialize x = (⌊x∗

1(c)⌋, . . . , ⌊x∗
n(c)⌋).

7 for i ∈ N and j = 1, . . . , xi do
8 add the marginal value-per-cost ratio mi(j)/ci to a list L.
9 Sort L in non-increasing order and let ℓ be the index of the last

agent of W (x) in L.
10 while v(x)−mℓ(xℓ) ≥ αOPTk

F(c) do
11 Set xℓ = xℓ − 1.
12 Remove the last element from L and update ℓ.

13 Allocate x and determine the payments p according to (1).

Fact 3. The allocation x returned by Sort-&-Reject(k) satisfies xi ≤ x∗
i for

every i ∈ N .

We now prove that the allocation rule of Sort-&-Reject(k) is monotone.

Lemma 1. The allocation rule of Sort-&-Reject(k) is monotone.

Since the payments are computed according to (1), we conclude that the
mechanism is truthful and individually rational. We continue by proving that
Sort-&-Reject(k) achieves the claimed approximation guarantee.

Lemma 2. Let x(c) be the allocation computed by Sort-&-Reject(k) for a
cost profile c. It holds that v(x(c)) ≥ αOPTk

I (c).

3.2 Making Sort-&-Reject(k) Budget-feasible

It remains to prove that Sort-&-Reject(k) is budget-feasible. We introduce
some auxiliary notation: Consider a cost profile c and an agent i ∈ W (x(c)).
Let j ∈ {1, . . . , xi(c)} be an arbitrary service level allocated to i. Intuitively,
we refer to the critical payment pij(c−i) for service level j of i as the largest
cost q that i can declare and still obtain service level j (see Figure 1 for an
illustration). More formally, we define Qij(c−i) as the set of all points q sat-
isfying limz→q− xi(z, c−i) ≥ j and limz→q+ xi(z, c−i) ≤ j and let pij(c−i) =
sup(Qij(c−i)). Note that such a point q must always exist and ci ≤ q ≤ B

k .
To see this, note that xi(ci, c−i) ≥ j which implies that ci ≤ q and that
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xi(z, c−i) = 0 < j for all z > B
k (by our assumption that ci ≤ B

k ) which

implies that q ≤ B
k .

5

It is easy to see that the payment of an agent i can be written as the sum
over these critical payments for the levels of service i was hired for.

z

xi(z, c−i)

0

xi(c)

(xi(c)− 1)

2

1

ci pix(c) pi(x(c)−1) pi2 pi1

Fig. 1. Illustration of the critical payments of agent i.

Fact 4. Let c be a cost profile and let i ∈ W (x(c)). It holds that pi(c) =
xi(c)∑
j=1

pij(c−i).

Lemma 3 is the main technical tool needed to establish budget-feasibility for
the else part of Sort-&-Reject(k). It is also used in the proof of Theorem 3
in the divisible agent setting.

Lemma 3 (Budget Feasibility Lemma). Let c be a cost profile such that
vi∗(k) <

α
1−α OPTk

F(c−i∗). Then,

n∑
i=1

pi(c) ≤
B

1− α

(
mℓ(xℓ(c))

OPTk
F(c−ℓ)

+
α

1− α

)
.

Observe that using Lemma 3, we can determine a range for values of α,
for which Sort-&-Reject(k) is budget-feasible. Thus, Lemma 4 along with
Lemmas 1 and 2 conclude the proof of Theorem 2.

Lemma 4. Sort-&-Reject(k) is budget-feasible for α ≤ 1
2+

√
3
.

5 It is not hard to see that the set Qij(c−i) is also closed and thus the supremum
always exists.
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Mechanism 2: Chunk-&-Solve
▷ Input: A profile c, a positive integer k
1 Initialize c = 0 and for each i ∈ N , vi : {0, . . . , k} → R+ with vi(0) = 0.
2 for i ∈ N and j ∈ {1, . . . , k} do set vi(j) := v̄i(j/k).

3 Set α(L, k) =
(
3k + L−

√
5k2 + 6kL+ L2

)
/2k.

4 Let Ĩ = (N, c, kB, k, (vi)i∈N ) denote the resulting discretized instance of
the k-level model.

5 Compute x by running Sort-&-Reject(k)(c, α(L, k)) on Ĩ.
6 for i ∈ N do set x̄i = xi/k.
7 Allocate x̄ and determine the payments p̄ according to (1).

4 Two Budget-Feasible Mechanisms for Divisible Agents

We consider the divisible agent model and derive two truthful and budget-
feasible mechanisms. The first one is obtained by discretizing the valuation func-
tions and reducing the problem to the k-level model (Section 4.1). The second
one is an improved 2-approximate mechanisms for the divisible agent model with
linear valuation functions (Section 4.2).

4.1 Using Sort-&-Reject(k) for Divisible Agents

Recall that in the divisible agent model, we have x(c) ∈ [0, 1]n and concave
non-decreasing valuation functions v̄i : [0, 1] → R≥0 with v̄i(0) = 0 for all i ∈ N .
Throughout this section, we assume that all valuation functions are L-regular
for some L ≥ 1 as defined in (3).

There is a natural correspondence between the setting with k ≥ 1 levels of
service and the setting with divisible agents: If we subdivide the [0, 1] interval
into k chunks of length 1

k and evaluate the v̄i(·)’s at 1
k ,

2
k , . . . ,

k
k , then this can

be interpreted as the value of hiring 1, 2, . . . k levels of service, respectively. We
can then obtain results for the setting with divisible agents by applying this
discretization, using Sort-&-Reject(k) from Section 3 and letting k grow. Our
Chunk-&-Solve mechanism basically exploits this idea. A detailed description
is given in Mechanism 2.

The following is the main result of this section:

Theorem 3. Chunk-&-Solve is truthful, individually rational, budget-feasible
and (L(1+ 1

k )/α(L, k))-approximate for L-regular instances of the divisible agent
model.

It is a matter of using simple calculus to show that limk→∞ α(L, k) = 1
ϕ+1 ,

and thus the approximation ratio of Theorem 3 goes to (ϕ+1)L. Given that the
running time of Sort-&-Reject(k) is polynomial in k, a reasonable question
is whether we can have a good approximation guarantee for ‘small’ k when L is
O(1). Again, it is a matter of calculations to show that using k = O(L) suffices.
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Mechanism 3: Pruning by Gravin et al. [14]

▷ Input: A profile c with the agents relabeled so that v1
c1

≥ v2
c2

≥ · · · ≥ vn
cn

1 Let r := 1
B max{vi | i ∈ N}.

2 foreach i ∈ N do set x̄i = 1 if vi
ci

≥ r and x̄i = 0 otherwise.

3 Let ℓ := argmax{i | x̄i = 1}.
4 while rB <

∑ℓ
i=1 vi −max{vi | i = 1, . . . , ℓ} do

5 Continuously increase rate r.
6 if vℓ

cℓ
≤ r then set x̄ℓ = 0 and ℓ = ℓ− 1.

7 return (r, x̄)

For instance, taking k = 11L implies an approximation ratio of 3L for any
L ≥ 1. Qualitatively, this means that, for L ∈ O(1), Chunk-&-Solve achieves
a constant approximation ratio in polynomial time.

4.2 A Mechanism for Divisible Agents and Linear Valuations

Chunk-&-Solve retrieves the best known approximation guarantee of 1 + ϕ
for L = 1 and as k → ∞ [17] (i.e., for divisible agents with linear valuations).
Below, we improve upon this and give a simple 2-approximate budget-feasible
mechanism for this setting. Our mechanism is inspired by the randomized 2-
approximate budget-feasible mechanism by Gravin et al. [14] for indivisible
agents. We also prove a lower bound of 2 for deterministic, truthful, individ-
ually rational and budget feasible mechanisms with independent allocation rules
(as defined below).

Phase 1: Pruning Mechanism for Divisible Agents We first extend the
Pruning mechanism of Gravin et al. [14] to the divisible setting. This mecha-
nism constitutes a crucial building block for both their deterministic 3-approxi-
mate mechanism and their randomized 2-approximate mechanism for indivisible
agents [14]. As we show below, it serves as a useful starting point for the divisible
setting as well.

Given a profile c, this mechanism computes an allocation x̄(c), which we refer
to as the provisional allocation, and a positive quantity r(c), which we refer to
as the rate. We assume that the agents are initially relabeled by their decreasing
value-per-cost ratio, i.e., v1

c1
≥ v2

c2
≥ · · · ≥ vn

cn
. The mechanism proceeds as

described in Mechanism 3.
Gravin et al. [14] showed that Pruning is monotone. In fact, an even stronger

robustness property holds (and is implicit in the proof of Lemma 3.1 in [14]): each
agent i that is a winner in the provisional allocation cannot alter the outcome
of Pruning unilaterally while remaining a winner in the provisional allocation.

Lemma 5 (implied by Lemma 3.1 of [14]). Let c be a profile. Consider an
agent i ∈ N with x̄i(c) = 1. Then, for all c′i such that x̄i(c

′
i, c−i) = 1, it holds

that x̄(c′i, c−i) = x̄(c) and r(c′i, c−i) = r(c).
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Given this robustness property, Pruning can be used as a first filtering step
to discard inefficient agents, followed by a subsequent allocation scheme which
takes (r(c), x̄(c)) as input. If the subsequent allocation scheme is monotone, then
the sequential composition of Pruning with this allocation scheme is monotone
as well. This composability property is proven in Lemma 3.1 of [14].

Let (r, x̄) be the output of Pruning for a cost profile c. Given x̄, we define
S as the set of agents that are provisionally allocated, i∗ as the highest value
agent in S, and T as the set of remaining agents. More formally, we define

S = {i ∈ N | x̄i = 1}, i∗ = argmax{vi | i ∈ S} and T = S \ {i∗} . (5)

Note that the definitions of S, i∗ and T depend on x̄ (and thus the cost profile
c). For notational convenience, we do not state this reference explicitly if it is
clear from the context.

The following properties were proved in [14] and are useful in our analysis.

Lemma 6 (Lemma 3.2 of [14]). Given a profile c, let (r, x̄) be the output of
Pruning. Let S = T ∪ {i∗} be defined as in (5) with respect to x̄. We have

1. ci ≤ vi
r ≤ B for all i ∈ S.

2. v(T ) ≤ rB < v(S).

3. OPTF ≤ v(S) + r · (B − c(S)).

Phase 2: Independent Allocation Schemes Our mechanism combines the
Pruning mechanism above with the allocation schemes defined in (6) below.
We refer to the resulting mechanism as Prune-&-Assign (see Mechanism 4).

First, we need to define the following constants:

qi∗ =

{
1
2 − q if vi∗ ≤ v(T )
1
2 otherwise

, qi = 1−qi∗−q,∀i ∈ T, where q =
1

2

v(S)− rB

min{vi∗ , v(T )}
.

Note that the constant qi for all agents i ∈ T is the same. It is not hard to prove
that q ∈ [0, 1

2 ] (see [14, Lemma 5.1]). The constants above are chosen so that
rB/2 = qi∗vi∗ + (1− qi∗ − q)v(T ).

We can now define our (fractional) allocation function xi(c) = xi(ci) for each
agent i ∈ T ∪ {i∗}:

xi(z) = qi +
vi − rz

2vi
for z ∈

[
0,

vi
r

]
. (6)

Note that xi(ci, c−i) = xi(ci) only depends on agent i’s cost ci. We call such
allocation rules independent. Further, note that by property (1) of Lemma 6,
the cost ci of each agent i ∈ S after pruning is at most vi

r , i.e., xi(z) will be
determined by some value z ∈ [0, vi

r ]. It is not hard to verify that xi is well-
defined (given the chosen parameters qi∗ , qT and q above).

Theorem 4. Prune-&-Assign is truthful, individually rational, budget-feasible
and 2-approximate for instances of the divisible agent model with linear valua-
tions.



16 G. Amanatidis, S. Klumper, E. Markakis, G. Schäfer, and A. Tsikiridis

Mechanism 4: Prune-&-Assign for Divisible Agents

▷ Input:A profile c with the agents relabeled so that v1
c1

≥ v2
c2

≥ · · · ≥ vn
cn

1 Obtain (r, x̄) by running Pruning for profile c.
2 Let S = T ∪ {i∗} be as defined in (5).
3 Determine the fractional allocation: xi∗(ci∗) and xi(ci) ,∀i ∈ T as in (6).
4 Allocate x and determine the payments p as in (1).

Finally, we give a lower bound of 2 for deterministic, truthful, individually
rational and budget feasible mechanisms with independent allocation rules. Note
that Prune-&-Assign does not belong to this class of mechanisms (due to
Pruning). However, our analysis of Prune-&-Assign is tight (see [4]).

Theorem 5. Let M be a deterministic, truthful, individually rational and bud-
get feasible mechanism with an approximation guarantee of α. If M has inde-
pendent allocation rules, then α ≥ 2.

5 Conclusion and Future Work

In this work we revisited two settings where partial allocations are allowed and
draw clear connections between them. Under mild assumptions like being able
to afford each agent entirely and having “nice” concave valuation functions (i.e.,
O(1)-regular), we give deterministic, truthful and budget-feasible mechanisms
with constant approximation guarantees. We believe these are settings that are
both interesting and relevant to applications and there are several open ques-
tions we do not settle here. A natural direction, not considered at all in this
work, is to deal with additional combinatorial constraints, like matching, ma-
troid, or even polymatroid (for the k-level setting) constraints. For the k-level
setting, it would be interesting to understand whether we can obtain mech-
anisms with approximation guarantees closer to those possible for single-level
settings, or alternatively, determine whether allowing multiple levels of service is
an inherently harder problem. As far as simple settings are concerned, the most
important open problem is still the indivisible agents case with additive valua-
tions, for which the best-possible approximation ratio is in [1 +

√
2, 3] (due to

[11, 14]). The corresponding range for the divisible agent setting is [e/(e−1), 2]
(due to [5] and our Theorem 4). Any progress on these fronts may give rise to
novel techniques, which may be also used for problems in richer environments.

Acknowledgements. This work was supported by the Netherlands Organi-
sation for Scientific Research (NWO) through its Open Technology Program,
proj. no. 18938, and the Gravitation Project NETWORKS, grant no. 024.002.003.
Moreover, it was supported by the “1st Call for HFRI Research Projects to sup-
port faculty members and researchers and the procurement of high-cost research
equipment” (proj. no. HFRI-FM17-3512). Finally, this work was also supported
by COST Action CA16228.



Partial Allocations in Budget-Feasible Mechanism Design 17

References

[1] Amanatidis, G., Birmpas, G., Markakis, E.: Coverage, matching, and be-
yond: new results on budgeted mechanism design. In: Web and Internet
Economics: 12th International Conference, WINE 2016, Proceedings. pp.
414–428 (2016)

[2] Amanatidis, G., Birmpas, G., Markakis, E.: On budget-feasible mechanism
design for symmetric submodular objectives. In: Web and Internet Eco-
nomics: 13th International Conference, WINE 2017, Proceedings. pp. 1–15
(2017)
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[17] Klumper, S., Schäfer, G.: Budget feasible mechanisms for procurement auc-
tions with divisible agents. In: Algorithmic Game Theory: 15th Interna-
tional Symposium, SAGT 2022, Proceedings. pp. 78–93 (2022)

[18] Leonardi, S., Monaco, G., Sankowski, P., Zhang, Q.: Budget feasible mecha-
nisms on matroids. In: Integer Programming and Combinatorial Optimiza-
tion: 19th International Conference, IPCO 2017, Proceedings. pp. 368–379
(2017)

[19] Li, M., Wang, C., Zhang, M.: Budget feasible mechanisms for facility loca-
tion games with strategic facilities. Autonomous Agents and Multi-Agent
Systems 36(2), 35 (2022)

[20] Martello, S., Toth, P.: Knapsack problems: algorithms and computer imple-
mentations. John Wiley & Sons, Inc. (1990)

[21] Milgrom, P., Segal, I.: Clock auctions and radio spectrum reallocation. Jour-
nal of Political Economy 128(1), 1–31 (2020)

[22] Myerson, R.: Optimal auction design. Mathematics of Operations Research
6(1), 58–73 (1981)

[23] Rubinstein, A., Zhao, J.: Beyond worst-case budget-feasible mechanism
design. In: 14th Innovations in Theoretical Computer Science Conference
(ITCS 2023). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2023)

[24] Singer, Y.: Budget feasible mechanisms. In: In Proceedings of the 51st An-
nual Symposium on Foundations of Computer Science, FOCS 2010. pp.
765–774 (2010)


	Partial Allocations in Budget-Feasible Mechanism Design: Bridging Multiple Levels of Service and Divisible Agents

